TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING
Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif prot...
Saved in:
Published in | PLoS pathogens Vol. 11; no. 6; p. e1005012 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.06.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α) was induced by herpes simplex virus type 1 (HSV-1) infection in dendritic cells (DCs). Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING), which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING. |
---|---|
AbstractList | Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α) was induced by herpes simplex virus type 1 (HSV-1) infection in dendritic cells (DCs). Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING), which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING. Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α) was induced by herpes simplex virus type 1 (HSV-1) infection in dendritic cells (DCs). Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING), which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING.Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α) was induced by herpes simplex virus type 1 (HSV-1) infection in dendritic cells (DCs). Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α-deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING), which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING. Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA is critical for limiting the risk of autoimmunity and survival of the host. Here, we report that the E3 ubiquitin ligase tripartite motif protein 30α (TRIM30α) was induced by herpes simplex virus type 1 (HSV-1) infection in dendritic cells (DCs). Knockdown or genetic ablation of TRIM30α augmented the type I IFNs and interleukin-6 response to intracellular DNA and DNA viruses. Trim30α -deficient mice were more resistant to infection by DNA viruses. Biochemical analyses showed that TRIM30α interacted with the stimulator of interferon genes (STING), which is a critical regulator of the DNA-sensing response. Overexpression of TRIM30α promoted the degradation of STING via K48-linked ubiquitination at Lys275 through a proteasome-dependent pathway. These findings indicate that E3 ligase TRIM30α is an important negative-feedback regulator of innate immune responses to DNA viruses by targeting STING. Negative-feedback regulation is a broad and pivotal biological event to maintain the homeostasis of the host. Viral DNA species derived from DNA viruses or retroviruses can activate STING signaling to produce pro-inflammatory cytokines and type I interferon, which further recruit immune cells or induce interferon stimulated genes (ISGs) to clear viral infection respectively. However, excessive STING-signaling activation has been shown to induce autoimmune disorders. Thus, it is important to finely turn off STING signaling. Here we demonstrate that TRIM30α is rapidly induced followed by STING activation. Trim30α -deficient mice show more resistance to infection by DNA viruses. Meanwhile, knockdown or genetic ablation of TRIM30α augments the type I IFNs and IL-6 responses to intracellular DNA and DNA viruses. Biochemical analyses show that TRIM30α interacts with STING and promotes the degradation of STING via K48-linked ubiquitination at Lys275. These findings demonstrate that induced TRIM30α is a negative-feedback regulator of STING pathway activation triggered by DNA and DNA viruses, which helps the host to avoid excessive response and maintain homeostasis. |
Author | Lin, Guomei Lian, Zhexiong Lian, Qiaoshi Zhou, Haiyan Wang, Yanming Yang, Bo Jiang, Zhengfan Yan, Shanshan He, Lan Sun, Bing |
AuthorAffiliation | University of California Berkeley, UNITED STATES 1 Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China 2 School of Life Sciences, University of Science and Technology of China, Hefei, China 4 Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China 3 State Key Laboratory of Protein and Plant Gene Research, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking University-Tsinghua University Joint Center for Life Sciences, Beijing, China |
AuthorAffiliation_xml | – name: 2 School of Life Sciences, University of Science and Technology of China, Hefei, China – name: 4 Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China – name: 3 State Key Laboratory of Protein and Plant Gene Research, Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking University, Beijing, China; Peking University-Tsinghua University Joint Center for Life Sciences, Beijing, China – name: University of California Berkeley, UNITED STATES – name: 1 Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China |
Author_xml | – sequence: 1 givenname: Yanming surname: Wang fullname: Wang, Yanming – sequence: 2 givenname: Qiaoshi surname: Lian fullname: Lian, Qiaoshi – sequence: 3 givenname: Bo surname: Yang fullname: Yang, Bo – sequence: 4 givenname: Shanshan surname: Yan fullname: Yan, Shanshan – sequence: 5 givenname: Haiyan surname: Zhou fullname: Zhou, Haiyan – sequence: 6 givenname: Lan surname: He fullname: He, Lan – sequence: 7 givenname: Guomei surname: Lin fullname: Lin, Guomei – sequence: 8 givenname: Zhexiong surname: Lian fullname: Lian, Zhexiong – sequence: 9 givenname: Zhengfan surname: Jiang fullname: Jiang, Zhengfan – sequence: 10 givenname: Bing surname: Sun fullname: Sun, Bing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26114947$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kttu1DAQhiNURA_wBgj5kpssPubABVJVaBupLFJZuLUce5x6ycapnazUx-JFeKYm3S1queBqRjPzfyPN_MfJQec7SJK3BC8Iy8mHtR9Dp9pF36thQTAWmNAXyRERgqU5y_nBk_wwOY5xjTEnjGSvkkOaEcJLnh8l29V19ZXhP79RFZFCS2jU4LaQngOYWulf6BqasVWDD8hbNNwAqrohKA1tO5UD-rw8RaozD_GnC2NMV8E1DQQwkzT2vouA6ju0UqGBwXUN-r6qlhevk5dWtRHe7ONJ8uP8y-rsMr36dlGdnV6lmud8SMvCiMxqI6CohSXMAIgsL7AuKLGiMNyqWuTcaIWB2pLWwPiUGlswLOo8YydJteMar9ayD26jwp30ysmHgg-NVGFwugWJNQdcC8F1XfAcWyUocEpxWQpjMZtZn3asfqw3YDTMh2ifQZ93OncjG7-VnBc042wCvN8Dgr8dIQ5y4-J8SdWBH6MkWUlpyUUuptF3T3f9XfL4uGng425ABx9jACu1G6bX-Xm1ayXBcnaJ3LtEzi6Re5dMYv6P-JH_X9k9DJ_GJA |
CitedBy_id | crossref_primary_10_1016_j_celrep_2019_09_069 crossref_primary_10_1016_j_jpha_2024_100972 crossref_primary_10_15252_embj_201797858 crossref_primary_10_1080_21505594_2021_1980990 crossref_primary_10_1371_journal_ppat_1008387 crossref_primary_10_1016_j_celrep_2023_112306 crossref_primary_10_1080_19490976_2022_2105102 crossref_primary_10_1007_s10495_024_02031_7 crossref_primary_10_1126_sciimmunol_aah7119 crossref_primary_10_1016_j_mad_2023_111897 crossref_primary_10_1111_febs_16137 crossref_primary_10_1016_j_ejmech_2023_115184 crossref_primary_10_3389_fimmu_2022_898724 crossref_primary_10_3390_cells11193043 crossref_primary_10_1016_j_clnves_2024_100002 crossref_primary_10_1093_hmg_ddaa072 crossref_primary_10_1084_jem_20161387 crossref_primary_10_3390_ijms232314601 crossref_primary_10_1172_JCI120406 crossref_primary_10_1371_journal_ppat_1007680 crossref_primary_10_1038_ni_3558 crossref_primary_10_4049_jimmunol_1701177 crossref_primary_10_1371_journal_pone_0182961 crossref_primary_10_1016_j_celrep_2020_108297 crossref_primary_10_15252_embr_202357528 crossref_primary_10_1007_s13402_022_00724_2 crossref_primary_10_1007_s00018_021_03900_z crossref_primary_10_1038_cmi_2016_51 crossref_primary_10_1080_15548627_2024_2429380 crossref_primary_10_1016_j_fsi_2024_109483 crossref_primary_10_1038_srep39858 crossref_primary_10_1126_sciadv_abh0496 crossref_primary_10_1128_mBio_03254_19 crossref_primary_10_3390_vaccines5030023 crossref_primary_10_1016_j_tcb_2024_02_006 crossref_primary_10_15252_embr_202357496 crossref_primary_10_3389_fimmu_2022_888147 crossref_primary_10_3389_fmicb_2021_794882 crossref_primary_10_14336_AD_2021_0304 crossref_primary_10_1016_j_cellimm_2019_04_003 crossref_primary_10_1016_j_phymed_2024_155476 crossref_primary_10_1038_s41423_023_01086_x crossref_primary_10_1136_jitc_2021_003459 crossref_primary_10_31083_j_fbl2907274 crossref_primary_10_1016_j_molimm_2020_11_006 crossref_primary_10_1016_j_tcb_2022_11_001 crossref_primary_10_1038_s41467_018_05168_7 crossref_primary_10_1093_nar_gky186 crossref_primary_10_3934_Allergy_2017_3_143 crossref_primary_10_3390_v13020279 crossref_primary_10_1016_j_vetmic_2021_109276 crossref_primary_10_3390_ijms24109032 crossref_primary_10_1038_cr_2016_40 crossref_primary_10_3389_fimmu_2018_01083 crossref_primary_10_1152_physrev_00026_2016 crossref_primary_10_3390_v16111738 crossref_primary_10_3389_fimmu_2020_00615 crossref_primary_10_1016_j_virusres_2017_01_016 crossref_primary_10_1038_s41467_017_00101_w crossref_primary_10_1038_ncomms14392 crossref_primary_10_1042_CS20210577 crossref_primary_10_3389_fmolb_2024_1391046 crossref_primary_10_1016_j_bbrc_2017_08_121 crossref_primary_10_1186_s13046_021_01850_9 crossref_primary_10_1002_JLB_3MIR1017_400R crossref_primary_10_3389_fimmu_2022_954129 crossref_primary_10_1016_j_cytogfr_2022_08_006 crossref_primary_10_1146_annurev_virology_092917_043323 crossref_primary_10_1016_j_micpath_2019_103950 crossref_primary_10_1038_s41421_018_0010_9 crossref_primary_10_4110_in_2018_18_e4 crossref_primary_10_1128_JVI_01774_17 crossref_primary_10_1016_j_ejmech_2020_113113 crossref_primary_10_1134_S199074782307005X crossref_primary_10_1002_iub_1566 crossref_primary_10_1371_journal_ppat_1010544 crossref_primary_10_1084_jem_20220990 crossref_primary_10_1080_17568919_2024_2383164 crossref_primary_10_3389_fimmu_2022_1021384 crossref_primary_10_3389_fcell_2021_717610 crossref_primary_10_3389_fcimb_2022_954581 crossref_primary_10_1002_advs_202002484 crossref_primary_10_1038_s41420_021_00409_z crossref_primary_10_1002_cam4_7472 crossref_primary_10_1016_j_canlet_2017_05_026 crossref_primary_10_1016_j_intimp_2021_107813 crossref_primary_10_1093_jmcb_mjac005 crossref_primary_10_2217_fvl_2018_0161 crossref_primary_10_1016_j_bbcan_2023_188896 crossref_primary_10_1016_j_cytogfr_2020_06_004 crossref_primary_10_3390_v13040584 crossref_primary_10_1007_s10048_020_00609_2 crossref_primary_10_3390_biomedicines6020043 crossref_primary_10_1111_imm_13694 crossref_primary_10_1096_fj_201601093R crossref_primary_10_1038_s41418_020_00624_8 crossref_primary_10_3390_v17010072 crossref_primary_10_1371_journal_ppat_1008178 crossref_primary_10_1038_s41401_023_01185_5 crossref_primary_10_4049_jimmunol_1701536 crossref_primary_10_1038_s41392_022_01252_z crossref_primary_10_1007_s00005_017_0481_7 crossref_primary_10_3389_fimmu_2022_874605 crossref_primary_10_1007_s12275_020_9577_6 crossref_primary_10_1016_j_jcmgh_2025_101470 crossref_primary_10_1016_j_omto_2019_09_001 crossref_primary_10_3389_fimmu_2020_02064 crossref_primary_10_4103_bbrj_bbrj_233_23 crossref_primary_10_1038_s41590_019_0569_9 crossref_primary_10_1016_j_celrep_2024_114135 crossref_primary_10_3389_fendo_2017_00299 crossref_primary_10_1038_s41421_023_00561_z crossref_primary_10_3389_fmicb_2017_01854 crossref_primary_10_3390_cells10123309 crossref_primary_10_1016_j_bbamcr_2016_10_004 crossref_primary_10_1038_s41590_018_0287_8 crossref_primary_10_1016_j_cellin_2021_100001 crossref_primary_10_1016_j_tim_2017_05_008 crossref_primary_10_1038_s41423_020_0366_2 crossref_primary_10_1038_s41556_023_01138_4 crossref_primary_10_1111_imr_12765 crossref_primary_10_1016_j_omto_2019_02_002 crossref_primary_10_1038_s41576_019_0151_1 crossref_primary_10_1038_s12276_021_00691_y crossref_primary_10_3389_fimmu_2022_1039009 crossref_primary_10_1080_08830185_2017_1298749 crossref_primary_10_1038_s41418_022_01041_9 crossref_primary_10_1038_s41577_024_01112_7 crossref_primary_10_1186_s12964_024_01543_8 crossref_primary_10_3389_fcell_2022_800393 crossref_primary_10_1016_j_cmet_2022_05_009 crossref_primary_10_1080_15548627_2022_2162706 crossref_primary_10_1186_s12950_017_0159_2 crossref_primary_10_3389_fimmu_2020_02157 crossref_primary_10_1016_j_it_2016_12_004 crossref_primary_10_3389_fimmu_2020_00377 crossref_primary_10_1038_s41467_018_04759_8 crossref_primary_10_1021_acs_jmedchem_9b01039 crossref_primary_10_3389_fimmu_2019_00325 crossref_primary_10_1038_s41392_020_0198_7 crossref_primary_10_1016_j_bbrc_2018_04_117 crossref_primary_10_3389_fphar_2020_00308 crossref_primary_10_1016_j_cytogfr_2022_09_003 crossref_primary_10_1038_s12276_023_00965_7 crossref_primary_10_1002_mco2_511 crossref_primary_10_1111_1348_0421_12669 crossref_primary_10_1038_s41392_021_00711_3 crossref_primary_10_31857_S0233475524010015 crossref_primary_10_1002_cmdc_202300405 crossref_primary_10_1371_journal_ppat_1010989 |
Cites_doi | 10.1016/j.immuni.2009.01.008 10.1038/nature06013 10.1126/science.1232458 10.4049/jimmunol.175.5.2851 10.1038/nri2413 10.1038/nature08476 10.1038/ni1577 10.4049/jimmunol.1202507 10.1038/35099560 10.1038/ni.2492 10.1126/science.1093620 10.1016/j.cell.2008.06.032 10.1038/ni.2491 10.1016/j.immuni.2013.05.004 10.1016/j.it.2013.10.010 10.1038/ni.1932 10.1038/ni1087 10.4049/jimmunol.1001099 10.1038/ni.1702 10.1126/science.1229963 10.1073/pnas.0900850106 10.1038/ni.2091 10.4049/jimmunol.170.4.1728 10.1038/nature07725 10.1016/j.cell.2009.06.015 10.1038/ni.1864 10.1038/ni.1779 10.1038/nature07317 10.1038/35047123 10.1016/j.cell.2010.01.022 10.1016/j.cell.2013.09.049 |
ContentType | Journal Article |
Copyright | 2015 Wang et al 2015 Wang et al |
Copyright_xml | – notice: 2015 Wang et al 2015 Wang et al |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.1371/journal.ppat.1005012 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ (Directory of Open Access Journals) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | TRIM30α Inhibits Immune Response against DNA Virus |
EISSN | 1553-7374 |
ExternalDocumentID | oai_doaj_org_article_0c4e0b554cb8470fa52e4220995df036 PMC4482643 26114947 10_1371_journal_ppat_1005012 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29O 2WC 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ AAFWJ AAUCC AAWOE AAYXX ABDBF ABUWG ACGFO ACIHN ACPRK ACUHS ADBBV ADRAZ AEAQA AENEX AEUYN AFKRA AFPKN AFRAH AHMBA ALMA_UNASSIGNED_HOLDINGS AOIJS B0M BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI BWKFM CCPQU CITATION CS3 DIK DU5 E3Z EAP EAS EBD EMK EMOBN ESX F5P FPL FYUFA GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IAO IHR INH INR ISN ISR ITC KQ8 LK8 M1P M48 M7P MM. O5R O5S OK1 OVT P2P PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO PV9 QF4 QN7 RNS RPM RZL SV3 TR2 TUS UKHRP WOW ~8M 3V. CGR CUY CVF ECM EIF H13 IPNFZ M~E NPM RIG WOQ 7X8 PPXIY PQGLB 5PM PJZUB PUEGO |
ID | FETCH-LOGICAL-c474t-98d56fcd5e8b5f13dee56780c821f58d4fab574dca0e2f92be34a0edf8305b763 |
IEDL.DBID | M48 |
ISSN | 1553-7374 1553-7366 |
IngestDate | Wed Aug 27 01:22:47 EDT 2025 Thu Aug 21 18:06:37 EDT 2025 Fri Jul 11 06:46:24 EDT 2025 Wed Feb 19 02:33:54 EST 2025 Tue Jul 01 02:19:55 EDT 2025 Thu Apr 24 22:52:36 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-98d56fcd5e8b5f13dee56780c821f58d4fab574dca0e2f92be34a0edf8305b763 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: BS YW QL BY ZL ZJ. Performed the experiments: YW QL BY SY HZ LH GL. Analyzed the data: YW QL BY. Contributed reagents/materials/analysis tools: ZJ. Wrote the paper: YW QL. The authors have declared that no competing interests exist. |
OpenAccessLink | https://doaj.org/article/0c4e0b554cb8470fa52e4220995df036 |
PMID | 26114947 |
PQID | 1692294575 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0c4e0b554cb8470fa52e4220995df036 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4482643 proquest_miscellaneous_1692294575 pubmed_primary_26114947 crossref_citationtrail_10_1371_journal_ppat_1005012 crossref_primary_10_1371_journal_ppat_1005012 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-06-01 |
PublicationDateYYYYMMDD | 2015-06-01 |
PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: San Francisco, CA USA |
PublicationTitle | PLoS pathogens |
PublicationTitleAlternate | PLoS Pathog |
PublicationYear | 2015 |
Publisher | Public Library of Science Public Library of Science (PLoS) |
Publisher_xml | – name: Public Library of Science – name: Public Library of Science (PLoS) |
References | O Takeuchi (ref1) 2010; 140 H Ishikawa (ref25) 2009; 461 V Hornung (ref9) 2009; 458 Y-H Chiu (ref12) 2009; 138 M Yoneyama (ref5) 2005; 175 VAK Rathinam (ref10) 2010; 11 M Shi (ref22) 2008; 9 M Yoneyama (ref4) 2004; 5 A Ablasser (ref11) 2009; 10 L Zhang (ref21) 2014 J Wu (ref30) 2013; 339 Y Hu (ref23) 2010; 185 DB Stetson (ref17) 2008; 134 DL Burdette (ref27) 2012; 14 K Ozato (ref28) 2008; 8 Z Zhang (ref18) 2013; 14 W Sun (ref26) 2009; 106 L Sun (ref15) 2013; 339 L Unterholzner (ref16) 2010; 11 L Alexopoulou (ref2) 2001; 413 H Hemmi (ref7) 2000; 408 B Zhong (ref19) 2009; 30 Z Zhang (ref14) 2011; 12 R Paludan Søren (ref6) 2013; 38 T Burckstummer (ref8) 2009; 10 H Konno (ref20) 2013; 155 H Ishikawa (ref24) 2008; 455 F Heil (ref3) 2004; 303 A Takaoka (ref13) 2007; 448 B Yang (ref31) 2013; 190 W Hou (ref32) 2003; 170 GN Barber (ref29) 2014; 35 |
References_xml | – volume: 30 start-page: 397 year: 2009 ident: ref19 article-title: The Ubiquitin Ligase RNF5 Regulates Antiviral Responses by Mediating Degradation of the Adaptor Protein MITA publication-title: Immunity doi: 10.1016/j.immuni.2009.01.008 – volume: 448 start-page: 501 year: 2007 ident: ref13 article-title: DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response publication-title: Nature doi: 10.1038/nature06013 – volume: 339 start-page: 786 year: 2013 ident: ref15 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 175 start-page: 2851 year: 2005 ident: ref5 article-title: Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity publication-title: Journal of Immunology doi: 10.4049/jimmunol.175.5.2851 – volume: 8 start-page: 849 year: 2008 ident: ref28 article-title: TRIM family proteins and their emerging roles in innate immunity publication-title: Nature Reviews Immunology doi: 10.1038/nri2413 – volume: 461 start-page: 788 year: 2009 ident: ref25 article-title: STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity publication-title: Nature doi: 10.1038/nature08476 – volume: 9 start-page: 369 year: 2008 ident: ref22 article-title: TRIM30 alpha negatively regulates TLR-mediated NF-kappa B activation by targeting TAB2 and TAB3 for degradation publication-title: Nat Immunol doi: 10.1038/ni1577 – volume: 190 start-page: 3613 year: 2013 ident: ref31 article-title: Novel Function of Trim44 Promotes an Antiviral Response by Stabilizing VISA publication-title: The Journal of Immunology doi: 10.4049/jimmunol.1202507 – volume: 413 start-page: 732 year: 2001 ident: ref2 article-title: Recognition of double-stranded RNA and activation of NF-kappa B by Toll-like receptor 3 publication-title: Nature doi: 10.1038/35099560 – volume: 14 start-page: 172 year: 2013 ident: ref18 article-title: The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA publication-title: Nat Immunol doi: 10.1038/ni.2492 – volume: 303 start-page: 1526 year: 2004 ident: ref3 article-title: Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8 publication-title: Science doi: 10.1126/science.1093620 – volume: 134 start-page: 587 year: 2008 ident: ref17 article-title: Trex1 Prevents Cell-Intrinsic Initiation of Autoimmunity publication-title: Cell doi: 10.1016/j.cell.2008.06.032 – volume: 14 start-page: 19 year: 2012 ident: ref27 article-title: STING and the innate immune response to nucleic acids in the cytosol publication-title: Nature Immunology doi: 10.1038/ni.2491 – volume: 38 start-page: 870 year: 2013 ident: ref6 article-title: Immune Sensing of DNA publication-title: Immunity doi: 10.1016/j.immuni.2013.05.004 – volume: 35 start-page: 88 year: 2014 ident: ref29 article-title: STING-dependent cytosolic DNA sensing pathways publication-title: Trends Immunol doi: 10.1016/j.it.2013.10.010 – volume: 11 start-page: 997 year: 2010 ident: ref16 article-title: IFI16 is an innate immune sensor for intracellular DNA publication-title: Nature Immunology doi: 10.1038/ni.1932 – volume: 5 start-page: 730 year: 2004 ident: ref4 article-title: The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses publication-title: Nature Immunology doi: 10.1038/ni1087 – volume: 185 start-page: 7699 year: 2010 ident: ref23 article-title: Tripartite-motif protein 30 negatively regulates NLRP3 inflammasome activation by modulating reactive oxygen species production publication-title: J Immunol doi: 10.4049/jimmunol.1001099 – volume: 10 start-page: 266 year: 2009 ident: ref8 article-title: An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome publication-title: Nature Immunology doi: 10.1038/ni.1702 – volume: 339 start-page: 826 year: 2013 ident: ref30 article-title: Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA publication-title: Science doi: 10.1126/science.1229963 – year: 2014 ident: ref21 article-title: NLRC3, a Member of the NLR Family of Proteins, Is a Negative Regulator of Innate Immune Signaling Induced by the DNA Sensor STING publication-title: Immunity – volume: 106 start-page: 8653 year: 2009 ident: ref26 article-title: ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0900850106 – volume: 12 start-page: 959 year: 2011 ident: ref14 article-title: The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells publication-title: Nat Immunol doi: 10.1038/ni.2091 – volume: 170 start-page: 1728 year: 2003 ident: ref32 article-title: Pertussis toxin enhances Th1 responses by stimulation of dendritic cells publication-title: J Immunol doi: 10.4049/jimmunol.170.4.1728 – volume: 458 start-page: 514 year: 2009 ident: ref9 article-title: AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC publication-title: Nature doi: 10.1038/nature07725 – volume: 138 start-page: 576 year: 2009 ident: ref12 article-title: RNA Polymerase III Detects Cytosolic DNA and Induces Type I Interferons through the RIG-I Pathway publication-title: Cell doi: 10.1016/j.cell.2009.06.015 – volume: 11 start-page: 395 year: 2010 ident: ref10 article-title: The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses publication-title: Nature Immunology doi: 10.1038/ni.1864 – volume: 10 start-page: 1065 year: 2009 ident: ref11 article-title: RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III—transcribed RNA intermediate publication-title: Nature Immunology doi: 10.1038/ni.1779 – volume: 455 start-page: 674 year: 2008 ident: ref24 article-title: STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling publication-title: Nature doi: 10.1038/nature07317 – volume: 408 start-page: 740 year: 2000 ident: ref7 article-title: A Toll-like receptor recognizes bacterial DNA publication-title: Nature doi: 10.1038/35047123 – volume: 140 start-page: 805 year: 2010 ident: ref1 article-title: Pattern Recognition Receptors and Inflammation publication-title: Cell doi: 10.1016/j.cell.2010.01.022 – volume: 155 start-page: 688 year: 2013 ident: ref20 article-title: Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling publication-title: Cell doi: 10.1016/j.cell.2013.09.049 |
SSID | ssj0041316 |
Score | 2.5204608 |
Snippet | Uncontrolled immune responses to intracellular DNA have been shown to induce autoimmune diseases. Homeostasis regulation of immune responses to cytosolic DNA... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e1005012 |
SubjectTerms | Animals Cell Line DNA - metabolism DNA Viruses - genetics DNA Viruses - metabolism DNA-Binding Proteins - metabolism Immunity, Innate Membrane Proteins - metabolism Mice, Inbred C57BL Signal Transduction - immunology Transcription Factors - metabolism Ubiquitin-Protein Ligases - metabolism Ubiquitination |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JT9wwFLYqJKReKpbShk1G6tUl8ZLlCIWBQWIONFTcIq-AWmVGsyDxs_gj_KY-25kRg5C4cEqU2Irl9_yW-Pn7EPqhOdc0sAZIoQkXlhHJSksKXSlrGS9lQNe_HOTn1_ziRty8oPryNWERHjhO3GGquU0VOD2twJCmTgpqOfUHPoVxYH699QWfN0-mog0GyxxITz0pDilYnneH5liRHXYy-jkaSQ8fnYo0o0tOKWD3vxVwvq6bfOGIemvoSxdB4qM48nX0ybYbaDVySj5uoof6qn_J0ucn3J9giQf2NkB7kx64KSX1X3wV2eeHYzx0GMI_3Pef8T_wfUUqPhkcYdmacP1zP55NSA0J_K2n9ISuoaDWYvWI61BCDo4P_677g7Ov6Lp3Wv86Jx25AtG84FNSlUbkThthSyVcxoy1AhxXqkuaOVEa7qQSBTdappa6iioQHNwaV4KFUGCVttBKO2ztd4QhyAOBV35L0Hk0mtIZCtGwy6TkXEiZIDaf3UZ3yOOeAONfE7bTCshA4tQ1XiZNJ5MEkUWvUUTeeKf9sRfcoq3HzQ4PQJuaTpua97QpQQdzsTewzvzcy9YOZ5MmyytKKw7RbYK-RTVYfAqyUEg0eZGgYklBlsay_Ka9vwtY3pAdQ0jKtj9i8DvoMyw7EQvZdtHKdDyzexAyTdV-WB3_AT2qFJs priority: 102 providerName: Directory of Open Access Journals |
Title | TRIM30α Is a Negative-Feedback Regulator of the Intracellular DNA and DNA Virus-Triggered Response by Targeting STING |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26114947 https://www.proquest.com/docview/1692294575 https://pubmed.ncbi.nlm.nih.gov/PMC4482643 https://doaj.org/article/0c4e0b554cb8470fa52e4220995df036 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0am5B4QXyTAZWRePWUJnadPCC0wcqK1AiVFPUtsh27TExJl7aI_iz-CL-JayetKBpCPKVK4zr19fU9N745B-CVZkxHXjVAck0ZNzGVcWKo0KkyJmaJ9Oz642xwMWUfZnx2AFvN1m4Alzemdk5PatpcnXy_3rxBh3_tVRtEf9voZLGQjhA65KGTHT7C2CScq47Zbl8BV2wvhurEcqiIBetepvvbr-wFK8_pfxMQ_bOe8rcANbwHdztkSU7bqXAfDkz1AG63WpObh_Atn4zGcfjzBxktiSSZmXvKbzrE8KWk_komrSp93ZDaEoSFZOS6cQ_2XaUqeZedElmV_vj5slkvaY6J_dxJfWJTX2hriNqQ3JeWY0Akn_JR9v4RTIfn-dsL2okuUM0EW9E0KfnA6pKbRHHbj0tjOAa0UCdR3_KkZFYqLlipZWgim0YKDYofS5vgyqFwtXoMh1VdmadAEPzhREjdVqF1LDWJLSNEybYvJWNcygDi7egWumMkd8IYV4XfZhOYmbRDVzibFJ1NAqC7VouWkeMf1585w-2udXza_kTdzIvOPYtQMxMqhFZaYbgOreSRYZF7rZiXFoN8AC-3Zi_Q_9zYy8rU62XRH6RRlDJEvQE8aafBrivMTjEBZSIAsTdB9u5l_5vq8ovn-MasGaFqfPyff_YZ3EHP420t23M4XDVr8wJR00r14JaYiR4cnZ1nHyc9_-yh553jF4ZaHEM |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TRIM30%CE%B1+Is+a+Negative-Feedback+Regulator+of+the+Intracellular+DNA+and+DNA+Virus-Triggered+Response+by+Targeting+STING&rft.jtitle=PLoS+pathogens&rft.au=Wang%2C+Yanming&rft.au=Lian%2C+Qiaoshi&rft.au=Yang%2C+Bo&rft.au=Yan%2C+Shanshan&rft.date=2015-06-01&rft.issn=1553-7374&rft.eissn=1553-7374&rft.volume=11&rft.issue=6&rft.spage=e1005012&rft_id=info:doi/10.1371%2Fjournal.ppat.1005012&rft.externalDBID=n%2Fa&rft.externalDocID=10_1371_journal_ppat_1005012 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1553-7374&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1553-7374&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1553-7374&client=summon |