Deep Learning for Virtual Histological Staining of Bright-Field Microscopic Images of Unlabeled Carotid Artery Tissue

Purpose Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis. Procedures In this study, we...

Full description

Saved in:
Bibliographic Details
Published inMolecular imaging and biology Vol. 22; no. 5; pp. 1301 - 1309
Main Authors Li, Dan, Hui, Hui, Zhang, Yingqian, Tong, Wei, Tian, Feng, Yang, Xin, Liu, Jie, Chen, Yundai, Tian, Jie
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.10.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis. Procedures In this study, we developed a deep learning-based method to transfer bright-field microscopic images of unlabeled tissue sections into equivalent bright-field images of histologically stained versions of the same samples. We trained a convolutional neural network to build maps between the unstained images and histologically stained images using a conditional generative adversarial network model. Results The results of a blind evaluation by board-certified pathologists illustrate that the virtual staining and standard histological staining images of rat carotid artery tissue sections and those involving different types of stains showed no major differences. Quantification of virtual and histological H&E staining in carotid artery tissue sections showed that the relative errors of intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %, respectively. The training time of deep learning network was 12.857 h with 1800 training patches and 200 epoches. Conclusions This virtual staining method significantly mitigates the typically laborious and time-consuming histological staining procedures and could be augmented with other label-free microscopic imaging modalities.
AbstractList Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis.PURPOSEHistological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis.In this study, we developed a deep learning-based method to transfer bright-field microscopic images of unlabeled tissue sections into equivalent bright-field images of histologically stained versions of the same samples. We trained a convolutional neural network to build maps between the unstained images and histologically stained images using a conditional generative adversarial network model.PROCEDURESIn this study, we developed a deep learning-based method to transfer bright-field microscopic images of unlabeled tissue sections into equivalent bright-field images of histologically stained versions of the same samples. We trained a convolutional neural network to build maps between the unstained images and histologically stained images using a conditional generative adversarial network model.The results of a blind evaluation by board-certified pathologists illustrate that the virtual staining and standard histological staining images of rat carotid artery tissue sections and those involving different types of stains showed no major differences. Quantification of virtual and histological H&E staining in carotid artery tissue sections showed that the relative errors of intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %, respectively. The training time of deep learning network was 12.857 h with 1800 training patches and 200 epoches.RESULTSThe results of a blind evaluation by board-certified pathologists illustrate that the virtual staining and standard histological staining images of rat carotid artery tissue sections and those involving different types of stains showed no major differences. Quantification of virtual and histological H&E staining in carotid artery tissue sections showed that the relative errors of intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %, respectively. The training time of deep learning network was 12.857 h with 1800 training patches and 200 epoches.This virtual staining method significantly mitigates the typically laborious and time-consuming histological staining procedures and could be augmented with other label-free microscopic imaging modalities.CONCLUSIONSThis virtual staining method significantly mitigates the typically laborious and time-consuming histological staining procedures and could be augmented with other label-free microscopic imaging modalities.
PurposeHistological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis.ProceduresIn this study, we developed a deep learning-based method to transfer bright-field microscopic images of unlabeled tissue sections into equivalent bright-field images of histologically stained versions of the same samples. We trained a convolutional neural network to build maps between the unstained images and histologically stained images using a conditional generative adversarial network model.ResultsThe results of a blind evaluation by board-certified pathologists illustrate that the virtual staining and standard histological staining images of rat carotid artery tissue sections and those involving different types of stains showed no major differences. Quantification of virtual and histological H&E staining in carotid artery tissue sections showed that the relative errors of intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %, respectively. The training time of deep learning network was 12.857 h with 1800 training patches and 200 epoches.ConclusionsThis virtual staining method significantly mitigates the typically laborious and time-consuming histological staining procedures and could be augmented with other label-free microscopic imaging modalities.
Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis. In this study, we developed a deep learning-based method to transfer bright-field microscopic images of unlabeled tissue sections into equivalent bright-field images of histologically stained versions of the same samples. We trained a convolutional neural network to build maps between the unstained images and histologically stained images using a conditional generative adversarial network model. The results of a blind evaluation by board-certified pathologists illustrate that the virtual staining and standard histological staining images of rat carotid artery tissue sections and those involving different types of stains showed no major differences. Quantification of virtual and histological H&E staining in carotid artery tissue sections showed that the relative errors of intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %, respectively. The training time of deep learning network was 12.857 h with 1800 training patches and 200 epoches. This virtual staining method significantly mitigates the typically laborious and time-consuming histological staining procedures and could be augmented with other label-free microscopic imaging modalities.
Purpose Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis. Procedures In this study, we developed a deep learning-based method to transfer bright-field microscopic images of unlabeled tissue sections into equivalent bright-field images of histologically stained versions of the same samples. We trained a convolutional neural network to build maps between the unstained images and histologically stained images using a conditional generative adversarial network model. Results The results of a blind evaluation by board-certified pathologists illustrate that the virtual staining and standard histological staining images of rat carotid artery tissue sections and those involving different types of stains showed no major differences. Quantification of virtual and histological H&E staining in carotid artery tissue sections showed that the relative errors of intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %, respectively. The training time of deep learning network was 12.857 h with 1800 training patches and 200 epoches. Conclusions This virtual staining method significantly mitigates the typically laborious and time-consuming histological staining procedures and could be augmented with other label-free microscopic imaging modalities.
Author Tong, Wei
Liu, Jie
Yang, Xin
Li, Dan
Hui, Hui
Chen, Yundai
Zhang, Yingqian
Tian, Feng
Tian, Jie
Author_xml – sequence: 1
  givenname: Dan
  surname: Li
  fullname: Li, Dan
  organization: Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Institute of Automation
– sequence: 2
  givenname: Hui
  surname: Hui
  fullname: Hui, Hui
  organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Institute of Automation, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Yingqian
  surname: Zhang
  fullname: Zhang, Yingqian
  organization: Department of Cardiology, Chinese PLA General Hospital
– sequence: 4
  givenname: Wei
  surname: Tong
  fullname: Tong, Wei
  organization: Department of Cardiology, Chinese PLA General Hospital
– sequence: 5
  givenname: Feng
  surname: Tian
  fullname: Tian, Feng
  organization: Department of Cardiology, Chinese PLA General Hospital
– sequence: 6
  givenname: Xin
  surname: Yang
  fullname: Yang, Xin
  organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Institute of Automation
– sequence: 7
  givenname: Jie
  surname: Liu
  fullname: Liu, Jie
  email: jieliu@bjtu.edu.cn
  organization: Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University
– sequence: 8
  givenname: Yundai
  surname: Chen
  fullname: Chen, Yundai
  email: cyundai@vip.163.com
  organization: Department of Cardiology, Chinese PLA General Hospital
– sequence: 9
  givenname: Jie
  orcidid: 0000-0003-2025-1870
  surname: Tian
  fullname: Tian, Jie
  email: jie.tian@ia.ac.cn
  organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Institute of Automation, University of Chinese Academy of Sciences, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32514884$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP3DAUhK2KqsDSP9BDFamXXtL6OY6TXCrBthSkrXoocLUc-yUYeeOt7VTi39fLUqAcONmWvxnP8xySvclPSMg7oJ-A0uZzBKhoU1JGSwo1bUvxihxAK2jJKGV7eV9XogRRsX1yGOMNpdAAq96Q_YrVwNuWH5D5K-KmWKEKk53GYvChuLIhzcoVZzYm7_xodT78SsreEX4oToIdr1N5atGZ4ofVwUftN1YX52s1Ytwil5NTPTo0xVIFn6wpjkPCcFtc2BhnPCKvB-Uivr1fF-Ty9NvF8qxc_fx-vjxelZo3PJWdGEQNiBxqBUYZgYIy05uuEhx7MyhGO2OartKN5rrGQTXtMLR93VYD9H1fLciXne9m7tdoNE4pKCc3wa5VuJVeWfn_zWSv5ej_yIZ3Da-7bPDx3iD43zPGJNc2anROTejnKBkHACo64Bn98Ay98XOY8niZ4kwAdLmvBXn_NNFDlH-NZIDtgO23xoDDAwJUbmuXu9plrl3e1S5FFrXPRNomlazfTmXdy9JqJ435nWnE8Bj7BdVfHNDDUg
CitedBy_id crossref_primary_10_1038_s41598_024_52833_7
crossref_primary_10_1038_s41598_023_45150_y
crossref_primary_10_3390_ijms23031643
crossref_primary_10_3390_app10217815
crossref_primary_10_1007_s11307_021_01641_w
crossref_primary_10_1016_j_cmpb_2023_107528
crossref_primary_10_1016_j_media_2022_102537
crossref_primary_10_1038_s41598_024_71080_4
crossref_primary_10_1093_pnasnexus_pgae133
crossref_primary_10_1038_s41467_024_46077_2
crossref_primary_10_1016_j_neucom_2021_07_005
crossref_primary_10_1093_bioinformatics_btae062
crossref_primary_10_1007_s43657_023_00094_1
crossref_primary_10_1016_j_cmpb_2025_108726
crossref_primary_10_1016_j_ebiom_2024_105287
crossref_primary_10_1088_1402_4896_adbe04
crossref_primary_10_1093_bioinformatics_btac719
crossref_primary_10_4103_jpi_jpi_114_20
crossref_primary_10_3788_AI_2024_20003
crossref_primary_10_1016_j_cclet_2024_110496
crossref_primary_10_1016_j_knosys_2023_110780
crossref_primary_10_1117_1_JBO_28_10_102911
crossref_primary_10_3390_jimaging10100252
crossref_primary_10_1155_2021_5269169
crossref_primary_10_34133_2022_9818965
crossref_primary_10_1080_01478885_2024_2338585
crossref_primary_10_1002_mp_16048
crossref_primary_10_1063_5_0044782
crossref_primary_10_1186_s43074_023_00113_4
crossref_primary_10_34133_2022_9853606
crossref_primary_10_3389_fbinf_2023_1243663
crossref_primary_10_3390_ani14111655
crossref_primary_10_1080_21681163_2023_2174776
crossref_primary_10_1016_j_media_2022_102520
crossref_primary_10_1038_s41377_023_01104_7
crossref_primary_10_1038_s44303_024_00021_7
crossref_primary_10_1364_BOE_484516
Cites_doi 10.1016/j.pacs.2016.07.001
10.1038/s41551-019-0362-y
10.1177/1358863X11402249
10.1159/000076246
10.1117/1.2800337
10.1161/CIRCRESAHA.114.302721
10.1126/scitranslmed.3005954
10.1161/01.ATV.0000178991.71605.18
10.1016/j.pacs.2013.11.003
10.1109/MSP.2014.2346443
10.1073/pnas.172368799
10.1364/OE.18.004889
10.1117/1.2795437
10.1111/boc.201200075
10.1117/1.JBO.17.5.056013
10.1038/nmeth.2089
10.1073/pnas.1018743108
10.1161/01.ATV.20.5.1262
10.1109/ISBI.2019.8759152
10.1109/CVPR.2016.278
10.1002/mp.13927
10.1038/s41551-016-0027
10.1109/ICCVW.2017.15
10.1109/CVPR.2017.632
10.1109/CVPR.2018.00916
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
5PM
DOI 10.1007/s11307-020-01508-6
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1860-2002
EndPage 1309
ExternalDocumentID PMC7497459
32514884
10_1007_s11307_020_01508_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017YFA0205200
– fundername: National Natural Science Foundation of China
  grantid: 81800221
– fundername: Strategic Priority Research Program of Chinese Academy of Sciences
  grantid: XDB32030200
– fundername: National Natural Science Foundation of China
  grantid: 81227901; 81671851; 81827808; 81527805
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Key Research and Development Program of China
  grantid: 2017YFA0700401; 2016YFC0103803
– fundername: National Natural Science Foundation of China
  grantid: 81571836
– fundername: Scientific Instrument R&D Program of the Chinese Academy of Sciences
  grantid: YJKYYQ20170075
– fundername: ;
  grantid: 2017YFA0700401; 2016YFC0103803
– fundername: ;
  grantid: 81227901; 81671851; 81827808; 81527805
– fundername: ;
  grantid: 81571836
– fundername: ;
  grantid: YJKYYQ20170075
– fundername: ;
  grantid: 81800221
– fundername: ;
  grantid: 2017YFA0205200
– fundername: ;
  grantid: XDB32030200
GroupedDBID ---
--K
-5E
-5G
-BR
-EM
-Y2
-~C
.86
.VR
04C
06C
06D
0R~
0VY
123
1B1
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANXM
AANZL
AAQFI
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTL
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABWVN
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIUM
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACRPL
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMUD
ADNMO
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRDE
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIHBH
EIOEI
EJD
EMOBN
EN4
ESBYG
EX3
F5P
FDB
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
L6V
LK8
LLZTM
M1P
M41
M4Y
M7P
M7S
MA-
N2Q
NAPCQ
NB0
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PTHSS
Q2X
QOR
QOS
R89
R9I
RIG
RNS
ROL
RPX
RPZ
RRX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SEW
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
TUS
U2A
U9L
UG4
UHS
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7U
Z7X
Z82
Z83
Z87
ZMTXR
ZOVNA
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ACVFH
ADCNI
ADHKG
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AGQPQ
AHPBZ
AHWEU
AIGII
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
NPM
7QO
8FD
ABRTQ
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c474t-96f651ee415a1dad6e602dbd9364ebdfa209dd793c7c4c5efa78ff8b583f1bbb3
IEDL.DBID U2A
ISSN 1536-1632
1860-2002
IngestDate Thu Aug 21 13:24:45 EDT 2025
Fri Jul 11 06:07:38 EDT 2025
Fri Jul 25 19:03:36 EDT 2025
Thu Apr 03 07:06:26 EDT 2025
Tue Jul 01 01:24:05 EDT 2025
Thu Apr 24 23:06:48 EDT 2025
Fri Feb 21 02:36:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Blind evaluation
Conditional generative adversarial network
Bright-field microscopic imaging
Virtual histological staining
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-96f651ee415a1dad6e602dbd9364ebdfa209dd793c7c4c5efa78ff8b583f1bbb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2025-1870
OpenAccessLink https://link.springer.com/10.1007/s11307-020-01508-6
PMID 32514884
PQID 2442611911
PQPubID 55372
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497459
proquest_miscellaneous_2411106914
proquest_journals_2442611911
pubmed_primary_32514884
crossref_primary_10_1007_s11307_020_01508_6
crossref_citationtrail_10_1007_s11307_020_01508_6
springer_journals_10_1007_s11307_020_01508_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-10-01
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: New York
PublicationTitle Molecular imaging and biology
PublicationTitleAbbrev Mol Imaging Biol
PublicationTitleAlternate Mol Imaging Biol
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Ji, Orringer, Freudiger (CR13) 2013; 5
Jamme, Kascakova, Villette, Allouche, Pallu, Rouam, Réfrégiers (CR9) 2013; 105
Schneider, Rasband, Eliceiri (CR28) 2012; 9
Yu, Braz, Dutton, Prusakov, Rekhter (CR6) 2007; 12
CR19
Le, Langohr, Locker, Sturek, Cheng (CR10) 2007; 12
CR14
Croce, Bottiroli (CR8) 2014; 58
Ronneberger, Fischer, Brox (CR25) 2015; 9351
Wang, Su, Amirian, Litovsky, Smalling, Emelianov (CR16) 2010; 18
Bentzon, Otsuka, Virmani, Falk (CR2) 2014; 114
Seeger, Karlas, Soliman, Pelisek, Ntziachristos (CR17) 2016; 4
Rivenson, Wang, Wei, de Haan, Zhang, Wu, Günaydın, Zuckerman, Chong, Sisk, Westbrook, Wallace, Ozcan (CR18) 2019; 3
Virmani, Kolodgie, Burke, Farb, Schwartz (CR3) 2000; 20
Zoumi, Yeh, Tromberg (CR11) 2002; 99
Jansen, Wu, van der Steen, van Soest (CR15) 2014; 2
Virmani, Kolodgie, Burke, Finn, Gold, Tulenko, Wrenn, Narula (CR4) 2005; 25
Witte, Negrean, Lodder, de Kock, Testa Silva, Mansvelder, Louise Groot (CR12) 2011; 108
CR29
van Zandvoort, Engels, Douma, Beckers, oude Egbrink, Daemen, Slaaf (CR7) 2004; 41
CR27
CR26
CR24
Clowes, Reidy, Clowes (CR22) 1983; 49
CR23
Purushothaman, Purushothaman, Muntner, Lento, O'Connor, Sharma, Fuster, Moreno (CR1) 2011; 16
CR20
Bautista, Yagi (CR21) 2012; 17
McCann, Ozolek, Castro, Parvin, Kovacevic (CR5) 2015; 32
PA Bautista (1508_CR21) 2012; 17
JF Bentzon (1508_CR2) 2014; 114
1508_CR19
TT Le (1508_CR10) 2007; 12
R Virmani (1508_CR3) 2000; 20
M Ji (1508_CR13) 2013; 5
S Witte (1508_CR12) 2011; 108
1508_CR14
KR Purushothaman (1508_CR1) 2011; 16
B Wang (1508_CR16) 2010; 18
R Virmani (1508_CR4) 2005; 25
AC Croce (1508_CR8) 2014; 58
M Seeger (1508_CR17) 2016; 4
Y Rivenson (1508_CR18) 2019; 3
1508_CR29
1508_CR24
O Ronneberger (1508_CR25) 2015; 9351
CA Schneider (1508_CR28) 2012; 9
MT McCann (1508_CR5) 2015; 32
K Jansen (1508_CR15) 2014; 2
W Yu (1508_CR6) 2007; 12
1508_CR26
1508_CR27
1508_CR20
1508_CR23
A Zoumi (1508_CR11) 2002; 99
AW Clowes (1508_CR22) 1983; 49
M van Zandvoort (1508_CR7) 2004; 41
F Jamme (1508_CR9) 2013; 105
References_xml – volume: 4
  start-page: 102
  year: 2016
  end-page: 111
  ident: CR17
  article-title: Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2016.07.001
– ident: CR14
– volume: 3
  start-page: 466
  year: 2019
  end-page: 477
  ident: CR18
  article-title: Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-019-0362-y
– volume: 16
  start-page: 103
  year: 2011
  end-page: 108
  ident: CR1
  article-title: Inflammation, neovascularization and intra-plaque hemorrhage are associated with increased reparative collagen content: implication for plaque progression in diabetic atherosclerosis
  publication-title: Vasc Med
  doi: 10.1177/1358863X11402249
– volume: 41
  start-page: 54
  year: 2004
  end-page: 63
  ident: CR7
  article-title: Two-photon microscopy for imaging of the (atherosclerotic) vascular wall: a proof of concept study
  publication-title: J Vasc Res
  doi: 10.1159/000076246
– volume: 9351
  start-page: 234
  year: 2015
  end-page: 241
  ident: CR25
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention, Pt Iii
– volume: 12
  year: 2007
  ident: CR6
  article-title: In vivo imaging of atherosclerotic plaques in apolipoprotein E deficient mice using nonlinear microscopy
  publication-title: J Biomed Opt
  doi: 10.1117/1.2800337
– volume: 114
  start-page: 1852
  year: 2014
  end-page: 1866
  ident: CR2
  article-title: Mechanisms of plaque formation and rupture
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.114.302721
– ident: CR29
– volume: 5
  start-page: 201ra119
  year: 2013
  ident: CR13
  article-title: Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3005954
– ident: CR27
– volume: 25
  start-page: 2054
  year: 2005
  end-page: 2061
  ident: CR4
  article-title: Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000178991.71605.18
– ident: CR23
– volume: 2
  start-page: 12
  year: 2014
  end-page: 20
  ident: CR15
  article-title: Photoacoustic imaging of human coronary atherosclerosis in two spectral bands
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2013.11.003
– ident: CR19
– volume: 32
  start-page: 78
  year: 2015
  end-page: 87
  ident: CR5
  article-title: Automated histology analysis [opportunities for signal processing]
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2014.2346443
– volume: 99
  start-page: 11014
  year: 2002
  end-page: 11019
  ident: CR11
  article-title: Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.172368799
– volume: 49
  start-page: 327
  year: 1983
  end-page: 333
  ident: CR22
  article-title: Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium
  publication-title: Lab Investig
– volume: 18
  start-page: 4889
  year: 2010
  end-page: 4897
  ident: CR16
  article-title: Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging
  publication-title: Opt Express
  doi: 10.1364/OE.18.004889
– volume: 12
  year: 2007
  ident: CR10
  article-title: Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy
  publication-title: J Biomed Opt
  doi: 10.1117/1.2795437
– volume: 105
  start-page: 277
  year: 2013
  end-page: 288
  ident: CR9
  article-title: Deep UV autofluorescence microscopy for cell biology and tissue histology
  publication-title: Biol Cell
  doi: 10.1111/boc.201200075
– volume: 17
  start-page: 056013
  year: 2012
  ident: CR21
  article-title: Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.17.5.056013
– volume: 58
  start-page: 2461
  year: 2014
  ident: CR8
  article-title: Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis
  publication-title: Eur J Histochem
– ident: CR26
– volume: 9
  start-page: 671
  year: 2012
  end-page: 675
  ident: CR28
  article-title: NIH image to ImageJ: 25 years of image analysis
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2089
– ident: CR24
– volume: 108
  start-page: 5970
  year: 2011
  end-page: 5975
  ident: CR12
  article-title: Label-free live brain imaging and targeted patching with third-harmonic generation microscopy
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1018743108
– ident: CR20
– volume: 20
  start-page: 1262
  year: 2000
  end-page: 1275
  ident: CR3
  article-title: Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.20.5.1262
– volume: 2
  start-page: 12
  year: 2014
  ident: 1508_CR15
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2013.11.003
– volume: 108
  start-page: 5970
  year: 2011
  ident: 1508_CR12
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1018743108
– ident: 1508_CR20
  doi: 10.1109/ISBI.2019.8759152
– ident: 1508_CR27
  doi: 10.1109/CVPR.2016.278
– volume: 5
  start-page: 201ra119
  year: 2013
  ident: 1508_CR13
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3005954
– volume: 32
  start-page: 78
  year: 2015
  ident: 1508_CR5
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2014.2346443
– ident: 1508_CR26
  doi: 10.1002/mp.13927
– volume: 12
  year: 2007
  ident: 1508_CR10
  publication-title: J Biomed Opt
  doi: 10.1117/1.2795437
– volume: 105
  start-page: 277
  year: 2013
  ident: 1508_CR9
  publication-title: Biol Cell
  doi: 10.1111/boc.201200075
– ident: 1508_CR14
  doi: 10.1038/s41551-016-0027
– volume: 20
  start-page: 1262
  year: 2000
  ident: 1508_CR3
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.20.5.1262
– volume: 58
  start-page: 2461
  year: 2014
  ident: 1508_CR8
  publication-title: Eur J Histochem
– volume: 17
  start-page: 056013
  year: 2012
  ident: 1508_CR21
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.17.5.056013
– volume: 9
  start-page: 671
  year: 2012
  ident: 1508_CR28
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2089
– volume: 18
  start-page: 4889
  year: 2010
  ident: 1508_CR16
  publication-title: Opt Express
  doi: 10.1364/OE.18.004889
– volume: 49
  start-page: 327
  year: 1983
  ident: 1508_CR22
  publication-title: Lab Investig
– volume: 12
  year: 2007
  ident: 1508_CR6
  publication-title: J Biomed Opt
  doi: 10.1117/1.2800337
– ident: 1508_CR24
– volume: 25
  start-page: 2054
  year: 2005
  ident: 1508_CR4
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000178991.71605.18
– volume: 9351
  start-page: 234
  year: 2015
  ident: 1508_CR25
  publication-title: Medical Image Computing and Computer-Assisted Intervention, Pt Iii
– volume: 114
  start-page: 1852
  year: 2014
  ident: 1508_CR2
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.114.302721
– ident: 1508_CR19
  doi: 10.1109/ICCVW.2017.15
– volume: 4
  start-page: 102
  year: 2016
  ident: 1508_CR17
  publication-title: Photoacoustics
  doi: 10.1016/j.pacs.2016.07.001
– ident: 1508_CR23
  doi: 10.1109/CVPR.2017.632
– ident: 1508_CR29
  doi: 10.1109/CVPR.2018.00916
– volume: 16
  start-page: 103
  year: 2011
  ident: 1508_CR1
  publication-title: Vasc Med
  doi: 10.1177/1358863X11402249
– volume: 3
  start-page: 466
  year: 2019
  ident: 1508_CR18
  publication-title: Nat Biomed Eng
  doi: 10.1038/s41551-019-0362-y
– volume: 41
  start-page: 54
  year: 2004
  ident: 1508_CR7
  publication-title: J Vasc Res
  doi: 10.1159/000076246
– volume: 99
  start-page: 11014
  year: 2002
  ident: 1508_CR11
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.172368799
SSID ssj0017123
Score 2.4989848
Snippet Purpose Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the...
Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and...
PurposeHistological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1301
SubjectTerms Artificial neural networks
Cardiovascular diseases
Carotid arteries
Carotid artery
Deep learning
Image analysis
Image processing
Imaging
Machine learning
Medical imaging
Medicine
Medicine & Public Health
Neural networks
Radiology
Research Article
Staining
Tissue analysis
Tissues
Training
Transfer learning
Veins & arteries
Title Deep Learning for Virtual Histological Staining of Bright-Field Microscopic Images of Unlabeled Carotid Artery Tissue
URI https://link.springer.com/article/10.1007/s11307-020-01508-6
https://www.ncbi.nlm.nih.gov/pubmed/32514884
https://www.proquest.com/docview/2442611911
https://www.proquest.com/docview/2411106914
https://pubmed.ncbi.nlm.nih.gov/PMC7497459
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xuxLigngTWCojcQNLceI4ybEtWxZQ98IWLacojm2oBOmqTQ_8e2ZcJ1VZQOKUgyeJk3n4G80L4JVrnDaiLHlhpOJSaMVLVCNu0hrpTZ5bSbXD8wt1vpAfrrKrUBS26bPd-5Ckt9T7YjdBDQ3J3SEvveDqCE4y8t1RihfJeIgd5MIPdUNVVhzRRhJKZf78jMPj6AbGvJkq-Vu81B9Ds3twN-BHNt4x_D7csu0DuD0PEfKHsH1r7TULXVO_MoSk7PNyTUUizHcECaaOfep2oyHYyrGJ99D5jJLZ2Jwy9KhWZdmw9z_Q2myIZNGitOAJZRhliHRLQzuw65_s0jPuESxmZ5fTcx5GK_BG5rLjpXIqE9bi8V0LUxtlVZwYbcpUSauNq5O4NAZ1t8kb2WTW1XnhXKGzInVCa50-huN21dqnwFwTI-bR1qZIqpHHeVKnsa1FI2ysSxuB6P9w1YS-4zT-4nu175hMXKmQK5XnSqUieD3cc73ruvFP6tOecVXQwE2FsAWdQ_RGRQQvh2XUHQqI1K1dbYkGLX2sSiEjeLLj8_C6FIEfGjdcyQ8kYCCgvtyHK-3ym-_PnUt00rIygje9rOy39fevePZ_5M_hTkJy7PMKT-G4W2_tC8RHnR7ByXg2mVzQ9d2Xj2cjOJqq6cgryS_k_A1l
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkYAL4k1gASNxA4s4cez4CIWqC9u90KK9RfFrqQTpqk0P_HtmXDer7gISZ0-e89bMfEPI62CDcVxrVjshmeBGMg1qxFzZAr1TygucHZ6eyMlcfD6tThNMDs7CXKrfv1tzjjCGmORgbl4zeZ3cEJApY_veSI6GioHicZUbKLBkEGMUaUDmz_fYd0JXIsurDZKXqqTR-YzvkjspaqTvt2y-R6757j65OU118Qdk89H7c5qwUs8oBKL022KFoyE04oAkA0e_9tuFEHQZ6IeYl7MxtrDRKfbl4YTKwtKjn2Bj1kgy70BGwC85in0h_cLhG_jVLzqL7HpI5uNPs9GEpYUKzAoleqZlkBX3Hpx2y13rpJd54YzTpRTeuNAWuXYONNYqK2zlQ6vqEGpT1WXgxpjyETnolp1_QmiwOUQ6xvsSSA1wVhVtmfuWW-5zo31G-O4PNzahjePSix_NBU4ycqUBrjSRK43MyJvhmvMt1sY_qQ93jGuS3q0bCFYgJYQclGfk1XAMGoNlkLbzyw3SgH3PpeYiI4-3fB4eV0K4ByYNTtSeBAwEiMa9f9ItvkdUbiUgNat0Rt7uZOXitf7-FU__j_wluTWZTY-b46OTL8_I7QJlOnYWHpKDfrXxzyFC6s2LqBq_AWmGCEo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BkSouiDeGAovEDVb12utd77FNG7VAKiQa1JvlfZVI4ESpc-DfM7t2nIYCEucdP-etmfkG4K03XlumFC0tF5QzLahCNaI2r5HeSul4mB2enImTKf9wUVxcm-KP3e7rkmQ30xBQmpp2f2H9_mbwjQVww5D6hIy9pOI23MFMJRZqR2I01BEkiwveUK0Fxcgj68dm_nyPbdd0I9682Tb5W-00uqTxfbjXx5LkoGP-A7jlmoewO-mr5Y9gdeTcgvQIqpcEw1PydbYMAyMkooP0Zo98abs1EWTuyWHM1uk4NLaRSejWC3MrM0NOf6DluQok0wYlB72VJaFbpJ3Z8AZu-ZOcRyY-hun4-Hx0Qvs1C9RwyVuqhBcFcw5dec1sbYUTaWa1VbngTltfZ6myFvXYSMNN4XwtS-9LXZS5Z1rr_AnsNPPGPQPiTYrxj3YuR1KN_JZZnaeuZoa5VCuXAFv_4cr0GORhFcb3aoOeHLhSIVeqyJVKJPBuuGbRIXD8k3pvzbiq18arCkMYTBQxM2UJvBmOUY9CcaRu3HwVaNDqp0IxnsDTjs_D43IMAtHQ4YnckoCBIGB0b580s28Rq1tyTNgKlcD7taxsXuvvX_H8_8hfw-7no3H16fTs4wu4mwWRju2Ge7DTLlfuJYZNrX4VNeMXmW0QkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Virtual+Histological+Staining+of+Bright-Field+Microscopic+Images+of+Unlabeled+Carotid+Artery+Tissue&rft.jtitle=Molecular+imaging+and+biology&rft.au=Li%2C+Dan&rft.au=Hui%2C+Hui&rft.au=Zhang%2C+Yingqian&rft.au=Tong%2C+Wei&rft.date=2020-10-01&rft.issn=1536-1632&rft.eissn=1860-2002&rft.volume=22&rft.issue=5&rft.spage=1301&rft.epage=1309&rft_id=info:doi/10.1007%2Fs11307-020-01508-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11307_020_01508_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1632&client=summon