A review on COVID-19 forecasting models
The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As such, several machine learning models that can forecast the outbreak globally have been released. This work presents a review and brief analysi...
Saved in:
Published in | Neural computing & applications Vol. 35; no. 33; pp. 23671 - 23681 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.11.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As such, several machine learning models that can forecast the outbreak globally have been released. This work presents a review and brief analysis of the most important machine learning forecasting models against COVID-19. The work presented in this study possesses two parts. In the first section, a detailed scientometric analysis presents an influential tool for bibliometric analyses, which were performed on COVID-19 data from the Scopus and Web of Science databases. For the above-mentioned analysis, keywords and subject areas are addressed, while the classification of machine learning forecasting models, criteria evaluation, and comparison of solution approaches are discussed in the second section of the work. The conclusion and discussion are provided as the final sections of this study. |
---|---|
AbstractList | The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As such, several machine learning models that can forecast the outbreak globally have been released. This work presents a review and brief analysis of the most important machine learning forecasting models against COVID-19. The work presented in this study possesses two parts. In the first section, a detailed scientometric analysis presents an influential tool for bibliometric analyses, which were performed on COVID-19 data from the Scopus and Web of Science databases. For the above-mentioned analysis, keywords and subject areas are addressed, while the classification of machine learning forecasting models, criteria evaluation, and comparison of solution approaches are discussed in the second section of the work. The conclusion and discussion are provided as the final sections of this study. The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As such, several machine learning models that can forecast the outbreak globally have been released. This work presents a review and brief analysis of the most important machine learning forecasting models against COVID-19. The work presented in this study possesses two parts. In the first section, a detailed scientometric analysis presents an influential tool for bibliometric analyses, which were performed on COVID-19 data from the Scopus and Web of Science databases. For the above-mentioned analysis, keywords and subject areas are addressed, while the classification of machine learning forecasting models, criteria evaluation, and comparison of solution approaches are discussed in the second section of the work. The conclusion and discussion are provided as the final sections of this study.The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As such, several machine learning models that can forecast the outbreak globally have been released. This work presents a review and brief analysis of the most important machine learning forecasting models against COVID-19. The work presented in this study possesses two parts. In the first section, a detailed scientometric analysis presents an influential tool for bibliometric analyses, which were performed on COVID-19 data from the Scopus and Web of Science databases. For the above-mentioned analysis, keywords and subject areas are addressed, while the classification of machine learning forecasting models, criteria evaluation, and comparison of solution approaches are discussed in the second section of the work. The conclusion and discussion are provided as the final sections of this study. |
Author | Gandomi, Amir H. Chen, Fang Rahimi, Iman |
Author_xml | – sequence: 1 givenname: Iman surname: Rahimi fullname: Rahimi, Iman organization: Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia – sequence: 2 givenname: Fang surname: Chen fullname: Chen, Fang organization: Data Science Institute, University of Technology Sydney – sequence: 3 givenname: Amir H. orcidid: 0000-0002-2798-0104 surname: Gandomi fullname: Gandomi, Amir H. email: gandomi@uts.edu.au organization: Data Science Institute, University of Technology Sydney |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33564213$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kTFPHDEQha0IFA7IH6CIVkoBzZKxx2t7m0joIAkSEk2gtbxe72G0ZxN7D8S_x5cDklBQTTHfe3ozb5dshRgcIQcUjimA_JoBGkZrYFBDI5io1QcyoxyxRmjUFplBy8tacNwhuznfAgAXqvlIdhAbwRnFGTk8qZK79-6hiqGaX16fn9a0rYaYnDV58mFRLWPvxrxPtgczZvfpee6Rq-9nv-Y_64vLH-fzk4vacsmnuu2sbHu0TpiOUdZAR0VPsVXcwDB0vO0G03eIgDAg9tYo1gs0rVJOCskG3CPfNr53q27peuvClMyo75JfmvSoo_H6_03wN3oR77VUojxFFYOjZ4MUf69cnvTSZ-vG0QQXV1kzrhSVICkr6Jc36G1cpVDO00xJ1VIFFAr1-d9Er1FeflgAtQFsijknN2jrJzP5uA7oR01Br-vSm7p0qUv_qUuvw7I30hf3d0W4EeUCh4VLf2O_o3oCCeCkoA |
CitedBy_id | crossref_primary_10_1007_s00521_021_06201_5 crossref_primary_10_1080_08839514_2025_2476237 crossref_primary_10_1109_TASE_2022_3224171 crossref_primary_10_1515_msds_2022_0161 crossref_primary_10_1007_s11042_023_16617_x crossref_primary_10_3389_fped_2024_1419595 crossref_primary_10_3390_healthcare11050752 crossref_primary_10_1016_j_tre_2024_103828 crossref_primary_10_1007_s40808_021_01332_z crossref_primary_10_1007_s42979_021_00699_1 crossref_primary_10_1007_s00521_021_06548_9 crossref_primary_10_1140_epjs_s11734_024_01267_3 crossref_primary_10_1007_s00521_022_07325_y crossref_primary_10_1016_j_cmpb_2021_106348 crossref_primary_10_3389_fepid_2024_1389617 crossref_primary_10_1007_s00521_021_06273_3 crossref_primary_10_1186_s40249_021_00886_5 crossref_primary_10_1007_s00521_022_07393_0 crossref_primary_10_3390_math12121797 crossref_primary_10_3934_era_2024100 crossref_primary_10_1093_imammb_dqab017 crossref_primary_10_1016_j_asoc_2021_107561 crossref_primary_10_56294_dm2024_404 crossref_primary_10_1016_j_chaos_2024_115869 crossref_primary_10_3390_math12111678 crossref_primary_10_3390_axioms13050311 crossref_primary_10_1155_2021_5522928 crossref_primary_10_1016_j_tele_2022_101796 crossref_primary_10_3389_fpsyg_2022_1029812 crossref_primary_10_1007_s00521_023_08788_3 crossref_primary_10_1002_sres_2897 crossref_primary_10_1007_s12064_022_00379_5 crossref_primary_10_47470_0016_9900_2023_102_8_740_749 crossref_primary_10_3390_math12081254 crossref_primary_10_1186_s13040_023_00337_x crossref_primary_10_1038_s41598_023_33685_z crossref_primary_10_1186_s13662_023_03792_2 crossref_primary_10_1093_jamiaopen_ooac086 crossref_primary_10_1007_s00521_022_07210_8 crossref_primary_10_3390_encyclopedia4020042 crossref_primary_10_1007_s10462_021_10052_w crossref_primary_10_1016_j_asoc_2021_107653 crossref_primary_10_1016_j_heha_2025_100119 crossref_primary_10_1007_s11831_022_09859_9 crossref_primary_10_1007_s13762_023_05110_5 crossref_primary_10_1038_s41598_024_57238_0 crossref_primary_10_1007_s11538_022_01028_0 crossref_primary_10_1109_TCSS_2023_3255256 crossref_primary_10_1016_j_cmpb_2021_106402 crossref_primary_10_1016_j_neunet_2024_106527 crossref_primary_10_1038_s41598_024_69660_5 crossref_primary_10_1088_1742_6596_2033_1_012108 crossref_primary_10_1063_5_0154968 crossref_primary_10_1002_sim_10097 crossref_primary_10_1186_s12913_024_10955_8 crossref_primary_10_17093_alphanumeric_1213585 crossref_primary_10_1080_15230406_2023_2293880 crossref_primary_10_29130_dubited_1234168 crossref_primary_10_1177_20552076221133696 crossref_primary_10_1007_s40840_023_01539_6 crossref_primary_10_1186_s40537_021_00491_1 crossref_primary_10_47836_mjmhs_18_s6_14 crossref_primary_10_1007_s11356_022_23392_z crossref_primary_10_3390_math11183960 crossref_primary_10_1007_s42979_025_03658_2 crossref_primary_10_3934_energy_2023056 crossref_primary_10_1186_s12889_023_16419_8 crossref_primary_10_1214_24_AOAS1964 crossref_primary_10_1080_00207179_2023_2204969 crossref_primary_10_1109_ACCESS_2022_3204804 crossref_primary_10_1007_s11538_024_01275_3 crossref_primary_10_1007_s40435_024_01519_z crossref_primary_10_1080_23270012_2024_2372632 crossref_primary_10_3389_fgene_2022_845305 crossref_primary_10_1016_j_ifacol_2025_01_090 crossref_primary_10_1109_TCSS_2022_3140320 crossref_primary_10_1080_10410236_2023_2229093 crossref_primary_10_31202_ecjse_1012718 crossref_primary_10_1007_s11071_022_07469_5 crossref_primary_10_24171_j_phrp_2023_0287 crossref_primary_10_1186_s12889_025_21401_7 crossref_primary_10_1016_j_jclepro_2022_132996 crossref_primary_10_1002_widm_1475 crossref_primary_10_1109_TPAMI_2023_3331087 crossref_primary_10_15803_ijnc_13_2_195 crossref_primary_10_3934_mbe_2024298 crossref_primary_10_1016_j_chaos_2024_115417 crossref_primary_10_1007_s12652_024_04775_1 crossref_primary_10_1093_imammb_dqae012 crossref_primary_10_3934_nhm_2023069 crossref_primary_10_1214_24_AOAS1941 crossref_primary_10_1038_s41597_022_01813_5 crossref_primary_10_1038_s41598_022_27322_4 crossref_primary_10_1093_pnasnexus_pgae204 crossref_primary_10_1088_1367_2630_ad0991 crossref_primary_10_1016_j_rineng_2025_104125 crossref_primary_10_1038_s41598_022_12491_z crossref_primary_10_1038_s41598_022_10185_0 crossref_primary_10_1007_s43621_024_00213_6 crossref_primary_10_1038_s41598_024_63795_1 crossref_primary_10_1109_JSTSP_2022_3140703 crossref_primary_10_3390_covid3120123 crossref_primary_10_3390_forecast6020015 crossref_primary_10_1007_s00521_023_08442_y crossref_primary_10_1016_j_cie_2022_108031 |
Cites_doi | 10.1145/3065386 10.1007/s40808-020-00890-y 10.1016/j.chaos.2020.110056 10.1155/2007/64870 10.1016/j.chaos.2020.110118 10.1093/cid/ciaa414 10.1080/0194262X.2016.1181023 10.11648/j.ajmcm.20190404.11 10.36227/techrxiv.12101547.v1 10.1016/j.chaos.2020.109945 10.1109/CVPR.2012.6248110 10.1007/s11192-010-0259-8 10.1080/00949655.2018.1533962 10.1080/02664763.2019.1575953 10.1186/s41256-020-00137-4 10.1016/j.ejor.2008.10.033 10.1101/2020.02.16.20023465 10.1007/978-1-4614-1686-9 10.1007/978-1-4613-0303-9_33 10.3390/app10103402 10.2196/18828 10.1177/0008068317732196 10.1007/978-3-642-61317-3_5 10.1371/journal.pone.0230405 10.1007/s40995-017-0237-6 10.21203/rs.3.rs-85513/v1 10.3390/jcm9051492 10.1101/2020.04.07.20057133 10.1016/j.chaos.2020.109924 10.1007/BFb0055923 10.1016/j.chaos.2020.109866 10.1007/978-3-319-10377-8_13 10.2307/270724 10.1109/mci.2020.3019895 10.3390/jcm9030674 10.1016/j.neunet.2014.09.003 10.2139/ssrn.3568314 10.1145/937503.937505 10.1016/0025-5564(78)90006-8 10.3390/ijerph17082750 10.2307/2342553 10.1016/j.jmii.2020.04.004 10.1109/TPAMI.2013.50 10.1093/acprof:oso/9780198565857.001.0001 10.1016/j.scitotenv.2020.138883 10.1016/j.jiph.2020.06.001 10.1016/j.chaos.2020.109850 10.1016/j.chaos.2020.109761 10.1017/CBO9780511815867 10.1016/j.dib.2020.105683 10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X 10.1016/j.chaos.2020.109942 10.1016/j.scitotenv.2020.138778 10.1038/nature14539 10.1080/00031305.2017.1380080 10.32614/CRAN.package.prophet 10.1080/00949655.2016.1245305 10.1098/rspa.1932.0171 10.1016/j.tmaid.2020.101742 10.1016/j.chaos.2020.109853 10.1007/s00477-020-01827-8 10.1007/s13762-014-0717-6 10.3389/fphy.2020.00127 10.1109/MIE.2009.934790 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021. |
DBID | AAYXX CITATION NPM 8FE 8FG AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
DOI | 10.1007/s00521-020-05626-8 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Advanced Technologies & Aerospace Collection MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-3058 |
EndPage | 23681 |
ExternalDocumentID | PMC7861008 33564213 10_1007_s00521_020_05626_8 |
Genre | Journal Article Review |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS ECS EDO EIOEI EJD EMI EMK EPL ESBYG EST ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM ABRTQ DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c474t-9bc79d3ce6ab21250b16d13984a0ffb49bfadb33030f33dca82d63a988e7672f3 |
IEDL.DBID | BENPR |
ISSN | 0941-0643 |
IngestDate | Thu Aug 21 18:12:54 EDT 2025 Fri Jul 11 13:10:28 EDT 2025 Sat Jul 26 00:35:20 EDT 2025 Thu Apr 03 07:06:42 EDT 2025 Tue Jul 01 01:46:58 EDT 2025 Thu Apr 24 23:03:12 EDT 2025 Fri Feb 21 02:42:18 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 33 |
Keywords | COVID-19 Forecasting SIR SEIR Analysis Time series |
Language | English |
License | The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-9bc79d3ce6ab21250b16d13984a0ffb49bfadb33030f33dca82d63a988e7672f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-2798-0104 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7861008 |
PMID | 33564213 |
PQID | 2878918010 |
PQPubID | 2043988 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7861008 proquest_miscellaneous_2488170712 proquest_journals_2878918010 pubmed_primary_33564213 crossref_citationtrail_10_1007_s00521_020_05626_8 crossref_primary_10_1007_s00521_020_05626_8 springer_journals_10_1007_s00521_020_05626_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231100 |
PublicationDateYYYYMMDD | 2023-11-01 |
PublicationDate_xml | – month: 11 year: 2023 text: 20231100 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England – name: Heidelberg |
PublicationTitle | Neural computing & applications |
PublicationTitleAbbrev | Neural Comput & Applic |
PublicationTitleAlternate | Neural Comput Appl |
PublicationYear | 2023 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Maleki (CR35) 2020; 37 Li, Feng, Quan (CR37) 2020; 80 Su, Lee (CR8) 2010; 85 Maleki, Nematollahi, Technology (CR50) 2017; 41 Chakraborty, Ghosh (CR22) 2020; 135 Nunn, Altizer, Altizer (CR76) 2006 Perc (CR48) 2020; 8 Chintalapudi, Battineni, Amenta (CR26) 2020; 53 Sprinthall, Fisk (CR54) 1990 Freedman (CR64) 2009 Bartlett (CR79) 1957; 120 Van Eck, Waltman (CR10) 2013 Tamang, Singh, Datta (CR40) 2020; 6 CR34 Ribeiro (CR43) 2020; 135 CR78 Velásquez, Lara (CR66) 2020; 136 Roosa (CR46) 2020; 5 Krizhevsky, Sutskever, Hinton (CR85) 2017; 60 CR70 Brauer, Castillo-Chavez (CR75) 2012 Capasso, Serio (CR16) 1978; 42 Banzhaf (CR71) 1998 Wilamowski (CR73) 2009; 3 CR2 CR3 CR6 CR5 Schmidhuber (CR61) 2015; 61 Taylor, Letham (CR68) 2018; 72 Singh (CR58) 2020; 135 CR47 Almeshal (CR67) 2020; 10 Shrivastava, Mahajan, Libraries (CR7) 2016; 35 Hajrajabi, Maleki (CR53) 2019; 46 CR84 Ren (CR41) 2020; 729 Maleki, Arellano-Valle (CR49) 2017; 87 Abdulmajeed, Adeleke, Popoola (CR45) 2020; 30 Cheng (CR12) 2020; 150 Ahmar, del Val (CR19) 2020; 729 Smith (CR59) 2020; 5 Poojari, Beasley (CR81) 2009; 199 Singh (CR30) 2020; 135 Makridakis, Hibon (CR83) 1997; 16 Roy, Bhunia, Shit (CR55) 2020 Alzahrani (CR56) 2020; 13 Chen, Chen, Chen (CR24) 2020; 5 Kufel (CR57) 2020; 15 Glover, Laguna (CR80) 1998 Kavadi, Patan, Ramachandran, Gandomi (CR27) 2020 Salgotra, Gandomi, Gandomi (CR4) 2020; 138 CR18 Al-qaness (CR20) 2020; 9 Anastassopoulou (CR13) 2020; 15 Kermack, McKendrick (CR15) 1932; 138 Chaudhry (CR23) 2020; 12 Sujath (CR44) 2020; 34 Jalalkamali (CR72) 2015; 12 Hethcote, Levin, Hallam, Gross (CR74) 1989 Cook, Weisberg (CR65) 1982; 13 Qeadan (CR38) 2020; 17 Dil, Dil, Maken (CR11) 2020; 12 Bengio (CR60) 2013; 35 Van Eck, Waltman, Ding, Rousseau, Wolfram (CR9) 2014 Anastassopoulou (CR21) 2020; 15 Putra, Khozin Mutamar (CR1) 2019; 4 Blum, Roli (CR82) 2003; 35 Fanelli, Piazza (CR14) 2020; 134 Maleki (CR52) 2017; 69 Zarrin (CR51) 2019; 89 Gao (CR77) 2007; 2007 Moftakhar, Seif, Safe (CR31) 2020; 49 CR28 LeCun, Bengio, Hinton (CR62) 2015; 521 Salgotra, Gandomi, Gandomi (CR33) 2020 Salgotra (CR32) 2020; 138 CR69 Ji (CR42) 2020; 71 Weiss (CR17) 2013; 2013 Ayyoubzadeh (CR63) 2020; 6 Chimmula, Zhang (CR25) 2020; 135 Reno (CR36) 2020; 9 Fong (CR39) 2020; 6 Al-qaness (CR29) 2020; 9 D Ji (5626_CR42) 2020; 71 C Reno (5626_CR36) 2020; 9 V Capasso (5626_CR16) 1978; 42 MAA Al-qaness (5626_CR29) 2020; 9 HW Hethcote (5626_CR74) 1989 BAJIDM Smith (5626_CR59) 2020; 5 BMJIIEM Wilamowski (5626_CR73) 2009; 3 RMA Velásquez (5626_CR66) 2020; 136 F Brauer (5626_CR75) 2012 R Salgotra (5626_CR33) 2020 S Gao (5626_CR77) 2007; 2007 MAA Al-qaness (5626_CR20) 2020; 9 VKR Chimmula (5626_CR25) 2020; 135 S Dil (5626_CR11) 2020; 12 5626_CR18 Y LeCun (5626_CR62) 2015; 521 S Makridakis (5626_CR83) 1997; 16 MHDM Ribeiro (5626_CR43) 2020; 135 Q Li (5626_CR37) 2020; 80 AM Almeshal (5626_CR67) 2020; 10 NJ Van Eck (5626_CR9) 2014 M Perc (5626_CR48) 2020; 8 DP Kavadi (5626_CR27) 2020 Y Bengio (5626_CR60) 2013; 35 S Singh (5626_CR58) 2020; 135 5626_CR84 5626_CR5 R Salgotra (5626_CR4) 2020; 138 5626_CR6 5626_CR3 C Nunn (5626_CR76) 2006 5626_CR47 5626_CR2 MS Bartlett (5626_CR79) 1957; 120 C Anastassopoulou (5626_CR21) 2020; 15 R Shrivastava (5626_CR7) 2016; 35 K Abdulmajeed (5626_CR45) 2020; 30 HH Weiss (5626_CR17) 2013; 2013 F Glover (5626_CR80) 1998 R Sujath (5626_CR44) 2020; 34 5626_CR70 N Chintalapudi (5626_CR26) 2020; 53 L Moftakhar (5626_CR31) 2020; 49 TJ Kufel (5626_CR57) 2020; 15 M Maleki (5626_CR49) 2017; 87 AS Ahmar (5626_CR19) 2020; 729 5626_CR34 5626_CR78 RM Chaudhry (5626_CR23) 2020; 12 P Zarrin (5626_CR51) 2019; 89 JJ Schmidhuber (5626_CR61) 2015; 61 W Banzhaf (5626_CR71) 1998 F Qeadan (5626_CR38) 2020; 17 H-N Su (5626_CR8) 2010; 85 DG Chen (5626_CR24) 2020; 5 M Maleki (5626_CR52) 2017; 69 SI Alzahrani (5626_CR56) 2020; 13 S Singh (5626_CR30) 2020; 135 SJ Fong (5626_CR39) 2020; 6 C Blum (5626_CR82) 2003; 35 RC Sprinthall (5626_CR54) 1990 CA Poojari (5626_CR81) 2009; 199 A Hajrajabi (5626_CR53) 2019; 46 S Putra (5626_CR1) 2019; 4 HY Ren (5626_CR41) 2020; 729 K Roosa (5626_CR46) 2020; 5 A Krizhevsky (5626_CR85) 2017; 60 S Roy (5626_CR55) 2020 T Chakraborty (5626_CR22) 2020; 135 RD Cook (5626_CR65) 1982; 13 5626_CR28 5626_CR69 WO Kermack (5626_CR15) 1932; 138 SK Tamang (5626_CR40) 2020; 6 M Maleki (5626_CR50) 2017; 41 SM Ayyoubzadeh (5626_CR63) 2020; 6 DA Freedman (5626_CR64) 2009 D Fanelli (5626_CR14) 2020; 134 M Maleki (5626_CR35) 2020; 37 R Salgotra (5626_CR32) 2020; 138 Z Cheng (5626_CR12) 2020; 150 A Jalalkamali (5626_CR72) 2015; 12 C Anastassopoulou (5626_CR13) 2020; 15 NJ Van Eck (5626_CR10) 2013 SJ Taylor (5626_CR68) 2018; 72 |
References_xml | – volume: 135 start-page: 6 year: 2020 ident: CR25 article-title: Time series forecasting of COVID-19 transmission in Canada using LSTM networks publication-title: Chaos Solitons Fractals – ident: CR70 – volume: 135 start-page: 109853 year: 2020 ident: CR43 article-title: Short-term forecasting COVID-19 cumulative confirmed cases: perspectives for Brazil publication-title: Chaos Solitons Fractals – volume: 60 start-page: 84 issue: 6 year: 2017 end-page: 90 ident: CR85 article-title: Imagenet classification with deep convolutional neural networks publication-title: Commun ACM doi: 10.1145/3065386 – volume: 138 start-page: 109945 year: 2020 ident: CR32 article-title: Time series analysis and forecast of the COVID-19 pandemic in India using genetic programming publication-title: Chaos Solitons Fractals – volume: 35 start-page: 136 issue: 2 year: 2016 end-page: 151 ident: CR7 article-title: Artificial intelligence research in India: a scientometric analysis publication-title: Sci Technol Libr – start-page: 285 year: 2014 end-page: 320 ident: CR9 article-title: Visualizing bibliometric networks publication-title: Measuring scholarly impact – volume: 6 start-page: e18828 issue: 2 year: 2020 ident: CR63 article-title: Predicting COVID-19 incidence through analysis of Google trends data in Iran: data mining and deep learning pilot study publication-title: JMIR Public Health Surveill – volume: 42 start-page: 43 issue: 1–2 year: 1978 end-page: 61 ident: CR16 article-title: A generalization of the Kermack–McKendrick deterministic epidemic model publication-title: Math Biosci – start-page: 1 year: 2013 end-page: 53 ident: CR10 publication-title: VOSviewer manual, – volume: 6 start-page: 132 issue: 1 year: 2020 end-page: 140 ident: CR39 article-title: Finding an accurate early forecasting model from small dataset: a case of 2019-nCoV novel coronavirus outbreak publication-title: Int J Interact Multimed Artif Intell – year: 2009 ident: CR64 publication-title: Statistical models: theory and practice – volume: 13 start-page: 313 year: 1982 end-page: 361 ident: CR65 article-title: Criticism and influence analysis in regression publication-title: Sociol Methodol – volume: 46 start-page: 2010 issue: 11 year: 2019 end-page: 2029 ident: CR53 article-title: Nonlinear semiparametric autoregressive model with finite mixtures of scale mixtures of skew normal innovations publication-title: J Appl Stat – volume: 30 start-page: 105683 year: 2020 ident: CR45 article-title: Online forecasting of Covid-19 cases in Nigeria using limited data publication-title: Data Brief – volume: 199 start-page: 89 issue: 1 year: 2009 end-page: 97 ident: CR81 article-title: Improving benders decomposition using a genetic algorithm publication-title: Eur J Oper Res – ident: CR84 – volume: 120 start-page: 48 issue: 1 year: 1957 end-page: 70 ident: CR79 article-title: Measles periodicity and community size publication-title: J R Stat Soc Ser A – volume: 135 start-page: 8 year: 2020 ident: CR30 article-title: Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19 publication-title: Chaos Solitons Fractals – volume: 13 start-page: 914 year: 2020 end-page: 919 ident: CR56 article-title: Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions publication-title: J Infect Public Health – volume: 8 start-page: 127 year: 2020 ident: CR48 article-title: Forecasting Covid-19 publication-title: Front Phys – volume: 9 start-page: 11 issue: 5 year: 2020 ident: CR36 article-title: Forecasting COVID-19-associated hospitalizations under different levels of social distancing in Lombardy and Emilia-Romagna, Northern Italy: results from an extended SEIR compartmental model publication-title: J Clin Med – year: 2020 ident: CR55 article-title: Spatial prediction of COVID-19 epidemic using ARIMA techniques in India publication-title: Model Earth Syst Environ doi: 10.1007/s40808-020-00890-y – volume: 12 start-page: 15 issue: 5 year: 2020 ident: CR23 article-title: Coronavirus disease 2019 (COVID-19): forecast of an emerging urgency in Pakistan publication-title: Cureus – volume: 69 start-page: 165 issue: 2 year: 2017 end-page: 182 ident: CR52 article-title: A Bayesian approach to robust skewed autoregressive processes publication-title: Calcutta Stat Assoc Bull – start-page: 2093 year: 1998 end-page: 2229 ident: CR80 article-title: Tabu search publication-title: Handbook of combinatorial optimization – volume: 37 start-page: 101742 year: 2020 ident: CR35 article-title: Time series modelling to forecast the confirmed and recovered cases of COVID-19 publication-title: Travel Med Infect Dis – volume: 41 start-page: 1099 issue: 4 year: 2017 end-page: 1107 ident: CR50 article-title: Autoregressive models with mixture of scale mixtures of Gaussian innovations publication-title: Iran J Sci Technol Trans A Sci – volume: 85 start-page: 65 issue: 1 year: 2010 end-page: 79 ident: CR8 article-title: Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in technology foresight publication-title: Scientometrics – volume: 35 start-page: 268 issue: 3 year: 2003 end-page: 308 ident: CR82 article-title: Metaheuristics in combinatorial optimization: overview and conceptual comparison publication-title: ACM Comput Surv – year: 2020 ident: CR27 article-title: Partial derivative nonlinear global pandemic machine learning prediction of COVID-19 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110056 – volume: 135 start-page: 10 year: 2020 ident: CR22 article-title: Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: a data-driven analysis publication-title: Chaos Solitons Fractals – ident: CR78 – ident: CR5 – volume: 4 start-page: 83 issue: 4 year: 2019 end-page: 93 ident: CR1 article-title: Estimation of parameters in the SIR epidemic model using particle swarm optimization publication-title: Am J Math Comput Model – volume: 49 start-page: 92 year: 2020 end-page: 100 ident: CR31 article-title: Exponentially increasing trend of infected patients with COVID-19 in Iran: a comparison of neural network and ARIMA forecasting models publication-title: Iran J Public Health – year: 2012 ident: CR75 publication-title: Mathematical models in population biology and epidemiology – volume: 16 start-page: 147 issue: 3 year: 1997 end-page: 163 ident: CR83 article-title: ARMA models and the Box-Jenkins methodology publication-title: J Forecast – volume: 9 start-page: 674 issue: 3 year: 2020 ident: CR20 article-title: Optimization method for forecasting confirmed cases of COVID-19 in China publication-title: J Clin Med – volume: 5 start-page: 7 issue: 1 year: 2020 ident: CR24 article-title: Reconstructing and forecasting the COVID-19 epidemic in the United States using a 5-parameter logistic growth model publication-title: Glob Health Res Policy – volume: 135 start-page: 109866 year: 2020 ident: CR58 article-title: Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19 publication-title: Chaos Solitons Fractals – ident: CR18 – volume: 87 start-page: 1061 issue: 6 year: 2017 end-page: 1083 ident: CR49 article-title: Maximum a posteriori estimation of autoregressive processes based on finite mixtures of scale-mixtures of skew-normal distributions publication-title: J Stat Comput Simul – ident: CR47 – volume: 136 start-page: 109924 year: 2020 ident: CR66 article-title: Forecast and evaluation of COVID-19 spreading in USA with reduced-space Gaussian process regression publication-title: Chaos Solitons Fractals – volume: 2007 start-page: 64870 year: 2007 ident: CR77 article-title: Analysis of an SIR epidemic model with pulse vaccination and distributed time delay publication-title: J Biomed Biotechnol doi: 10.1155/2007/64870 – ident: CR2 – volume: 134 start-page: 5 year: 2020 ident: CR14 article-title: Analysis and forecast of COVID-19 spreading in China, Italy and France publication-title: Chaos Solitons Fractals – volume: 6 start-page: 53 year: 2020 end-page: 64 ident: CR40 article-title: Forecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique publication-title: Glob J Environ Sci Manag – volume: 80 start-page: 472 issue: 4 year: 2020 end-page: 474 ident: CR37 article-title: Trend and forecasting of the COVID-19 outbreak in China publication-title: J Infect – volume: 9 start-page: 15 issue: 3 year: 2020 ident: CR29 article-title: Optimization method for forecasting confirmed cases of COVID-19 in China publication-title: J Clin Med – volume: 12 start-page: 1201 issue: 4 year: 2015 end-page: 1210 ident: CR72 article-title: Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index publication-title: Int J Environ Sci Technol – volume: 72 start-page: 37 issue: 1 year: 2018 end-page: 45 ident: CR68 article-title: Forecasting at scale publication-title: Am Stat – year: 2006 ident: CR76 publication-title: Infectious diseases in primates: behavior, ecology and evolution – ident: CR6 – volume: 35 start-page: 1798 issue: 8 year: 2013 end-page: 1828 ident: CR60 article-title: Representation learning: a review and new perspectives publication-title: IEEE Trans Pattern Anal Mach Intell – start-page: 119 year: 1989 end-page: 144 ident: CR74 article-title: Three basic epidemiological models publication-title: Applied mathematical ecology – volume: 15 start-page: 21 issue: 3 year: 2020 ident: CR13 article-title: Data-based analysis, modelling and forecasting of the COVID-19 outbreak publication-title: PLoS ONE – volume: 34 start-page: 959 year: 2020 end-page: 972 ident: CR44 article-title: A machine learning forecasting model for COVID-19 pandemic in India publication-title: Stochast Environ Res Risk Assess – ident: CR69 – volume: 3 start-page: 56 issue: 4 year: 2009 end-page: 63 ident: CR73 article-title: Neural network architectures and learning algorithms publication-title: IEEE Ind Electron Mag – volume: 521 start-page: 436 issue: 7553 year: 2015 end-page: 444 ident: CR62 article-title: Deep learning publication-title: Nature – volume: 17 start-page: 14 issue: 8 year: 2020 ident: CR38 article-title: Naive forecast for COVID-19 in Utah based on the South Korea and Italy models-the fluctuation between two extremes publication-title: Int J Environ Res Public Health – volume: 5 start-page: 256 year: 2020 end-page: 263 ident: CR46 article-title: Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020 publication-title: Infect Dis Model – year: 2020 ident: CR33 article-title: Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110118 – ident: CR3 – volume: 15 start-page: e0230405 issue: 3 year: 2020 ident: CR21 article-title: Data-based analysis, modelling and forecasting of the COVID-19 outbreak publication-title: PLoS ONE – volume: 138 start-page: 109945 year: 2020 ident: CR4 article-title: Time series analysis and forecast of the COVID-19 pandemic in india using genetic programming publication-title: Chaos Solitons Fractals – volume: 2013 start-page: 1 issue: 3 year: 2013 end-page: 17 ident: CR17 article-title: The SIR model and the foundations of public health publication-title: Mater Mat – volume: 89 start-page: 38 issue: 1 year: 2019 end-page: 51 ident: CR51 article-title: Time series models based on the unrestricted skew-normal process publication-title: J Stat Comput Simul – volume: 71 start-page: 1393 issue: 6 year: 2020 end-page: 1399 ident: CR42 article-title: Prediction for progression risk in patients with COVID-19 pneumonia: the CALL Score publication-title: Clin Infect Dis doi: 10.1093/cid/ciaa414 – year: 1998 ident: CR71 publication-title: Genetic programming – ident: CR34 – volume: 150 start-page: 10 year: 2020 ident: CR12 article-title: icumonitoring.ch: a platform for short-term forecasting of intensive care unit occupancy during the COVID-19 epidemic in Switzerland publication-title: Swiss Med Weekly – volume: 5 start-page: 346 year: 2020 end-page: 356 ident: CR59 article-title: A novel IDEA: the impact of serial interval on a modified-incidence decay and exponential adjustment (m-IDEA) model for projections of daily COVID-19 cases publication-title: Infect Dis Model – volume: 729 start-page: 8 year: 2020 ident: CR41 article-title: Early forecasting of the potential risk zones of COVID-19 in China’s megacities publication-title: Sci Total Environ – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: CR61 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw – volume: 138 start-page: 55 issue: 834 year: 1932 end-page: 83 ident: CR15 article-title: Contributions to the mathematical theory of epidemics. II: the problem of endemicity publication-title: Proc R Soc Lond Ser A – year: 1990 ident: CR54 publication-title: Basic statistical analysis – ident: CR28 – volume: 15 start-page: 181 issue: 2 year: 2020 end-page: 204 ident: CR57 article-title: ARIMA-based forecasting of the dynamics of confirmed Covid-19 cases for selected European countries publication-title: Equilib Q J Econ Econ Policy – volume: 729 start-page: 138883 year: 2020 ident: CR19 article-title: SutteARIMA: short-term forecasting method, a case—Covid-19 and stock market in Spain publication-title: Sci Total Environ – volume: 53 start-page: 396 issue: 3 year: 2020 end-page: 403 ident: CR26 article-title: COVID-19 virus outbreak forecasting of registered and recovered cases after sixty day lockdown in Italy: a data driven model approach publication-title: J Microbiol Immunol Infect – volume: 12 start-page: 8 issue: 6 year: 2020 ident: CR11 article-title: COVID-19 trends and forecast in the eastern mediterranean region with a particular focus on Pakistan publication-title: Cureus – volume: 10 start-page: 3402 issue: 10 year: 2020 ident: CR67 article-title: Forecasting the spread of COVID-19 in Kuwait using compartmental and logistic regression models publication-title: Appl Sci – volume: 35 start-page: 136 issue: 2 year: 2016 ident: 5626_CR7 publication-title: Sci Technol Libr doi: 10.1080/0194262X.2016.1181023 – volume: 15 start-page: 181 issue: 2 year: 2020 ident: 5626_CR57 publication-title: Equilib Q J Econ Econ Policy – volume: 4 start-page: 83 issue: 4 year: 2019 ident: 5626_CR1 publication-title: Am J Math Comput Model doi: 10.11648/j.ajmcm.20190404.11 – ident: 5626_CR5 doi: 10.36227/techrxiv.12101547.v1 – volume: 138 start-page: 109945 year: 2020 ident: 5626_CR32 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109945 – volume: 729 start-page: 8 year: 2020 ident: 5626_CR41 publication-title: Sci Total Environ – ident: 5626_CR84 doi: 10.1109/CVPR.2012.6248110 – volume: 85 start-page: 65 issue: 1 year: 2010 ident: 5626_CR8 publication-title: Scientometrics doi: 10.1007/s11192-010-0259-8 – volume: 89 start-page: 38 issue: 1 year: 2019 ident: 5626_CR51 publication-title: J Stat Comput Simul doi: 10.1080/00949655.2018.1533962 – volume: 46 start-page: 2010 issue: 11 year: 2019 ident: 5626_CR53 publication-title: J Appl Stat doi: 10.1080/02664763.2019.1575953 – volume: 5 start-page: 7 issue: 1 year: 2020 ident: 5626_CR24 publication-title: Glob Health Res Policy doi: 10.1186/s41256-020-00137-4 – volume: 199 start-page: 89 issue: 1 year: 2009 ident: 5626_CR81 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2008.10.033 – ident: 5626_CR18 doi: 10.1101/2020.02.16.20023465 – volume: 5 start-page: 346 year: 2020 ident: 5626_CR59 publication-title: Infect Dis Model – volume-title: Mathematical models in population biology and epidemiology year: 2012 ident: 5626_CR75 doi: 10.1007/978-1-4614-1686-9 – start-page: 2093 volume-title: Handbook of combinatorial optimization year: 1998 ident: 5626_CR80 doi: 10.1007/978-1-4613-0303-9_33 – volume: 10 start-page: 3402 issue: 10 year: 2020 ident: 5626_CR67 publication-title: Appl Sci doi: 10.3390/app10103402 – volume: 6 start-page: e18828 issue: 2 year: 2020 ident: 5626_CR63 publication-title: JMIR Public Health Surveill doi: 10.2196/18828 – volume: 69 start-page: 165 issue: 2 year: 2017 ident: 5626_CR52 publication-title: Calcutta Stat Assoc Bull doi: 10.1177/0008068317732196 – year: 2020 ident: 5626_CR55 publication-title: Model Earth Syst Environ doi: 10.1007/s40808-020-00890-y – start-page: 119 volume-title: Applied mathematical ecology year: 1989 ident: 5626_CR74 doi: 10.1007/978-3-642-61317-3_5 – volume: 15 start-page: e0230405 issue: 3 year: 2020 ident: 5626_CR21 publication-title: PLoS ONE doi: 10.1371/journal.pone.0230405 – volume: 41 start-page: 1099 issue: 4 year: 2017 ident: 5626_CR50 publication-title: Iran J Sci Technol Trans A Sci doi: 10.1007/s40995-017-0237-6 – ident: 5626_CR78 doi: 10.21203/rs.3.rs-85513/v1 – volume: 12 start-page: 15 issue: 5 year: 2020 ident: 5626_CR23 publication-title: Cureus – year: 2020 ident: 5626_CR33 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110118 – volume: 9 start-page: 11 issue: 5 year: 2020 ident: 5626_CR36 publication-title: J Clin Med doi: 10.3390/jcm9051492 – ident: 5626_CR2 doi: 10.1101/2020.04.07.20057133 – volume: 136 start-page: 109924 year: 2020 ident: 5626_CR66 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109924 – volume-title: Genetic programming year: 1998 ident: 5626_CR71 doi: 10.1007/BFb0055923 – volume: 135 start-page: 8 year: 2020 ident: 5626_CR30 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109866 – volume: 71 start-page: 1393 issue: 6 year: 2020 ident: 5626_CR42 publication-title: Clin Infect Dis doi: 10.1093/cid/ciaa414 – start-page: 285 volume-title: Measuring scholarly impact year: 2014 ident: 5626_CR9 doi: 10.1007/978-3-319-10377-8_13 – volume: 13 start-page: 313 year: 1982 ident: 5626_CR65 publication-title: Sociol Methodol doi: 10.2307/270724 – ident: 5626_CR28 doi: 10.1109/mci.2020.3019895 – volume: 12 start-page: 8 issue: 6 year: 2020 ident: 5626_CR11 publication-title: Cureus – volume: 9 start-page: 674 issue: 3 year: 2020 ident: 5626_CR20 publication-title: J Clin Med doi: 10.3390/jcm9030674 – volume: 61 start-page: 85 year: 2015 ident: 5626_CR61 publication-title: Neural Netw doi: 10.1016/j.neunet.2014.09.003 – ident: 5626_CR6 doi: 10.2139/ssrn.3568314 – ident: 5626_CR34 – volume: 138 start-page: 109945 year: 2020 ident: 5626_CR4 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109945 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 5626_CR85 publication-title: Commun ACM doi: 10.1145/3065386 – volume: 5 start-page: 256 year: 2020 ident: 5626_CR46 publication-title: Infect Dis Model – volume: 35 start-page: 268 issue: 3 year: 2003 ident: 5626_CR82 publication-title: ACM Comput Surv doi: 10.1145/937503.937505 – volume: 42 start-page: 43 issue: 1–2 year: 1978 ident: 5626_CR16 publication-title: Math Biosci doi: 10.1016/0025-5564(78)90006-8 – volume: 17 start-page: 14 issue: 8 year: 2020 ident: 5626_CR38 publication-title: Int J Environ Res Public Health doi: 10.3390/ijerph17082750 – volume: 6 start-page: 53 year: 2020 ident: 5626_CR40 publication-title: Glob J Environ Sci Manag – volume: 120 start-page: 48 issue: 1 year: 1957 ident: 5626_CR79 publication-title: J R Stat Soc Ser A doi: 10.2307/2342553 – volume: 53 start-page: 396 issue: 3 year: 2020 ident: 5626_CR26 publication-title: J Microbiol Immunol Infect doi: 10.1016/j.jmii.2020.04.004 – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 5626_CR60 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2013.50 – volume-title: Infectious diseases in primates: behavior, ecology and evolution year: 2006 ident: 5626_CR76 doi: 10.1093/acprof:oso/9780198565857.001.0001 – volume: 6 start-page: 132 issue: 1 year: 2020 ident: 5626_CR39 publication-title: Int J Interact Multimed Artif Intell – volume-title: Basic statistical analysis year: 1990 ident: 5626_CR54 – volume: 729 start-page: 138883 year: 2020 ident: 5626_CR19 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2020.138883 – volume: 13 start-page: 914 year: 2020 ident: 5626_CR56 publication-title: J Infect Public Health doi: 10.1016/j.jiph.2020.06.001 – volume: 135 start-page: 10 year: 2020 ident: 5626_CR22 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109850 – volume: 2013 start-page: 1 issue: 3 year: 2013 ident: 5626_CR17 publication-title: Mater Mat – volume: 134 start-page: 5 year: 2020 ident: 5626_CR14 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109761 – volume: 49 start-page: 92 year: 2020 ident: 5626_CR31 publication-title: Iran J Public Health – volume-title: Statistical models: theory and practice year: 2009 ident: 5626_CR64 doi: 10.1017/CBO9780511815867 – volume: 135 start-page: 6 year: 2020 ident: 5626_CR25 publication-title: Chaos Solitons Fractals – volume: 30 start-page: 105683 year: 2020 ident: 5626_CR45 publication-title: Data Brief doi: 10.1016/j.dib.2020.105683 – volume: 80 start-page: 472 issue: 4 year: 2020 ident: 5626_CR37 publication-title: J Infect – volume: 16 start-page: 147 issue: 3 year: 1997 ident: 5626_CR83 publication-title: J Forecast doi: 10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X – volume: 15 start-page: 21 issue: 3 year: 2020 ident: 5626_CR13 publication-title: PLoS ONE doi: 10.1371/journal.pone.0230405 – volume: 9 start-page: 15 issue: 3 year: 2020 ident: 5626_CR29 publication-title: J Clin Med – volume: 2007 start-page: 64870 year: 2007 ident: 5626_CR77 publication-title: J Biomed Biotechnol doi: 10.1155/2007/64870 – ident: 5626_CR47 doi: 10.1016/j.chaos.2020.109942 – ident: 5626_CR3 doi: 10.1016/j.scitotenv.2020.138778 – year: 2020 ident: 5626_CR27 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110056 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 5626_CR62 publication-title: Nature doi: 10.1038/nature14539 – volume: 72 start-page: 37 issue: 1 year: 2018 ident: 5626_CR68 publication-title: Am Stat doi: 10.1080/00031305.2017.1380080 – ident: 5626_CR69 doi: 10.32614/CRAN.package.prophet – volume: 87 start-page: 1061 issue: 6 year: 2017 ident: 5626_CR49 publication-title: J Stat Comput Simul doi: 10.1080/00949655.2016.1245305 – volume: 135 start-page: 109866 year: 2020 ident: 5626_CR58 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109866 – start-page: 1 volume-title: VOSviewer manual, year: 2013 ident: 5626_CR10 – volume: 138 start-page: 55 issue: 834 year: 1932 ident: 5626_CR15 publication-title: Proc R Soc Lond Ser A doi: 10.1098/rspa.1932.0171 – volume: 37 start-page: 101742 year: 2020 ident: 5626_CR35 publication-title: Travel Med Infect Dis doi: 10.1016/j.tmaid.2020.101742 – volume: 135 start-page: 109853 year: 2020 ident: 5626_CR43 publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109853 – volume: 34 start-page: 959 year: 2020 ident: 5626_CR44 publication-title: Stochast Environ Res Risk Assess doi: 10.1007/s00477-020-01827-8 – volume: 12 start-page: 1201 issue: 4 year: 2015 ident: 5626_CR72 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-014-0717-6 – volume: 150 start-page: 10 year: 2020 ident: 5626_CR12 publication-title: Swiss Med Weekly – ident: 5626_CR70 – volume: 8 start-page: 127 year: 2020 ident: 5626_CR48 publication-title: Front Phys doi: 10.3389/fphy.2020.00127 – volume: 3 start-page: 56 issue: 4 year: 2009 ident: 5626_CR73 publication-title: IEEE Ind Electron Mag doi: 10.1109/MIE.2009.934790 |
SSID | ssj0004685 |
Score | 2.6516395 |
SecondaryResourceType | review_article |
Snippet | The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 23671 |
SubjectTerms | Algorithms Artificial Intelligence Bibliometrics Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Coronaviruses COVID-19 Data Mining and Knowledge Discovery Disease transmission Epidemics Forecasting Image Processing and Computer Vision Keywords Machine learning Mathematical models Probability and Statistics in Computer Science Quarantine Research methodology S.I. : Deep Neuro-Fuzzy Analytics in Smart Ecosystems S.I: Deep Neuro-Fuzzy Analytics for Intelligent Big Data Processing in Smart Ecosystems Viral diseases Visualization |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXLjwfhQGChISB6jUNmmTHKcBGkjAhaHdqqRJBRLqENv-P05fMAZIXHqJ27R2Etu1PxvglDlwIxfWz2IjfaZQFkIa4yeWcWNxJBIOjXx3nwyG7HYUj2pQ2KTJdm9CkuVJ3YLd3B9MdH0jF7xFM9wXy7ASO98dV_Ew6n1BQ5aNONFvcTk9jNZQmZ-fMa-OFmzMxVTJb_HSUg1db8BabT-SXiXwTViyxRasN70ZSL1Vt-GsRypUChkXpP_wdHPph5KghWozNXGpzqTsgTPZgeH11WN_4NdNEfyMcTb1pc64NDSzidKoduJAh4lBM04wFeS5ZlLnymiKminIKTWZEpFJqJJCWJ7wKKe70CnGhd0HYqkMFGNRELurzrVRJgtzmWuKk4SxB2HDmzSrK4a7xhWvaVvruORnivxMS36mwoPz9p63ql7Gn9TdhuVpvXcmKfpwQoaoOQMPTtphXPUulKEKO54hDZ47IUfzKPJgr5JQOx2lsUPvUg_4nOxaAldRe36keHkuK2tzkbhiRx5cNFL-fK3fv-Lgf-SHsOp61leAxi50pu8ze4SWzVQflwv5A4zK7E4 priority: 102 providerName: Springer Nature |
Title | A review on COVID-19 forecasting models |
URI | https://link.springer.com/article/10.1007/s00521-020-05626-8 https://www.ncbi.nlm.nih.gov/pubmed/33564213 https://www.proquest.com/docview/2878918010 https://www.proquest.com/docview/2488170712 https://pubmed.ncbi.nlm.nih.gov/PMC7861008 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4V9tJLgb4Ij1UqVeqhtZrETmyf0C7sQluVVlW3oqfIr6iVUBbY5f8zTpzAguCSSBlHjmfi8dgz3wzAe-bBjVw4YnIrCVMoCyGtJYVj3DqkZMKjkb-fFicz9vUsPwsHbosQVtnpxEZR27nxZ-Sf0bIXMkV9mhxcXBJfNcp7V0MJjTUYoAoWuPkajCenP3_dQUY2RTlxD-PjexgNsJkGPOdPRPFp5p3BaNYTsbo0PbA3H4ZN3vOdNkvSdBNeBFsyHrXC34Jnrn4JG12dhjhM21fwYRS3CJV4XseHP_58OSKpjNFadUYtfNhz3NTDWbyG2XTy-_CEhAIJxDDOlkRqw6WlxhVK4_jzRKeFRZNOMJVUlWZSV8pqiqtUUlFqjRKZLaiSQjhe8Kyib2C9ntduG2JHZaIYy5LcX3WlrbImrWSlKXaS5hGkHW9KE7KH-yIW52Wf97jhZ4n8LBt-liKCj_07F23ujCdb73UsL8M8WpS3Uo_gXU_GGeDdGqp282tsgzoo5WgqZRG8bSXUd0dp7pG8NAK-Iru-gc-uvUqp__9rsmxzUfjERxF86qR8-1mPj2Ln6VHswnNfr74FM-7B-vLq2u2jVbPUQ1gT0-MhDEbjo_HU34__fpsMww-N1Fk2ugE5j_Wy |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4q5QAX9iVQwEggDmCR2E5sHxCqWoYZunBpUW_BWwQSyhRmKsSf4jfy7CxlqOitlxxiZ_Hb_J7t7z2AZyKCG6UK1JVeU2GQF0p7T6sgpA_YwlREI-_tV9ND8eGoPFqD3wMWJh6rHGxiMtR-7uIa-Wv07JUu0J7mb4-_01g1Ku6uDiU0OrHYCb9-Ysi2eDPbRv4-Z2zy7mBrSvuqAtQJKZZUWye15y5UxqLdLnNbVB79ICVM3jRWaNsYbzHM53nDuXdGMV9xo5UKspKs4fjeS3BZcK6jRqnJ-79wmKkEKEZM8TSR4D1IJ0H14vor3mVx6xmDCKpWJ8Iz3u3ZQ5r_7NSmCXByA671nivZ7ETtJqyF9hZcH6pCkN5I3IYXm6TDw5B5S7Y-fppt00IT9I2DM4t4yJqk6juLO3B4IYS7C-vtvA33gQSucyMEy8t4tY31xrui0Y3l-JGizKAYaFO7Pld5LJnxrR6zLCd61kjPOtGzVhm8HJ857jJ1nNt7YyB53Wvtoj6VsQyejs2ob3ETxbRhfoJ90OIVEh0zlsG9jkPj5zgvI26YZyBXeDd2iLm8V1var19STm-pqphmKYNXA5dPf-v_o3hw_iiewJXpwd5uvTvb33kIVxn6Zx2McgPWlz9OwiP0p5b2cRJiAp8vWmv-AGJcLO4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsQwDLVYJMSFfSlrkZA4QEXbpE1yHAEjdjgwiFuVNIlAQh3EDP-P0w2GTeLSS9ymtZPYrv1sgF3qwI2MmyBPtAioRFlwoXWQGsq0wZGYOzTy1XV62qPnD8nDJxR_me3ehCQrTIOr0lQMD1-0PWyBb-5vJrrBsQvkokke8HGYxOM4cuu6F3c-ISPLppzow7j8Hkpq2MzPzxhVTd_sze9pk19ip6VK6s7BTG1L-p1K-PMwZooFmG36NPj1tl2EvY5fIVT8fuEf3dyfHQeR8NFaNbkcuLRnv-yHM1iCXvfk7ug0qBskBDlldBgIlTOhSW5SqVAFJaGKUo0mHacytFZRoazUiqCWCi0hOpc81imRgnPDUhZbsgwTRb8wq-AbIkJJaRwm7qqs0lLnkRVWEZwkSjyIGt5keV093DWxeM7ausclPzPkZ1byM-Me7Lf3vFS1M_6k3mhYntX7aJChP8dFhFo09GCnHcYd4MIasjD9N6TBMyhiaCrFHqxUEmqnIyRxSF7iARuRXUvgqmuPjhRPj2WVbcZTV_jIg4NGyh-v9ftXrP2PfBumbo-72eXZ9cU6TLtW9hXOcQMmhq9vZhMNnqHaKtf0O8q_830 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+COVID-19+forecasting+models&rft.jtitle=Neural+computing+%26+applications&rft.au=Rahimi%2C+Iman&rft.au=Chen%2C+Fang&rft.au=Gandomi%2C+Amir+H&rft.date=2023-11-01&rft.issn=0941-0643&rft.spage=1&rft_id=info:doi/10.1007%2Fs00521-020-05626-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon |