Fair shares: building and benefiting from healthcare AI with mutually beneficial structures and development partnerships

Artificial intelligence (AI) algorithms are used in an increasing range of aspects of our lives. In particular, medical applications of AI are being developed and deployed, including many in image analysis. Deep learning methods, which have recently proved successful in image classification, rely on...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of cancer Vol. 125; no. 9; pp. 1181 - 1184
Main Authors Sidebottom, Richard, Lyburn, Iain, Brady, Michael, Vinnicombe, Sarah
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 26.10.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Artificial intelligence (AI) algorithms are used in an increasing range of aspects of our lives. In particular, medical applications of AI are being developed and deployed, including many in image analysis. Deep learning methods, which have recently proved successful in image classification, rely on large volumes of clinical data generated by healthcare institutions. Such data is collected from their served populations. In this opinion article, using digital mammographic screening as an example, we briefly consider the background to AI development and some issues around its deployment. We highlight the importance of high quality clinical data as fundamental to these technologies, and question how the ownership of resultant tools should be defined. Though many of the ethical issues concerning the development and use of medical AI technologies continue to be discussed, the value of the data on which they rely remains a subject that is seldom considered. This potentially controversial issue can and should be addressed in a way which is beneficial to all parties, particularly the population in general and the patients we serve.
AbstractList Artificial intelligence (AI) algorithms are used in an increasing range of aspects of our lives. In particular, medical applications of AI are being developed and deployed, including many in image analysis. Deep learning methods, which have recently proved successful in image classification, rely on large volumes of clinical data generated by healthcare institutions. Such data is collected from their served populations. In this opinion article, using digital mammographic screening as an example, we briefly consider the background to AI development and some issues around its deployment. We highlight the importance of high quality clinical data as fundamental to these technologies, and question how the ownership of resultant tools should be defined. Though many of the ethical issues concerning the development and use of medical AI technologies continue to be discussed, the value of the data on which they rely remains a subject that is seldom considered. This potentially controversial issue can and should be addressed in a way which is beneficial to all parties, particularly the population in general and the patients we serve.
Artificial intelligence (AI) algorithms are used in an increasing range of aspects of our lives. In particular, medical applications of AI are being developed and deployed, including many in image analysis. Deep learning methods, which have recently proved successful in image classification, rely on large volumes of clinical data generated by healthcare institutions. Such data is collected from their served populations. In this opinion article, using digital mammographic screening as an example, we briefly consider the background to AI development and some issues around its deployment. We highlight the importance of high quality clinical data as fundamental to these technologies, and question how the ownership of resultant tools should be defined. Though many of the ethical issues concerning the development and use of medical AI technologies continue to be discussed, the value of the data on which they rely remains a subject that is seldom considered. This potentially controversial issue can and should be addressed in a way which is beneficial to all parties, particularly the population in general and the patients we serve.Artificial intelligence (AI) algorithms are used in an increasing range of aspects of our lives. In particular, medical applications of AI are being developed and deployed, including many in image analysis. Deep learning methods, which have recently proved successful in image classification, rely on large volumes of clinical data generated by healthcare institutions. Such data is collected from their served populations. In this opinion article, using digital mammographic screening as an example, we briefly consider the background to AI development and some issues around its deployment. We highlight the importance of high quality clinical data as fundamental to these technologies, and question how the ownership of resultant tools should be defined. Though many of the ethical issues concerning the development and use of medical AI technologies continue to be discussed, the value of the data on which they rely remains a subject that is seldom considered. This potentially controversial issue can and should be addressed in a way which is beneficial to all parties, particularly the population in general and the patients we serve.
Author Brady, Michael
Sidebottom, Richard
Lyburn, Iain
Vinnicombe, Sarah
Author_xml – sequence: 1
  givenname: Richard
  orcidid: 0000-0003-0063-8082
  surname: Sidebottom
  fullname: Sidebottom, Richard
  email: richard.sidebottom@nhs.net
  organization: Department of Radiology, Gloucestershire Hospitals NHS Foundation Trust, Department of Radiology, The Royal Marsden Hospital NHS Foundation Trust
– sequence: 2
  givenname: Iain
  surname: Lyburn
  fullname: Lyburn, Iain
  organization: Department of Radiology, Gloucestershire Hospitals NHS Foundation Trust, Cobalt Medical Charity, Cranfield University
– sequence: 3
  givenname: Michael
  surname: Brady
  fullname: Brady, Michael
  organization: Department of Oncology, Medical Sciences Division, University of Oxford
– sequence: 4
  givenname: Sarah
  surname: Vinnicombe
  fullname: Vinnicombe, Sarah
  organization: Department of Radiology, Gloucestershire Hospitals NHS Foundation Trust, University of Dundee
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34262148$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vFSEYhYmpsbfVP-DCkLhxMwrMOwPjwqRprDZp4kbXhGGYOzQMjMC09t_L7b31o4uuCOE5Tw45J-jIB28Qek3Je0pq8SEBBdpWhNGKUGigYs_QhjY1q6hg_AhtCCG8Ih0jx-gkpety7YjgL9BxDaxlFMQG_bpQNuI0qWjSR9yv1g3Wb7HyA-6NN6PNu-sYw4wno1yedCHx2SW-tXnC85pX5dzdgdVWOZxyXHVei-_eMpgb48IyG5_xomL2JqbJLuklej4ql8yrw3mKflx8_n7-tbr69uXy_Oyq0sAhVx30RNEBaM073ra0I23XA1DFgQwChoGpugHe6VEZwzUjlJCx76GvBa-bcaxP0ae9d1n72Qy69IjKySXaWcU7GZSV_794O8ltuJGiAcE6UQTvDoIYfq4mZTnbpI1zypuwJsmahpFGUCAFffsIvQ5r9OV7hRIt3VWCQr35t9GfKg-jFEDsAR1DStGMUtussg27gtZJSuRuf7nfX5b95f3-kpUoexR9sD8ZqvehVGC_NfFv7SdSvwHvv8Qi
CitedBy_id crossref_primary_10_3390_app14020675
crossref_primary_10_1007_s00247_023_05746_y
Cites_doi 10.1109/TMI.2019.2945514
10.1093/jnci/djy222
10.1038/s41586-019-1799-6
10.1136/bmj.l6927
10.1016/j.crad.2019.09.122
10.1609/aaai.v31i1.11231
10.1148/ryai.2020200103
10.1109/CVPR.2016.90
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2021
2021. The Author(s), under exclusive licence to Springer Nature Limited.
The Author(s), under exclusive licence to Springer Nature Limited 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021
– notice: 2021. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TO
7U9
7X7
7XB
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AN0
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/s41416-021-01454-2
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database (ProQuest)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
British Nursing Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
British Nursing Index with Full Text
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1532-1827
EndPage 1184
ExternalDocumentID PMC8548298
34262148
10_1038_s41416_021_01454_2
Genre Journal Article
Review
GroupedDBID ---
0R~
23N
36B
39C
4.4
406
53G
5GY
5RE
6J9
70F
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8R4
8R5
AACDK
AANZL
AASML
AATNV
AAWTL
AAYZH
AAZLF
ABAKF
ABLJU
ABOCM
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACKTT
ACPRK
ACRQY
ACZOJ
ADBBV
ADFRT
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMYLF
AN0
AOIJS
ASPBG
AVWKF
AXYYD
AZFZN
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BNQBC
BPHCQ
BVXVI
CCPQU
CS3
DIK
DNIVK
DPUIP
DU5
E3Z
EAP
EBLON
EBS
EE.
EIOEI
EMB
ESX
EX3
F5P
FDQFY
FEDTE
FERAY
FIGPU
FRJ
FSGXE
FYUFA
GX1
HCIFZ
HMCUK
HVGLF
HYE
HZ~
IH2
IWAJR
JSO
JZLTJ
KQ8
M1P
M7P
NAPCQ
NQJWS
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q2X
RNT
RNTTT
ROL
RPM
SNX
SNYQT
SOHCF
SOJ
SRMVM
SWTZT
TAOOD
TBHMF
TDRGL
TR2
UKHRP
W2D
WH7
WOW
~02
AAFWJ
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
-Q-
.55
.GJ
8WZ
A6W
ABAWZ
ABDBF
ACUHS
AI.
B0M
CAG
CGR
COF
CUY
CVF
EAD
EAS
EBC
EBD
ECM
EIF
EJD
EMK
EMOBN
EPL
FIZPM
J5H
M41
NPM
SV3
TUS
UDS
VH1
X7M
Y6R
ZGI
~8M
3V.
7TO
7U9
7XB
8FE
8FH
8FK
ABRTQ
AZQEC
DWQXO
GNUQQ
H94
K9.
LK8
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-94b0a1d4137976619069b441a740d84dd2a35479cfaee7c20100fbb4b38735ff3
IEDL.DBID 7X7
ISSN 0007-0920
1532-1827
IngestDate Thu Aug 21 18:37:13 EDT 2025
Thu Jul 10 23:53:05 EDT 2025
Fri Jul 25 09:05:47 EDT 2025
Thu Apr 03 07:05:06 EDT 2025
Tue Jul 01 04:23:44 EDT 2025
Thu Apr 24 23:10:57 EDT 2025
Fri Feb 21 02:39:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License 2021. The Author(s), under exclusive licence to Springer Nature Limited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-94b0a1d4137976619069b441a740d84dd2a35479cfaee7c20100fbb4b38735ff3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0003-0063-8082
OpenAccessLink https://www.nature.com/articles/s41416-021-01454-2.pdf
PMID 34262148
PQID 2586187354
PQPubID 41855
PageCount 4
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8548298
proquest_miscellaneous_2552058140
proquest_journals_2586187354
pubmed_primary_34262148
crossref_citationtrail_10_1038_s41416_021_01454_2
crossref_primary_10_1038_s41416_021_01454_2
springer_journals_10_1038_s41416_021_01454_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-26
PublicationDateYYYYMMDD 2021-10-26
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-26
  day: 26
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle British journal of cancer
PublicationTitleAbbrev Br J Cancer
PublicationTitleAlternate Br J Cancer
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References CR4
CR3
Gilbert, Smye, Schönlieb (CR13) 2020; 75
McKinney, Sieniek, Godbole, Godwin, Antropova, Ashrafian (CR2) 2020; 577
CR5
CR8
Rodriguez-Ruiz, Lång, Gubern-Merida, Broeders, Gennaro, Clauser (CR1) 2019; 111
CR7
CR9
Vollmer, Mateen, Bohner, Király, Ghani, Jonsson (CR12) 2020; 368
CR11
CR10
Wu, Phang, Park, Shen, Huang, Zorin (CR6) 2020; 39
S Vollmer (1454_CR12) 2020; 368
F Gilbert (1454_CR13) 2020; 75
A Rodriguez-Ruiz (1454_CR1) 2019; 111
1454_CR3
S McKinney (1454_CR2) 2020; 577
N Wu (1454_CR6) 2020; 39
1454_CR9
1454_CR8
1454_CR11
1454_CR7
1454_CR10
1454_CR5
1454_CR4
References_xml – ident: CR3
– ident: CR4
– volume: 39
  start-page: 1184
  year: 2020
  end-page: 1194
  ident: CR6
  article-title: Deep neural networks improve radiologists’ performance in breast cancer screening
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2945514
– volume: 111
  start-page: 916
  year: 2019
  end-page: 922
  ident: CR1
  article-title: Stand-alone artificial intelligence for breast cancer detection in mammography: comparison with 101 radiologists
  publication-title: J. Natl Cancer Inst.
  doi: 10.1093/jnci/djy222
– volume: 577
  start-page: 89
  year: 2020
  end-page: 94
  ident: CR2
  article-title: International evaluation of an AI system for breast cancer screening
  publication-title: Nature
  doi: 10.1038/s41586-019-1799-6
– volume: 368
  start-page: l6927
  year: 2020
  ident: CR12
  article-title: Machine learning and artificial intelligence research for patient benefit: 20 critical questions on transparency, replicability, ethics and effectiveness
  publication-title: BMJ
  doi: 10.1136/bmj.l6927
– ident: CR10
– ident: CR11
– ident: CR9
– volume: 75
  start-page: 3
  year: 2020
  end-page: 6
  ident: CR13
  article-title: Artificial intelligence in clinical imaging: a health system approach
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2019.09.122
– ident: CR5
– ident: CR7
– ident: CR8
– volume: 39
  start-page: 1184
  year: 2020
  ident: 1454_CR6
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2945514
– ident: 1454_CR3
– ident: 1454_CR9
– volume: 111
  start-page: 916
  year: 2019
  ident: 1454_CR1
  publication-title: J. Natl Cancer Inst.
  doi: 10.1093/jnci/djy222
– ident: 1454_CR7
– ident: 1454_CR5
  doi: 10.1609/aaai.v31i1.11231
– volume: 577
  start-page: 89
  year: 2020
  ident: 1454_CR2
  publication-title: Nature
  doi: 10.1038/s41586-019-1799-6
– ident: 1454_CR11
– ident: 1454_CR10
– volume: 368
  start-page: l6927
  year: 2020
  ident: 1454_CR12
  publication-title: BMJ
  doi: 10.1136/bmj.l6927
– volume: 75
  start-page: 3
  year: 2020
  ident: 1454_CR13
  publication-title: Clin. Radiol.
  doi: 10.1016/j.crad.2019.09.122
– ident: 1454_CR8
  doi: 10.1148/ryai.2020200103
– ident: 1454_CR4
  doi: 10.1109/CVPR.2016.90
SSID ssj0009087
Score 2.3925781
SecondaryResourceType review_article
Snippet Artificial intelligence (AI) algorithms are used in an increasing range of aspects of our lives. In particular, medical applications of AI are being developed...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1181
SubjectTerms 692/699/67/1347
692/700/1538
706/703/270
Algorithms
Artificial Intelligence
Biomedical and Life Sciences
Biomedicine
Breast - diagnostic imaging
Cancer Research
Deep Learning
Drug Resistance
Epidemiology
Health care
Humans
Image processing
Mammography
Mammography - methods
Metadata
Molecular Medicine
Oncology
Perspective
Radiographic Image Interpretation, Computer-Assisted - methods
Title Fair shares: building and benefiting from healthcare AI with mutually beneficial structures and development partnerships
URI https://link.springer.com/article/10.1038/s41416-021-01454-2
https://www.ncbi.nlm.nih.gov/pubmed/34262148
https://www.proquest.com/docview/2586187354
https://www.proquest.com/docview/2552058140
https://pubmed.ncbi.nlm.nih.gov/PMC8548298
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJiFeEN9kjMpIvIE1x3Fimxc0plUDaRNCTOpbZMeJWmmkZVkl-O-5S9xUZWIveYntxL6zfZ-_A3jXoFRsijTwoK1EBcUKbq1OeZq63Ksqk6Gg3OHzi-LsUn2d5bNocOtiWOXmTOwP6rCsyEZ-JHMc0ugsV59WvzhVjSLvaiyhcR_2CbqMQrr0TG9Bd4UZMDPJHGeliEkzIjNHnUpRFOEUoECONcXl7sV0S9q8HTT5j-e0v5Cmj-FRlCTZ8UD6J3Cvbp_Cg_PoK38Gv6ducc26OSUYfWQ-lr9mrg3M4wHXLCjgmVF6CZuPQWDs-Asj0yz7uabEkqs_sS0Z1tmANbvG8fpRwjbeiK2QA9shJLp7DpfT0x8nZzzWWeCV0uqGW-WFSwNeZxqFE9SoRGE9iklOKxGMCkE6XHZtq8bVta7Ify4a75XPiB5Nk72AvXbZ1q-Aidw3njDMGm9UJSsjfOakFYOqlNUJpJtFLqsIQk61MK7K3hmemXIgTImEKXvClDKB92Of1QDBcWfrww3tyrgdu3LLPAm8HV_jRiLviGvr5Zra5FLkBACWwMuB1OPnMsLtR8UxAb3DBGMDAunefdMu5j1Yt0GVUFrs-WHDLtvf-v8sDu6exWt4KIl18Q6VxSHsIfnrNygc3fhJvwPwaU7SCex_Pr349n3S27D-Ao31DgM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTgJeEN8EBhgJniCaYzsfRkJowKqWrRVCm7S3YMeJWmmkhayC_VP8jdzlqyoTe9uzv-Lc-Xznu_sdwMsCteIkCpzvYi3QQNHc1zoO_CAwoVWZFC6i3OHJNBodq88n4ckW_OlyYSisspOJtaB2i4zeyHdFiFMmsQzV--UPn6pGkXe1K6HRsMVBfv4LTbbq3fgT0veVEMP9o48jv60q4GcqVme-VpabwKHwjvEqRvuBR9qiUmBixV2inBMGF4l1Vpg8jzPyFvPCWmUlrV4UEue9BttKoikzgO0P-9MvX9cwvzxpUDrpAVAL3qbpcJnsVipA5cenkAhy5SlfbF6FF_Tbi2Ga__hq6ytweBtutbor22uY7Q5s5eVduD5pvfP34PfQzH-yakYpTW-ZbQtuM1M6ZlGkFnMKsWaU0MJmfdgZ2xszegxm31eUynJ63valp3zWoNuucL56FreOcGJL5PmyCcKu7sPxldDgAQzKRZk_AsZDW1hCTStsojKRJdxKIzRvjDOZexB0PznNWthzqr5xmtbud5mkDWFSJExaEyYVHrzuxywb0I9Le-90tEtbAVCla3b14EXfjEeX_DGmzBcr6hMKHhLkmAcPG1L3y0mqFICmqgfxBhP0HQgWfLOlnM9qePAEjVChceSbjl3Wn_X_XTy-fBfP4cboaHKYHo6nB0_gpiA2xhtcRDswQFbIn6JqdmafteeBwberPoJ_AboGR2k
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlVcEO8GChgJTmCt4zhxjIRQRVl1Ka04UGlvIY4T7Uolu5CuoH-NX8dMnGS1VPTWW6Q4Tpx5eMYz8w3Aywqt4jQJHXfaSHRQjODG6JCHYR5bVUTSJVQ7fHySHJ6qT9N4ugV_-loYSqvsdWKrqN2ioDPykYxxylRHsRpVXVrEl4Px--UPTh2kKNLat9PwLHJUXvxC9615NzlAWr-Scvzx64dD3nUY4IXS6pwbZUUeOlTkGrdl9CVEYiwaCLlWwqXKOZnjC7UpqrwsdUGRY1FZq2xEX1JVEc57A27idUgypqd6DfgrUo_XSUeBRoquYEdE6ahRIZpBnJIjKKinuNzcFC9ZupcTNv-J2rab4fgO3O6sWLbv2e4ubJX1Pdg57uL09-H3OJ__ZM2MipveMtu13mZ57ZhF5VrNKdmaUWkLmw0JaGx_wuhYmH1fUVHL2UU3lg71mce5XeF87SxunevElsj9tU_Hbh7A6bVQ4CFs14u63AUmYltZwk-rbKoKWaTCRrk0wrtpURlA2P_krOgA0KkPx1nWBuKjNPOEyZAwWUuYTAbwenhm6eE_rhy919Mu61RBk60ZN4AXw20UYorM5HW5WNGYWIqYwMcCeORJPbwuop4B6LQGoDeYYBhAAOGbd-r5rAUKT9EdlQaffNOzy_qz_r-Kx1ev4jnsoOBlnycnR0_gliQuxq1cJnuwjZxQPkUb7dw-a4WBwbfrlr6_gyZKOQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fair+shares%3A+building+and+benefiting+from+healthcare+AI+with+mutually+beneficial+structures+and+development+partnerships&rft.jtitle=British+journal+of+cancer&rft.au=Sidebottom%2C+Richard&rft.au=Lyburn%2C+Iain&rft.au=Brady%2C+Michael&rft.au=Vinnicombe%2C+Sarah&rft.date=2021-10-26&rft.issn=0007-0920&rft.eissn=1532-1827&rft.volume=125&rft.issue=9&rft.spage=1181&rft.epage=1184&rft_id=info:doi/10.1038%2Fs41416-021-01454-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41416_021_01454_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0007-0920&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0007-0920&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0007-0920&client=summon