A review on COVID-19 forecasting models

The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As such, several machine learning models that can forecast the outbreak globally have been released. This work presents a review and brief analysi...

Full description

Saved in:
Bibliographic Details
Published inNeural computing & applications Vol. 35; no. 33; pp. 23671 - 23681
Main Authors Rahimi, Iman, Chen, Fang, Gandomi, Amir H.
Format Journal Article
LanguageEnglish
Published London Springer London 01.11.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As such, several machine learning models that can forecast the outbreak globally have been released. This work presents a review and brief analysis of the most important machine learning forecasting models against COVID-19. The work presented in this study possesses two parts. In the first section, a detailed scientometric analysis presents an influential tool for bibliometric analyses, which were performed on COVID-19 data from the Scopus and Web of Science databases. For the above-mentioned analysis, keywords and subject areas are addressed, while the classification of machine learning forecasting models, criteria evaluation, and comparison of solution approaches are discussed in the second section of the work. The conclusion and discussion are provided as the final sections of this study.
AbstractList The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As such, several machine learning models that can forecast the outbreak globally have been released. This work presents a review and brief analysis of the most important machine learning forecasting models against COVID-19. The work presented in this study possesses two parts. In the first section, a detailed scientometric analysis presents an influential tool for bibliometric analyses, which were performed on COVID-19 data from the Scopus and Web of Science databases. For the above-mentioned analysis, keywords and subject areas are addressed, while the classification of machine learning forecasting models, criteria evaluation, and comparison of solution approaches are discussed in the second section of the work. The conclusion and discussion are provided as the final sections of this study.
The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As such, several machine learning models that can forecast the outbreak globally have been released. This work presents a review and brief analysis of the most important machine learning forecasting models against COVID-19. The work presented in this study possesses two parts. In the first section, a detailed scientometric analysis presents an influential tool for bibliometric analyses, which were performed on COVID-19 data from the Scopus and Web of Science databases. For the above-mentioned analysis, keywords and subject areas are addressed, while the classification of machine learning forecasting models, criteria evaluation, and comparison of solution approaches are discussed in the second section of the work. The conclusion and discussion are provided as the final sections of this study.The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As such, several machine learning models that can forecast the outbreak globally have been released. This work presents a review and brief analysis of the most important machine learning forecasting models against COVID-19. The work presented in this study possesses two parts. In the first section, a detailed scientometric analysis presents an influential tool for bibliometric analyses, which were performed on COVID-19 data from the Scopus and Web of Science databases. For the above-mentioned analysis, keywords and subject areas are addressed, while the classification of machine learning forecasting models, criteria evaluation, and comparison of solution approaches are discussed in the second section of the work. The conclusion and discussion are provided as the final sections of this study.
Author Gandomi, Amir H.
Chen, Fang
Rahimi, Iman
Author_xml – sequence: 1
  givenname: Iman
  surname: Rahimi
  fullname: Rahimi, Iman
  organization: Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia
– sequence: 2
  givenname: Fang
  surname: Chen
  fullname: Chen, Fang
  organization: Data Science Institute, University of Technology Sydney
– sequence: 3
  givenname: Amir H.
  orcidid: 0000-0002-2798-0104
  surname: Gandomi
  fullname: Gandomi, Amir H.
  email: gandomi@uts.edu.au
  organization: Data Science Institute, University of Technology Sydney
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33564213$$D View this record in MEDLINE/PubMed
BookMark eNp9kTFPHDEQha0IFA7IH6CIVkoBzZKxx2t7m0joIAkSEk2gtbxe72G0ZxN7D8S_x5cDklBQTTHfe3ozb5dshRgcIQcUjimA_JoBGkZrYFBDI5io1QcyoxyxRmjUFplBy8tacNwhuznfAgAXqvlIdhAbwRnFGTk8qZK79-6hiqGaX16fn9a0rYaYnDV58mFRLWPvxrxPtgczZvfpee6Rq-9nv-Y_64vLH-fzk4vacsmnuu2sbHu0TpiOUdZAR0VPsVXcwDB0vO0G03eIgDAg9tYo1gs0rVJOCskG3CPfNr53q27peuvClMyo75JfmvSoo_H6_03wN3oR77VUojxFFYOjZ4MUf69cnvTSZ-vG0QQXV1kzrhSVICkr6Jc36G1cpVDO00xJ1VIFFAr1-d9Er1FeflgAtQFsijknN2jrJzP5uA7oR01Br-vSm7p0qUv_qUuvw7I30hf3d0W4EeUCh4VLf2O_o3oCCeCkoA
CitedBy_id crossref_primary_10_1007_s00521_021_06201_5
crossref_primary_10_1080_08839514_2025_2476237
crossref_primary_10_1109_TASE_2022_3224171
crossref_primary_10_1515_msds_2022_0161
crossref_primary_10_1007_s11042_023_16617_x
crossref_primary_10_3389_fped_2024_1419595
crossref_primary_10_3390_healthcare11050752
crossref_primary_10_1016_j_tre_2024_103828
crossref_primary_10_1007_s40808_021_01332_z
crossref_primary_10_1007_s42979_021_00699_1
crossref_primary_10_1007_s00521_021_06548_9
crossref_primary_10_1140_epjs_s11734_024_01267_3
crossref_primary_10_1007_s00521_022_07325_y
crossref_primary_10_1016_j_cmpb_2021_106348
crossref_primary_10_3389_fepid_2024_1389617
crossref_primary_10_1007_s00521_021_06273_3
crossref_primary_10_1186_s40249_021_00886_5
crossref_primary_10_1007_s00521_022_07393_0
crossref_primary_10_3390_math12121797
crossref_primary_10_3934_era_2024100
crossref_primary_10_1093_imammb_dqab017
crossref_primary_10_1016_j_asoc_2021_107561
crossref_primary_10_56294_dm2024_404
crossref_primary_10_1016_j_chaos_2024_115869
crossref_primary_10_3390_math12111678
crossref_primary_10_3390_axioms13050311
crossref_primary_10_1155_2021_5522928
crossref_primary_10_1016_j_tele_2022_101796
crossref_primary_10_3389_fpsyg_2022_1029812
crossref_primary_10_1007_s00521_023_08788_3
crossref_primary_10_1002_sres_2897
crossref_primary_10_1007_s12064_022_00379_5
crossref_primary_10_47470_0016_9900_2023_102_8_740_749
crossref_primary_10_3390_math12081254
crossref_primary_10_1186_s13040_023_00337_x
crossref_primary_10_1038_s41598_023_33685_z
crossref_primary_10_1186_s13662_023_03792_2
crossref_primary_10_1093_jamiaopen_ooac086
crossref_primary_10_1007_s00521_022_07210_8
crossref_primary_10_3390_encyclopedia4020042
crossref_primary_10_1007_s10462_021_10052_w
crossref_primary_10_1016_j_asoc_2021_107653
crossref_primary_10_1016_j_heha_2025_100119
crossref_primary_10_1007_s11831_022_09859_9
crossref_primary_10_1007_s13762_023_05110_5
crossref_primary_10_1038_s41598_024_57238_0
crossref_primary_10_1007_s11538_022_01028_0
crossref_primary_10_1109_TCSS_2023_3255256
crossref_primary_10_1016_j_cmpb_2021_106402
crossref_primary_10_1016_j_neunet_2024_106527
crossref_primary_10_1038_s41598_024_69660_5
crossref_primary_10_1088_1742_6596_2033_1_012108
crossref_primary_10_1063_5_0154968
crossref_primary_10_1002_sim_10097
crossref_primary_10_1186_s12913_024_10955_8
crossref_primary_10_17093_alphanumeric_1213585
crossref_primary_10_1080_15230406_2023_2293880
crossref_primary_10_29130_dubited_1234168
crossref_primary_10_1177_20552076221133696
crossref_primary_10_1007_s40840_023_01539_6
crossref_primary_10_1186_s40537_021_00491_1
crossref_primary_10_47836_mjmhs_18_s6_14
crossref_primary_10_1007_s11356_022_23392_z
crossref_primary_10_3390_math11183960
crossref_primary_10_1007_s42979_025_03658_2
crossref_primary_10_3934_energy_2023056
crossref_primary_10_1186_s12889_023_16419_8
crossref_primary_10_1214_24_AOAS1964
crossref_primary_10_1080_00207179_2023_2204969
crossref_primary_10_1109_ACCESS_2022_3204804
crossref_primary_10_1007_s11538_024_01275_3
crossref_primary_10_1007_s40435_024_01519_z
crossref_primary_10_1080_23270012_2024_2372632
crossref_primary_10_3389_fgene_2022_845305
crossref_primary_10_1016_j_ifacol_2025_01_090
crossref_primary_10_1109_TCSS_2022_3140320
crossref_primary_10_1080_10410236_2023_2229093
crossref_primary_10_31202_ecjse_1012718
crossref_primary_10_1007_s11071_022_07469_5
crossref_primary_10_24171_j_phrp_2023_0287
crossref_primary_10_1186_s12889_025_21401_7
crossref_primary_10_1016_j_jclepro_2022_132996
crossref_primary_10_1002_widm_1475
crossref_primary_10_1109_TPAMI_2023_3331087
crossref_primary_10_15803_ijnc_13_2_195
crossref_primary_10_3934_mbe_2024298
crossref_primary_10_1016_j_chaos_2024_115417
crossref_primary_10_1007_s12652_024_04775_1
crossref_primary_10_1093_imammb_dqae012
crossref_primary_10_3934_nhm_2023069
crossref_primary_10_1214_24_AOAS1941
crossref_primary_10_1038_s41597_022_01813_5
crossref_primary_10_1038_s41598_022_27322_4
crossref_primary_10_1093_pnasnexus_pgae204
crossref_primary_10_1088_1367_2630_ad0991
crossref_primary_10_1016_j_rineng_2025_104125
crossref_primary_10_1038_s41598_022_12491_z
crossref_primary_10_1038_s41598_022_10185_0
crossref_primary_10_1007_s43621_024_00213_6
crossref_primary_10_1038_s41598_024_63795_1
crossref_primary_10_1109_JSTSP_2022_3140703
crossref_primary_10_3390_covid3120123
crossref_primary_10_3390_forecast6020015
crossref_primary_10_1007_s00521_023_08442_y
crossref_primary_10_1016_j_cie_2022_108031
Cites_doi 10.1145/3065386
10.1007/s40808-020-00890-y
10.1016/j.chaos.2020.110056
10.1155/2007/64870
10.1016/j.chaos.2020.110118
10.1093/cid/ciaa414
10.1080/0194262X.2016.1181023
10.11648/j.ajmcm.20190404.11
10.36227/techrxiv.12101547.v1
10.1016/j.chaos.2020.109945
10.1109/CVPR.2012.6248110
10.1007/s11192-010-0259-8
10.1080/00949655.2018.1533962
10.1080/02664763.2019.1575953
10.1186/s41256-020-00137-4
10.1016/j.ejor.2008.10.033
10.1101/2020.02.16.20023465
10.1007/978-1-4614-1686-9
10.1007/978-1-4613-0303-9_33
10.3390/app10103402
10.2196/18828
10.1177/0008068317732196
10.1007/978-3-642-61317-3_5
10.1371/journal.pone.0230405
10.1007/s40995-017-0237-6
10.21203/rs.3.rs-85513/v1
10.3390/jcm9051492
10.1101/2020.04.07.20057133
10.1016/j.chaos.2020.109924
10.1007/BFb0055923
10.1016/j.chaos.2020.109866
10.1007/978-3-319-10377-8_13
10.2307/270724
10.1109/mci.2020.3019895
10.3390/jcm9030674
10.1016/j.neunet.2014.09.003
10.2139/ssrn.3568314
10.1145/937503.937505
10.1016/0025-5564(78)90006-8
10.3390/ijerph17082750
10.2307/2342553
10.1016/j.jmii.2020.04.004
10.1109/TPAMI.2013.50
10.1093/acprof:oso/9780198565857.001.0001
10.1016/j.scitotenv.2020.138883
10.1016/j.jiph.2020.06.001
10.1016/j.chaos.2020.109850
10.1016/j.chaos.2020.109761
10.1017/CBO9780511815867
10.1016/j.dib.2020.105683
10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X
10.1016/j.chaos.2020.109942
10.1016/j.scitotenv.2020.138778
10.1038/nature14539
10.1080/00031305.2017.1380080
10.32614/CRAN.package.prophet
10.1080/00949655.2016.1245305
10.1098/rspa.1932.0171
10.1016/j.tmaid.2020.101742
10.1016/j.chaos.2020.109853
10.1007/s00477-020-01827-8
10.1007/s13762-014-0717-6
10.3389/fphy.2020.00127
10.1109/MIE.2009.934790
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.
DBID AAYXX
CITATION
NPM
8FE
8FG
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.1007/s00521-020-05626-8
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Advanced Technologies & Aerospace Collection

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-3058
EndPage 23681
ExternalDocumentID PMC7861008
33564213
10_1007_s00521_020_05626_8
Genre Journal Article
Review
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
ABRTQ
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c474t-9bc79d3ce6ab21250b16d13984a0ffb49bfadb33030f33dca82d63a988e7672f3
IEDL.DBID BENPR
ISSN 0941-0643
IngestDate Thu Aug 21 18:12:54 EDT 2025
Fri Jul 11 13:10:28 EDT 2025
Sat Jul 26 00:35:20 EDT 2025
Thu Apr 03 07:06:42 EDT 2025
Tue Jul 01 01:46:58 EDT 2025
Thu Apr 24 23:03:12 EDT 2025
Fri Feb 21 02:42:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 33
Keywords COVID-19
Forecasting
SIR
SEIR
Analysis
Time series
Language English
License The Author(s), under exclusive licence to Springer-Verlag London Ltd. part of Springer Nature 2021.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-9bc79d3ce6ab21250b16d13984a0ffb49bfadb33030f33dca82d63a988e7672f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-2798-0104
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7861008
PMID 33564213
PQID 2878918010
PQPubID 2043988
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7861008
proquest_miscellaneous_2488170712
proquest_journals_2878918010
pubmed_primary_33564213
crossref_citationtrail_10_1007_s00521_020_05626_8
crossref_primary_10_1007_s00521_020_05626_8
springer_journals_10_1007_s00521_020_05626_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231100
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 20231100
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
– name: Heidelberg
PublicationTitle Neural computing & applications
PublicationTitleAbbrev Neural Comput & Applic
PublicationTitleAlternate Neural Comput Appl
PublicationYear 2023
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Maleki (CR35) 2020; 37
Li, Feng, Quan (CR37) 2020; 80
Su, Lee (CR8) 2010; 85
Maleki, Nematollahi, Technology (CR50) 2017; 41
Chakraborty, Ghosh (CR22) 2020; 135
Nunn, Altizer, Altizer (CR76) 2006
Perc (CR48) 2020; 8
Chintalapudi, Battineni, Amenta (CR26) 2020; 53
Sprinthall, Fisk (CR54) 1990
Freedman (CR64) 2009
Bartlett (CR79) 1957; 120
Van Eck, Waltman (CR10) 2013
Tamang, Singh, Datta (CR40) 2020; 6
CR34
Ribeiro (CR43) 2020; 135
CR78
Velásquez, Lara (CR66) 2020; 136
Roosa (CR46) 2020; 5
Krizhevsky, Sutskever, Hinton (CR85) 2017; 60
CR70
Brauer, Castillo-Chavez (CR75) 2012
Capasso, Serio (CR16) 1978; 42
Banzhaf (CR71) 1998
Wilamowski (CR73) 2009; 3
CR2
CR3
CR6
CR5
Schmidhuber (CR61) 2015; 61
Taylor, Letham (CR68) 2018; 72
Singh (CR58) 2020; 135
CR47
Almeshal (CR67) 2020; 10
Shrivastava, Mahajan, Libraries (CR7) 2016; 35
Hajrajabi, Maleki (CR53) 2019; 46
CR84
Ren (CR41) 2020; 729
Maleki, Arellano-Valle (CR49) 2017; 87
Abdulmajeed, Adeleke, Popoola (CR45) 2020; 30
Cheng (CR12) 2020; 150
Ahmar, del Val (CR19) 2020; 729
Smith (CR59) 2020; 5
Poojari, Beasley (CR81) 2009; 199
Singh (CR30) 2020; 135
Makridakis, Hibon (CR83) 1997; 16
Roy, Bhunia, Shit (CR55) 2020
Alzahrani (CR56) 2020; 13
Chen, Chen, Chen (CR24) 2020; 5
Kufel (CR57) 2020; 15
Glover, Laguna (CR80) 1998
Kavadi, Patan, Ramachandran, Gandomi (CR27) 2020
Salgotra, Gandomi, Gandomi (CR4) 2020; 138
CR18
Al-qaness (CR20) 2020; 9
Anastassopoulou (CR13) 2020; 15
Kermack, McKendrick (CR15) 1932; 138
Chaudhry (CR23) 2020; 12
Sujath (CR44) 2020; 34
Jalalkamali (CR72) 2015; 12
Hethcote, Levin, Hallam, Gross (CR74) 1989
Cook, Weisberg (CR65) 1982; 13
Qeadan (CR38) 2020; 17
Dil, Dil, Maken (CR11) 2020; 12
Bengio (CR60) 2013; 35
Van Eck, Waltman, Ding, Rousseau, Wolfram (CR9) 2014
Anastassopoulou (CR21) 2020; 15
Putra, Khozin Mutamar (CR1) 2019; 4
Blum, Roli (CR82) 2003; 35
Fanelli, Piazza (CR14) 2020; 134
Maleki (CR52) 2017; 69
Zarrin (CR51) 2019; 89
Gao (CR77) 2007; 2007
Moftakhar, Seif, Safe (CR31) 2020; 49
CR28
LeCun, Bengio, Hinton (CR62) 2015; 521
Salgotra, Gandomi, Gandomi (CR33) 2020
Salgotra (CR32) 2020; 138
CR69
Ji (CR42) 2020; 71
Weiss (CR17) 2013; 2013
Ayyoubzadeh (CR63) 2020; 6
Chimmula, Zhang (CR25) 2020; 135
Reno (CR36) 2020; 9
Fong (CR39) 2020; 6
Al-qaness (CR29) 2020; 9
D Ji (5626_CR42) 2020; 71
C Reno (5626_CR36) 2020; 9
V Capasso (5626_CR16) 1978; 42
MAA Al-qaness (5626_CR29) 2020; 9
HW Hethcote (5626_CR74) 1989
BAJIDM Smith (5626_CR59) 2020; 5
BMJIIEM Wilamowski (5626_CR73) 2009; 3
RMA Velásquez (5626_CR66) 2020; 136
F Brauer (5626_CR75) 2012
R Salgotra (5626_CR33) 2020
S Gao (5626_CR77) 2007; 2007
MAA Al-qaness (5626_CR20) 2020; 9
VKR Chimmula (5626_CR25) 2020; 135
S Dil (5626_CR11) 2020; 12
5626_CR18
Y LeCun (5626_CR62) 2015; 521
S Makridakis (5626_CR83) 1997; 16
MHDM Ribeiro (5626_CR43) 2020; 135
Q Li (5626_CR37) 2020; 80
AM Almeshal (5626_CR67) 2020; 10
NJ Van Eck (5626_CR9) 2014
M Perc (5626_CR48) 2020; 8
DP Kavadi (5626_CR27) 2020
Y Bengio (5626_CR60) 2013; 35
S Singh (5626_CR58) 2020; 135
5626_CR84
5626_CR5
R Salgotra (5626_CR4) 2020; 138
5626_CR6
5626_CR3
C Nunn (5626_CR76) 2006
5626_CR47
5626_CR2
MS Bartlett (5626_CR79) 1957; 120
C Anastassopoulou (5626_CR21) 2020; 15
R Shrivastava (5626_CR7) 2016; 35
K Abdulmajeed (5626_CR45) 2020; 30
HH Weiss (5626_CR17) 2013; 2013
F Glover (5626_CR80) 1998
R Sujath (5626_CR44) 2020; 34
5626_CR70
N Chintalapudi (5626_CR26) 2020; 53
L Moftakhar (5626_CR31) 2020; 49
TJ Kufel (5626_CR57) 2020; 15
M Maleki (5626_CR49) 2017; 87
AS Ahmar (5626_CR19) 2020; 729
5626_CR34
5626_CR78
RM Chaudhry (5626_CR23) 2020; 12
P Zarrin (5626_CR51) 2019; 89
JJ Schmidhuber (5626_CR61) 2015; 61
W Banzhaf (5626_CR71) 1998
F Qeadan (5626_CR38) 2020; 17
H-N Su (5626_CR8) 2010; 85
DG Chen (5626_CR24) 2020; 5
M Maleki (5626_CR52) 2017; 69
SI Alzahrani (5626_CR56) 2020; 13
S Singh (5626_CR30) 2020; 135
SJ Fong (5626_CR39) 2020; 6
C Blum (5626_CR82) 2003; 35
RC Sprinthall (5626_CR54) 1990
CA Poojari (5626_CR81) 2009; 199
A Hajrajabi (5626_CR53) 2019; 46
S Putra (5626_CR1) 2019; 4
HY Ren (5626_CR41) 2020; 729
K Roosa (5626_CR46) 2020; 5
A Krizhevsky (5626_CR85) 2017; 60
S Roy (5626_CR55) 2020
T Chakraborty (5626_CR22) 2020; 135
RD Cook (5626_CR65) 1982; 13
5626_CR28
5626_CR69
WO Kermack (5626_CR15) 1932; 138
SK Tamang (5626_CR40) 2020; 6
M Maleki (5626_CR50) 2017; 41
SM Ayyoubzadeh (5626_CR63) 2020; 6
DA Freedman (5626_CR64) 2009
D Fanelli (5626_CR14) 2020; 134
M Maleki (5626_CR35) 2020; 37
R Salgotra (5626_CR32) 2020; 138
Z Cheng (5626_CR12) 2020; 150
A Jalalkamali (5626_CR72) 2015; 12
C Anastassopoulou (5626_CR13) 2020; 15
NJ Van Eck (5626_CR10) 2013
SJ Taylor (5626_CR68) 2018; 72
References_xml – volume: 135
  start-page: 6
  year: 2020
  ident: CR25
  article-title: Time series forecasting of COVID-19 transmission in Canada using LSTM networks
  publication-title: Chaos Solitons Fractals
– ident: CR70
– volume: 135
  start-page: 109853
  year: 2020
  ident: CR43
  article-title: Short-term forecasting COVID-19 cumulative confirmed cases: perspectives for Brazil
  publication-title: Chaos Solitons Fractals
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  end-page: 90
  ident: CR85
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun ACM
  doi: 10.1145/3065386
– volume: 138
  start-page: 109945
  year: 2020
  ident: CR32
  article-title: Time series analysis and forecast of the COVID-19 pandemic in India using genetic programming
  publication-title: Chaos Solitons Fractals
– volume: 35
  start-page: 136
  issue: 2
  year: 2016
  end-page: 151
  ident: CR7
  article-title: Artificial intelligence research in India: a scientometric analysis
  publication-title: Sci Technol Libr
– start-page: 285
  year: 2014
  end-page: 320
  ident: CR9
  article-title: Visualizing bibliometric networks
  publication-title: Measuring scholarly impact
– volume: 6
  start-page: e18828
  issue: 2
  year: 2020
  ident: CR63
  article-title: Predicting COVID-19 incidence through analysis of Google trends data in Iran: data mining and deep learning pilot study
  publication-title: JMIR Public Health Surveill
– volume: 42
  start-page: 43
  issue: 1–2
  year: 1978
  end-page: 61
  ident: CR16
  article-title: A generalization of the Kermack–McKendrick deterministic epidemic model
  publication-title: Math Biosci
– start-page: 1
  year: 2013
  end-page: 53
  ident: CR10
  publication-title: VOSviewer manual,
– volume: 6
  start-page: 132
  issue: 1
  year: 2020
  end-page: 140
  ident: CR39
  article-title: Finding an accurate early forecasting model from small dataset: a case of 2019-nCoV novel coronavirus outbreak
  publication-title: Int J Interact Multimed Artif Intell
– year: 2009
  ident: CR64
  publication-title: Statistical models: theory and practice
– volume: 13
  start-page: 313
  year: 1982
  end-page: 361
  ident: CR65
  article-title: Criticism and influence analysis in regression
  publication-title: Sociol Methodol
– volume: 46
  start-page: 2010
  issue: 11
  year: 2019
  end-page: 2029
  ident: CR53
  article-title: Nonlinear semiparametric autoregressive model with finite mixtures of scale mixtures of skew normal innovations
  publication-title: J Appl Stat
– volume: 30
  start-page: 105683
  year: 2020
  ident: CR45
  article-title: Online forecasting of Covid-19 cases in Nigeria using limited data
  publication-title: Data Brief
– volume: 199
  start-page: 89
  issue: 1
  year: 2009
  end-page: 97
  ident: CR81
  article-title: Improving benders decomposition using a genetic algorithm
  publication-title: Eur J Oper Res
– ident: CR84
– volume: 120
  start-page: 48
  issue: 1
  year: 1957
  end-page: 70
  ident: CR79
  article-title: Measles periodicity and community size
  publication-title: J R Stat Soc Ser A
– volume: 135
  start-page: 8
  year: 2020
  ident: CR30
  article-title: Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19
  publication-title: Chaos Solitons Fractals
– volume: 13
  start-page: 914
  year: 2020
  end-page: 919
  ident: CR56
  article-title: Forecasting the spread of the COVID-19 pandemic in Saudi Arabia using ARIMA prediction model under current public health interventions
  publication-title: J Infect Public Health
– volume: 8
  start-page: 127
  year: 2020
  ident: CR48
  article-title: Forecasting Covid-19
  publication-title: Front Phys
– volume: 9
  start-page: 11
  issue: 5
  year: 2020
  ident: CR36
  article-title: Forecasting COVID-19-associated hospitalizations under different levels of social distancing in Lombardy and Emilia-Romagna, Northern Italy: results from an extended SEIR compartmental model
  publication-title: J Clin Med
– year: 2020
  ident: CR55
  article-title: Spatial prediction of COVID-19 epidemic using ARIMA techniques in India
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-020-00890-y
– volume: 12
  start-page: 15
  issue: 5
  year: 2020
  ident: CR23
  article-title: Coronavirus disease 2019 (COVID-19): forecast of an emerging urgency in Pakistan
  publication-title: Cureus
– volume: 69
  start-page: 165
  issue: 2
  year: 2017
  end-page: 182
  ident: CR52
  article-title: A Bayesian approach to robust skewed autoregressive processes
  publication-title: Calcutta Stat Assoc Bull
– start-page: 2093
  year: 1998
  end-page: 2229
  ident: CR80
  article-title: Tabu search
  publication-title: Handbook of combinatorial optimization
– volume: 37
  start-page: 101742
  year: 2020
  ident: CR35
  article-title: Time series modelling to forecast the confirmed and recovered cases of COVID-19
  publication-title: Travel Med Infect Dis
– volume: 41
  start-page: 1099
  issue: 4
  year: 2017
  end-page: 1107
  ident: CR50
  article-title: Autoregressive models with mixture of scale mixtures of Gaussian innovations
  publication-title: Iran J Sci Technol Trans A Sci
– volume: 85
  start-page: 65
  issue: 1
  year: 2010
  end-page: 79
  ident: CR8
  article-title: Mapping knowledge structure by keyword co-occurrence: a first look at journal papers in technology foresight
  publication-title: Scientometrics
– volume: 35
  start-page: 268
  issue: 3
  year: 2003
  end-page: 308
  ident: CR82
  article-title: Metaheuristics in combinatorial optimization: overview and conceptual comparison
  publication-title: ACM Comput Surv
– year: 2020
  ident: CR27
  article-title: Partial derivative nonlinear global pandemic machine learning prediction of COVID-19
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110056
– volume: 135
  start-page: 10
  year: 2020
  ident: CR22
  article-title: Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: a data-driven analysis
  publication-title: Chaos Solitons Fractals
– ident: CR78
– ident: CR5
– volume: 4
  start-page: 83
  issue: 4
  year: 2019
  end-page: 93
  ident: CR1
  article-title: Estimation of parameters in the SIR epidemic model using particle swarm optimization
  publication-title: Am J Math Comput Model
– volume: 49
  start-page: 92
  year: 2020
  end-page: 100
  ident: CR31
  article-title: Exponentially increasing trend of infected patients with COVID-19 in Iran: a comparison of neural network and ARIMA forecasting models
  publication-title: Iran J Public Health
– year: 2012
  ident: CR75
  publication-title: Mathematical models in population biology and epidemiology
– volume: 16
  start-page: 147
  issue: 3
  year: 1997
  end-page: 163
  ident: CR83
  article-title: ARMA models and the Box-Jenkins methodology
  publication-title: J Forecast
– volume: 9
  start-page: 674
  issue: 3
  year: 2020
  ident: CR20
  article-title: Optimization method for forecasting confirmed cases of COVID-19 in China
  publication-title: J Clin Med
– volume: 5
  start-page: 7
  issue: 1
  year: 2020
  ident: CR24
  article-title: Reconstructing and forecasting the COVID-19 epidemic in the United States using a 5-parameter logistic growth model
  publication-title: Glob Health Res Policy
– volume: 135
  start-page: 109866
  year: 2020
  ident: CR58
  article-title: Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19
  publication-title: Chaos Solitons Fractals
– ident: CR18
– volume: 87
  start-page: 1061
  issue: 6
  year: 2017
  end-page: 1083
  ident: CR49
  article-title: Maximum a posteriori estimation of autoregressive processes based on finite mixtures of scale-mixtures of skew-normal distributions
  publication-title: J Stat Comput Simul
– ident: CR47
– volume: 136
  start-page: 109924
  year: 2020
  ident: CR66
  article-title: Forecast and evaluation of COVID-19 spreading in USA with reduced-space Gaussian process regression
  publication-title: Chaos Solitons Fractals
– volume: 2007
  start-page: 64870
  year: 2007
  ident: CR77
  article-title: Analysis of an SIR epidemic model with pulse vaccination and distributed time delay
  publication-title: J Biomed Biotechnol
  doi: 10.1155/2007/64870
– ident: CR2
– volume: 134
  start-page: 5
  year: 2020
  ident: CR14
  article-title: Analysis and forecast of COVID-19 spreading in China, Italy and France
  publication-title: Chaos Solitons Fractals
– volume: 6
  start-page: 53
  year: 2020
  end-page: 64
  ident: CR40
  article-title: Forecasting of Covid-19 cases based on prediction using artificial neural network curve fitting technique
  publication-title: Glob J Environ Sci Manag
– volume: 80
  start-page: 472
  issue: 4
  year: 2020
  end-page: 474
  ident: CR37
  article-title: Trend and forecasting of the COVID-19 outbreak in China
  publication-title: J Infect
– volume: 9
  start-page: 15
  issue: 3
  year: 2020
  ident: CR29
  article-title: Optimization method for forecasting confirmed cases of COVID-19 in China
  publication-title: J Clin Med
– volume: 12
  start-page: 1201
  issue: 4
  year: 2015
  end-page: 1210
  ident: CR72
  article-title: Application of several artificial intelligence models and ARIMAX model for forecasting drought using the Standardized Precipitation Index
  publication-title: Int J Environ Sci Technol
– volume: 72
  start-page: 37
  issue: 1
  year: 2018
  end-page: 45
  ident: CR68
  article-title: Forecasting at scale
  publication-title: Am Stat
– year: 2006
  ident: CR76
  publication-title: Infectious diseases in primates: behavior, ecology and evolution
– ident: CR6
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  end-page: 1828
  ident: CR60
  article-title: Representation learning: a review and new perspectives
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 119
  year: 1989
  end-page: 144
  ident: CR74
  article-title: Three basic epidemiological models
  publication-title: Applied mathematical ecology
– volume: 15
  start-page: 21
  issue: 3
  year: 2020
  ident: CR13
  article-title: Data-based analysis, modelling and forecasting of the COVID-19 outbreak
  publication-title: PLoS ONE
– volume: 34
  start-page: 959
  year: 2020
  end-page: 972
  ident: CR44
  article-title: A machine learning forecasting model for COVID-19 pandemic in India
  publication-title: Stochast Environ Res Risk Assess
– ident: CR69
– volume: 3
  start-page: 56
  issue: 4
  year: 2009
  end-page: 63
  ident: CR73
  article-title: Neural network architectures and learning algorithms
  publication-title: IEEE Ind Electron Mag
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  ident: CR62
  article-title: Deep learning
  publication-title: Nature
– volume: 17
  start-page: 14
  issue: 8
  year: 2020
  ident: CR38
  article-title: Naive forecast for COVID-19 in Utah based on the South Korea and Italy models-the fluctuation between two extremes
  publication-title: Int J Environ Res Public Health
– volume: 5
  start-page: 256
  year: 2020
  end-page: 263
  ident: CR46
  article-title: Real-time forecasts of the COVID-19 epidemic in China from February 5th to February 24th, 2020
  publication-title: Infect Dis Model
– year: 2020
  ident: CR33
  article-title: Evolutionary modelling of the COVID-19 pandemic in fifteen most affected countries
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110118
– ident: CR3
– volume: 15
  start-page: e0230405
  issue: 3
  year: 2020
  ident: CR21
  article-title: Data-based analysis, modelling and forecasting of the COVID-19 outbreak
  publication-title: PLoS ONE
– volume: 138
  start-page: 109945
  year: 2020
  ident: CR4
  article-title: Time series analysis and forecast of the COVID-19 pandemic in india using genetic programming
  publication-title: Chaos Solitons Fractals
– volume: 2013
  start-page: 1
  issue: 3
  year: 2013
  end-page: 17
  ident: CR17
  article-title: The SIR model and the foundations of public health
  publication-title: Mater Mat
– volume: 89
  start-page: 38
  issue: 1
  year: 2019
  end-page: 51
  ident: CR51
  article-title: Time series models based on the unrestricted skew-normal process
  publication-title: J Stat Comput Simul
– volume: 71
  start-page: 1393
  issue: 6
  year: 2020
  end-page: 1399
  ident: CR42
  article-title: Prediction for progression risk in patients with COVID-19 pneumonia: the CALL Score
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa414
– year: 1998
  ident: CR71
  publication-title: Genetic programming
– ident: CR34
– volume: 150
  start-page: 10
  year: 2020
  ident: CR12
  article-title: icumonitoring.ch: a platform for short-term forecasting of intensive care unit occupancy during the COVID-19 epidemic in Switzerland
  publication-title: Swiss Med Weekly
– volume: 5
  start-page: 346
  year: 2020
  end-page: 356
  ident: CR59
  article-title: A novel IDEA: the impact of serial interval on a modified-incidence decay and exponential adjustment (m-IDEA) model for projections of daily COVID-19 cases
  publication-title: Infect Dis Model
– volume: 729
  start-page: 8
  year: 2020
  ident: CR41
  article-title: Early forecasting of the potential risk zones of COVID-19 in China’s megacities
  publication-title: Sci Total Environ
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: CR61
  article-title: Deep learning in neural networks: an overview
  publication-title: Neural Netw
– volume: 138
  start-page: 55
  issue: 834
  year: 1932
  end-page: 83
  ident: CR15
  article-title: Contributions to the mathematical theory of epidemics. II: the problem of endemicity
  publication-title: Proc R Soc Lond Ser A
– year: 1990
  ident: CR54
  publication-title: Basic statistical analysis
– ident: CR28
– volume: 15
  start-page: 181
  issue: 2
  year: 2020
  end-page: 204
  ident: CR57
  article-title: ARIMA-based forecasting of the dynamics of confirmed Covid-19 cases for selected European countries
  publication-title: Equilib Q J Econ Econ Policy
– volume: 729
  start-page: 138883
  year: 2020
  ident: CR19
  article-title: SutteARIMA: short-term forecasting method, a case—Covid-19 and stock market in Spain
  publication-title: Sci Total Environ
– volume: 53
  start-page: 396
  issue: 3
  year: 2020
  end-page: 403
  ident: CR26
  article-title: COVID-19 virus outbreak forecasting of registered and recovered cases after sixty day lockdown in Italy: a data driven model approach
  publication-title: J Microbiol Immunol Infect
– volume: 12
  start-page: 8
  issue: 6
  year: 2020
  ident: CR11
  article-title: COVID-19 trends and forecast in the eastern mediterranean region with a particular focus on Pakistan
  publication-title: Cureus
– volume: 10
  start-page: 3402
  issue: 10
  year: 2020
  ident: CR67
  article-title: Forecasting the spread of COVID-19 in Kuwait using compartmental and logistic regression models
  publication-title: Appl Sci
– volume: 35
  start-page: 136
  issue: 2
  year: 2016
  ident: 5626_CR7
  publication-title: Sci Technol Libr
  doi: 10.1080/0194262X.2016.1181023
– volume: 15
  start-page: 181
  issue: 2
  year: 2020
  ident: 5626_CR57
  publication-title: Equilib Q J Econ Econ Policy
– volume: 4
  start-page: 83
  issue: 4
  year: 2019
  ident: 5626_CR1
  publication-title: Am J Math Comput Model
  doi: 10.11648/j.ajmcm.20190404.11
– ident: 5626_CR5
  doi: 10.36227/techrxiv.12101547.v1
– volume: 138
  start-page: 109945
  year: 2020
  ident: 5626_CR32
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109945
– volume: 729
  start-page: 8
  year: 2020
  ident: 5626_CR41
  publication-title: Sci Total Environ
– ident: 5626_CR84
  doi: 10.1109/CVPR.2012.6248110
– volume: 85
  start-page: 65
  issue: 1
  year: 2010
  ident: 5626_CR8
  publication-title: Scientometrics
  doi: 10.1007/s11192-010-0259-8
– volume: 89
  start-page: 38
  issue: 1
  year: 2019
  ident: 5626_CR51
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2018.1533962
– volume: 46
  start-page: 2010
  issue: 11
  year: 2019
  ident: 5626_CR53
  publication-title: J Appl Stat
  doi: 10.1080/02664763.2019.1575953
– volume: 5
  start-page: 7
  issue: 1
  year: 2020
  ident: 5626_CR24
  publication-title: Glob Health Res Policy
  doi: 10.1186/s41256-020-00137-4
– volume: 199
  start-page: 89
  issue: 1
  year: 2009
  ident: 5626_CR81
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2008.10.033
– ident: 5626_CR18
  doi: 10.1101/2020.02.16.20023465
– volume: 5
  start-page: 346
  year: 2020
  ident: 5626_CR59
  publication-title: Infect Dis Model
– volume-title: Mathematical models in population biology and epidemiology
  year: 2012
  ident: 5626_CR75
  doi: 10.1007/978-1-4614-1686-9
– start-page: 2093
  volume-title: Handbook of combinatorial optimization
  year: 1998
  ident: 5626_CR80
  doi: 10.1007/978-1-4613-0303-9_33
– volume: 10
  start-page: 3402
  issue: 10
  year: 2020
  ident: 5626_CR67
  publication-title: Appl Sci
  doi: 10.3390/app10103402
– volume: 6
  start-page: e18828
  issue: 2
  year: 2020
  ident: 5626_CR63
  publication-title: JMIR Public Health Surveill
  doi: 10.2196/18828
– volume: 69
  start-page: 165
  issue: 2
  year: 2017
  ident: 5626_CR52
  publication-title: Calcutta Stat Assoc Bull
  doi: 10.1177/0008068317732196
– year: 2020
  ident: 5626_CR55
  publication-title: Model Earth Syst Environ
  doi: 10.1007/s40808-020-00890-y
– start-page: 119
  volume-title: Applied mathematical ecology
  year: 1989
  ident: 5626_CR74
  doi: 10.1007/978-3-642-61317-3_5
– volume: 15
  start-page: e0230405
  issue: 3
  year: 2020
  ident: 5626_CR21
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0230405
– volume: 41
  start-page: 1099
  issue: 4
  year: 2017
  ident: 5626_CR50
  publication-title: Iran J Sci Technol Trans A Sci
  doi: 10.1007/s40995-017-0237-6
– ident: 5626_CR78
  doi: 10.21203/rs.3.rs-85513/v1
– volume: 12
  start-page: 15
  issue: 5
  year: 2020
  ident: 5626_CR23
  publication-title: Cureus
– year: 2020
  ident: 5626_CR33
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110118
– volume: 9
  start-page: 11
  issue: 5
  year: 2020
  ident: 5626_CR36
  publication-title: J Clin Med
  doi: 10.3390/jcm9051492
– ident: 5626_CR2
  doi: 10.1101/2020.04.07.20057133
– volume: 136
  start-page: 109924
  year: 2020
  ident: 5626_CR66
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109924
– volume-title: Genetic programming
  year: 1998
  ident: 5626_CR71
  doi: 10.1007/BFb0055923
– volume: 135
  start-page: 8
  year: 2020
  ident: 5626_CR30
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109866
– volume: 71
  start-page: 1393
  issue: 6
  year: 2020
  ident: 5626_CR42
  publication-title: Clin Infect Dis
  doi: 10.1093/cid/ciaa414
– start-page: 285
  volume-title: Measuring scholarly impact
  year: 2014
  ident: 5626_CR9
  doi: 10.1007/978-3-319-10377-8_13
– volume: 13
  start-page: 313
  year: 1982
  ident: 5626_CR65
  publication-title: Sociol Methodol
  doi: 10.2307/270724
– ident: 5626_CR28
  doi: 10.1109/mci.2020.3019895
– volume: 12
  start-page: 8
  issue: 6
  year: 2020
  ident: 5626_CR11
  publication-title: Cureus
– volume: 9
  start-page: 674
  issue: 3
  year: 2020
  ident: 5626_CR20
  publication-title: J Clin Med
  doi: 10.3390/jcm9030674
– volume: 61
  start-page: 85
  year: 2015
  ident: 5626_CR61
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2014.09.003
– ident: 5626_CR6
  doi: 10.2139/ssrn.3568314
– ident: 5626_CR34
– volume: 138
  start-page: 109945
  year: 2020
  ident: 5626_CR4
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109945
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 5626_CR85
  publication-title: Commun ACM
  doi: 10.1145/3065386
– volume: 5
  start-page: 256
  year: 2020
  ident: 5626_CR46
  publication-title: Infect Dis Model
– volume: 35
  start-page: 268
  issue: 3
  year: 2003
  ident: 5626_CR82
  publication-title: ACM Comput Surv
  doi: 10.1145/937503.937505
– volume: 42
  start-page: 43
  issue: 1–2
  year: 1978
  ident: 5626_CR16
  publication-title: Math Biosci
  doi: 10.1016/0025-5564(78)90006-8
– volume: 17
  start-page: 14
  issue: 8
  year: 2020
  ident: 5626_CR38
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph17082750
– volume: 6
  start-page: 53
  year: 2020
  ident: 5626_CR40
  publication-title: Glob J Environ Sci Manag
– volume: 120
  start-page: 48
  issue: 1
  year: 1957
  ident: 5626_CR79
  publication-title: J R Stat Soc Ser A
  doi: 10.2307/2342553
– volume: 53
  start-page: 396
  issue: 3
  year: 2020
  ident: 5626_CR26
  publication-title: J Microbiol Immunol Infect
  doi: 10.1016/j.jmii.2020.04.004
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 5626_CR60
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.50
– volume-title: Infectious diseases in primates: behavior, ecology and evolution
  year: 2006
  ident: 5626_CR76
  doi: 10.1093/acprof:oso/9780198565857.001.0001
– volume: 6
  start-page: 132
  issue: 1
  year: 2020
  ident: 5626_CR39
  publication-title: Int J Interact Multimed Artif Intell
– volume-title: Basic statistical analysis
  year: 1990
  ident: 5626_CR54
– volume: 729
  start-page: 138883
  year: 2020
  ident: 5626_CR19
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2020.138883
– volume: 13
  start-page: 914
  year: 2020
  ident: 5626_CR56
  publication-title: J Infect Public Health
  doi: 10.1016/j.jiph.2020.06.001
– volume: 135
  start-page: 10
  year: 2020
  ident: 5626_CR22
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109850
– volume: 2013
  start-page: 1
  issue: 3
  year: 2013
  ident: 5626_CR17
  publication-title: Mater Mat
– volume: 134
  start-page: 5
  year: 2020
  ident: 5626_CR14
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109761
– volume: 49
  start-page: 92
  year: 2020
  ident: 5626_CR31
  publication-title: Iran J Public Health
– volume-title: Statistical models: theory and practice
  year: 2009
  ident: 5626_CR64
  doi: 10.1017/CBO9780511815867
– volume: 135
  start-page: 6
  year: 2020
  ident: 5626_CR25
  publication-title: Chaos Solitons Fractals
– volume: 30
  start-page: 105683
  year: 2020
  ident: 5626_CR45
  publication-title: Data Brief
  doi: 10.1016/j.dib.2020.105683
– volume: 80
  start-page: 472
  issue: 4
  year: 2020
  ident: 5626_CR37
  publication-title: J Infect
– volume: 16
  start-page: 147
  issue: 3
  year: 1997
  ident: 5626_CR83
  publication-title: J Forecast
  doi: 10.1002/(SICI)1099-131X(199705)16:3<147::AID-FOR652>3.0.CO;2-X
– volume: 15
  start-page: 21
  issue: 3
  year: 2020
  ident: 5626_CR13
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0230405
– volume: 9
  start-page: 15
  issue: 3
  year: 2020
  ident: 5626_CR29
  publication-title: J Clin Med
– volume: 2007
  start-page: 64870
  year: 2007
  ident: 5626_CR77
  publication-title: J Biomed Biotechnol
  doi: 10.1155/2007/64870
– ident: 5626_CR47
  doi: 10.1016/j.chaos.2020.109942
– ident: 5626_CR3
  doi: 10.1016/j.scitotenv.2020.138778
– year: 2020
  ident: 5626_CR27
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110056
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 5626_CR62
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 72
  start-page: 37
  issue: 1
  year: 2018
  ident: 5626_CR68
  publication-title: Am Stat
  doi: 10.1080/00031305.2017.1380080
– ident: 5626_CR69
  doi: 10.32614/CRAN.package.prophet
– volume: 87
  start-page: 1061
  issue: 6
  year: 2017
  ident: 5626_CR49
  publication-title: J Stat Comput Simul
  doi: 10.1080/00949655.2016.1245305
– volume: 135
  start-page: 109866
  year: 2020
  ident: 5626_CR58
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109866
– start-page: 1
  volume-title: VOSviewer manual,
  year: 2013
  ident: 5626_CR10
– volume: 138
  start-page: 55
  issue: 834
  year: 1932
  ident: 5626_CR15
  publication-title: Proc R Soc Lond Ser A
  doi: 10.1098/rspa.1932.0171
– volume: 37
  start-page: 101742
  year: 2020
  ident: 5626_CR35
  publication-title: Travel Med Infect Dis
  doi: 10.1016/j.tmaid.2020.101742
– volume: 135
  start-page: 109853
  year: 2020
  ident: 5626_CR43
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109853
– volume: 34
  start-page: 959
  year: 2020
  ident: 5626_CR44
  publication-title: Stochast Environ Res Risk Assess
  doi: 10.1007/s00477-020-01827-8
– volume: 12
  start-page: 1201
  issue: 4
  year: 2015
  ident: 5626_CR72
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-014-0717-6
– volume: 150
  start-page: 10
  year: 2020
  ident: 5626_CR12
  publication-title: Swiss Med Weekly
– ident: 5626_CR70
– volume: 8
  start-page: 127
  year: 2020
  ident: 5626_CR48
  publication-title: Front Phys
  doi: 10.3389/fphy.2020.00127
– volume: 3
  start-page: 56
  issue: 4
  year: 2009
  ident: 5626_CR73
  publication-title: IEEE Ind Electron Mag
  doi: 10.1109/MIE.2009.934790
SSID ssj0004685
Score 2.6516395
SecondaryResourceType review_article
Snippet The novel coronavirus (COVID-19) has spread to more than 200 countries worldwide, leading to more than 36 million confirmed cases as of October 10, 2020. As...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 23671
SubjectTerms Algorithms
Artificial Intelligence
Bibliometrics
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Coronaviruses
COVID-19
Data Mining and Knowledge Discovery
Disease transmission
Epidemics
Forecasting
Image Processing and Computer Vision
Keywords
Machine learning
Mathematical models
Probability and Statistics in Computer Science
Quarantine
Research methodology
S.I. : Deep Neuro-Fuzzy Analytics in Smart Ecosystems
S.I: Deep Neuro-Fuzzy Analytics for Intelligent Big Data Processing in Smart Ecosystems
Viral diseases
Visualization
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXLjwfhQGChISB6jUNmmTHKcBGkjAhaHdqqRJBRLqENv-P05fMAZIXHqJ27R2Etu1PxvglDlwIxfWz2IjfaZQFkIa4yeWcWNxJBIOjXx3nwyG7HYUj2pQ2KTJdm9CkuVJ3YLd3B9MdH0jF7xFM9wXy7ASO98dV_Ew6n1BQ5aNONFvcTk9jNZQmZ-fMa-OFmzMxVTJb_HSUg1db8BabT-SXiXwTViyxRasN70ZSL1Vt-GsRypUChkXpP_wdHPph5KghWozNXGpzqTsgTPZgeH11WN_4NdNEfyMcTb1pc64NDSzidKoduJAh4lBM04wFeS5ZlLnymiKminIKTWZEpFJqJJCWJ7wKKe70CnGhd0HYqkMFGNRELurzrVRJgtzmWuKk4SxB2HDmzSrK4a7xhWvaVvruORnivxMS36mwoPz9p63ql7Gn9TdhuVpvXcmKfpwQoaoOQMPTtphXPUulKEKO54hDZ47IUfzKPJgr5JQOx2lsUPvUg_4nOxaAldRe36keHkuK2tzkbhiRx5cNFL-fK3fv-Lgf-SHsOp61leAxi50pu8ze4SWzVQflwv5A4zK7E4
  priority: 102
  providerName: Springer Nature
Title A review on COVID-19 forecasting models
URI https://link.springer.com/article/10.1007/s00521-020-05626-8
https://www.ncbi.nlm.nih.gov/pubmed/33564213
https://www.proquest.com/docview/2878918010
https://www.proquest.com/docview/2488170712
https://pubmed.ncbi.nlm.nih.gov/PMC7861008
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB4V9tJLgb4Ij1UqVeqhtZrETmyf0C7sQluVVlW3oqfIr6iVUBbY5f8zTpzAguCSSBlHjmfi8dgz3wzAe-bBjVw4YnIrCVMoCyGtJYVj3DqkZMKjkb-fFicz9vUsPwsHbosQVtnpxEZR27nxZ-Sf0bIXMkV9mhxcXBJfNcp7V0MJjTUYoAoWuPkajCenP3_dQUY2RTlxD-PjexgNsJkGPOdPRPFp5p3BaNYTsbo0PbA3H4ZN3vOdNkvSdBNeBFsyHrXC34Jnrn4JG12dhjhM21fwYRS3CJV4XseHP_58OSKpjNFadUYtfNhz3NTDWbyG2XTy-_CEhAIJxDDOlkRqw6WlxhVK4_jzRKeFRZNOMJVUlWZSV8pqiqtUUlFqjRKZLaiSQjhe8Kyib2C9ntduG2JHZaIYy5LcX3WlrbImrWSlKXaS5hGkHW9KE7KH-yIW52Wf97jhZ4n8LBt-liKCj_07F23ujCdb73UsL8M8WpS3Uo_gXU_GGeDdGqp282tsgzoo5WgqZRG8bSXUd0dp7pG8NAK-Iru-gc-uvUqp__9rsmxzUfjERxF86qR8-1mPj2Ln6VHswnNfr74FM-7B-vLq2u2jVbPUQ1gT0-MhDEbjo_HU34__fpsMww-N1Fk2ugE5j_Wy
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4q5QAX9iVQwEggDmCR2E5sHxCqWoYZunBpUW_BWwQSyhRmKsSf4jfy7CxlqOitlxxiZ_Hb_J7t7z2AZyKCG6UK1JVeU2GQF0p7T6sgpA_YwlREI-_tV9ND8eGoPFqD3wMWJh6rHGxiMtR-7uIa-Wv07JUu0J7mb4-_01g1Ku6uDiU0OrHYCb9-Ysi2eDPbRv4-Z2zy7mBrSvuqAtQJKZZUWye15y5UxqLdLnNbVB79ICVM3jRWaNsYbzHM53nDuXdGMV9xo5UKspKs4fjeS3BZcK6jRqnJ-79wmKkEKEZM8TSR4D1IJ0H14vor3mVx6xmDCKpWJ8Iz3u3ZQ5r_7NSmCXByA671nivZ7ETtJqyF9hZcH6pCkN5I3IYXm6TDw5B5S7Y-fppt00IT9I2DM4t4yJqk6juLO3B4IYS7C-vtvA33gQSucyMEy8t4tY31xrui0Y3l-JGizKAYaFO7Pld5LJnxrR6zLCd61kjPOtGzVhm8HJ857jJ1nNt7YyB53Wvtoj6VsQyejs2ob3ETxbRhfoJ90OIVEh0zlsG9jkPj5zgvI26YZyBXeDd2iLm8V1var19STm-pqphmKYNXA5dPf-v_o3hw_iiewJXpwd5uvTvb33kIVxn6Zx2McgPWlz9OwiP0p5b2cRJiAp8vWmv-AGJcLO4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsQwDLVYJMSFfSlrkZA4QEXbpE1yHAEjdjgwiFuVNIlAQh3EDP-P0w2GTeLSS9ymtZPYrv1sgF3qwI2MmyBPtAioRFlwoXWQGsq0wZGYOzTy1XV62qPnD8nDJxR_me3ehCQrTIOr0lQMD1-0PWyBb-5vJrrBsQvkokke8HGYxOM4cuu6F3c-ISPLppzow7j8Hkpq2MzPzxhVTd_sze9pk19ip6VK6s7BTG1L-p1K-PMwZooFmG36NPj1tl2EvY5fIVT8fuEf3dyfHQeR8NFaNbkcuLRnv-yHM1iCXvfk7ug0qBskBDlldBgIlTOhSW5SqVAFJaGKUo0mHacytFZRoazUiqCWCi0hOpc81imRgnPDUhZbsgwTRb8wq-AbIkJJaRwm7qqs0lLnkRVWEZwkSjyIGt5keV093DWxeM7ausclPzPkZ1byM-Me7Lf3vFS1M_6k3mhYntX7aJChP8dFhFo09GCnHcYd4MIasjD9N6TBMyhiaCrFHqxUEmqnIyRxSF7iARuRXUvgqmuPjhRPj2WVbcZTV_jIg4NGyh-v9ftXrP2PfBumbo-72eXZ9cU6TLtW9hXOcQMmhq9vZhMNnqHaKtf0O8q_830
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+COVID-19+forecasting+models&rft.jtitle=Neural+computing+%26+applications&rft.au=Rahimi%2C+Iman&rft.au=Chen%2C+Fang&rft.au=Gandomi%2C+Amir+H&rft.date=2023-11-01&rft.issn=0941-0643&rft.spage=1&rft_id=info:doi/10.1007%2Fs00521-020-05626-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-0643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-0643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-0643&client=summon