Vitamin E Enhances Cancer Immunotherapy by Reinvigorating Dendritic Cells via Targeting Checkpoint SHP1

Despite the popular use of dietary supplements during conventional cancer treatments, their impacts on the efficacies of prevalent immunotherapies, including immune-checkpoint therapy (ICT), are unknown. Surprisingly, our analyses of electronic health records revealed that ICT-treated patients with...

Full description

Saved in:
Bibliographic Details
Published inCancer discovery Vol. 12; no. 7; pp. 1742 - 1759
Main Authors Yuan, Xiangliang, Duan, Yimin, Xiao, Yi, Sun, Kai, Qi, Yutao, Zhang, Yuan, Ahmed, Zamal, Moiani, Davide, Yao, Jun, Li, Hongzhong, Zhang, Lin, Yuzhalin, Arseniy E., Li, Ping, Zhang, Chenyu, Badu-Nkansah, Akosua, Saito, Yohei, Liu, Xianghua, Kuo, Wen-Ling, Ying, Haoqiang, Sun, Shao-Cong, Chang, Jenny C., Tainer, John A., Yu, Dihua
Format Journal Article
LanguageEnglish
Published United States 06.07.2022
Subjects
Online AccessGet full text
ISSN2159-8274
2159-8290
2159-8290
DOI10.1158/2159-8290.CD-21-0900

Cover

Loading…
Abstract Despite the popular use of dietary supplements during conventional cancer treatments, their impacts on the efficacies of prevalent immunotherapies, including immune-checkpoint therapy (ICT), are unknown. Surprisingly, our analyses of electronic health records revealed that ICT-treated patients with cancer who took vitamin E (VitE) had significantly improved survival. In mouse models, VitE increased ICT antitumor efficacy, which depended on dendritic cells (DC). VitE entered DCs via the SCARB1 receptor and restored tumor-associated DC functionality by directly binding to and inhibiting protein tyrosine phosphatase SHP1, a DC-intrinsic checkpoint. SHP1 inhibition, genetically or by VitE treatment, enhanced tumor antigen cross-presentation by DCs and DC-derived extracellular vesicles (DC-EV), triggering systemic antigen-specific T-cell antitumor immunity. Combining VitE with DC-recruiting cancer vaccines or immunogenic chemotherapies greatly boosted ICT efficacy in animals. Therefore, combining VitE supplement or SHP1-inhibited DCs/DC-EVs with DC-enrichment therapies could substantially augment T-cell antitumor immunity and enhance the efficacy of cancer immunotherapies. The impacts of nutritional supplements on responses to immunotherapies remain unexplored. Our study revealed that dietary vitamin E binds to and inhibits DC checkpoint SHP1 to increase antigen presentation, prime antitumor T-cell immunity, and enhance immunotherapy efficacy. VitE-treated or SHP1-silenced DCs/DC-EVs could be developed as potent immunotherapies. This article is highlighted in the In This Issue feature, p. 1599.
AbstractList Despite the popular use of dietary supplements during conventional cancer treatments, their impacts on the efficacies of prevalent immunotherapies, including immune-checkpoint therapy (ICT), are unknown. Surprisingly, our analyses of electronic health records revealed that ICT-treated patients with cancer who took vitamin E (VitE) had significantly improved survival. In mouse models, VitE increased ICT antitumor efficacy, which depended on dendritic cells (DC). VitE entered DCs via the SCARB1 receptor and restored tumor-associated DC functionality by directly binding to and inhibiting protein tyrosine phosphatase SHP1, a DC-intrinsic checkpoint. SHP1 inhibition, genetically or by VitE treatment, enhanced tumor antigen cross-presentation by DCs and DC-derived extracellular vesicles (DC-EV), triggering systemic antigen-specific T-cell antitumor immunity. Combining VitE with DC-recruiting cancer vaccines or immunogenic chemotherapies greatly boosted ICT efficacy in animals. Therefore, combining VitE supplement or SHP1-inhibited DCs/DC-EVs with DC-enrichment therapies could substantially augment T-cell antitumor immunity and enhance the efficacy of cancer immunotherapies. The impacts of nutritional supplements on responses to immunotherapies remain unexplored. Our study revealed that dietary vitamin E binds to and inhibits DC checkpoint SHP1 to increase antigen presentation, prime antitumor T-cell immunity, and enhance immunotherapy efficacy. VitE-treated or SHP1-silenced DCs/DC-EVs could be developed as potent immunotherapies. This article is highlighted in the In This Issue feature, p. 1599.
Despite the popular use of dietary supplements during conventional cancer treatments, their impacts on the efficacies of prevalent immunotherapies, including immune-checkpoint therapy (ICT), are unknown. Surprisingly, our analyses of electronic health records revealed that ICT-treated patients with cancer who took vitamin E (VitE) had significantly improved survival. In mouse models, VitE increased ICT antitumor efficacy, which depended on dendritic cells (DC). VitE entered DCs via the SCARB1 receptor and restored tumor-associated DC functionality by directly binding to and inhibiting protein tyrosine phosphatase SHP1, a DC-intrinsic checkpoint. SHP1 inhibition, genetically or by VitE treatment, enhanced tumor antigen cross-presentation by DCs and DC-derived extracellular vesicles (DC-EV), triggering systemic antigen-specific T-cell antitumor immunity. Combining VitE with DC-recruiting cancer vaccines or immunogenic chemotherapies greatly boosted ICT efficacy in animals. Therefore, combining VitE supplement or SHP1-inhibited DCs/DC-EVs with DC-enrichment therapies could substantially augment T-cell antitumor immunity and enhance the efficacy of cancer immunotherapies.Despite the popular use of dietary supplements during conventional cancer treatments, their impacts on the efficacies of prevalent immunotherapies, including immune-checkpoint therapy (ICT), are unknown. Surprisingly, our analyses of electronic health records revealed that ICT-treated patients with cancer who took vitamin E (VitE) had significantly improved survival. In mouse models, VitE increased ICT antitumor efficacy, which depended on dendritic cells (DC). VitE entered DCs via the SCARB1 receptor and restored tumor-associated DC functionality by directly binding to and inhibiting protein tyrosine phosphatase SHP1, a DC-intrinsic checkpoint. SHP1 inhibition, genetically or by VitE treatment, enhanced tumor antigen cross-presentation by DCs and DC-derived extracellular vesicles (DC-EV), triggering systemic antigen-specific T-cell antitumor immunity. Combining VitE with DC-recruiting cancer vaccines or immunogenic chemotherapies greatly boosted ICT efficacy in animals. Therefore, combining VitE supplement or SHP1-inhibited DCs/DC-EVs with DC-enrichment therapies could substantially augment T-cell antitumor immunity and enhance the efficacy of cancer immunotherapies.The impacts of nutritional supplements on responses to immunotherapies remain unexplored. Our study revealed that dietary vitamin E binds to and inhibits DC checkpoint SHP1 to increase antigen presentation, prime antitumor T-cell immunity, and enhance immunotherapy efficacy. VitE-treated or SHP1-silenced DCs/DC-EVs could be developed as potent immunotherapies. This article is highlighted in the In This Issue feature, p. 1599.SIGNIFICANCEThe impacts of nutritional supplements on responses to immunotherapies remain unexplored. Our study revealed that dietary vitamin E binds to and inhibits DC checkpoint SHP1 to increase antigen presentation, prime antitumor T-cell immunity, and enhance immunotherapy efficacy. VitE-treated or SHP1-silenced DCs/DC-EVs could be developed as potent immunotherapies. This article is highlighted in the In This Issue feature, p. 1599.
Despite the popular use of dietary supplements during conventional cancer treatments, their impacts on the efficacies of prevalent immunotherapies, including immune checkpoint therapy (ICT), are unknown. Surprisingly, our analyses of electronic health records revealed that ICT-treated cancer patients who took vitamin E (VitE) had significantly improved survival. In mouse models, VitE increased ICT antitumor efficacy, which depended on dendritic cells (DCs). VitE entered DCs via SCARB1 receptor and restored tumor-associated DCs’ functionality by directly binding to and inhibiting protein tyrosine phosphatase SHP1, a DC-intrinsic checkpoint. SHP1 inhibition, genetically, or by VitE treatment, enhanced tumor antigen cross-presentation by DCs and DC-derived extracellular vesicles (DC-EVs) triggering systemic antigen-specific T cell antitumor immunity. Combining VitE with DC-recruiting cancer vaccines, or immunogenic chemotherapies, greatly boosted ICT efficacy in animals. Therefore, combining VitE supplement, or SHP1-inhibited DCs/DC-EVs, with DCs-enrichment therapies could substantially augment T cell antitumor immunity and enhance the efficacies of cancer immunotherapies.
Author Yao, Jun
Kuo, Wen-Ling
Moiani, Davide
Li, Ping
Saito, Yohei
Liu, Xianghua
Sun, Shao-Cong
Ying, Haoqiang
Zhang, Lin
Xiao, Yi
Yuzhalin, Arseniy E.
Badu-Nkansah, Akosua
Chang, Jenny C.
Yu, Dihua
Li, Hongzhong
Duan, Yimin
Ahmed, Zamal
Qi, Yutao
Sun, Kai
Yuan, Xiangliang
Zhang, Yuan
Zhang, Chenyu
Tainer, John A.
AuthorAffiliation 3 Houston Methodist Cancer Center, Houston, TX 77030, USA
1 Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
4 Department of Immunology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
2 Houston Methodist Research Institute, Houston, TX 77030, USA
AuthorAffiliation_xml – name: 4 Department of Immunology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
– name: 1 Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center; Houston, TX 77030, USA
– name: 2 Houston Methodist Research Institute, Houston, TX 77030, USA
– name: 3 Houston Methodist Cancer Center, Houston, TX 77030, USA
Author_xml – sequence: 1
  givenname: Xiangliang
  orcidid: 0000-0002-2779-5750
  surname: Yuan
  fullname: Yuan, Xiangliang
– sequence: 2
  givenname: Yimin
  surname: Duan
  fullname: Duan, Yimin
– sequence: 3
  givenname: Yi
  surname: Xiao
  fullname: Xiao, Yi
– sequence: 4
  givenname: Kai
  orcidid: 0000-0001-5338-3920
  surname: Sun
  fullname: Sun, Kai
– sequence: 5
  givenname: Yutao
  surname: Qi
  fullname: Qi, Yutao
– sequence: 6
  givenname: Yuan
  surname: Zhang
  fullname: Zhang, Yuan
– sequence: 7
  givenname: Zamal
  orcidid: 0000-0003-3400-6577
  surname: Ahmed
  fullname: Ahmed, Zamal
– sequence: 8
  givenname: Davide
  surname: Moiani
  fullname: Moiani, Davide
– sequence: 9
  givenname: Jun
  orcidid: 0000-0003-1418-3576
  surname: Yao
  fullname: Yao, Jun
– sequence: 10
  givenname: Hongzhong
  surname: Li
  fullname: Li, Hongzhong
– sequence: 11
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
– sequence: 12
  givenname: Arseniy E.
  orcidid: 0000-0001-7454-6653
  surname: Yuzhalin
  fullname: Yuzhalin, Arseniy E.
– sequence: 13
  givenname: Ping
  surname: Li
  fullname: Li, Ping
– sequence: 14
  givenname: Chenyu
  surname: Zhang
  fullname: Zhang, Chenyu
– sequence: 15
  givenname: Akosua
  surname: Badu-Nkansah
  fullname: Badu-Nkansah, Akosua
– sequence: 16
  givenname: Yohei
  surname: Saito
  fullname: Saito, Yohei
– sequence: 17
  givenname: Xianghua
  surname: Liu
  fullname: Liu, Xianghua
– sequence: 18
  givenname: Wen-Ling
  surname: Kuo
  fullname: Kuo, Wen-Ling
– sequence: 19
  givenname: Haoqiang
  surname: Ying
  fullname: Ying, Haoqiang
– sequence: 20
  givenname: Shao-Cong
  surname: Sun
  fullname: Sun, Shao-Cong
– sequence: 21
  givenname: Jenny C.
  surname: Chang
  fullname: Chang, Jenny C.
– sequence: 22
  givenname: John A.
  orcidid: 0000-0003-1659-2429
  surname: Tainer
  fullname: Tainer, John A.
– sequence: 23
  givenname: Dihua
  orcidid: 0000-0001-6231-9381
  surname: Yu
  fullname: Yu, Dihua
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35420681$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1DAUtFARLW3_AUI-ckmxHTuxOSCh7EIrVQLRj6vldV6yhsTe2tmV9t_j0HYFHPDlPfvNzJNnXqMjHzwg9IaSC0qFfM-oUIVkilw0i4LRgihCXqCTw_PRoa_5MTpP6QfJhysuSP0KHZeCM1JJeoL6ezeZ0Xm8xEu_Nt5Cws1cIr4ax60P0xqi2ezxao-_g_M714doJud7vADfRjc5ixsYhoR3zuBbE3v4PW3WYH9ugvMTvrn8Rs_Qy84MCc6f6im6-7y8bS6L669frppP14XlNZ8KZQUoC7ztlCG0liBbIchK1EqpVgEvGS8N77i0ZSVWXFiuJHSVtTJ3ipLyFH181N1sVyO0FvwUzaA30Y0m7nUwTv898W6t-7DTilVMcpoF3j0JxPCwhTTp0SWbP2g8hG3SrBKEZfuUzNC3f-46LHl2NwM-PAJsDClF6LTNbk8uzKvdoCnRc5p6jkrPselmkS96TjOT-T_kZ_3_0n4BWaKjJg
CitedBy_id crossref_primary_10_1016_j_autrev_2024_103579
crossref_primary_10_1002_adma_202211130
crossref_primary_10_1002_adfm_202409736
crossref_primary_10_1080_07391102_2023_2227708
crossref_primary_10_5650_jos_ess23199
crossref_primary_10_3390_cancers14153575
crossref_primary_10_1016_j_advnut_2024_100240
crossref_primary_10_1093_jleuko_qiad062
crossref_primary_10_1016_j_ccell_2025_02_010
crossref_primary_10_1073_pnas_2407910121
crossref_primary_10_1001_jamaoncol_2022_7753
crossref_primary_10_1007_s00109_024_02452_6
crossref_primary_10_1080_2162402X_2023_2255459
crossref_primary_10_1016_j_freeradbiomed_2023_12_004
crossref_primary_10_1007_s12291_025_01309_0
crossref_primary_10_1002_ijc_34668
crossref_primary_10_1016_j_xinn_2023_100391
crossref_primary_10_1136_jitc_2024_009409
crossref_primary_10_3389_fimmu_2022_1061411
crossref_primary_10_1007_s44178_022_00012_x
crossref_primary_10_3390_plants12122278
crossref_primary_10_3390_cancers15245708
crossref_primary_10_1002_adhm_202403143
crossref_primary_10_1016_j_heliyon_2024_e28460
crossref_primary_10_3389_fvets_2024_1490290
crossref_primary_10_1002_smll_202306912
crossref_primary_10_1038_s41467_025_57511_4
crossref_primary_10_1016_j_biomaterials_2024_123043
crossref_primary_10_1002_cbdv_202402297
crossref_primary_10_1016_j_cjac_2023_100336
crossref_primary_10_1016_j_esmoop_2022_100776
crossref_primary_10_3390_cancers14225577
crossref_primary_10_3389_fimmu_2023_1237386
crossref_primary_10_3390_antiox12030632
crossref_primary_10_1016_j_xcrm_2024_101718
crossref_primary_10_1021_acsanm_2c03222
crossref_primary_10_1186_s12967_024_05590_0
crossref_primary_10_1016_j_ejmech_2024_116774
crossref_primary_10_1186_s12943_025_02263_4
crossref_primary_10_1016_j_cell_2023_03_010
crossref_primary_10_1002_imt2_73
crossref_primary_10_1016_j_xcrm_2024_101510
crossref_primary_10_1038_s41423_022_00911_z
crossref_primary_10_1186_s12967_024_05552_6
crossref_primary_10_1016_j_coi_2024_102486
crossref_primary_10_3390_cancers15102709
crossref_primary_10_1016_j_apmt_2024_102110
crossref_primary_10_3389_fmolb_2024_1442267
crossref_primary_10_1038_s41392_023_01462_z
crossref_primary_10_3390_nu16223830
crossref_primary_10_1186_s43556_023_00125_3
crossref_primary_10_1002_cac2_12412
crossref_primary_10_2147_IJN_S435407
crossref_primary_10_1016_j_tifs_2025_104865
crossref_primary_10_3390_nu16162665
crossref_primary_10_3390_cancers15041300
crossref_primary_10_3389_fimmu_2023_1112704
crossref_primary_10_1136_jitc_2024_010521
crossref_primary_10_1155_2024_5512422
crossref_primary_10_1186_s13045_023_01430_8
Cites_doi 10.1016/j.ccell.2019.01.003
10.1093/jnci/djt456
10.1016/j.immuni.2015.11.006
10.1016/j.immuni.2015.11.024
10.1146/annurev-nutr-071714-034347
10.1172/jci.insight.89020
10.1016/j.cell.2019.07.050
10.3945/an.117.016329
10.1074/jbc.M509042200
10.1073/pnas.0712394105
10.1182/blood-2010-05-283937
10.1146/annurev.nutr.24.012003.132446
10.1093/aje/kwf147
10.1084/jem.20030323
10.4049/jimmunol.1001675
10.1038/nature20554
10.1016/j.freeradbiomed.2016.09.017
10.1001/jama.294.1.56
10.1146/annurev-immunol-041015-055523
10.1038/s41568-021-00346-0
10.1172/JCI81137
10.1016/j.cell.2015.05.025
10.1038/nature25501
10.1093/jn/nxaa040
10.1016/j.immuni.2013.02.018
10.1016/j.actbio.2015.06.014
10.1146/annurev-immunol-041015-055700
10.1056/NEJMoa1809615
10.1073/pnas.1206811109
10.1001/jama.2011.1437
10.1093/jn/nxy093
10.1073/pnas.0601273103
10.1038/nri.2016.107
10.1093/jnci/djy204
10.1158/2159-8290.CD-20-1680
10.1016/j.ccell.2020.04.005
10.1038/s41577-019-0210-z
10.1001/jama.2016.14403
10.1158/2159-8290.CD-18-0367
10.1074/jbc.M210430200
10.1001/jama.2008.864
10.1073/pnas.0911587107
10.1016/j.immuni.2013.07.012
10.1146/annurev.immunol.20.100301.064828
10.1016/j.ccell.2021.11.002
10.1126/science.aad0095
10.1016/j.trecan.2018.04.001
10.1038/s41598-017-05422-w
ContentType Journal Article
Copyright 2022 American Association for Cancer Research.
Copyright_xml – notice: 2022 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/2159-8290.CD-21-0900
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2159-8290
EndPage 1759
ExternalDocumentID PMC9262841
35420681
10_1158_2159_8290_CD_21_0900
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: R35 CA220430
– fundername: NCI NIH HHS
  grantid: P30 CA016672
– fundername: NCI NIH HHS
  grantid: P01 CA092584
– fundername: NCI NIH HHS
  grantid: R01 CA231149
– fundername: NCI NIH HHS
  grantid: R01 CA208213
– fundername: NCI NIH HHS
  grantid: R01 CA184836
GroupedDBID ---
53G
5VS
AAYXX
ADBBV
ADCOW
AENEX
AFHIN
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BR6
BTFSW
CITATION
EBS
EJD
KQ8
OK1
RCR
RHI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c474t-9c5e9ce4df9a0178e8d550b57999d9e43243a4f48c365b45c498ef6cc8c499103
ISSN 2159-8274
2159-8290
IngestDate Thu Aug 21 18:38:07 EDT 2025
Thu Jul 10 19:14:27 EDT 2025
Thu Apr 03 06:57:48 EDT 2025
Tue Jul 01 00:56:33 EDT 2025
Thu Apr 24 22:57:08 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License 2022 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-9c5e9ce4df9a0178e8d550b57999d9e43243a4f48c365b45c498ef6cc8c499103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Authors’ Contributions
X. Yuan: Conceptualization, data curation, formal analysis, investigation, methodology, validation, writing and editing manuscript. Y. Duan: Data curation, formal analysis, investigation, methodology, and editing. Y. Xiao: Data curation, formal analysis, investigation, methodology, validation. K. Sun: Data curation, formal analysis, validation. Y. Qi: Data curation, formal analysis, investigation. Y. Zhang: Data curation, formal analysis, investigation. Z. Ahmed: Data curation, formal analysis, investigation. D. Moiani: Formal analysis, investigation. J. Yao: Data curation, formal analysis. H. Li: Formal analysis, investigation. L. Zhang: Formal analysis, investigation. A.E. Yuzhalin: Editing. P. Li: Investigation. C. Zhang: Formal analysis. A. Badu-Nkansah: Editing. Y. Saito: Investigation. X. Liu: Investigation. W-L. Kuo: Methodology. H. Ying: Resources, investigation. S-C. Sun: Methodology. J.C. Chang: Resources, investigation, validation. J.A. Tainer: Resources, investigation, validation, and editing. D. Yu: Conceptualization, supervision, resources, data curation, formal analysis, investigation, methodology, validation, writing, and editing manuscript.
ORCID 0000-0003-1659-2429
0000-0001-5338-3920
0000-0003-1418-3576
0000-0001-6231-9381
0000-0002-2779-5750
0000-0003-3400-6577
0000-0001-7454-6653
OpenAccessLink https://aacrjournals.org/cancerdiscovery/article-pdf/12/7/1742/3176522/1742.pdf
PMID 35420681
PQID 2650254298
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9262841
proquest_miscellaneous_2650254298
pubmed_primary_35420681
crossref_citationtrail_10_1158_2159_8290_CD_21_0900
crossref_primary_10_1158_2159_8290_CD_21_0900
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220706
PublicationDateYYYYMMDD 2022-07-06
PublicationDate_xml – month: 7
  year: 2022
  text: 20220706
  day: 6
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer discovery
PublicationTitleAlternate Cancer Discov
PublicationYear 2022
References Van Allen (2022070607130051000_bib19) 2015; 350
Guermonprez (2022070607130051000_bib28) 2002; 20
Zingg (2022070607130051000_bib47) 2015; 35
Jordan (2022070607130051000_bib4) 2019; 178
Tajan (2022070607130051000_bib3) 2020; 37
Cubillos-Ruiz (2022070607130051000_bib9) 2015; 161
Lee (2022070607130051000_bib41) 2015; 24
Santander (2022070607130051000_bib27) 2017; 7
Kantor (2022070607130051000_bib1) 2016; 316
Gahche (2022070607130051000_bib10) 2018; 148
Schmid (2022070607130051000_bib35) 2018; 379
Kasmapour (2022070607130051000_bib31) 2012; 109
Yang (2022070607130051000_bib25) 2003; 278
Klein (2022070607130051000_bib13) 2011; 306
Mach (2022070607130051000_bib48) 2000; 60
Saxena (2022070607130051000_bib33) 2021; 21
Du (2022070607130051000_bib2) 2020; 150
Chen (2022070607130051000_bib7) 2013; 39
Morrison (2022070607130051000_bib37) 2018; 4
Lippman (2022070607130051000_bib43) 2009; 301
Blander (2022070607130051000_bib30) 2018; 36
Lee (2022070607130051000_bib42) 2005; 294
Carmi (2022070607130051000_bib22) 2016; 1
De Henau (2022070607130051000_bib15) 2016; 539
Hall (2022070607130051000_bib40) 2019; 111
Richardson (2022070607130051000_bib11) 1999; 17
Ramachandran (2022070607130051000_bib23) 2011; 186
Wculek (2022070607130051000_bib8) 2020; 20
Kristal (2022070607130051000_bib39) 2014; 106
Li (2022070607130051000_bib50) 2022; 40
Gide (2022070607130051000_bib18) 2019; 35
Jiang (2022070607130051000_bib46) 2017; 8
Alloatti (2022070607130051000_bib29) 2015; 43
Jacobs (2022070607130051000_bib14) 2002; 156
Lindenbergh (2022070607130051000_bib32) 2018; 36
Galluzzi (2022070607130051000_bib45) 2017; 17
Sharma (2022070607130051000_bib6) 2021; 11
Singh (2022070607130051000_bib38) 2005; 25
Lin (2022070607130051000_bib17) 2008; 105
Karsunky (2022070607130051000_bib16) 2003; 198
Abram (2022070607130051000_bib21) 2013; 38
Mariathasan (2022070607130051000_bib20) 2018; 554
Pitt (2022070607130051000_bib44) 2016; 126
Reboul (2022070607130051000_bib26) 2006; 281
Xiao (2022070607130051000_bib24) 2010; 116
Yang (2022070607130051000_bib49) 2010; 107
Galli (2022070607130051000_bib12) 2017; 102
Pfirschke (2022070607130051000_bib34) 2016; 44
Bardeesy (2022070607130051000_bib36) 2006; 103
Wei (2022070607130051000_bib5) 2018; 8
References_xml – volume: 35
  start-page: 238
  year: 2019
  ident: 2022070607130051000_bib18
  article-title: Distinct immune cell populations define response to anti–PD-1 monotherapy and anti–PD-1/anti-CTLA-4 combined therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2019.01.003
– volume: 106
  start-page: djt456
  year: 2014
  ident: 2022070607130051000_bib39
  article-title: Baseline selenium status and effects of selenium and vitamin e supplementation on prostate cancer risk
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djt456
– volume: 43
  start-page: 1087
  year: 2015
  ident: 2022070607130051000_bib29
  article-title: Toll-like receptor 4 engagement on dendritic cells restrains phago-lysosome fusion and promotes cross-presentation of antigens
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.11.006
– volume: 44
  start-page: 343
  year: 2016
  ident: 2022070607130051000_bib34
  article-title: Immunogenic chemotherapy sensitizes tumors to checkpoint blockade therapy
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.11.024
– volume: 35
  start-page: 135
  year: 2015
  ident: 2022070607130051000_bib47
  article-title: Vitamin E: a role in signal transduction
  publication-title: Annu Rev Nutr
  doi: 10.1146/annurev-nutr-071714-034347
– volume: 1
  start-page: e89020
  year: 2016
  ident: 2022070607130051000_bib22
  article-title: Akt and SHP-1 are DC-intrinsic checkpoints for tumor immunity
  publication-title: JCI insight
  doi: 10.1172/jci.insight.89020
– volume: 178
  start-page: 1102
  year: 2019
  ident: 2022070607130051000_bib4
  article-title: Dietary intake regulates the circulating inflammatory monocyte pool
  publication-title: Cell
  doi: 10.1016/j.cell.2019.07.050
– volume: 8
  start-page: 850
  year: 2017
  ident: 2022070607130051000_bib46
  article-title: Natural forms of vitamin E as effective agents for cancer prevention and therapy
  publication-title: Adv Nutr
  doi: 10.3945/an.117.016329
– volume: 281
  start-page: 4739
  year: 2006
  ident: 2022070607130051000_bib26
  article-title: Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M509042200
– volume: 105
  start-page: 3029
  year: 2008
  ident: 2022070607130051000_bib17
  article-title: Selective suicide of cross-presenting CD8+ dendritic cells by cytochrome c injection shows functional heterogeneity within this subset
  publication-title: Proc Nat Acad Sci U S A
  doi: 10.1073/pnas.0712394105
– volume: 116
  start-page: 6003
  year: 2010
  ident: 2022070607130051000_bib24
  article-title: Lyn- and PLC-beta3-dependent regulation of SHP-1 phosphorylation controls Stat5 activity and myelomonocytic leukemia-like disease
  publication-title: Blood
  doi: 10.1182/blood-2010-05-283937
– volume: 25
  start-page: 151
  year: 2005
  ident: 2022070607130051000_bib38
  article-title: Vitamin E, oxidative stress, and inflammation
  publication-title: Annu Rev Nutr
  doi: 10.1146/annurev.nutr.24.012003.132446
– volume: 156
  start-page: 1002
  year: 2002
  ident: 2022070607130051000_bib14
  article-title: Vitamin C and vitamin E supplement use and bladder cancer mortality in a large cohort of US men and women
  publication-title: Am J Epidemiol
  doi: 10.1093/aje/kwf147
– volume: 198
  start-page: 305
  year: 2003
  ident: 2022070607130051000_bib16
  article-title: Flt3 ligand regulates dendritic cell development from Flt3+ lymphoid and myeloid-committed progenitors to Flt3+ dendritic cells in vivo
  publication-title: J Exp Med
  doi: 10.1084/jem.20030323
– volume: 186
  start-page: 3934
  year: 2011
  ident: 2022070607130051000_bib23
  article-title: The phosphatase SRC homology region 2 domain-containing phosphatase-1 is an intrinsic central regulator of dendritic cell function
  publication-title: J Immunol
  doi: 10.4049/jimmunol.1001675
– volume: 539
  start-page: 443
  year: 2016
  ident: 2022070607130051000_bib15
  article-title: Overcoming resistance to checkpoint blockade therapy by targeting PI3Kgamma in myeloid cells
  publication-title: Nature
  doi: 10.1038/nature20554
– volume: 102
  start-page: 16
  year: 2017
  ident: 2022070607130051000_bib12
  article-title: Vitamin E: emerging aspects and new directions
  publication-title: Free Radical Biol Med
  doi: 10.1016/j.freeradbiomed.2016.09.017
– volume: 294
  start-page: 56
  year: 2005
  ident: 2022070607130051000_bib42
  article-title: Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women's Health Study: a randomized controlled trial
  publication-title: JAMA
  doi: 10.1001/jama.294.1.56
– volume: 36
  start-page: 717
  year: 2018
  ident: 2022070607130051000_bib30
  article-title: Regulation of the cell biology of antigen cross-presentation
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-041015-055523
– volume: 21
  start-page: 360
  year: 2021
  ident: 2022070607130051000_bib33
  article-title: Therapeutic cancer vaccines
  publication-title: Nat Rev Cancer
  doi: 10.1038/s41568-021-00346-0
– volume: 126
  start-page: 1224
  year: 2016
  ident: 2022070607130051000_bib44
  article-title: Dendritic cell-derived exosomes for cancer therapy
  publication-title: J Clin Invest
  doi: 10.1172/JCI81137
– volume: 161
  start-page: 1527
  year: 2015
  ident: 2022070607130051000_bib9
  article-title: ER stress sensor XBP1 controls anti-tumor immunity by disrupting dendritic cell homeostasis
  publication-title: Cell
  doi: 10.1016/j.cell.2015.05.025
– volume: 554
  start-page: 544
  year: 2018
  ident: 2022070607130051000_bib20
  article-title: TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells
  publication-title: Nature
  doi: 10.1038/nature25501
– volume: 150
  start-page: 1499
  year: 2020
  ident: 2022070607130051000_bib2
  article-title: Dietary supplement use among adult cancer survivors in the United States
  publication-title: J Nutr
  doi: 10.1093/jn/nxaa040
– volume: 38
  start-page: 489
  year: 2013
  ident: 2022070607130051000_bib21
  article-title: Distinct roles for neutrophils and dendritic cells in inflammation and autoimmunity in motheaten mice
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.02.018
– volume: 24
  start-page: 286
  year: 2015
  ident: 2022070607130051000_bib41
  article-title: Vitamin E containing polymer micelles for reducing normal cell cytotoxicity and enhancing chemotherapy efficacy
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2015.06.014
– volume: 36
  start-page: 435
  year: 2018
  ident: 2022070607130051000_bib32
  article-title: Antigen presentation by extracellular vesicles from professional antigen-presenting cells
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-041015-055700
– volume: 60
  start-page: 3239
  year: 2000
  ident: 2022070607130051000_bib48
  article-title: Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand
  publication-title: Cancer Res
– volume: 379
  start-page: 2108
  year: 2018
  ident: 2022070607130051000_bib35
  article-title: Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1809615
– volume: 109
  start-page: 20485
  year: 2012
  ident: 2022070607130051000_bib31
  article-title: Size-dependent mechanism of cargo sorting during lysosome-phagosome fusion is controlled by Rab34
  publication-title: Proc Nat Acad Sci U S A
  doi: 10.1073/pnas.1206811109
– volume: 306
  start-page: 1549
  year: 2011
  ident: 2022070607130051000_bib13
  article-title: Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT)
  publication-title: JAMA
  doi: 10.1001/jama.2011.1437
– volume: 148
  start-page: 1436S
  year: 2018
  ident: 2022070607130051000_bib10
  article-title: Federal monitoring of dietary supplement use in the resident, civilian, noninstitutionalized US Population, National Health and Nutrition Examination Survey
  publication-title: J Nutr
  doi: 10.1093/jn/nxy093
– volume: 103
  start-page: 5947
  year: 2006
  ident: 2022070607130051000_bib36
  article-title: Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse
  publication-title: Proc Nat Acad Sci U S A
  doi: 10.1073/pnas.0601273103
– volume: 17
  start-page: 97
  year: 2017
  ident: 2022070607130051000_bib45
  article-title: Immunogenic cell death in cancer and infectious disease
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2016.107
– volume: 111
  start-page: 684
  year: 2019
  ident: 2022070607130051000_bib40
  article-title: COMT and alpha-tocopherol effects in cancer prevention: gene-supplement interactions in two randomized clinical trials
  publication-title: J Natl Cancer Inst
  doi: 10.1093/jnci/djy204
– volume: 11
  start-page: 838
  year: 2021
  ident: 2022070607130051000_bib6
  article-title: The next decade of immune checkpoint therapy
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-20-1680
– volume: 37
  start-page: 767
  year: 2020
  ident: 2022070607130051000_bib3
  article-title: Dietary approaches to cancer therapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.04.005
– volume: 20
  start-page: 7
  year: 2020
  ident: 2022070607130051000_bib8
  article-title: Dendritic cells in cancer immunology and immunotherapy
  publication-title: Nat Rev Immunol
  doi: 10.1038/s41577-019-0210-z
– volume: 316
  start-page: 1464
  year: 2016
  ident: 2022070607130051000_bib1
  article-title: Trends in dietary supplement use among US adults from 1999–2012
  publication-title: JAMA
  doi: 10.1001/jama.2016.14403
– volume: 8
  start-page: 1069
  year: 2018
  ident: 2022070607130051000_bib5
  article-title: Fundamental mechanisms of immune checkpoint blockade therapy
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-18-0367
– volume: 278
  start-page: 6516
  year: 2003
  ident: 2022070607130051000_bib25
  article-title: Crystal structure of human protein-tyrosine phosphatase SHP-1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M210430200
– volume: 301
  start-page: 39
  year: 2009
  ident: 2022070607130051000_bib43
  article-title: Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT)
  publication-title: JAMA
  doi: 10.1001/jama.2008.864
– volume: 107
  start-page: 4716
  year: 2010
  ident: 2022070607130051000_bib49
  article-title: Kupfer-type immunological synapse characteristics do not predict anti-brain tumor cytolytic T-cell function in vivo
  publication-title: Proc Nat Acad Sci U S A
  doi: 10.1073/pnas.0911587107
– volume: 39
  start-page: 1
  year: 2013
  ident: 2022070607130051000_bib7
  article-title: Oncology meets immunology: the cancer-immunity cycle
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.07.012
– volume: 17
  start-page: 38
  year: 1999
  ident: 2022070607130051000_bib11
  article-title: Research of complementary/alternative medicine therapies in oncology: promising but challenging
  publication-title: J Clin Oncol
– volume: 20
  start-page: 621
  year: 2002
  ident: 2022070607130051000_bib28
  article-title: Antigen presentation and T cell stimulation by dendritic cells
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev.immunol.20.100301.064828
– volume: 40
  start-page: 36
  year: 2022
  ident: 2022070607130051000_bib50
  article-title: The allergy mediator histamine confers resistance to immunotherapy in cancer patients via activation of the macrophage histamine receptor H1
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2021.11.002
– volume: 350
  start-page: 207
  year: 2015
  ident: 2022070607130051000_bib19
  article-title: Genomic correlates of response to CTLA-4 blockade in metastatic melanoma
  publication-title: Science
  doi: 10.1126/science.aad0095
– volume: 4
  start-page: 418
  year: 2018
  ident: 2022070607130051000_bib37
  article-title: Immunotherapy and prevention of pancreatic cancer
  publication-title: Trends Cancer
  doi: 10.1016/j.trecan.2018.04.001
– volume: 7
  start-page: 5182
  year: 2017
  ident: 2022070607130051000_bib27
  article-title: Deficient vitamin E uptake during development impairs neural tube closure in mice lacking lipoprotein receptor SR-BI
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-05422-w
SSID ssj0000494507
Score 2.5752766
Snippet Despite the popular use of dietary supplements during conventional cancer treatments, their impacts on the efficacies of prevalent immunotherapies, including...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1742
SubjectTerms Animals
Cancer Vaccines - therapeutic use
Dendritic Cells
Immunotherapy
Mice
Neoplasms - drug therapy
Protein Tyrosine Phosphatase, Non-Receptor Type 6
Vitamin E - metabolism
Title Vitamin E Enhances Cancer Immunotherapy by Reinvigorating Dendritic Cells via Targeting Checkpoint SHP1
URI https://www.ncbi.nlm.nih.gov/pubmed/35420681
https://www.proquest.com/docview/2650254298
https://pubmed.ncbi.nlm.nih.gov/PMC9262841
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkKa9oHEvA2Qk3qKM1nES5xFlRQU0xKVD3QtRYztpROdWazpp_HrOya3JKOLykqaOe1L1-3pyjn0uhLyEZ36smZa2kh62MFOJLdRAgpfiaEcnjtICk5NPP3jjM_5u6k57vW-tqKVNHh_LHzvzSv4HVRgDXDFL9h-QbYTCAJwDvnAEhOH4Vxh_Bcf-IjPWyBqZOcK3tkJ8ubTeYtpHlVx1jSbmZ52ZqywtADcpqBmjiiYHVqgXi7V1lc2sSREUXsQBzLX8vlpmJre-jD8O2wZsJR-TeTH4s1mQP9-UK6lToFuKSyfp1kQur5xj_7B6EKYty8HtrpQpozuy9kIEK4NWqzLWhcIC6yGwcWO2o11Zi0V-S1WCK8R263AX8xIaYcfhic2GuJ40aE8HJFYXBa6Oy9nAKxu_3KidXV-6RW4zcCNQcb__JJo1OKyNA_ZwlVEJ9321664HZL-W0zVefvFIbgbWtiyVySG5U7kY9HXJl7ukp809sn9aBVHcJ2lFGzqiNW1oCSvt0IbG17RLG9rQhha0oUAb2tCGbmlDkTYPyNmb0SQc21W_DVtyn-d2IF0dSM1VEsxAUQstFPivseuDE6ECjbUbnRlPuJCO58bclTwQOvGkFHAGZqfzkOyZpdGPCQUrBwzr2E0GTGPMQTBQsRj6iifSUYEj-sSpf8hIVsXosSfKIiqcUldEiESESEThCbyJEIk-sZtPrcpiLH-Y_6LGKAKtiVthM6OXm3XEwDFh2KoNvsmjErNGYg12n_gdNJsJWJG9e8Vk86IyOxbfFHz45Lcyj8jB9q_zlOzllxv9DKzaPH5eUPMnit-exg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vitamin+E+Enhances+Cancer+Immunotherapy+by+Reinvigorating+Dendritic+Cells+via+Targeting+Checkpoint+SHP1&rft.jtitle=Cancer+discovery&rft.au=Yuan%2C+Xiangliang&rft.au=Duan%2C+Yimin&rft.au=Xiao%2C+Yi&rft.au=Sun%2C+Kai&rft.date=2022-07-06&rft.eissn=2159-8290&rft.volume=12&rft.issue=7&rft.spage=1742&rft_id=info:doi/10.1158%2F2159-8290.CD-21-0900&rft_id=info%3Apmid%2F35420681&rft.externalDocID=35420681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-8274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-8274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-8274&client=summon