Modeling Fabric-Type Actuator Using Point Clouds by Deep Learning
Flexible actuators are popular in the consumer and medical fields because of their flexibility and compliance. However, they are typically difficult to model because of their viscoelasticity and nonlinearity. This letter proposes a method for correcting the deformation of the simulated flexible robo...
Saved in:
Published in | IEEE access Vol. 10; pp. 94363 - 94375 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Flexible actuators are popular in the consumer and medical fields because of their flexibility and compliance. However, they are typically difficult to model because of their viscoelasticity and nonlinearity. This letter proposes a method for correcting the deformation of the simulated flexible robots to make it similar to the deformation of real robots using point clouds by deep learning. Long short-term memory (LSTM) can simulate the next frame of actuator deformation from the previous frames of deformations. In this study, we presented the robots with four different muscle structures. We found that using an encoder-LSTM-decoder network can improve the similarity between the deformation of a learned muscle structure and the real deformation and is also effective in correcting the deformation of the unlearned structures. Our correction method reduced the average Chamfer distance of the simulated point clouds of the basic-type structure actuator from 15.89 to 7.81. This research can provide a new concept for future flexible robot modeling using point clouds. |
---|---|
AbstractList | Flexible actuators are popular in the consumer and medical fields because of their flexibility and compliance. However, they are typically difficult to model because of their viscoelasticity and nonlinearity. This letter proposes a method for correcting the deformation of the simulated flexible robots to make it similar to the deformation of real robots using point clouds by deep learning. Long short-term memory (LSTM) can simulate the next frame of actuator deformation from the previous frames of deformations. In this study, we presented the robots with four different muscle structures. We found that using an encoder–LSTM–decoder network can improve the similarity between the deformation of a learned muscle structure and the real deformation and is also effective in correcting the deformation of the unlearned structures. Our correction method reduced the average Chamfer distance of the simulated point clouds of the basic-type structure actuator from 15.89 to 7.81. This research can provide a new concept for future flexible robot modeling using point clouds. |
Author | Doki, Shinji Yamaguchi, Hiroki Peng, Yanhong Funabora, Yuki |
Author_xml | – sequence: 1 givenname: Yanhong orcidid: 0000-0002-2162-3798 surname: Peng fullname: Peng, Yanhong email: yhpeng@nagoya-u.jp organization: Department of Information and Communication Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan – sequence: 2 givenname: Hiroki orcidid: 0000-0002-4225-7037 surname: Yamaguchi fullname: Yamaguchi, Hiroki organization: Department of Information and Communication Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan – sequence: 3 givenname: Yuki orcidid: 0000-0003-1477-9273 surname: Funabora fullname: Funabora, Yuki email: funabora@nagoya-u.jp organization: Department of Information and Communication Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan – sequence: 4 givenname: Shinji orcidid: 0000-0002-3850-0321 surname: Doki fullname: Doki, Shinji organization: Department of Information and Communication Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan |
BookMark | eNqFUMtKBDEQDKLg8wu8DHieNe_HcRmfsKKgnkNvJpEs42TNZA_79846IuLFvnRT1VXd1DHa71PvEToneEYINpfzprl-fp5RTOmMUcyloHvoiBJpaiaY3P81H6KzYVjhsfQICXWE5g-p9V3s36obWObo6pft2ldzVzZQUq5ehx31lGJfqqZLm3aoltvqyvt1tfCQ-5E9RQcBusGfffcT9Hpz_dLc1YvH2_tmvqgdV7zUhkklvVaOygAqBB1oUBKcCA6E84a0jCrGFeWaaBWUw9oRajjGMgjTKnaC7iffNsHKrnN8h7y1CaL9AlJ-s5BLdJ23QcjRXwEn3nEHeglgQlCYtUY4wXZeF5PXOqePjR-KXaVN7sf3LVWEa6MppeMWm7ZcTsOQffi5SrDdRW-n6O0uevsd_agyf1QuFigx9SVD7P7Rnk_a6L3_uWa00oRQ9gmo0pGZ |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_birob_2024_100146 crossref_primary_10_1016_j_birob_2023_100131 crossref_primary_10_1016_j_sna_2023_114840 crossref_primary_10_3390_machines11090882 crossref_primary_10_3390_mi14081531 crossref_primary_10_3390_mi14020321 crossref_primary_10_3390_su152115470 crossref_primary_10_1016_j_birob_2023_100114 crossref_primary_10_3389_fnbot_2023_1281332 crossref_primary_10_1016_j_birob_2023_100127 crossref_primary_10_3390_robotics12050128 crossref_primary_10_1016_j_neucom_2025_129647 crossref_primary_10_3390_biomimetics8050416 crossref_primary_10_1016_j_isatra_2023_06_016 crossref_primary_10_1016_j_neucom_2024_128413 crossref_primary_10_3390_robotics12040100 crossref_primary_10_1631_jzus_A2300479 crossref_primary_10_3390_math12223503 crossref_primary_10_3390_electronics13204074 crossref_primary_10_3390_mi14111979 crossref_primary_10_3390_s23156959 crossref_primary_10_7210_jrsj_41_541 |
Cites_doi | 10.1371/journal.pone.0246102 10.1109/ROBOSOFT.2018.8404942 10.1117/12.2631311 10.1145/2601097.2601152 10.1089/soro.2017.0008 10.1117/12.57955 10.1109/LRA.2020.2975732 10.1109/tiv.2022.3168899 10.1089/soro.2018.0064 10.1109/ACCESS.2020.2970836 10.1002/adfm.202104665 10.1089/soro.2019.0033 10.1016/B978-0-12-814942-3.00010-6 10.1007/s12652-020-02560-4 10.1007/978-3-030-25332-5_42 10.1109/ICRA48506.2021.9561177 10.1109/SII46433.2020.9025832 10.1109/ICRAS52289.2021.9476651 10.1109/TII.2021.3071405 10.1016/j.sna.2021.113168 10.1002/advs.201800541 10.1007/978-981-16-6554-7_46 10.1016/j.knosys.2020.106617 10.1016/j.compag.2022.106702 10.20965/jrm.2022.p0294 10.5194/isprs-archives-XLVI-4-W4-2021-101-2021 10.1109/CVPR.2017.264 10.1109/IROS.2018.8594359 10.3390/act10060123 10.25165/j.ijabe.20211405.5902 10.1515/9783034615877.164 10.1109/WACV48630.2021.00121 10.1109/ACCESS.2020.2981400 10.1109/CVPR.2017.16 10.1016/j.sna.2017.04.047 10.1007/s10489-020-01827-9 10.3390/f12020131 10.1016/j.compositesb.2021.108748 10.1109/ACCESS.2021.3102399 10.1299/jsmeicam.2015.6.43 10.1109/CSICC52343.2021.9420573 10.1007/978-3-319-46460-2_13 10.1155/2019/6813719 10.1109/TASE.2021.3064065 10.1016/j.neucom.2020.09.030 10.1109/TBME.2021.3133075 10.1109/TMECH.2021.3078263 10.1109/IIPHDW.2018.8388338 10.1109/ICCV48922.2021.01595 10.1016/j.jweia.2020.104116 10.1038/s41578-018-0022-y 10.3390/act11010017 10.1007/s41095-021-0229-5 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2022.3204652 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 94375 |
ExternalDocumentID | oai_doaj_org_article_f56f8f7a41ec4ca8baa9ff703d95c537 10_1109_ACCESS_2022_3204652 9878112 |
Genre | orig-research |
GrantInformation_xml | – fundername: Japan Science and Technology Agency (JST), PRESTO, Japan grantid: JPMJPR185A funderid: 10.13039/501100002241 – fundername: JST Fusion Oriented REsearch for disruptive Science and Technology (FOREST) Program, Japan grantid: JPMJFR216T |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c474t-93676e87c26fa7ff8f2f76ac5fca5ce91d327347248187f7c08c1294006f59d73 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:29:21 EDT 2025 Mon Jun 30 03:17:18 EDT 2025 Tue Jul 01 04:21:25 EDT 2025 Thu Apr 24 23:08:23 EDT 2025 Wed Aug 27 02:18:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-93676e87c26fa7ff8f2f76ac5fca5ce91d327347248187f7c08c1294006f59d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1477-9273 0000-0002-2162-3798 0000-0002-4225-7037 0000-0002-3850-0321 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9878112 |
PQID | 2714898222 |
PQPubID | 4845423 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1109_ACCESS_2022_3204652 crossref_primary_10_1109_ACCESS_2022_3204652 ieee_primary_9878112 proquest_journals_2714898222 doaj_primary_oai_doaj_org_article_f56f8f7a41ec4ca8baa9ff703d95c537 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220000 2022-00-00 20220101 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – year: 2022 text: 20220000 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2022 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Takaoka (ref49) ref51 ref46 ref45 ref48 ref47 ref41 ref44 ref43 Qi (ref36) 2019 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 Liu (ref42) 2022 ref37 ref31 ref30 ref33 ref32 Yang (ref24); 33 ref2 ref1 ref39 ref38 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Gameworks (ref50) 2018 |
References_xml | – ident: ref21 doi: 10.1371/journal.pone.0246102 – ident: ref7 doi: 10.1109/ROBOSOFT.2018.8404942 – ident: ref29 doi: 10.1117/12.2631311 – ident: ref51 doi: 10.1145/2601097.2601152 – ident: ref1 doi: 10.1089/soro.2017.0008 – ident: ref54 doi: 10.1117/12.57955 – ident: ref8 doi: 10.1109/LRA.2020.2975732 – ident: ref33 doi: 10.1109/tiv.2022.3168899 – ident: ref39 doi: 10.1089/soro.2018.0064 – ident: ref46 doi: 10.1109/ACCESS.2020.2970836 – ident: ref6 doi: 10.1002/adfm.202104665 – ident: ref5 doi: 10.1089/soro.2019.0033 – ident: ref10 doi: 10.1016/B978-0-12-814942-3.00010-6 – ident: ref16 doi: 10.1007/s12652-020-02560-4 – ident: ref26 doi: 10.1007/978-3-030-25332-5_42 – volume-title: NVIDIA FleX year: 2018 ident: ref50 – ident: ref41 doi: 10.1109/ICRA48506.2021.9561177 – ident: ref12 doi: 10.1109/SII46433.2020.9025832 – ident: ref22 doi: 10.1109/ICRAS52289.2021.9476651 – ident: ref18 doi: 10.1109/TII.2021.3071405 – ident: ref3 doi: 10.1016/j.sna.2021.113168 – ident: ref13 doi: 10.1002/advs.201800541 – ident: ref35 doi: 10.1007/978-981-16-6554-7_46 – ident: ref17 doi: 10.1016/j.knosys.2020.106617 – year: 2022 ident: ref42 article-title: Parameter identification and motion control for articulated rigid body robots using differentiable position-based dynamics publication-title: arXiv:2201.05753 – ident: ref34 doi: 10.1016/j.compag.2022.106702 – ident: ref4 doi: 10.20965/jrm.2022.p0294 – ident: ref31 doi: 10.5194/isprs-archives-XLVI-4-W4-2021-101-2021 – ident: ref55 doi: 10.1109/CVPR.2017.264 – ident: ref44 doi: 10.1109/IROS.2018.8594359 – ident: ref11 doi: 10.3390/act10060123 – ident: ref30 doi: 10.25165/j.ijabe.20211405.5902 – ident: ref53 doi: 10.1515/9783034615877.164 – ident: ref15 doi: 10.1109/WACV48630.2021.00121 – ident: ref37 doi: 10.1109/ACCESS.2020.2981400 – ident: ref28 doi: 10.1109/CVPR.2017.16 – ident: ref48 doi: 10.1016/j.sna.2017.04.047 – ident: ref20 doi: 10.1007/s10489-020-01827-9 – ident: ref32 doi: 10.3390/f12020131 – ident: ref2 doi: 10.1016/j.compositesb.2021.108748 – ident: ref14 doi: 10.1109/ACCESS.2021.3102399 – ident: ref52 doi: 10.1299/jsmeicam.2015.6.43 – ident: ref19 doi: 10.1109/CSICC52343.2021.9420573 – ident: ref38 doi: 10.1007/978-3-319-46460-2_13 – ident: ref40 doi: 10.1155/2019/6813719 – ident: ref23 doi: 10.1109/TASE.2021.3064065 – start-page: 82 volume-title: Proc. 5th Int. Conf. Manuf., Mach. Design Tribol. ident: ref49 article-title: Fabrication of thin McKibben artificial muscle with various design parameters and their experimental evaluations – ident: ref45 doi: 10.1016/j.neucom.2020.09.030 – ident: ref25 doi: 10.1109/TBME.2021.3133075 – ident: ref27 doi: 10.1109/TMECH.2021.3078263 – ident: ref56 doi: 10.1109/IIPHDW.2018.8388338 – ident: ref57 doi: 10.1109/ICCV48922.2021.01595 – ident: ref47 doi: 10.1016/j.jweia.2020.104116 – ident: ref9 doi: 10.1038/s41578-018-0022-y – ident: ref43 doi: 10.3390/act11010017 – volume-title: PointNet-Autoencoder year: 2019 ident: ref36 – volume: 33 start-page: 5178 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref24 article-title: Learning physical constraints with neural projections – ident: ref58 doi: 10.1007/s41095-021-0229-5 |
SSID | ssj0000816957 |
Score | 2.3626409 |
Snippet | Flexible actuators are popular in the consumer and medical fields because of their flexibility and compliance. However, they are typically difficult to model... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 94363 |
SubjectTerms | Actuators Chamfering Coders Computational modeling Deep learning Deformation effects McKibben Artificial muscle modeling for soft robots Modelling Muscles point cloud Point cloud compression Robots Short term Simulation Soft actuators Soft robotics Solid modeling Three dimensional models Viscoelasticity |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIjyJQ-MBBJ_xmMJVBUDYqASm-U4NkJCKYIy8O-5S9yqCAkW1si5JO_iOz_L946QMy54kEV0qBnaAEEJdeaU5plrnDfcBVQhw9MWd2oyFbeP8nGl1ReeCevlgXvgLqNUsYzaiSJ44V1ZO4fbjDlvjPSSd3XkkPNWyFQXg8tCGamTzFCRm8tRVcEXASFk7IIzYIWSfUtFnWJ_arHyIy53yWa8TbbSKpGO-rfbIWuh3SWbK9qBAzLCLmZYS07HroZgliGjpCOsBwEaTbujAPR-9tzOafUy-2jeaf1Jr0N4pUlS9WmPTMc3D9UkS_0QMi-0mGcG1dVCqT1T0ekIsLColfMyeid9MEXDUaxGMwFZWEft89JDOodZqqI0jeb7ZL2dteGAUO6EbEyuvBNeQLgGozDbnVKwgghgckjYAhrrk1g49qx4sR1pyI3t8bSIp014Dsn58qbXXivj9-FXiPlyKApddxfA_Ta53_7l_iEZoMeWRkyJpbNg-3jhQZsm5btlGrgf6hWyw_949BHZwM_p92OOyfr87SOcwAplXp92P-MXoevfWA priority: 102 providerName: Directory of Open Access Journals |
Title | Modeling Fabric-Type Actuator Using Point Clouds by Deep Learning |
URI | https://ieeexplore.ieee.org/document/9878112 https://www.proquest.com/docview/2714898222 https://doaj.org/article/f56f8f7a41ec4ca8baa9ff703d95c537 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuAAlIJYKJUPHJtt4md8XBZWVaUiDlTqzXIcGyGq3arNHuDXM-N4I15CvUVRbNkeezzfZOYbgLdCiqia5IkztEeAErvKayMq3_tghY_EQkbRFh_12aU8v1JXe3Ay5cLEGHPwWZzTY_6X32_Cllxlp4iP24ZKCj9A4Dbmak3-FCogYZUpxEJNbU8XyyXOASEg53PBEQcq_tvlkzn6S1GVvzRxvl5WT-BiN7AxquTbfDt08_DjD87G-478KTwudiZbjBvjAPbi-hk8-oV98BAWVAeNstHZyneoDivCpGxBGSUIxFkOJmCfNl_XA1teb7b9Heu-s_cx3rBCyvrlOVyuPnxenlWlokIVpJFDZYmfLbYmcJ28SalNPBntg0rBqxBt0wuiuzFc4j1ukgl1G9AgwHOuk7K9ES9gf71Zx5fAhJeqt7UOXgaJCh87RX3htUYbJGKXM-C7pXah0I1T1Ytrl2FHbd0oH0fycUU-MziZGt2MbBv___wdyXD6lKiy8wtce1dOnktK4zyNl00MMvi285781LXorQpKmBkckrymToqoZnC02xGuHOs7xw2iR2I85K_-3eo1PKQBjj6aI9gfbrfxDVotQ3ec0f5x3rQ_ARsR6II |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOFCgVCwV8gBvZZv2Ik0MP2y2rLS0Vh1bqzTiOjRDVpupmhcpv4a_w3zqTeCNe4laJWxTZo8T-Mq-MvwF4JaTwahQscYZWGKD4MrGZFomtrCuE9cRCRtUWx9nsVL47U2dr8L0_C-O9b4vP_JAu23_5Ve2WlCrbwfg4R_8gllAe-quvGKAtdg_2cTdfcz59ezKZJbGHQOKklk1SECOZz7XjWbA6hDzwoDPrVHBWOV-MKkEEL5pLtFw6aJfmDk0gIjsLqqi0QLm34Db6GYp3p8P6DA61rCiUjlRGo7TYGU8muGoYdHI-FBwjT8V_MXdtV4DYxuUP3d8atOkG_FgtRVfH8mW4bMqh-_YbS-T_ulYP4H70pNm4g_5DWPPzR3DvJ37FTRhTpzc6b8-mtkSFn1DUzcZ0ZqapL1lbLsE-1J_nDZuc18tqwcortu_9BYu0s58ew-mNvMMWrM_ruX8CTFipqiLNnJVOoklDoagRbZahl-VR5AD4amuNi4Tq1Nfj3LSBVVqYDg-G8GAiHgbwpp900fGJ_Hv4HmGmH0pk4O0N3GsTdYsJKsP31FaOvJPO5qW1lIlPRVUop4QewCbhoxcSoTGA7RUCTVRcC8M1xsfE6cif_n3WS7gzO3l_ZI4Ojg-fwV162C4jtQ3rzeXSP0cfrSlftJ8Kg483jbdrPWRDpA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Fabric-Type+Actuator+Using+Point+Clouds+by+Deep+Learning&rft.jtitle=IEEE+access&rft.au=Peng%2C+Yanhong&rft.au=Yamaguchi%2C+Hiroki&rft.au=Funabora%2C+Yuki&rft.au=Doki%2C+Shinji&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=94363&rft.epage=94375&rft_id=info:doi/10.1109%2FACCESS.2022.3204652&rft.externalDocID=9878112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |