Deep Learning for Virtual Histological Staining of Bright-Field Microscopic Images of Unlabeled Carotid Artery Tissue
Purpose Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis. Procedures In this study, we...
Saved in:
Published in | Molecular imaging and biology Vol. 22; no. 5; pp. 1301 - 1309 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.10.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis.
Procedures
In this study, we developed a deep learning-based method to transfer bright-field microscopic images of unlabeled tissue sections into equivalent bright-field images of histologically stained versions of the same samples. We trained a convolutional neural network to build maps between the unstained images and histologically stained images using a conditional generative adversarial network model.
Results
The results of a blind evaluation by board-certified pathologists illustrate that the virtual staining and standard histological staining images of rat carotid artery tissue sections and those involving different types of stains showed no major differences. Quantification of virtual and histological H&E staining in carotid artery tissue sections showed that the relative errors of intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %, respectively. The training time of deep learning network was 12.857 h with 1800 training patches and 200 epoches.
Conclusions
This virtual staining method significantly mitigates the typically laborious and time-consuming histological staining procedures and could be augmented with other label-free microscopic imaging modalities. |
---|---|
AbstractList | Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis.PURPOSEHistological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis.In this study, we developed a deep learning-based method to transfer bright-field microscopic images of unlabeled tissue sections into equivalent bright-field images of histologically stained versions of the same samples. We trained a convolutional neural network to build maps between the unstained images and histologically stained images using a conditional generative adversarial network model.PROCEDURESIn this study, we developed a deep learning-based method to transfer bright-field microscopic images of unlabeled tissue sections into equivalent bright-field images of histologically stained versions of the same samples. We trained a convolutional neural network to build maps between the unstained images and histologically stained images using a conditional generative adversarial network model.The results of a blind evaluation by board-certified pathologists illustrate that the virtual staining and standard histological staining images of rat carotid artery tissue sections and those involving different types of stains showed no major differences. Quantification of virtual and histological H&E staining in carotid artery tissue sections showed that the relative errors of intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %, respectively. The training time of deep learning network was 12.857 h with 1800 training patches and 200 epoches.RESULTSThe results of a blind evaluation by board-certified pathologists illustrate that the virtual staining and standard histological staining images of rat carotid artery tissue sections and those involving different types of stains showed no major differences. Quantification of virtual and histological H&E staining in carotid artery tissue sections showed that the relative errors of intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %, respectively. The training time of deep learning network was 12.857 h with 1800 training patches and 200 epoches.This virtual staining method significantly mitigates the typically laborious and time-consuming histological staining procedures and could be augmented with other label-free microscopic imaging modalities.CONCLUSIONSThis virtual staining method significantly mitigates the typically laborious and time-consuming histological staining procedures and could be augmented with other label-free microscopic imaging modalities. PurposeHistological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis.ProceduresIn this study, we developed a deep learning-based method to transfer bright-field microscopic images of unlabeled tissue sections into equivalent bright-field images of histologically stained versions of the same samples. We trained a convolutional neural network to build maps between the unstained images and histologically stained images using a conditional generative adversarial network model.ResultsThe results of a blind evaluation by board-certified pathologists illustrate that the virtual staining and standard histological staining images of rat carotid artery tissue sections and those involving different types of stains showed no major differences. Quantification of virtual and histological H&E staining in carotid artery tissue sections showed that the relative errors of intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %, respectively. The training time of deep learning network was 12.857 h with 1800 training patches and 200 epoches.ConclusionsThis virtual staining method significantly mitigates the typically laborious and time-consuming histological staining procedures and could be augmented with other label-free microscopic imaging modalities. Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis. In this study, we developed a deep learning-based method to transfer bright-field microscopic images of unlabeled tissue sections into equivalent bright-field images of histologically stained versions of the same samples. We trained a convolutional neural network to build maps between the unstained images and histologically stained images using a conditional generative adversarial network model. The results of a blind evaluation by board-certified pathologists illustrate that the virtual staining and standard histological staining images of rat carotid artery tissue sections and those involving different types of stains showed no major differences. Quantification of virtual and histological H&E staining in carotid artery tissue sections showed that the relative errors of intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %, respectively. The training time of deep learning network was 12.857 h with 1800 training patches and 200 epoches. This virtual staining method significantly mitigates the typically laborious and time-consuming histological staining procedures and could be augmented with other label-free microscopic imaging modalities. Purpose Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and labor-intensive tissue staining procedures hinder efficient and informative histological image analysis. Procedures In this study, we developed a deep learning-based method to transfer bright-field microscopic images of unlabeled tissue sections into equivalent bright-field images of histologically stained versions of the same samples. We trained a convolutional neural network to build maps between the unstained images and histologically stained images using a conditional generative adversarial network model. Results The results of a blind evaluation by board-certified pathologists illustrate that the virtual staining and standard histological staining images of rat carotid artery tissue sections and those involving different types of stains showed no major differences. Quantification of virtual and histological H&E staining in carotid artery tissue sections showed that the relative errors of intima thickness, intima area, and media area were lower than 1.6 %, 5.6 %, and 12.7 %, respectively. The training time of deep learning network was 12.857 h with 1800 training patches and 200 epoches. Conclusions This virtual staining method significantly mitigates the typically laborious and time-consuming histological staining procedures and could be augmented with other label-free microscopic imaging modalities. |
Author | Tong, Wei Liu, Jie Yang, Xin Li, Dan Hui, Hui Chen, Yundai Zhang, Yingqian Tian, Feng Tian, Jie |
Author_xml | – sequence: 1 givenname: Dan surname: Li fullname: Li, Dan organization: Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Institute of Automation – sequence: 2 givenname: Hui surname: Hui fullname: Hui, Hui organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Institute of Automation, University of Chinese Academy of Sciences – sequence: 3 givenname: Yingqian surname: Zhang fullname: Zhang, Yingqian organization: Department of Cardiology, Chinese PLA General Hospital – sequence: 4 givenname: Wei surname: Tong fullname: Tong, Wei organization: Department of Cardiology, Chinese PLA General Hospital – sequence: 5 givenname: Feng surname: Tian fullname: Tian, Feng organization: Department of Cardiology, Chinese PLA General Hospital – sequence: 6 givenname: Xin surname: Yang fullname: Yang, Xin organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Institute of Automation – sequence: 7 givenname: Jie surname: Liu fullname: Liu, Jie email: jieliu@bjtu.edu.cn organization: Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University – sequence: 8 givenname: Yundai surname: Chen fullname: Chen, Yundai email: cyundai@vip.163.com organization: Department of Cardiology, Chinese PLA General Hospital – sequence: 9 givenname: Jie orcidid: 0000-0003-2025-1870 surname: Tian fullname: Tian, Jie email: jie.tian@ia.ac.cn organization: CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Institute of Automation, University of Chinese Academy of Sciences, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32514884$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFP3DAUhK2KqsDSP9BDFamXXtL6OY6TXCrBthSkrXoocLUc-yUYeeOt7VTi39fLUqAcONmWvxnP8xySvclPSMg7oJ-A0uZzBKhoU1JGSwo1bUvxihxAK2jJKGV7eV9XogRRsX1yGOMNpdAAq96Q_YrVwNuWH5D5K-KmWKEKk53GYvChuLIhzcoVZzYm7_xodT78SsreEX4oToIdr1N5atGZ4ofVwUftN1YX52s1Ytwil5NTPTo0xVIFn6wpjkPCcFtc2BhnPCKvB-Uivr1fF-Ty9NvF8qxc_fx-vjxelZo3PJWdGEQNiBxqBUYZgYIy05uuEhx7MyhGO2OartKN5rrGQTXtMLR93VYD9H1fLciXne9m7tdoNE4pKCc3wa5VuJVeWfn_zWSv5ej_yIZ3Da-7bPDx3iD43zPGJNc2anROTejnKBkHACo64Bn98Ay98XOY8niZ4kwAdLmvBXn_NNFDlH-NZIDtgO23xoDDAwJUbmuXu9plrl3e1S5FFrXPRNomlazfTmXdy9JqJ435nWnE8Bj7BdVfHNDDUg |
CitedBy_id | crossref_primary_10_1038_s41598_024_52833_7 crossref_primary_10_1038_s41598_023_45150_y crossref_primary_10_3390_ijms23031643 crossref_primary_10_3390_app10217815 crossref_primary_10_1007_s11307_021_01641_w crossref_primary_10_1016_j_cmpb_2023_107528 crossref_primary_10_1016_j_media_2022_102537 crossref_primary_10_1038_s41598_024_71080_4 crossref_primary_10_1093_pnasnexus_pgae133 crossref_primary_10_1038_s41467_024_46077_2 crossref_primary_10_1016_j_neucom_2021_07_005 crossref_primary_10_1093_bioinformatics_btae062 crossref_primary_10_1007_s43657_023_00094_1 crossref_primary_10_1016_j_cmpb_2025_108726 crossref_primary_10_1016_j_ebiom_2024_105287 crossref_primary_10_1088_1402_4896_adbe04 crossref_primary_10_1093_bioinformatics_btac719 crossref_primary_10_4103_jpi_jpi_114_20 crossref_primary_10_3788_AI_2024_20003 crossref_primary_10_1016_j_cclet_2024_110496 crossref_primary_10_1016_j_knosys_2023_110780 crossref_primary_10_1117_1_JBO_28_10_102911 crossref_primary_10_3390_jimaging10100252 crossref_primary_10_1155_2021_5269169 crossref_primary_10_34133_2022_9818965 crossref_primary_10_1080_01478885_2024_2338585 crossref_primary_10_1002_mp_16048 crossref_primary_10_1063_5_0044782 crossref_primary_10_1186_s43074_023_00113_4 crossref_primary_10_34133_2022_9853606 crossref_primary_10_3389_fbinf_2023_1243663 crossref_primary_10_3390_ani14111655 crossref_primary_10_1080_21681163_2023_2174776 crossref_primary_10_1016_j_media_2022_102520 crossref_primary_10_1038_s41377_023_01104_7 crossref_primary_10_1038_s44303_024_00021_7 crossref_primary_10_1364_BOE_484516 |
Cites_doi | 10.1016/j.pacs.2016.07.001 10.1038/s41551-019-0362-y 10.1177/1358863X11402249 10.1159/000076246 10.1117/1.2800337 10.1161/CIRCRESAHA.114.302721 10.1126/scitranslmed.3005954 10.1161/01.ATV.0000178991.71605.18 10.1016/j.pacs.2013.11.003 10.1109/MSP.2014.2346443 10.1073/pnas.172368799 10.1364/OE.18.004889 10.1117/1.2795437 10.1111/boc.201200075 10.1117/1.JBO.17.5.056013 10.1038/nmeth.2089 10.1073/pnas.1018743108 10.1161/01.ATV.20.5.1262 10.1109/ISBI.2019.8759152 10.1109/CVPR.2016.278 10.1002/mp.13927 10.1038/s41551-016-0027 10.1109/ICCVW.2017.15 10.1109/CVPR.2017.632 10.1109/CVPR.2018.00916 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 5PM |
DOI | 10.1007/s11307-020-01508-6 |
DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1860-2002 |
EndPage | 1309 |
ExternalDocumentID | PMC7497459 32514884 10_1007_s11307_020_01508_6 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2017YFA0205200 – fundername: National Natural Science Foundation of China grantid: 81800221 – fundername: Strategic Priority Research Program of Chinese Academy of Sciences grantid: XDB32030200 – fundername: National Natural Science Foundation of China grantid: 81227901; 81671851; 81827808; 81527805 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2017YFA0700401; 2016YFC0103803 – fundername: National Natural Science Foundation of China grantid: 81571836 – fundername: Scientific Instrument R&D Program of the Chinese Academy of Sciences grantid: YJKYYQ20170075 – fundername: ; grantid: 2017YFA0700401; 2016YFC0103803 – fundername: ; grantid: 81227901; 81671851; 81827808; 81527805 – fundername: ; grantid: 81571836 – fundername: ; grantid: YJKYYQ20170075 – fundername: ; grantid: 81800221 – fundername: ; grantid: 2017YFA0205200 – fundername: ; grantid: XDB32030200 |
GroupedDBID | --- --K -5E -5G -BR -EM -Y2 -~C .86 .VR 04C 06C 06D 0R~ 0VY 123 1B1 1N0 203 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANXM AANZL AAQFI AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTL AAXUO AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABWVN ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIUM ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACRPL ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMUD ADNMO ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRDE AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIHBH EIOEI EJD EMOBN EN4 ESBYG EX3 F5P FDB FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH L6V LK8 LLZTM M1P M41 M4Y M7P M7S MA- N2Q NAPCQ NB0 NPVJJ NQ- NQJWS NU0 O9- O93 O9I O9J OAM P9S PF0 PQQKQ PROAC PSQYO PT4 PTHSS Q2X QOR QOS R89 R9I RIG RNS ROL RPX RPZ RRX RSV S16 S1Z S27 S37 S3B SAP SDH SEW SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC TUS U2A U9L UG4 UHS UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7U Z7X Z82 Z83 Z87 ZMTXR ZOVNA ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ACVFH ADCNI ADHKG AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AGQPQ AHPBZ AHWEU AIGII AIXLP ATHPR AYFIA CITATION PHGZM PHGZT NPM 7QO 8FD ABRTQ FR3 K9. P64 7X8 5PM |
ID | FETCH-LOGICAL-c474t-96f651ee415a1dad6e602dbd9364ebdfa209dd793c7c4c5efa78ff8b583f1bbb3 |
IEDL.DBID | U2A |
ISSN | 1536-1632 1860-2002 |
IngestDate | Thu Aug 21 13:24:45 EDT 2025 Fri Jul 11 06:07:38 EDT 2025 Fri Jul 25 19:03:36 EDT 2025 Thu Apr 03 07:06:26 EDT 2025 Tue Jul 01 01:24:05 EDT 2025 Thu Apr 24 23:06:48 EDT 2025 Fri Feb 21 02:36:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Blind evaluation Conditional generative adversarial network Bright-field microscopic imaging Virtual histological staining |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-96f651ee415a1dad6e602dbd9364ebdfa209dd793c7c4c5efa78ff8b583f1bbb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2025-1870 |
OpenAccessLink | https://link.springer.com/10.1007/s11307-020-01508-6 |
PMID | 32514884 |
PQID | 2442611911 |
PQPubID | 55372 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7497459 proquest_miscellaneous_2411106914 proquest_journals_2442611911 pubmed_primary_32514884 crossref_primary_10_1007_s11307_020_01508_6 crossref_citationtrail_10_1007_s11307_020_01508_6 springer_journals_10_1007_s11307_020_01508_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-10-01 |
PublicationDateYYYYMMDD | 2020-10-01 |
PublicationDate_xml | – month: 10 year: 2020 text: 2020-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: United States – name: New York |
PublicationTitle | Molecular imaging and biology |
PublicationTitleAbbrev | Mol Imaging Biol |
PublicationTitleAlternate | Mol Imaging Biol |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Ji, Orringer, Freudiger (CR13) 2013; 5 Jamme, Kascakova, Villette, Allouche, Pallu, Rouam, Réfrégiers (CR9) 2013; 105 Schneider, Rasband, Eliceiri (CR28) 2012; 9 Yu, Braz, Dutton, Prusakov, Rekhter (CR6) 2007; 12 CR19 Le, Langohr, Locker, Sturek, Cheng (CR10) 2007; 12 CR14 Croce, Bottiroli (CR8) 2014; 58 Ronneberger, Fischer, Brox (CR25) 2015; 9351 Wang, Su, Amirian, Litovsky, Smalling, Emelianov (CR16) 2010; 18 Bentzon, Otsuka, Virmani, Falk (CR2) 2014; 114 Seeger, Karlas, Soliman, Pelisek, Ntziachristos (CR17) 2016; 4 Rivenson, Wang, Wei, de Haan, Zhang, Wu, Günaydın, Zuckerman, Chong, Sisk, Westbrook, Wallace, Ozcan (CR18) 2019; 3 Virmani, Kolodgie, Burke, Farb, Schwartz (CR3) 2000; 20 Zoumi, Yeh, Tromberg (CR11) 2002; 99 Jansen, Wu, van der Steen, van Soest (CR15) 2014; 2 Virmani, Kolodgie, Burke, Finn, Gold, Tulenko, Wrenn, Narula (CR4) 2005; 25 Witte, Negrean, Lodder, de Kock, Testa Silva, Mansvelder, Louise Groot (CR12) 2011; 108 CR29 van Zandvoort, Engels, Douma, Beckers, oude Egbrink, Daemen, Slaaf (CR7) 2004; 41 CR27 CR26 CR24 Clowes, Reidy, Clowes (CR22) 1983; 49 CR23 Purushothaman, Purushothaman, Muntner, Lento, O'Connor, Sharma, Fuster, Moreno (CR1) 2011; 16 CR20 Bautista, Yagi (CR21) 2012; 17 McCann, Ozolek, Castro, Parvin, Kovacevic (CR5) 2015; 32 PA Bautista (1508_CR21) 2012; 17 JF Bentzon (1508_CR2) 2014; 114 1508_CR19 TT Le (1508_CR10) 2007; 12 R Virmani (1508_CR3) 2000; 20 M Ji (1508_CR13) 2013; 5 S Witte (1508_CR12) 2011; 108 1508_CR14 KR Purushothaman (1508_CR1) 2011; 16 B Wang (1508_CR16) 2010; 18 R Virmani (1508_CR4) 2005; 25 AC Croce (1508_CR8) 2014; 58 M Seeger (1508_CR17) 2016; 4 Y Rivenson (1508_CR18) 2019; 3 1508_CR29 1508_CR24 O Ronneberger (1508_CR25) 2015; 9351 CA Schneider (1508_CR28) 2012; 9 MT McCann (1508_CR5) 2015; 32 K Jansen (1508_CR15) 2014; 2 W Yu (1508_CR6) 2007; 12 1508_CR26 1508_CR27 1508_CR20 1508_CR23 A Zoumi (1508_CR11) 2002; 99 AW Clowes (1508_CR22) 1983; 49 M van Zandvoort (1508_CR7) 2004; 41 F Jamme (1508_CR9) 2013; 105 |
References_xml | – volume: 4 start-page: 102 year: 2016 end-page: 111 ident: CR17 article-title: Multimodal optoacoustic and multiphoton microscopy of human carotid atheroma publication-title: Photoacoustics doi: 10.1016/j.pacs.2016.07.001 – ident: CR14 – volume: 3 start-page: 466 year: 2019 end-page: 477 ident: CR18 article-title: Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning publication-title: Nat Biomed Eng doi: 10.1038/s41551-019-0362-y – volume: 16 start-page: 103 year: 2011 end-page: 108 ident: CR1 article-title: Inflammation, neovascularization and intra-plaque hemorrhage are associated with increased reparative collagen content: implication for plaque progression in diabetic atherosclerosis publication-title: Vasc Med doi: 10.1177/1358863X11402249 – volume: 41 start-page: 54 year: 2004 end-page: 63 ident: CR7 article-title: Two-photon microscopy for imaging of the (atherosclerotic) vascular wall: a proof of concept study publication-title: J Vasc Res doi: 10.1159/000076246 – volume: 9351 start-page: 234 year: 2015 end-page: 241 ident: CR25 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention, Pt Iii – volume: 12 year: 2007 ident: CR6 article-title: In vivo imaging of atherosclerotic plaques in apolipoprotein E deficient mice using nonlinear microscopy publication-title: J Biomed Opt doi: 10.1117/1.2800337 – volume: 114 start-page: 1852 year: 2014 end-page: 1866 ident: CR2 article-title: Mechanisms of plaque formation and rupture publication-title: Circ Res doi: 10.1161/CIRCRESAHA.114.302721 – ident: CR29 – volume: 5 start-page: 201ra119 year: 2013 ident: CR13 article-title: Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3005954 – ident: CR27 – volume: 25 start-page: 2054 year: 2005 end-page: 2061 ident: CR4 article-title: Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000178991.71605.18 – ident: CR23 – volume: 2 start-page: 12 year: 2014 end-page: 20 ident: CR15 article-title: Photoacoustic imaging of human coronary atherosclerosis in two spectral bands publication-title: Photoacoustics doi: 10.1016/j.pacs.2013.11.003 – ident: CR19 – volume: 32 start-page: 78 year: 2015 end-page: 87 ident: CR5 article-title: Automated histology analysis [opportunities for signal processing] publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2014.2346443 – volume: 99 start-page: 11014 year: 2002 end-page: 11019 ident: CR11 article-title: Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.172368799 – volume: 49 start-page: 327 year: 1983 end-page: 333 ident: CR22 article-title: Kinetics of cellular proliferation after arterial injury. I. Smooth muscle growth in the absence of endothelium publication-title: Lab Investig – volume: 18 start-page: 4889 year: 2010 end-page: 4897 ident: CR16 article-title: Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging publication-title: Opt Express doi: 10.1364/OE.18.004889 – volume: 12 year: 2007 ident: CR10 article-title: Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy publication-title: J Biomed Opt doi: 10.1117/1.2795437 – volume: 105 start-page: 277 year: 2013 end-page: 288 ident: CR9 article-title: Deep UV autofluorescence microscopy for cell biology and tissue histology publication-title: Biol Cell doi: 10.1111/boc.201200075 – volume: 17 start-page: 056013 year: 2012 ident: CR21 article-title: Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance publication-title: J Biomed Opt doi: 10.1117/1.JBO.17.5.056013 – volume: 58 start-page: 2461 year: 2014 ident: CR8 article-title: Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis publication-title: Eur J Histochem – ident: CR26 – volume: 9 start-page: 671 year: 2012 end-page: 675 ident: CR28 article-title: NIH image to ImageJ: 25 years of image analysis publication-title: Nat Methods doi: 10.1038/nmeth.2089 – ident: CR24 – volume: 108 start-page: 5970 year: 2011 end-page: 5975 ident: CR12 article-title: Label-free live brain imaging and targeted patching with third-harmonic generation microscopy publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1018743108 – ident: CR20 – volume: 20 start-page: 1262 year: 2000 end-page: 1275 ident: CR3 article-title: Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.20.5.1262 – volume: 2 start-page: 12 year: 2014 ident: 1508_CR15 publication-title: Photoacoustics doi: 10.1016/j.pacs.2013.11.003 – volume: 108 start-page: 5970 year: 2011 ident: 1508_CR12 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1018743108 – ident: 1508_CR20 doi: 10.1109/ISBI.2019.8759152 – ident: 1508_CR27 doi: 10.1109/CVPR.2016.278 – volume: 5 start-page: 201ra119 year: 2013 ident: 1508_CR13 publication-title: Sci Transl Med doi: 10.1126/scitranslmed.3005954 – volume: 32 start-page: 78 year: 2015 ident: 1508_CR5 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2014.2346443 – ident: 1508_CR26 doi: 10.1002/mp.13927 – volume: 12 year: 2007 ident: 1508_CR10 publication-title: J Biomed Opt doi: 10.1117/1.2795437 – volume: 105 start-page: 277 year: 2013 ident: 1508_CR9 publication-title: Biol Cell doi: 10.1111/boc.201200075 – ident: 1508_CR14 doi: 10.1038/s41551-016-0027 – volume: 20 start-page: 1262 year: 2000 ident: 1508_CR3 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.20.5.1262 – volume: 58 start-page: 2461 year: 2014 ident: 1508_CR8 publication-title: Eur J Histochem – volume: 17 start-page: 056013 year: 2012 ident: 1508_CR21 publication-title: J Biomed Opt doi: 10.1117/1.JBO.17.5.056013 – volume: 9 start-page: 671 year: 2012 ident: 1508_CR28 publication-title: Nat Methods doi: 10.1038/nmeth.2089 – volume: 18 start-page: 4889 year: 2010 ident: 1508_CR16 publication-title: Opt Express doi: 10.1364/OE.18.004889 – volume: 49 start-page: 327 year: 1983 ident: 1508_CR22 publication-title: Lab Investig – volume: 12 year: 2007 ident: 1508_CR6 publication-title: J Biomed Opt doi: 10.1117/1.2800337 – ident: 1508_CR24 – volume: 25 start-page: 2054 year: 2005 ident: 1508_CR4 publication-title: Arterioscler Thromb Vasc Biol doi: 10.1161/01.ATV.0000178991.71605.18 – volume: 9351 start-page: 234 year: 2015 ident: 1508_CR25 publication-title: Medical Image Computing and Computer-Assisted Intervention, Pt Iii – volume: 114 start-page: 1852 year: 2014 ident: 1508_CR2 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.114.302721 – ident: 1508_CR19 doi: 10.1109/ICCVW.2017.15 – volume: 4 start-page: 102 year: 2016 ident: 1508_CR17 publication-title: Photoacoustics doi: 10.1016/j.pacs.2016.07.001 – ident: 1508_CR23 doi: 10.1109/CVPR.2017.632 – ident: 1508_CR29 doi: 10.1109/CVPR.2018.00916 – volume: 16 start-page: 103 year: 2011 ident: 1508_CR1 publication-title: Vasc Med doi: 10.1177/1358863X11402249 – volume: 3 start-page: 466 year: 2019 ident: 1508_CR18 publication-title: Nat Biomed Eng doi: 10.1038/s41551-019-0362-y – volume: 41 start-page: 54 year: 2004 ident: 1508_CR7 publication-title: J Vasc Res doi: 10.1159/000076246 – volume: 99 start-page: 11014 year: 2002 ident: 1508_CR11 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.172368799 |
SSID | ssj0017123 |
Score | 2.4989848 |
Snippet | Purpose
Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the... Histological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the variable and... PurposeHistological analysis of artery tissue samples is a widely used method for diagnosis and quantification of cardiovascular diseases. However, the... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1301 |
SubjectTerms | Artificial neural networks Cardiovascular diseases Carotid arteries Carotid artery Deep learning Image analysis Image processing Imaging Machine learning Medical imaging Medicine Medicine & Public Health Neural networks Radiology Research Article Staining Tissue analysis Tissues Training Transfer learning Veins & arteries |
Title | Deep Learning for Virtual Histological Staining of Bright-Field Microscopic Images of Unlabeled Carotid Artery Tissue |
URI | https://link.springer.com/article/10.1007/s11307-020-01508-6 https://www.ncbi.nlm.nih.gov/pubmed/32514884 https://www.proquest.com/docview/2442611911 https://www.proquest.com/docview/2411106914 https://pubmed.ncbi.nlm.nih.gov/PMC7497459 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xuxLigngTWCojcQNLceI4ybEtWxZQ98IWLacojm2oBOmqTQ_8e2ZcJ1VZQOKUgyeJk3n4G80L4JVrnDaiLHlhpOJSaMVLVCNu0hrpTZ5bSbXD8wt1vpAfrrKrUBS26bPd-5Ckt9T7YjdBDQ3J3SEvveDqCE4y8t1RihfJeIgd5MIPdUNVVhzRRhJKZf78jMPj6AbGvJkq-Vu81B9Ds3twN-BHNt4x_D7csu0DuD0PEfKHsH1r7TULXVO_MoSk7PNyTUUizHcECaaOfep2oyHYyrGJ99D5jJLZ2Jwy9KhWZdmw9z_Q2myIZNGitOAJZRhliHRLQzuw65_s0jPuESxmZ5fTcx5GK_BG5rLjpXIqE9bi8V0LUxtlVZwYbcpUSauNq5O4NAZ1t8kb2WTW1XnhXKGzInVCa50-huN21dqnwFwTI-bR1qZIqpHHeVKnsa1FI2ysSxuB6P9w1YS-4zT-4nu175hMXKmQK5XnSqUieD3cc73ruvFP6tOecVXQwE2FsAWdQ_RGRQQvh2XUHQqI1K1dbYkGLX2sSiEjeLLj8_C6FIEfGjdcyQ8kYCCgvtyHK-3ym-_PnUt00rIygje9rOy39fevePZ_5M_hTkJy7PMKT-G4W2_tC8RHnR7ByXg2mVzQ9d2Xj2cjOJqq6cgryS_k_A1l |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZgkYAL4k1gASNxA4s4cez4CIWqC9u90KK9RfFrqQTpqk0P_HtmXDer7gISZ0-e89bMfEPI62CDcVxrVjshmeBGMg1qxFzZAr1TygucHZ6eyMlcfD6tThNMDs7CXKrfv1tzjjCGmORgbl4zeZ3cEJApY_veSI6GioHicZUbKLBkEGMUaUDmz_fYd0JXIsurDZKXqqTR-YzvkjspaqTvt2y-R6757j65OU118Qdk89H7c5qwUs8oBKL022KFoyE04oAkA0e_9tuFEHQZ6IeYl7MxtrDRKfbl4YTKwtKjn2Bj1kgy70BGwC85in0h_cLhG_jVLzqL7HpI5uNPs9GEpYUKzAoleqZlkBX3Hpx2y13rpJd54YzTpRTeuNAWuXYONNYqK2zlQ6vqEGpT1WXgxpjyETnolp1_QmiwOUQ6xvsSSA1wVhVtmfuWW-5zo31G-O4PNzahjePSix_NBU4ycqUBrjSRK43MyJvhmvMt1sY_qQ93jGuS3q0bCFYgJYQclGfk1XAMGoNlkLbzyw3SgH3PpeYiI4-3fB4eV0K4ByYNTtSeBAwEiMa9f9ItvkdUbiUgNat0Rt7uZOXitf7-FU__j_wluTWZTY-b46OTL8_I7QJlOnYWHpKDfrXxzyFC6s2LqBq_AWmGCEo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB5BkSouiDeGAovEDVb12utd77FNG7VAKiQa1JvlfZVI4ESpc-DfM7t2nIYCEucdP-etmfkG4K03XlumFC0tF5QzLahCNaI2r5HeSul4mB2enImTKf9wUVxcm-KP3e7rkmQ30xBQmpp2f2H9_mbwjQVww5D6hIy9pOI23MFMJRZqR2I01BEkiwveUK0Fxcgj68dm_nyPbdd0I9682Tb5W-00uqTxfbjXx5LkoGP-A7jlmoewO-mr5Y9gdeTcgvQIqpcEw1PydbYMAyMkooP0Zo98abs1EWTuyWHM1uk4NLaRSejWC3MrM0NOf6DluQok0wYlB72VJaFbpJ3Z8AZu-ZOcRyY-hun4-Hx0Qvs1C9RwyVuqhBcFcw5dec1sbYUTaWa1VbngTltfZ6myFvXYSMNN4XwtS-9LXZS5Z1rr_AnsNPPGPQPiTYrxj3YuR1KN_JZZnaeuZoa5VCuXAFv_4cr0GORhFcb3aoOeHLhSIVeqyJVKJPBuuGbRIXD8k3pvzbiq18arCkMYTBQxM2UJvBmOUY9CcaRu3HwVaNDqp0IxnsDTjs_D43IMAtHQ4YnckoCBIGB0b580s28Rq1tyTNgKlcD7taxsXuvvX_H8_8hfw-7no3H16fTs4wu4mwWRju2Ge7DTLlfuJYZNrX4VNeMXmW0QkQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Virtual+Histological+Staining+of+Bright-Field+Microscopic+Images+of+Unlabeled+Carotid+Artery+Tissue&rft.jtitle=Molecular+imaging+and+biology&rft.au=Li%2C+Dan&rft.au=Hui%2C+Hui&rft.au=Zhang%2C+Yingqian&rft.au=Tong%2C+Wei&rft.date=2020-10-01&rft.issn=1536-1632&rft.eissn=1860-2002&rft.volume=22&rft.issue=5&rft.spage=1301&rft.epage=1309&rft_id=info:doi/10.1007%2Fs11307-020-01508-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11307_020_01508_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1536-1632&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1536-1632&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1536-1632&client=summon |