Modeling Fabric-Type Actuator Using Point Clouds by Deep Learning

Flexible actuators are popular in the consumer and medical fields because of their flexibility and compliance. However, they are typically difficult to model because of their viscoelasticity and nonlinearity. This letter proposes a method for correcting the deformation of the simulated flexible robo...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 10; pp. 94363 - 94375
Main Authors Peng, Yanhong, Yamaguchi, Hiroki, Funabora, Yuki, Doki, Shinji
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Flexible actuators are popular in the consumer and medical fields because of their flexibility and compliance. However, they are typically difficult to model because of their viscoelasticity and nonlinearity. This letter proposes a method for correcting the deformation of the simulated flexible robots to make it similar to the deformation of real robots using point clouds by deep learning. Long short-term memory (LSTM) can simulate the next frame of actuator deformation from the previous frames of deformations. In this study, we presented the robots with four different muscle structures. We found that using an encoder-LSTM-decoder network can improve the similarity between the deformation of a learned muscle structure and the real deformation and is also effective in correcting the deformation of the unlearned structures. Our correction method reduced the average Chamfer distance of the simulated point clouds of the basic-type structure actuator from 15.89 to 7.81. This research can provide a new concept for future flexible robot modeling using point clouds.
AbstractList Flexible actuators are popular in the consumer and medical fields because of their flexibility and compliance. However, they are typically difficult to model because of their viscoelasticity and nonlinearity. This letter proposes a method for correcting the deformation of the simulated flexible robots to make it similar to the deformation of real robots using point clouds by deep learning. Long short-term memory (LSTM) can simulate the next frame of actuator deformation from the previous frames of deformations. In this study, we presented the robots with four different muscle structures. We found that using an encoder–LSTM–decoder network can improve the similarity between the deformation of a learned muscle structure and the real deformation and is also effective in correcting the deformation of the unlearned structures. Our correction method reduced the average Chamfer distance of the simulated point clouds of the basic-type structure actuator from 15.89 to 7.81. This research can provide a new concept for future flexible robot modeling using point clouds.
Author Doki, Shinji
Yamaguchi, Hiroki
Peng, Yanhong
Funabora, Yuki
Author_xml – sequence: 1
  givenname: Yanhong
  orcidid: 0000-0002-2162-3798
  surname: Peng
  fullname: Peng, Yanhong
  email: yhpeng@nagoya-u.jp
  organization: Department of Information and Communication Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
– sequence: 2
  givenname: Hiroki
  orcidid: 0000-0002-4225-7037
  surname: Yamaguchi
  fullname: Yamaguchi, Hiroki
  organization: Department of Information and Communication Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
– sequence: 3
  givenname: Yuki
  orcidid: 0000-0003-1477-9273
  surname: Funabora
  fullname: Funabora, Yuki
  email: funabora@nagoya-u.jp
  organization: Department of Information and Communication Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
– sequence: 4
  givenname: Shinji
  orcidid: 0000-0002-3850-0321
  surname: Doki
  fullname: Doki, Shinji
  organization: Department of Information and Communication Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, Japan
BookMark eNqFUMtKBDEQDKLg8wu8DHieNe_HcRmfsKKgnkNvJpEs42TNZA_79846IuLFvnRT1VXd1DHa71PvEToneEYINpfzprl-fp5RTOmMUcyloHvoiBJpaiaY3P81H6KzYVjhsfQICXWE5g-p9V3s36obWObo6pft2ldzVzZQUq5ehx31lGJfqqZLm3aoltvqyvt1tfCQ-5E9RQcBusGfffcT9Hpz_dLc1YvH2_tmvqgdV7zUhkklvVaOygAqBB1oUBKcCA6E84a0jCrGFeWaaBWUw9oRajjGMgjTKnaC7iffNsHKrnN8h7y1CaL9AlJ-s5BLdJ23QcjRXwEn3nEHeglgQlCYtUY4wXZeF5PXOqePjR-KXaVN7sf3LVWEa6MppeMWm7ZcTsOQffi5SrDdRW-n6O0uevsd_agyf1QuFigx9SVD7P7Rnk_a6L3_uWa00oRQ9gmo0pGZ
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_birob_2024_100146
crossref_primary_10_1016_j_birob_2023_100131
crossref_primary_10_1016_j_sna_2023_114840
crossref_primary_10_3390_machines11090882
crossref_primary_10_3390_mi14081531
crossref_primary_10_3390_mi14020321
crossref_primary_10_3390_su152115470
crossref_primary_10_1016_j_birob_2023_100114
crossref_primary_10_3389_fnbot_2023_1281332
crossref_primary_10_1016_j_birob_2023_100127
crossref_primary_10_3390_robotics12050128
crossref_primary_10_1016_j_neucom_2025_129647
crossref_primary_10_3390_biomimetics8050416
crossref_primary_10_1016_j_isatra_2023_06_016
crossref_primary_10_1016_j_neucom_2024_128413
crossref_primary_10_3390_robotics12040100
crossref_primary_10_1631_jzus_A2300479
crossref_primary_10_3390_math12223503
crossref_primary_10_3390_electronics13204074
crossref_primary_10_3390_mi14111979
crossref_primary_10_3390_s23156959
crossref_primary_10_7210_jrsj_41_541
Cites_doi 10.1371/journal.pone.0246102
10.1109/ROBOSOFT.2018.8404942
10.1117/12.2631311
10.1145/2601097.2601152
10.1089/soro.2017.0008
10.1117/12.57955
10.1109/LRA.2020.2975732
10.1109/tiv.2022.3168899
10.1089/soro.2018.0064
10.1109/ACCESS.2020.2970836
10.1002/adfm.202104665
10.1089/soro.2019.0033
10.1016/B978-0-12-814942-3.00010-6
10.1007/s12652-020-02560-4
10.1007/978-3-030-25332-5_42
10.1109/ICRA48506.2021.9561177
10.1109/SII46433.2020.9025832
10.1109/ICRAS52289.2021.9476651
10.1109/TII.2021.3071405
10.1016/j.sna.2021.113168
10.1002/advs.201800541
10.1007/978-981-16-6554-7_46
10.1016/j.knosys.2020.106617
10.1016/j.compag.2022.106702
10.20965/jrm.2022.p0294
10.5194/isprs-archives-XLVI-4-W4-2021-101-2021
10.1109/CVPR.2017.264
10.1109/IROS.2018.8594359
10.3390/act10060123
10.25165/j.ijabe.20211405.5902
10.1515/9783034615877.164
10.1109/WACV48630.2021.00121
10.1109/ACCESS.2020.2981400
10.1109/CVPR.2017.16
10.1016/j.sna.2017.04.047
10.1007/s10489-020-01827-9
10.3390/f12020131
10.1016/j.compositesb.2021.108748
10.1109/ACCESS.2021.3102399
10.1299/jsmeicam.2015.6.43
10.1109/CSICC52343.2021.9420573
10.1007/978-3-319-46460-2_13
10.1155/2019/6813719
10.1109/TASE.2021.3064065
10.1016/j.neucom.2020.09.030
10.1109/TBME.2021.3133075
10.1109/TMECH.2021.3078263
10.1109/IIPHDW.2018.8388338
10.1109/ICCV48922.2021.01595
10.1016/j.jweia.2020.104116
10.1038/s41578-018-0022-y
10.3390/act11010017
10.1007/s41095-021-0229-5
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2022.3204652
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 94375
ExternalDocumentID oai_doaj_org_article_f56f8f7a41ec4ca8baa9ff703d95c537
10_1109_ACCESS_2022_3204652
9878112
Genre orig-research
GrantInformation_xml – fundername: Japan Science and Technology Agency (JST), PRESTO, Japan
  grantid: JPMJPR185A
  funderid: 10.13039/501100002241
– fundername: JST Fusion Oriented REsearch for disruptive Science and Technology (FOREST) Program, Japan
  grantid: JPMJFR216T
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c474t-93676e87c26fa7ff8f2f76ac5fca5ce91d327347248187f7c08c1294006f59d73
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:29:21 EDT 2025
Mon Jun 30 03:17:18 EDT 2025
Tue Jul 01 04:21:25 EDT 2025
Thu Apr 24 23:08:23 EDT 2025
Wed Aug 27 02:18:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-93676e87c26fa7ff8f2f76ac5fca5ce91d327347248187f7c08c1294006f59d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1477-9273
0000-0002-2162-3798
0000-0002-4225-7037
0000-0002-3850-0321
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/9878112
PQID 2714898222
PQPubID 4845423
PageCount 13
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2022_3204652
crossref_primary_10_1109_ACCESS_2022_3204652
ieee_primary_9878112
proquest_journals_2714898222
doaj_primary_oai_doaj_org_article_f56f8f7a41ec4ca8baa9ff703d95c537
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Takaoka (ref49)
ref51
ref46
ref45
ref48
ref47
ref41
ref44
ref43
Qi (ref36) 2019
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
Liu (ref42) 2022
ref37
ref31
ref30
ref33
ref32
Yang (ref24); 33
ref2
ref1
ref39
ref38
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Gameworks (ref50) 2018
References_xml – ident: ref21
  doi: 10.1371/journal.pone.0246102
– ident: ref7
  doi: 10.1109/ROBOSOFT.2018.8404942
– ident: ref29
  doi: 10.1117/12.2631311
– ident: ref51
  doi: 10.1145/2601097.2601152
– ident: ref1
  doi: 10.1089/soro.2017.0008
– ident: ref54
  doi: 10.1117/12.57955
– ident: ref8
  doi: 10.1109/LRA.2020.2975732
– ident: ref33
  doi: 10.1109/tiv.2022.3168899
– ident: ref39
  doi: 10.1089/soro.2018.0064
– ident: ref46
  doi: 10.1109/ACCESS.2020.2970836
– ident: ref6
  doi: 10.1002/adfm.202104665
– ident: ref5
  doi: 10.1089/soro.2019.0033
– ident: ref10
  doi: 10.1016/B978-0-12-814942-3.00010-6
– ident: ref16
  doi: 10.1007/s12652-020-02560-4
– ident: ref26
  doi: 10.1007/978-3-030-25332-5_42
– volume-title: NVIDIA FleX
  year: 2018
  ident: ref50
– ident: ref41
  doi: 10.1109/ICRA48506.2021.9561177
– ident: ref12
  doi: 10.1109/SII46433.2020.9025832
– ident: ref22
  doi: 10.1109/ICRAS52289.2021.9476651
– ident: ref18
  doi: 10.1109/TII.2021.3071405
– ident: ref3
  doi: 10.1016/j.sna.2021.113168
– ident: ref13
  doi: 10.1002/advs.201800541
– ident: ref35
  doi: 10.1007/978-981-16-6554-7_46
– ident: ref17
  doi: 10.1016/j.knosys.2020.106617
– year: 2022
  ident: ref42
  article-title: Parameter identification and motion control for articulated rigid body robots using differentiable position-based dynamics
  publication-title: arXiv:2201.05753
– ident: ref34
  doi: 10.1016/j.compag.2022.106702
– ident: ref4
  doi: 10.20965/jrm.2022.p0294
– ident: ref31
  doi: 10.5194/isprs-archives-XLVI-4-W4-2021-101-2021
– ident: ref55
  doi: 10.1109/CVPR.2017.264
– ident: ref44
  doi: 10.1109/IROS.2018.8594359
– ident: ref11
  doi: 10.3390/act10060123
– ident: ref30
  doi: 10.25165/j.ijabe.20211405.5902
– ident: ref53
  doi: 10.1515/9783034615877.164
– ident: ref15
  doi: 10.1109/WACV48630.2021.00121
– ident: ref37
  doi: 10.1109/ACCESS.2020.2981400
– ident: ref28
  doi: 10.1109/CVPR.2017.16
– ident: ref48
  doi: 10.1016/j.sna.2017.04.047
– ident: ref20
  doi: 10.1007/s10489-020-01827-9
– ident: ref32
  doi: 10.3390/f12020131
– ident: ref2
  doi: 10.1016/j.compositesb.2021.108748
– ident: ref14
  doi: 10.1109/ACCESS.2021.3102399
– ident: ref52
  doi: 10.1299/jsmeicam.2015.6.43
– ident: ref19
  doi: 10.1109/CSICC52343.2021.9420573
– ident: ref38
  doi: 10.1007/978-3-319-46460-2_13
– ident: ref40
  doi: 10.1155/2019/6813719
– ident: ref23
  doi: 10.1109/TASE.2021.3064065
– start-page: 82
  volume-title: Proc. 5th Int. Conf. Manuf., Mach. Design Tribol.
  ident: ref49
  article-title: Fabrication of thin McKibben artificial muscle with various design parameters and their experimental evaluations
– ident: ref45
  doi: 10.1016/j.neucom.2020.09.030
– ident: ref25
  doi: 10.1109/TBME.2021.3133075
– ident: ref27
  doi: 10.1109/TMECH.2021.3078263
– ident: ref56
  doi: 10.1109/IIPHDW.2018.8388338
– ident: ref57
  doi: 10.1109/ICCV48922.2021.01595
– ident: ref47
  doi: 10.1016/j.jweia.2020.104116
– ident: ref9
  doi: 10.1038/s41578-018-0022-y
– ident: ref43
  doi: 10.3390/act11010017
– volume-title: PointNet-Autoencoder
  year: 2019
  ident: ref36
– volume: 33
  start-page: 5178
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref24
  article-title: Learning physical constraints with neural projections
– ident: ref58
  doi: 10.1007/s41095-021-0229-5
SSID ssj0000816957
Score 2.3626409
Snippet Flexible actuators are popular in the consumer and medical fields because of their flexibility and compliance. However, they are typically difficult to model...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 94363
SubjectTerms Actuators
Chamfering
Coders
Computational modeling
Deep learning
Deformation effects
McKibben Artificial muscle
modeling for soft robots
Modelling
Muscles
point cloud
Point cloud compression
Robots
Short term
Simulation
Soft actuators
Soft robotics
Solid modeling
Three dimensional models
Viscoelasticity
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwwIKIjyJQ-MBBJ_xmMJVBUDYqASm-U4NkJCKYIy8O-5S9yqCAkW1si5JO_iOz_L946QMy54kEV0qBnaAEEJdeaU5plrnDfcBVQhw9MWd2oyFbeP8nGl1ReeCevlgXvgLqNUsYzaiSJ44V1ZO4fbjDlvjPSSd3XkkPNWyFQXg8tCGamTzFCRm8tRVcEXASFk7IIzYIWSfUtFnWJ_arHyIy53yWa8TbbSKpGO-rfbIWuh3SWbK9qBAzLCLmZYS07HroZgliGjpCOsBwEaTbujAPR-9tzOafUy-2jeaf1Jr0N4pUlS9WmPTMc3D9UkS_0QMi-0mGcG1dVCqT1T0ekIsLColfMyeid9MEXDUaxGMwFZWEft89JDOodZqqI0jeb7ZL2dteGAUO6EbEyuvBNeQLgGozDbnVKwgghgckjYAhrrk1g49qx4sR1pyI3t8bSIp014Dsn58qbXXivj9-FXiPlyKApddxfA_Ta53_7l_iEZoMeWRkyJpbNg-3jhQZsm5btlGrgf6hWyw_949BHZwM_p92OOyfr87SOcwAplXp92P-MXoevfWA
  priority: 102
  providerName: Directory of Open Access Journals
Title Modeling Fabric-Type Actuator Using Point Clouds by Deep Learning
URI https://ieeexplore.ieee.org/document/9878112
https://www.proquest.com/docview/2714898222
https://doaj.org/article/f56f8f7a41ec4ca8baa9ff703d95c537
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuAAlIJYKJUPHJtt4md8XBZWVaUiDlTqzXIcGyGq3arNHuDXM-N4I15CvUVRbNkeezzfZOYbgLdCiqia5IkztEeAErvKayMq3_tghY_EQkbRFh_12aU8v1JXe3Ay5cLEGHPwWZzTY_6X32_Cllxlp4iP24ZKCj9A4Dbmak3-FCogYZUpxEJNbU8XyyXOASEg53PBEQcq_tvlkzn6S1GVvzRxvl5WT-BiN7AxquTbfDt08_DjD87G-478KTwudiZbjBvjAPbi-hk8-oV98BAWVAeNstHZyneoDivCpGxBGSUIxFkOJmCfNl_XA1teb7b9Heu-s_cx3rBCyvrlOVyuPnxenlWlokIVpJFDZYmfLbYmcJ28SalNPBntg0rBqxBt0wuiuzFc4j1ukgl1G9AgwHOuk7K9ES9gf71Zx5fAhJeqt7UOXgaJCh87RX3htUYbJGKXM-C7pXah0I1T1Ytrl2FHbd0oH0fycUU-MziZGt2MbBv___wdyXD6lKiy8wtce1dOnktK4zyNl00MMvi285781LXorQpKmBkckrymToqoZnC02xGuHOs7xw2iR2I85K_-3eo1PKQBjj6aI9gfbrfxDVotQ3ec0f5x3rQ_ARsR6II
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VcgAOFCgVCwV8gBvZZv2Ik0MP2y2rLS0Vh1bqzTiOjRDVpupmhcpv4a_w3zqTeCNe4laJWxTZo8T-Mq-MvwF4JaTwahQscYZWGKD4MrGZFomtrCuE9cRCRtUWx9nsVL47U2dr8L0_C-O9b4vP_JAu23_5Ve2WlCrbwfg4R_8gllAe-quvGKAtdg_2cTdfcz59ezKZJbGHQOKklk1SECOZz7XjWbA6hDzwoDPrVHBWOV-MKkEEL5pLtFw6aJfmDk0gIjsLqqi0QLm34Db6GYp3p8P6DA61rCiUjlRGo7TYGU8muGoYdHI-FBwjT8V_MXdtV4DYxuUP3d8atOkG_FgtRVfH8mW4bMqh-_YbS-T_ulYP4H70pNm4g_5DWPPzR3DvJ37FTRhTpzc6b8-mtkSFn1DUzcZ0ZqapL1lbLsE-1J_nDZuc18tqwcortu_9BYu0s58ew-mNvMMWrM_ruX8CTFipqiLNnJVOoklDoagRbZahl-VR5AD4amuNi4Tq1Nfj3LSBVVqYDg-G8GAiHgbwpp900fGJ_Hv4HmGmH0pk4O0N3GsTdYsJKsP31FaOvJPO5qW1lIlPRVUop4QewCbhoxcSoTGA7RUCTVRcC8M1xsfE6cif_n3WS7gzO3l_ZI4Ojg-fwV162C4jtQ3rzeXSP0cfrSlftJ8Kg483jbdrPWRDpA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Fabric-Type+Actuator+Using+Point+Clouds+by+Deep+Learning&rft.jtitle=IEEE+access&rft.au=Peng%2C+Yanhong&rft.au=Yamaguchi%2C+Hiroki&rft.au=Funabora%2C+Yuki&rft.au=Doki%2C+Shinji&rft.date=2022&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=10&rft.spage=94363&rft.epage=94375&rft_id=info:doi/10.1109%2FACCESS.2022.3204652&rft.externalDocID=9878112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon