Immune correlates of postexposure vaccine protection against Marburg virus

Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; p. 3071
Main Authors Woolsey, Courtney, Jankeel, Allen, Matassov, Demetrius, Geisbert, Joan B., Agans, Krystle N., Borisevich, Viktoriya, Cross, Robert W., Deer, Daniel J., Fenton, Karla A., Latham, Theresa E., Gerardi, Cheryl S., Mire, Chad E., Eldridge, John H., Messaoudi, Ilhem, Geisbert, Thomas W.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.02.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60–75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20–30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80–89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1 , LAG3 ) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival.
AbstractList Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60-75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20-30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80-89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1, LAG3) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival.Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60-75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20-30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80-89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1, LAG3) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival.
Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60–75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20–30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80–89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1 , LAG3 ) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival.
Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60-75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20-30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80-89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1, LAG3) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival.
ArticleNumber 3071
Author Mire, Chad E.
Borisevich, Viktoriya
Gerardi, Cheryl S.
Jankeel, Allen
Fenton, Karla A.
Geisbert, Joan B.
Deer, Daniel J.
Eldridge, John H.
Agans, Krystle N.
Woolsey, Courtney
Matassov, Demetrius
Messaoudi, Ilhem
Geisbert, Thomas W.
Latham, Theresa E.
Cross, Robert W.
Author_xml – sequence: 1
  givenname: Courtney
  orcidid: 0000-0003-3389-0137
  surname: Woolsey
  fullname: Woolsey, Courtney
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 2
  givenname: Allen
  surname: Jankeel
  fullname: Jankeel, Allen
  organization: Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine
– sequence: 3
  givenname: Demetrius
  surname: Matassov
  fullname: Matassov, Demetrius
  organization: Department of Virology and Vaccine Vectors, Profectus BioSciences Inc
– sequence: 4
  givenname: Joan B.
  surname: Geisbert
  fullname: Geisbert, Joan B.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 5
  givenname: Krystle N.
  orcidid: 0000-0002-7319-6935
  surname: Agans
  fullname: Agans, Krystle N.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 6
  givenname: Viktoriya
  surname: Borisevich
  fullname: Borisevich, Viktoriya
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 7
  givenname: Robert W.
  surname: Cross
  fullname: Cross, Robert W.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 8
  givenname: Daniel J.
  surname: Deer
  fullname: Deer, Daniel J.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 9
  givenname: Karla A.
  surname: Fenton
  fullname: Fenton, Karla A.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 10
  givenname: Theresa E.
  surname: Latham
  fullname: Latham, Theresa E.
  organization: Department of Virology and Vaccine Vectors, Profectus BioSciences Inc
– sequence: 11
  givenname: Cheryl S.
  surname: Gerardi
  fullname: Gerardi, Cheryl S.
  organization: Department of Virology and Vaccine Vectors, Profectus BioSciences Inc
– sequence: 12
  givenname: Chad E.
  orcidid: 0000-0001-7596-1808
  surname: Mire
  fullname: Mire, Chad E.
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
– sequence: 13
  givenname: John H.
  surname: Eldridge
  fullname: Eldridge, John H.
  organization: Department of Virology and Vaccine Vectors, Profectus BioSciences Inc., Department of Immunology, Profectus BioSciences Inc
– sequence: 14
  givenname: Ilhem
  surname: Messaoudi
  fullname: Messaoudi, Ilhem
  organization: Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine
– sequence: 15
  givenname: Thomas W.
  surname: Geisbert
  fullname: Geisbert, Thomas W.
  email: twgeisbe@utmb.edu
  organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32080323$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9PHCEYxkljU636BXowk_TSy7TAywxwMWmMbW1seqlnwrLvrJgZWIHZ6Lcv29XWepADf8LvefLA85bshRiQkHeMfmQU1KcsWKdVSzltO61l38IrcsCp6FoOnO892e-T45xvaB0d14LpN2QfOFUUOByQ7xfTNAdsXEwJR1swN3Fo1jEXvKvznLDZWOd8RdYpFnTFx9DYlfUhl-aHTYs5rZqNT3M-Iq8HO2Y8flgPydWX819n39rLn18vzj5ftk5IUVqlUckl2J5bDYCq650aBrVwHdOLQYmeMqud1UvYHrkUTPKOWqElV6C5hUNyuvNdz4sJlw5DSXY06-Qnm-5NtN78fxP8tVnFjZEUgHFaDT48GKR4O2MuZvLZ4TjagHHOhkOvQUupREXfP0Nv4pxCfV6lOl1BBapSJ08T_Y3y-M0VUDvApZhzwsE4X-z2K2tAPxpGzbZUsyvV1FLNn1LNVsqfSR_dXxTBTpQrHFaY_sV-QfUb1Jy0Ow
CitedBy_id crossref_primary_10_3390_vaccines10091384
crossref_primary_10_3390_vaccines10101582
crossref_primary_10_1128_mBio_01517_21
crossref_primary_10_1080_08916934_2022_2103800
crossref_primary_10_1016_j_vaccine_2023_12_053
crossref_primary_10_1038_s41467_023_37050_6
crossref_primary_10_1055_s_0040_1716334
crossref_primary_10_1016_j_celrep_2022_111094
crossref_primary_10_1172_JCI164946
crossref_primary_10_1080_22221751_2022_2086072
crossref_primary_10_3390_v16081181
crossref_primary_10_1093_infdis_jiad207
crossref_primary_10_1016_j_banm_2023_02_013
crossref_primary_10_1371_journal_pntd_0010433
crossref_primary_10_1080_07391102_2024_2446673
crossref_primary_10_1093_infdis_jiad157
crossref_primary_10_1038_s41598_023_31027_7
crossref_primary_10_1080_17460441_2024_2386100
crossref_primary_10_1177_1945892421998143
crossref_primary_10_1371_journal_ppat_1010805
crossref_primary_10_1073_pnas_2200065119
crossref_primary_10_3390_pathogens10091092
Cites_doi 10.1073/pnas.1209591110
10.3201/eid2007.131265
10.1038/nm1258
10.1182/blood-2009-02-203141
10.1016/j.ebiom.2017.03.045
10.1007/s00705-017-3462-6
10.1016/j.celrep.2016.01.049
10.3389/fimmu.2017.00050
10.1038/nature17949
10.1093/infdis/jiv351
10.1089/vim.2008.0023
10.1128/JVI.01768-07
10.1093/infdis/jiy352
10.1093/infdis/jiy293
10.1073/pnas.90.13.5914
10.3201/eid1607.100159
10.1002/1521-4141(200010)30:10<2972::AID-IMMU2972>3.0.CO;2-#
10.1093/nar/gku1003
10.1371/journal.pone.0094355
10.1073/pnas.1620959114
10.1016/S0140-6736(06)68546-2
10.1038/sj.gene.6364173
10.1038/s41598-017-01032-8
10.1016/j.it.2013.10.004
10.1084/jem.20170457
10.3389/fimmu.2014.00046
10.3201/eid2406.172165
10.1128/JVI.01147-15
10.1371/journal.ppat.1000536
10.1016/S1471-4906(01)02060-9
10.3389/fimmu.2016.00635
10.1073/pnas.1114981109
10.1128/JVI.02575-10
10.1089/vim.2014.0069
10.1016/j.chom.2018.08.003
10.1007/978-3-8274-2219-4
10.1089/vim.2014.0108
10.1128/JVI.01142-15
10.1371/journal.pone.0183594
10.1186/1471-2164-15-960
10.1016/j.celrep.2014.05.038
10.1128/JVI.00543-16
10.1002/eji.201242433
10.1016/j.immuni.2008.08.017
10.1016/S0140-6736(16)32621-6
10.1128/JVI.00959-06
10.1084/jem.20170161
10.1038/nrd.2017.251
10.1016/j.coi.2005.04.005
10.1371/journal.pone.0191010
10.1093/bioinformatics/btw535
10.1016/j.immuni.2017.12.004
10.1172/JCI83162
10.1093/nar/gks1215
10.4049/jimmunol.1201819
10.3389/fimmu.2019.00327
10.1128/JVI.75.22.11025-11033.2001
10.1006/viro.1999.9614
10.1093/infdis/jiw218
10.1111/j.1365-2567.2008.02813.x
10.1083/jcb.112.3.377
10.1111/j.1365-2443.2008.01197.x
10.1038/sj.cr.7310002
10.4049/jimmunol.1502487
10.1084/jem.20032141
10.3389/fimmu.2018.03071
10.1007/s00441-001-0479-6
ContentType Journal Article
Copyright The Author(s) 2020
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-020-59976-3
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC7033120
32080323
10_1038_s41598_020_59976_3
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: U19 AI142785
– fundername: NIAID NIH HHS
  grantid: UC7 AI094660
– fundername: NIAID NIH HHS
  grantid: U19 AI109711
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-89e87d3a62a933e856c8ff8bc519bf84601a9ca9d39bf827417250a49728392a3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 17:41:40 EDT 2025
Thu Jul 10 23:50:40 EDT 2025
Wed Aug 13 07:18:22 EDT 2025
Thu Apr 03 07:07:05 EDT 2025
Thu Apr 24 22:53:05 EDT 2025
Tue Jul 01 03:24:00 EDT 2025
Fri Feb 21 02:36:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-89e87d3a62a933e856c8ff8bc519bf84601a9ca9d39bf827417250a49728392a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7319-6935
0000-0001-7596-1808
0000-0003-3389-0137
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-020-59976-3
PMID 32080323
PQID 2359369838
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7033120
proquest_miscellaneous_2369397784
proquest_journals_2359369838
pubmed_primary_32080323
crossref_citationtrail_10_1038_s41598_020_59976_3
crossref_primary_10_1038_s41598_020_59976_3
springer_journals_10_1038_s41598_020_59976_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-20
PublicationDateYYYYMMDD 2020-02-20
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-20
  day: 20
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References SingerBDKingLSD’AlessioFRRegulatory T Cells as ImmunotherapyFrontiers in Immunology201454624575095392006510.3389/fimmu.2014.000461:CAS:528:DC%2BC2MXht1ehurvE
StonierSWMarburg virus survivor immune responses are Th1 skewed with limited neutralizing antibody responsesJ Exp Med201721492563257228724616558412510.1084/jem.201701611:CAS:528:DC%2BC1cXjtlems7c%3D
TanakaTHu-LiJSederRAFazekas de St GrothBPaulWEInterleukin 4 suppresses interleukin 2 and interferon gamma production by naive T cells stimulated by accessory cell-dependent receptor engagementProceedings of the National Academy of Sciences of the United States of America19939013591459181993PNAS...90.5914T1:CAS:528:DyaK3sXkvFegurw%3D81009984683710.1073/pnas.90.13.5914
WilliamsKJQiuXFernandoLJonesSMAlimontiJBVSVΔG/EBOV GP-induced innate protection enhances natural killer cell activity to increase survival in a lethal mouse adapted Ebola virus infectionViral Immunol.201528151611:CAS:528:DC%2BC2MXjvFWntw%3D%3D2549445710.1089/vim.2014.0069
de La VegaM-AEbola viral load at diagnosis associates with patient outcome and outbreak evolutionThe Journal of Clinical Investigation2015125124421442810.1172/JCI83162
Knust, B. et al. Multidistrict Outbreak of Marburg Virus Disease-Uganda, 2012. The Journal of infectious diseases, 212 Suppl 2(Suppl 2), S119–S128 (2015).
CrossRWMireCEFeldmannHGeisbertTWPost-exposure treatments for Ebola and Marburg virus infectionsNature Reviews Drug Discovery2018174131:CAS:528:DC%2BC1cXhvVeqtLo%3D2937513910.1038/nrd.2017.251
FritzEGeisbertJBGeisbertTWHensleyLEReedDSCellular Immune Response to Marburg Virus Infection in Cynomolgus MacaquesViral Immunol.20082133553631:CAS:528:DC%2BD1cXhtFWiur7P1878894310.1089/vim.2008.0023
RanaMAModulation of Wnt signaling pathway by hepatitis B virusArch Virol201716210293729472868528610.1007/s00705-017-3462-61:CAS:528:DC%2BC2sXhtFelsL7L
WeinsteinJSSTAT4 and T-bet control follicular helper T cell development in viral infectionsThe Journal of Experimental Medicine201821513373551:CAS:528:DC%2BC1cXhsF2rt7jN29212666574884910.1084/jem.20170457
Villaseñor, T. et al Activation of the Wnt pathway by Mycobacterium tuberculosis: A Wnt-Wnt Situation. Frontiers in Immunology, 8(FEB), 1–16 (2017).
SchusterNKrieglsteinKMechanisms of TGF-β-mediated apoptosisCell and Tissue Research200230711141:CAS:528:DC%2BD3MXovFSgsLs%3D1181030910.1007/s00441-001-0479-6
Henao-RestrepoAMEfficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!)The Lancet2017389100685055181:CAS:528:DC%2BC28XitFGitbbJ10.1016/S0140-6736(16)32621-6
LinKLTemporal Characterization of Marburg Virus Angola Infection following Aerosol Challenge in Rhesus MacaquesJournal of Virology20158919987598851:CAS:528:DC%2BC2MXhvFCjsbrJ26202230457792010.1128/JVI.01147-15
LiSGowansEJChougnetCPlebanskiMDittmerUNatural Regulatory T Cells and Persistent Viral InfectionJournal of Virology200882121301:CAS:528:DC%2BD1cXosQ%3D%3D1785553710.1128/JVI.01768-07
SchoeppRJRossiCAKhanSHGobaAFairJNUndiagnosed acute viral febrile illnesses, Sierra LeoneEmerg Infect Dis201420711768224959946407386410.3201/eid2007.131265
ZhaoFParacrine Wnt5a-β-Catenin Signaling Triggers a Metabolic Program that Drives Dendritic Cell TolerizationImmunity2018481147160.e71:CAS:528:DC%2BC1cXhtVOisrc%3D29343435577728710.1016/j.immuni.2017.12.004
Centers for Disease Control and Prevention. CDC Newsroom Releases. Deadly Marburg Virus Found in Sierra Leone Bats, 21 December 2018. Atlanta, Georgia: Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/media/releases/2018/p1220-marburg-found-in-bats.html. Accessed 19 February 2019.
SojkaDKHuangY-HFowellDJMechanisms of regulatory T-cell suppression – a diverse arsenal for a moving targetImmunology2008124113221:CAS:528:DC%2BD1cXltlens7s%3D18346152243437510.1111/j.1365-2567.2008.02813.x
SchneiderPThe role of APRIL and BAFF in lymphocyte activationCurrent Opinion in Immunology20051732822891:CAS:528:DC%2BD2MXjvFeksLs%3D1588611810.1016/j.coi.2005.04.005
PawęskaJTMarburg Virus Infection in Egyptian Rousette Bats, South Africa, 2013–2014Emerging Infectious Diseases20182461134113729774854600485310.3201/eid2406.172165
Daddario-DiCaprioKMM. Cross-Protection against Marburg Virus Strains by Using a Live, Attenuated Recombinant VaccineJournal of Virology20068019965996661:CAS:528:DC%2BD28XhtVWgt77P16973570161722210.1128/JVI.00959-06
YaoSPD-1 on dendritic cells impedes innate immunity against bacterial infectionBlood2009113581181:CAS:528:DC%2BD1MXnsVSksb8%3D19339692270032010.1182/blood-2009-02-203141
AndersonSLCartonJMLouJXingLRubinBYInterferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virusVirology199925618141:CAS:528:DyaK1MXhvFWiu74%3D1008722110.1006/viro.1999.9614
ZhuJYamaneHCote-SierraJGuoLPaulWEGATA-3 promotes Th2 responses through three different mechanisms: Induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factorsCell Research20061613101:CAS:528:DC%2BD28XlvFSitw%3D%3D1646787010.1038/sj.cr.7310002
RusinovaIrinaForsterSamYuSimonKannanAnithaMasseMarionCummingHelenChapmanRossHertzogPaul J.INTERFEROME v2.0: an updated database of annotated interferon-regulated genesNucleic Acids Research201241D1D1040D104623203888353120510.1093/nar/gks12151:CAS:528:DC%2BC38XhvV2ksbfJ
ThieuVTStat4 is required for T-bet to promote IL-12-dependent Th1 fate determinationImmunity20082956796901:CAS:528:DC%2BD1cXhsVaqs7fL18993086276804010.1016/j.immuni.2008.08.017
CoffinKMPersistent Marburg Virus Infection in the Testes of Nonhuman Primate SurvivorsCell Host & Microbe2018243405416.e31:CAS:528:DC%2BC1cXhs1enurfE10.1016/j.chom.2018.08.003
MoreSRegulation of influenza virus replication by Wnt/β-catenin signalingPLoS One201813112110.1371/journal.pone.01910101:CAS:528:DC%2BC1cXhs1Wksr7L
WoolseyCPostexposure Efficacy of Recombinant Vesicular Stomatitis Virus Vectors Against High and Low Doses of Marburg Virus Variant Angola in Nonhuman PrimatesThe Journal of infectious diseases2018218suppl_5S582S587377281829939296624956510.1093/infdis/jiy293
FrishbergABrodtASteuermanYGat-ViksIImmQuant: a user-friendly tool for inferring immune cell-type composition from gene- expression dataBioinformatics20163224384238431:CAS:528:DC%2BC2sXhsVSksrzL27531105516706210.1093/bioinformatics/btw535
World Health Organization. Disease Outbreak News- Marburg virus disease – Uganda, 25 October 2017. Geneva, Switzerland: World Health Organization. Available at: https://www.who.int/csr/don/25-october-2017-marburg-uganda/en/. Accessed 19 February 2019.
ValmasCBaslerCFMarburg Virus VP40 Antagonizes Interferon Signaling in a Species-Specific MannerJournal of Virology2011859430943171:CAS:528:DC%2BC3MXhtVSmsLnJ21325424312624810.1128/JVI.02575-10
StröherUInfection and activation of monocytes by Marburg and Ebola virusesJournal of Virology2001752211025331160274311468310.1128/JVI.75.22.11025-11033.2001
Murphy, K, Travers, P, and Walport, M. Janeway’s Immunobiology Seventh Edition. (Garland Science, New York, 2008).
World Health Organization. Preliminary results on the efficacy of rVSV-ZEBOV-GP Ebola vaccine using the ring vaccination strategy in the control of an Ebola outbreak in the Democratic Republic of the Congo: an example of integration of research into epidemic response. Geneva, Switzerland: World Health Organization. Available at: https://www.who.int/csr/resources/publications/ebola/ebola-ring-vaccination-results-12-april-2019.pdf. Accessed 07 January 2020.
MireCEDurability of a vesicular stomatitis virus-based marburg virus vaccine in nonhuman primatesPloS One201494e943552014PLoSO...994355M24759889399738310.1371/journal.pone.00943551:CAS:528:DC%2BC2cXhsFemur7L
HarmonBA Genome-Wide RNA Interference Screen Identifies a Role for Wnt/β-Catenin Signaling during Rift Valley Fever Virus InfectionJournal of Virology20169016708470971:CAS:528:DC%2BC28XhslyrtL7E27226375498466210.1128/JVI.00543-16
BoisenMLMultiple circulating infections can mimic the early stages of viral hemorrhagic fevers and possible human exposure to filoviruses in Sierra Leone prior to the 2014 outbreakViral Immunol201528119311:CAS:528:DC%2BC2MXjvFWnsA%3D%3D25531344428711610.1089/vim.2014.0108
JonesSMLive attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg virusesNature Medicine20051177867901:CAS:528:DC%2BD2MXmt1aju7Y%3D1593749510.1038/nm1258
LiuSYSanchezDJAliyariRLuSChengGSystematic identification of type I and type II interferon-induced antiviral factorsProceedings of the National Academy of Sciences201210911423942442012PNAS..109.4239L1:CAS:528:DC%2BC38XkslCltbk%3D10.1073/pnas.1114981109
SchaaleKWnt6 Is Expressed in Granulomatous Lesions of Mycobacterium tuberculosis-Infected Mice and Is Involved in Macrophage Differentiation and ProliferationThe Journal of Immunology201319110518251951:CAS:528:DC%2BC3sXhslWls7fM2412368110.4049/jimmunol.1201819
WarfieldKLRole of natural killer cells in innate protection against lethal ebola virus infectionThe Journal of experimental medicine200420021691791:CAS:528:DC%2BD2cXmtFSqsrc%3D15249592221200710.1084/jem.20032141
SuBWaneckGLFlavellRABothwellALThe glycosyl phosphatidylinositol anchor is critical for Ly-6A/E-mediated T cell activationJ Cell Biol19911123773841:CAS:528:DyaK3MXmtVWhtQ%3D%3D182508410.1083/jcb.112.3.377
MavinEHuman Regulatory T Cells Mediate Transcriptional Modulation of Dendritic Cell FunctionThe Journal of Immunology201719811381461:CAS:528:DC%2BC28XitFSgu7%2FF2789517310.4049/jimmunol.1502487
DahlkeCDose-dependent T-cell Dynamics and Cytokine Cascade Following rVSV-ZEBOV ImmunizationEBioMedicine20171910711828434944544060610.1016/j.ebiom.2017.03.045
EdwardsMRDifferential regulation of interferon responses by Ebola and Marburg virus VP35 proteinsCell Reports2016147163216401:CAS:528:DC%2BC28XisFOht7c%3D2687616510.1016/j.celrep.2016.01.049
LeeJThe MHC class
C Dahlke (59976_CR23) 2017; 19
59976_CR1
K Schaale (59976_CR49) 2013; 191
59976_CR2
AR Abbas (59976_CR51) 2005; 6
59976_CR3
59976_CR4
IS Caballero (59976_CR28) 2014; 15
59976_CR7
E Fritz (59976_CR60) 2008; 21
SM Jones (59976_CR12) 2005; 11
B Su (59976_CR31) 1991; 112
59976_CR26
SL Anderson (59976_CR34) 1999; 256
59976_CR68
59976_CR69
JS Weinstein (59976_CR38) 2018; 215
TW Geisbert (59976_CR15) 2010; 16
A Marzi (59976_CR20) 2016; 214
KM Daddario-DiCaprio (59976_CR18) 2006; 367
ML Boisen (59976_CR8) 2015; 28
MA Rana (59976_CR71) 2017; 162
JH Connor (59976_CR27) 2015; 89
C Valmas (59976_CR57) 2011; 85
KL Lin (59976_CR63) 2015; 89
S Shydlovskyi (59976_CR35) 2017; 114
E Speranza (59976_CR24) 2018; 218
CE Mire (59976_CR19) 2014; 9
VT Thieu (59976_CR37) 2008; 29
A Marzi (59976_CR13) 2019; 9
L Cosmi (59976_CR41) 2000; 30
MR Edwards (59976_CR58) 2016; 14
E Mavin (59976_CR48) 2017; 198
D Szklarczyk (59976_CR33) 2015; 43
M-A de La Vega (59976_CR25) 2015; 125
U Ströher (59976_CR52) 2001; 75
KM Daddario-DiCaprio (59976_CR14) 2006; 80
S More (59976_CR70) 2018; 13
AM Henao-Restrepo (59976_CR10) 2017; 389
KJ Williams (59976_CR56) 2015; 28
S Backes (59976_CR32) 2014; 8
BD Singer (59976_CR54) 2014; 5
J Lee (59976_CR64) 2017; 12
RJ Schoepp (59976_CR9) 2014; 20
C Woolsey (59976_CR17) 2018; 218
E Maier (59976_CR43) 2012; 42
S Yao (59976_CR66) 2009; 113
59976_CR40
AR Menicucci (59976_CR22) 2017; 7
SW Stonier (59976_CR61) 2017; 214
E Schmitt (59976_CR44) 2014; 35
F Zhao (59976_CR47) 2018; 48
SY Liu (59976_CR29) 2012; 109
N Schuster (59976_CR45) 2002; 307
KL Warfield (59976_CR55) 2004; 200
T Tanaka (59976_CR62) 1993; 90
J Zhu (59976_CR42) 2006; 16
MA Cooper (59976_CR59) 2001; 22
YL Chen (59976_CR30) 2008; 13
Irina Rusinova (59976_CR36) 2012; 41
JS Towner (59976_CR5) 2009; 5
JT Pawęska (59976_CR6) 2018; 24
KM Coffin (59976_CR53) 2018; 24
P Schneider (59976_CR39) 2005; 17
A Frishberg (59976_CR50) 2016; 32
59976_CR11
RW Cross (59976_CR16) 2018; 17
P Ruibal (59976_CR73) 2016; 533
IT Schrijver (59976_CR65) 2019; 10
B Harmon (59976_CR72) 2016; 90
A Marzi (59976_CR21) 2013; 110
DK Sojka (59976_CR46) 2008; 124
S Li (59976_CR67) 2008; 82
References_xml – reference: BoisenMLMultiple circulating infections can mimic the early stages of viral hemorrhagic fevers and possible human exposure to filoviruses in Sierra Leone prior to the 2014 outbreakViral Immunol201528119311:CAS:528:DC%2BC2MXjvFWnsA%3D%3D25531344428711610.1089/vim.2014.0108
– reference: Feldmann, H., Sanchez, A. & Geisbert, T. W. Fields Virology: Sixth Edition. Filoviridae: Ebola and Marburg Viruses. (Lippincott, Williams, and Wilkins, Philadelphia, 2013).
– reference: RusinovaIrinaForsterSamYuSimonKannanAnithaMasseMarionCummingHelenChapmanRossHertzogPaul J.INTERFEROME v2.0: an updated database of annotated interferon-regulated genesNucleic Acids Research201241D1D1040D104623203888353120510.1093/nar/gks12151:CAS:528:DC%2BC38XhvV2ksbfJ
– reference: ChenYLLinDWChangZFIdentification of a putative human mitochondrial thymidine monophosphate kinase associated with monocytic/macrophage terminal differentiationGenes to Cells20081376796891:CAS:528:DC%2BD1cXosVKrsr4%3D1849835410.1111/j.1365-2443.2008.01197.x
– reference: SzklarczykDSTRING v10: protein–protein interaction networks, integrated over the tree of lifeNucleic Acids Research201543D1D447D4521:CAS:528:DC%2BC2sXhtVymt7bE2535255310.1093/nar/gku1003
– reference: LiSGowansEJChougnetCPlebanskiMDittmerUNatural Regulatory T Cells and Persistent Viral InfectionJournal of Virology200882121301:CAS:528:DC%2BD1cXosQ%3D%3D1785553710.1128/JVI.01768-07
– reference: PawęskaJTMarburg Virus Infection in Egyptian Rousette Bats, South Africa, 2013–2014Emerging Infectious Diseases20182461134113729774854600485310.3201/eid2406.172165
– reference: FrishbergABrodtASteuermanYGat-ViksIImmQuant: a user-friendly tool for inferring immune cell-type composition from gene- expression dataBioinformatics20163224384238431:CAS:528:DC%2BC2sXhsVSksrzL27531105516706210.1093/bioinformatics/btw535
– reference: CooperMAFehnigerTACaligiuriMAThe biology of human natural killer-cell subsetsTrends Immunol.200122116336401:CAS:528:DC%2BD3MXot1Siuro%3D1169822510.1016/S1471-4906(01)02060-9
– reference: World Health Organization. Preliminary results on the efficacy of rVSV-ZEBOV-GP Ebola vaccine using the ring vaccination strategy in the control of an Ebola outbreak in the Democratic Republic of the Congo: an example of integration of research into epidemic response. Geneva, Switzerland: World Health Organization. Available at: https://www.who.int/csr/resources/publications/ebola/ebola-ring-vaccination-results-12-april-2019.pdf. Accessed 07 January 2020.
– reference: JonesSMLive attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg virusesNature Medicine20051177867901:CAS:528:DC%2BD2MXmt1aju7Y%3D1593749510.1038/nm1258
– reference: BackesSThe Mammalian Response to Virus Infection Is Independent of Small RNA SilencingCell Reports2014811141251:CAS:528:DC%2BC2cXhtVCjurzP2495365610.1016/j.celrep.2014.05.038
– reference: RuibalPUnique human immune signature of Ebola virus disease in GuineaNature201653376011001042016Natur.533..100R1:CAS:528:DC%2BC28XntlKhtL4%3D27147028487696010.1038/nature17949
– reference: Daddario-DiCaprioKMPostexposure protection against Marburg haemorrhagic fever with recombinant vesicular stomatitis virus vectors in non-human primates: an efficacy assessmentLancet2006367952013994041665064910.1016/S0140-6736(06)68546-2
– reference: FritzEGeisbertJBGeisbertTWHensleyLEReedDSCellular Immune Response to Marburg Virus Infection in Cynomolgus MacaquesViral Immunol.20082133553631:CAS:528:DC%2BD1cXhtFWiur7P1878894310.1089/vim.2008.0023
– reference: ShydlovskyiSNucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1Proceedings of the National Academy of Sciences201711428E5559E55681:CAS:528:DC%2BC2sXhtVGns7nJ10.1073/pnas.1620959114
– reference: ZhaoFParacrine Wnt5a-β-Catenin Signaling Triggers a Metabolic Program that Drives Dendritic Cell TolerizationImmunity2018481147160.e71:CAS:528:DC%2BC1cXhtVOisrc%3D29343435577728710.1016/j.immuni.2017.12.004
– reference: SchaaleKWnt6 Is Expressed in Granulomatous Lesions of Mycobacterium tuberculosis-Infected Mice and Is Involved in Macrophage Differentiation and ProliferationThe Journal of Immunology201319110518251951:CAS:528:DC%2BC3sXhslWls7fM2412368110.4049/jimmunol.1201819
– reference: Daddario-DiCaprioKMM. Cross-Protection against Marburg Virus Strains by Using a Live, Attenuated Recombinant VaccineJournal of Virology20068019965996661:CAS:528:DC%2BD28XhtVWgt77P16973570161722210.1128/JVI.00959-06
– reference: RanaMAModulation of Wnt signaling pathway by hepatitis B virusArch Virol201716210293729472868528610.1007/s00705-017-3462-61:CAS:528:DC%2BC2sXhtFelsL7L
– reference: CrossRWMireCEFeldmannHGeisbertTWPost-exposure treatments for Ebola and Marburg virus infectionsNature Reviews Drug Discovery2018174131:CAS:528:DC%2BC1cXhvVeqtLo%3D2937513910.1038/nrd.2017.251
– reference: LiuSYSanchezDJAliyariRLuSChengGSystematic identification of type I and type II interferon-induced antiviral factorsProceedings of the National Academy of Sciences201210911423942442012PNAS..109.4239L1:CAS:528:DC%2BC38XkslCltbk%3D10.1073/pnas.1114981109
– reference: AndersonSLCartonJMLouJXingLRubinBYInterferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virusVirology199925618141:CAS:528:DyaK1MXhvFWiu74%3D1008722110.1006/viro.1999.9614
– reference: MarziAEfficacy of Vesicular Stomatitis Virus–Ebola Virus Postexposure Treatment in Rhesus Macaques Infected With Ebola Virus MakonaThe Journal of Infectious Diseases2016214Suppl 3S360S3661:CAS:528:DC%2BC1cXktFCgtbw%3D27496978505046810.1093/infdis/jiw218
– reference: ConnorJHTranscriptional Profiling of the Immune Response to Marburg Virus InfectionJournal of Virology20158919986598741:CAS:528:DC%2BC2MXhvFKnu7vO26202234457790110.1128/JVI.01142-15
– reference: MavinEHuman Regulatory T Cells Mediate Transcriptional Modulation of Dendritic Cell FunctionThe Journal of Immunology201719811381461:CAS:528:DC%2BC28XitFSgu7%2FF2789517310.4049/jimmunol.1502487
– reference: Henao-RestrepoAMEfficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!)The Lancet2017389100685055181:CAS:528:DC%2BC28XitFGitbbJ10.1016/S0140-6736(16)32621-6
– reference: Murphy, K, Travers, P, and Walport, M. Janeway’s Immunobiology Seventh Edition. (Garland Science, New York, 2008).
– reference: SojkaDKHuangY-HFowellDJMechanisms of regulatory T-cell suppression – a diverse arsenal for a moving targetImmunology2008124113221:CAS:528:DC%2BD1cXltlens7s%3D18346152243437510.1111/j.1365-2567.2008.02813.x
– reference: World Health Organization. Disease Outbreak News- Marburg virus disease – Uganda, 25 October 2017. Geneva, Switzerland: World Health Organization. Available at: https://www.who.int/csr/don/25-october-2017-marburg-uganda/en/. Accessed 19 February 2019.
– reference: MarziAProtection Against Marburg Virus Using a Recombinant VSV-Vaccine Depends on T and B Cell ActivationFrontiers in immunology20199307130723475635010310.3389/fimmu.2018.030711:CAS:528:DC%2BC1MXht1eqt7vK
– reference: SingerBDKingLSD’AlessioFRRegulatory T Cells as ImmunotherapyFrontiers in Immunology201454624575095392006510.3389/fimmu.2014.000461:CAS:528:DC%2BC2MXht1ehurvE
– reference: ThieuVTStat4 is required for T-bet to promote IL-12-dependent Th1 fate determinationImmunity20082956796901:CAS:528:DC%2BD1cXhsVaqs7fL18993086276804010.1016/j.immuni.2008.08.017
– reference: LinKLTemporal Characterization of Marburg Virus Angola Infection following Aerosol Challenge in Rhesus MacaquesJournal of Virology20158919987598851:CAS:528:DC%2BC2MXhvFCjsbrJ26202230457792010.1128/JVI.01147-15
– reference: CaballeroISLassa and Marburg viruses elicit distinct host transcriptional responses early after infectionBMC Genomics201415125377889423272110.1186/1471-2164-15-9601:CAS:528:DC%2BC2MXhtl2rtLk%3D
– reference: MoreSRegulation of influenza virus replication by Wnt/β-catenin signalingPLoS One201813112110.1371/journal.pone.01910101:CAS:528:DC%2BC1cXhs1Wksr7L
– reference: Villaseñor, T. et al Activation of the Wnt pathway by Mycobacterium tuberculosis: A Wnt-Wnt Situation. Frontiers in Immunology, 8(FEB), 1–16 (2017).
– reference: TanakaTHu-LiJSederRAFazekas de St GrothBPaulWEInterleukin 4 suppresses interleukin 2 and interferon gamma production by naive T cells stimulated by accessory cell-dependent receptor engagementProceedings of the National Academy of Sciences of the United States of America19939013591459181993PNAS...90.5914T1:CAS:528:DyaK3sXkvFegurw%3D81009984683710.1073/pnas.90.13.5914
– reference: SchoeppRJRossiCAKhanSHGobaAFairJNUndiagnosed acute viral febrile illnesses, Sierra LeoneEmerg Infect Dis201420711768224959946407386410.3201/eid2007.131265
– reference: LeeJThe MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokinesPLoS One2017128e018359428832681556822410.1371/journal.pone.01835941:CAS:528:DC%2BC1cXps1aqsw%3D%3D
– reference: CosmiLCRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and diseaseEuropean Journal of Immunology20003010297291:CAS:528:DC%2BD3cXnslKrsL4%3D1106908010.1002/1521-4141(200010)30:10<2972::AID-IMMU2972>3.0.CO;2-#
– reference: HarmonBA Genome-Wide RNA Interference Screen Identifies a Role for Wnt/β-Catenin Signaling during Rift Valley Fever Virus InfectionJournal of Virology20169016708470971:CAS:528:DC%2BC28XhslyrtL7E27226375498466210.1128/JVI.00543-16
– reference: SchneiderPThe role of APRIL and BAFF in lymphocyte activationCurrent Opinion in Immunology20051732822891:CAS:528:DC%2BD2MXjvFeksLs%3D1588611810.1016/j.coi.2005.04.005
– reference: SchusterNKrieglsteinKMechanisms of TGF-β-mediated apoptosisCell and Tissue Research200230711141:CAS:528:DC%2BD3MXovFSgsLs%3D1181030910.1007/s00441-001-0479-6
– reference: MenicucciARSureshchandraSMarziAFeldmannHMessaoudiITranscriptomic analysis reveals a previously unknown role for CD8+ T-cells in rVSV-EBOV mediated protectionScientific Reports2017712017NatSR...7..919M28428619543051610.1038/s41598-017-01032-81:CAS:528:DC%2BC2sXhslGmtLnF
– reference: YaoSPD-1 on dendritic cells impedes innate immunity against bacterial infectionBlood2009113581181:CAS:528:DC%2BD1MXnsVSksb8%3D19339692270032010.1182/blood-2009-02-203141
– reference: StröherUInfection and activation of monocytes by Marburg and Ebola virusesJournal of Virology2001752211025331160274311468310.1128/JVI.75.22.11025-11033.2001
– reference: MarziAAntibodies are necessary for rVSV/ZEBOV-GP–mediated protection against lethal Ebola virus challenge in nonhuman primatesProceedings of the National Academy of Sciences of the United States of America20131105189318982013PNAS..110.1893M1:CAS:528:DC%2BC3sXisl2nsLo%3D23319647356284410.1073/pnas.1209591110
– reference: SperanzaET-Cell Receptor Diversity and the Control of T-Cell Homeostasis Mark Ebola Virus Disease Survival in HumansThe Journal of Infectious Diseases20182185S508S518299860357191875
– reference: de La VegaM-AEbola viral load at diagnosis associates with patient outcome and outbreak evolutionThe Journal of Clinical Investigation2015125124421442810.1172/JCI83162
– reference: WeinsteinJSSTAT4 and T-bet control follicular helper T cell development in viral infectionsThe Journal of Experimental Medicine201821513373551:CAS:528:DC%2BC1cXhsF2rt7jN29212666574884910.1084/jem.20170457
– reference: SchmittEKleinMBoppTTh9 cells, new players in adaptive immunityTrends in Immunology201435261681:CAS:528:DC%2BC3sXhslGmtbbN2421573910.1016/j.it.2013.10.004
– reference: WoolseyCPostexposure Efficacy of Recombinant Vesicular Stomatitis Virus Vectors Against High and Low Doses of Marburg Virus Variant Angola in Nonhuman PrimatesThe Journal of infectious diseases2018218suppl_5S582S587377281829939296624956510.1093/infdis/jiy293
– reference: ValmasCBaslerCFMarburg Virus VP40 Antagonizes Interferon Signaling in a Species-Specific MannerJournal of Virology2011859430943171:CAS:528:DC%2BC3MXhtVSmsLnJ21325424312624810.1128/JVI.02575-10
– reference: AbbasARImmune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression dataGenes. Immunity200563193311:CAS:528:DC%2BD2MXks1Gmsbc%3D1578905810.1038/sj.gene.6364173
– reference: SchrijverITThéroudeCRogerTMyeloid-Derived Suppressor Cells in SepsisFrontiers in immunology2019103271:CAS:528:DC%2BC1MXhtlKhurzI30873175640098010.3389/fimmu.2019.00327
– reference: MaierEDuschlAHorejs-HoeckJSTAT6-dependent and -independent mechanisms in Th2 polarizationEuropean Journal of Immunology201242112827331:CAS:528:DC%2BC38XhsVKgsrjJ23041833355772110.1002/eji.201242433
– reference: World Health Organization. Ebola virus disease. Fact sheet, 12 February 2018. Geneva, Switzerland: World Health Organization. Available at https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease. Accessed 19 February 2019.
– reference: ZhuJYamaneHCote-SierraJGuoLPaulWEGATA-3 promotes Th2 responses through three different mechanisms: Induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factorsCell Research20061613101:CAS:528:DC%2BD28XlvFSitw%3D%3D1646787010.1038/sj.cr.7310002
– reference: TownerJSIsolation of genetically diverse Marburg viruses from Egyptian fruit batsPLoS pathogens200957e100053619649327271340410.1371/journal.ppat.10005361:CAS:528:DC%2BD1MXhtVShtLbM
– reference: CoffinKMPersistent Marburg Virus Infection in the Testes of Nonhuman Primate SurvivorsCell Host & Microbe2018243405416.e31:CAS:528:DC%2BC1cXhs1enurfE10.1016/j.chom.2018.08.003
– reference: WilliamsKJQiuXFernandoLJonesSMAlimontiJBVSVΔG/EBOV GP-induced innate protection enhances natural killer cell activity to increase survival in a lethal mouse adapted Ebola virus infectionViral Immunol.201528151611:CAS:528:DC%2BC2MXjvFWntw%3D%3D2549445710.1089/vim.2014.0069
– reference: SuBWaneckGLFlavellRABothwellALThe glycosyl phosphatidylinositol anchor is critical for Ly-6A/E-mediated T cell activationJ Cell Biol19911123773841:CAS:528:DyaK3MXmtVWhtQ%3D%3D182508410.1083/jcb.112.3.377
– reference: WarfieldKLRole of natural killer cells in innate protection against lethal ebola virus infectionThe Journal of experimental medicine200420021691791:CAS:528:DC%2BD2cXmtFSqsrc%3D15249592221200710.1084/jem.20032141
– reference: GeisbertTWPostexposure treatment of Marburg virus infectionEmerging Infectious Dieases2010161119112210.3201/eid1607.100159
– reference: EdwardsMRDifferential regulation of interferon responses by Ebola and Marburg virus VP35 proteinsCell Reports2016147163216401:CAS:528:DC%2BC28XisFOht7c%3D2687616510.1016/j.celrep.2016.01.049
– reference: StonierSWMarburg virus survivor immune responses are Th1 skewed with limited neutralizing antibody responsesJ Exp Med201721492563257228724616558412510.1084/jem.201701611:CAS:528:DC%2BC1cXjtlems7c%3D
– reference: Centers for Disease Control and Prevention. Marburg hemorrhagic fever. Outbreaks Chronology: Marburg Hemorrhagic Fever, 01 Decemberb 2014. Atlanta, Georgia: Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/vhf/marburg/outbreaks/chronology.html. Accessed 19 February 2019.
– reference: MireCEDurability of a vesicular stomatitis virus-based marburg virus vaccine in nonhuman primatesPloS One201494e943552014PLoSO...994355M24759889399738310.1371/journal.pone.00943551:CAS:528:DC%2BC2cXhsFemur7L
– reference: Brandenburg, J., Reiling, N. The Wnt blows: On the functional role of Wnt signaling in mycobacterium tuberculosis infection and beyond. Frontiers in Immunology, 7(DEC), 1–11 (2016).
– reference: Knust, B. et al. Multidistrict Outbreak of Marburg Virus Disease-Uganda, 2012. The Journal of infectious diseases, 212 Suppl 2(Suppl 2), S119–S128 (2015).
– reference: Centers for Disease Control and Prevention. CDC Newsroom Releases. Deadly Marburg Virus Found in Sierra Leone Bats, 21 December 2018. Atlanta, Georgia: Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/media/releases/2018/p1220-marburg-found-in-bats.html. Accessed 19 February 2019.
– reference: DahlkeCDose-dependent T-cell Dynamics and Cytokine Cascade Following rVSV-ZEBOV ImmunizationEBioMedicine20171910711828434944544060610.1016/j.ebiom.2017.03.045
– volume: 110
  start-page: 1893
  issue: 5
  year: 2013
  ident: 59976_CR21
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.1209591110
– volume: 20
  start-page: 1176
  issue: 7
  year: 2014
  ident: 59976_CR9
  publication-title: Emerg Infect Dis
  doi: 10.3201/eid2007.131265
– ident: 59976_CR11
– volume: 11
  start-page: 786
  issue: 7
  year: 2005
  ident: 59976_CR12
  publication-title: Nature Medicine
  doi: 10.1038/nm1258
– volume: 113
  start-page: 5811
  year: 2009
  ident: 59976_CR66
  publication-title: Blood
  doi: 10.1182/blood-2009-02-203141
– volume: 19
  start-page: 107
  year: 2017
  ident: 59976_CR23
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2017.03.045
– volume: 162
  start-page: 2937
  issue: 10
  year: 2017
  ident: 59976_CR71
  publication-title: Arch Virol
  doi: 10.1007/s00705-017-3462-6
– volume: 14
  start-page: 1632
  issue: 7
  year: 2016
  ident: 59976_CR58
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2016.01.049
– ident: 59976_CR69
  doi: 10.3389/fimmu.2017.00050
– volume: 533
  start-page: 100
  issue: 7601
  year: 2016
  ident: 59976_CR73
  publication-title: Nature
  doi: 10.1038/nature17949
– ident: 59976_CR26
  doi: 10.1093/infdis/jiv351
– volume: 21
  start-page: 355
  issue: 3
  year: 2008
  ident: 59976_CR60
  publication-title: Viral Immunol.
  doi: 10.1089/vim.2008.0023
– volume: 82
  start-page: 21
  issue: 1
  year: 2008
  ident: 59976_CR67
  publication-title: Journal of Virology
  doi: 10.1128/JVI.01768-07
– ident: 59976_CR3
– volume: 218
  start-page: S508
  issue: 5
  year: 2018
  ident: 59976_CR24
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jiy352
– ident: 59976_CR7
– volume: 218
  start-page: S582
  issue: suppl_5
  year: 2018
  ident: 59976_CR17
  publication-title: The Journal of infectious diseases
  doi: 10.1093/infdis/jiy293
– volume: 90
  start-page: 5914
  issue: 13
  year: 1993
  ident: 59976_CR62
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
  doi: 10.1073/pnas.90.13.5914
– volume: 16
  start-page: 1119
  year: 2010
  ident: 59976_CR15
  publication-title: Emerging Infectious Dieases
  doi: 10.3201/eid1607.100159
– volume: 30
  start-page: 2972
  issue: 10
  year: 2000
  ident: 59976_CR41
  publication-title: European Journal of Immunology
  doi: 10.1002/1521-4141(200010)30:10<2972::AID-IMMU2972>3.0.CO;2-#
– volume: 43
  start-page: D447
  issue: D1
  year: 2015
  ident: 59976_CR33
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gku1003
– volume: 9
  start-page: e94355
  issue: 4
  year: 2014
  ident: 59976_CR19
  publication-title: PloS One
  doi: 10.1371/journal.pone.0094355
– volume: 114
  start-page: E5559
  issue: 28
  year: 2017
  ident: 59976_CR35
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1620959114
– volume: 367
  start-page: 1399
  issue: 9520
  year: 2006
  ident: 59976_CR18
  publication-title: Lancet
  doi: 10.1016/S0140-6736(06)68546-2
– volume: 6
  start-page: 319
  year: 2005
  ident: 59976_CR51
  publication-title: Genes. Immunity
  doi: 10.1038/sj.gene.6364173
– volume: 7
  issue: 1
  year: 2017
  ident: 59976_CR22
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-01032-8
– volume: 35
  start-page: 61
  issue: 2
  year: 2014
  ident: 59976_CR44
  publication-title: Trends in Immunology
  doi: 10.1016/j.it.2013.10.004
– volume: 215
  start-page: 337
  issue: 1
  year: 2018
  ident: 59976_CR38
  publication-title: The Journal of Experimental Medicine
  doi: 10.1084/jem.20170457
– volume: 5
  start-page: 46
  year: 2014
  ident: 59976_CR54
  publication-title: Frontiers in Immunology
  doi: 10.3389/fimmu.2014.00046
– volume: 24
  start-page: 1134
  issue: 6
  year: 2018
  ident: 59976_CR6
  publication-title: Emerging Infectious Diseases
  doi: 10.3201/eid2406.172165
– ident: 59976_CR4
– volume: 89
  start-page: 9875
  issue: 19
  year: 2015
  ident: 59976_CR63
  publication-title: Journal of Virology
  doi: 10.1128/JVI.01147-15
– volume: 5
  start-page: e1000536
  issue: 7
  year: 2009
  ident: 59976_CR5
  publication-title: PLoS pathogens
  doi: 10.1371/journal.ppat.1000536
– volume: 22
  start-page: 633
  issue: 11
  year: 2001
  ident: 59976_CR59
  publication-title: Trends Immunol.
  doi: 10.1016/S1471-4906(01)02060-9
– ident: 59976_CR68
  doi: 10.3389/fimmu.2016.00635
– volume: 109
  start-page: 4239
  issue: 11
  year: 2012
  ident: 59976_CR29
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.1114981109
– volume: 85
  start-page: 4309
  issue: 9
  year: 2011
  ident: 59976_CR57
  publication-title: Journal of Virology
  doi: 10.1128/JVI.02575-10
– volume: 28
  start-page: 51
  issue: 1
  year: 2015
  ident: 59976_CR56
  publication-title: Viral Immunol.
  doi: 10.1089/vim.2014.0069
– volume: 24
  start-page: 405
  issue: 3
  year: 2018
  ident: 59976_CR53
  publication-title: Cell Host & Microbe
  doi: 10.1016/j.chom.2018.08.003
– ident: 59976_CR40
  doi: 10.1007/978-3-8274-2219-4
– volume: 28
  start-page: 19
  issue: 1
  year: 2015
  ident: 59976_CR8
  publication-title: Viral Immunol
  doi: 10.1089/vim.2014.0108
– volume: 89
  start-page: 9865
  issue: 19
  year: 2015
  ident: 59976_CR27
  publication-title: Journal of Virology
  doi: 10.1128/JVI.01142-15
– volume: 12
  start-page: e0183594
  issue: 8
  year: 2017
  ident: 59976_CR64
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0183594
– volume: 15
  issue: 1
  year: 2014
  ident: 59976_CR28
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-15-960
– volume: 8
  start-page: 114
  issue: 1
  year: 2014
  ident: 59976_CR32
  publication-title: Cell Reports
  doi: 10.1016/j.celrep.2014.05.038
– ident: 59976_CR1
– volume: 90
  start-page: 7084
  issue: 16
  year: 2016
  ident: 59976_CR72
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00543-16
– volume: 42
  start-page: 2827
  issue: 11
  year: 2012
  ident: 59976_CR43
  publication-title: European Journal of Immunology
  doi: 10.1002/eji.201242433
– volume: 29
  start-page: 679
  issue: 5
  year: 2008
  ident: 59976_CR37
  publication-title: Immunity
  doi: 10.1016/j.immuni.2008.08.017
– volume: 389
  start-page: 505
  issue: 10068
  year: 2017
  ident: 59976_CR10
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(16)32621-6
– volume: 80
  start-page: 9659
  issue: 19
  year: 2006
  ident: 59976_CR14
  publication-title: Journal of Virology
  doi: 10.1128/JVI.00959-06
– volume: 214
  start-page: 2563
  issue: 9
  year: 2017
  ident: 59976_CR61
  publication-title: J Exp Med
  doi: 10.1084/jem.20170161
– volume: 17
  start-page: 413
  year: 2018
  ident: 59976_CR16
  publication-title: Nature Reviews Drug Discovery
  doi: 10.1038/nrd.2017.251
– volume: 17
  start-page: 282
  issue: 3
  year: 2005
  ident: 59976_CR39
  publication-title: Current Opinion in Immunology
  doi: 10.1016/j.coi.2005.04.005
– volume: 13
  start-page: 1
  issue: 1
  year: 2018
  ident: 59976_CR70
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0191010
– volume: 32
  start-page: 3842
  issue: 24
  year: 2016
  ident: 59976_CR50
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw535
– volume: 48
  start-page: 147
  issue: 1
  year: 2018
  ident: 59976_CR47
  publication-title: Immunity
  doi: 10.1016/j.immuni.2017.12.004
– volume: 125
  start-page: 4421
  issue: 12
  year: 2015
  ident: 59976_CR25
  publication-title: The Journal of Clinical Investigation
  doi: 10.1172/JCI83162
– volume: 41
  start-page: D1040
  issue: D1
  year: 2012
  ident: 59976_CR36
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gks1215
– volume: 191
  start-page: 5182
  issue: 10
  year: 2013
  ident: 59976_CR49
  publication-title: The Journal of Immunology
  doi: 10.4049/jimmunol.1201819
– volume: 10
  start-page: 327
  year: 2019
  ident: 59976_CR65
  publication-title: Frontiers in immunology
  doi: 10.3389/fimmu.2019.00327
– volume: 75
  start-page: 11025
  issue: 22
  year: 2001
  ident: 59976_CR52
  publication-title: Journal of Virology
  doi: 10.1128/JVI.75.22.11025-11033.2001
– volume: 256
  start-page: 8
  issue: 1
  year: 1999
  ident: 59976_CR34
  publication-title: Virology
  doi: 10.1006/viro.1999.9614
– volume: 214
  start-page: S360
  issue: Suppl 3
  year: 2016
  ident: 59976_CR20
  publication-title: The Journal of Infectious Diseases
  doi: 10.1093/infdis/jiw218
– volume: 124
  start-page: 13
  issue: 1
  year: 2008
  ident: 59976_CR46
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2008.02813.x
– ident: 59976_CR2
– volume: 112
  start-page: 377
  year: 1991
  ident: 59976_CR31
  publication-title: J Cell Biol
  doi: 10.1083/jcb.112.3.377
– volume: 13
  start-page: 679
  issue: 7
  year: 2008
  ident: 59976_CR30
  publication-title: Genes to Cells
  doi: 10.1111/j.1365-2443.2008.01197.x
– volume: 16
  start-page: 3
  issue: 1
  year: 2006
  ident: 59976_CR42
  publication-title: Cell Research
  doi: 10.1038/sj.cr.7310002
– volume: 198
  start-page: 138
  issue: 1
  year: 2017
  ident: 59976_CR48
  publication-title: The Journal of Immunology
  doi: 10.4049/jimmunol.1502487
– volume: 200
  start-page: 169
  issue: 2
  year: 2004
  ident: 59976_CR55
  publication-title: The Journal of experimental medicine
  doi: 10.1084/jem.20032141
– volume: 9
  start-page: 3071
  year: 2019
  ident: 59976_CR13
  publication-title: Frontiers in immunology
  doi: 10.3389/fimmu.2018.03071
– volume: 307
  start-page: 1
  issue: 1
  year: 2002
  ident: 59976_CR45
  publication-title: Cell and Tissue Research
  doi: 10.1007/s00441-001-0479-6
SSID ssj0000529419
Score 2.4187205
Snippet Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3071
SubjectTerms 13/31
38/91
631/326/590/1867
631/326/596/2041
Animals
Antibodies, Viral - biosynthesis
Antibodies, Viral - immunology
Antiviral drugs
Cytokines - blood
Cytotoxicity, Immunologic
Disease transmission
Dose-Response Relationship, Immunologic
Down-Regulation - genetics
Female
Filoviridae
Gene mapping
Histocompatibility antigen HLA
Humanities and Social Sciences
Immune checkpoint
Immunization
Immunoregulation
Immunostimulation
Infectious diseases
Inflammation - blood
Inflammation - immunology
Interferon
Interferons - genetics
Interferons - metabolism
Killer Cells, Natural - immunology
Lymphocytes T
Macaca mulatta - immunology
Macaca mulatta - virology
Male
Marburg disease
Marburg Virus Disease - blood
Marburg Virus Disease - genetics
Marburg Virus Disease - immunology
Marburg Virus Disease - virology
Marburgvirus - immunology
Medical prognosis
Monocytes
multidisciplinary
PD-1 protein
Peripheral blood
Post-Exposure Prophylaxis
Recombination, Genetic - genetics
RNA, Messenger - genetics
RNA, Messenger - metabolism
Science
Science (multidisciplinary)
Stomatitis
T-Lymphocytes, Helper-Inducer - immunology
Th1 Cells - immunology
Th2 Cells - immunology
Transcription
Transcriptome - genetics
Up-Regulation - genetics
Vaccines
Vectors
Vesiculovirus - genetics
Viral Load - immunology
Viral Vaccines - immunology
Viruses
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_8QPBF_LY6JYJvWmybrkmeRMQxB_NJYW8lzVIdSDf3Ifrfe9dmHVP0pVCSfuQul_wu9wVwYVGAkiSQiNwsKigmNL7KctRaA9m3SuRGlk403cek_Rx3es2eO3CbOLfK-ZpYLtT9oaEz8uuIl7XnJJc3o3efqkaRddWV0FiFdUpdRi5doifqMxayYsWhcrEyAZfXE9yvKKYMdaamwp3Y58v70S-Q-dtX8ofBtNyHWtuw5QAku604vgMrttiFjaqk5NcedB4o4MMyQ1U33ghIsmHORhTK8YnX2diyD23Ims5cigZkDNMveoA4kXU1EfmFfQzGs8k-PLfun-7avquX4JtYxFNfKitFn-sk0opzK5uJkXkuM4MoLcsRaAShVkarPqdbylsjEADpWImIYJLmB7BWDAt7BIwH2mqhhG0aiyKudahEpq0yRqB-xoUH4ZxqqXHJxKmmxVtaGrW5TCtKp0jptKR0yj24rJ8ZVak0_u3dmDMjdWI1SReTwIPzuhkFgqwcurDDGfVJFKFaGXtwWPGu_hyPECDzCF8ulrhad6Bk28stxeC1TLqNKyMPo8CDqzn_F7_19yiO_x_FCWxGNBcpRD5owNp0PLOnCHKm2Vk5k78B6Cn5tw
  priority: 102
  providerName: ProQuest
– databaseName: SpringerOpen Free (Free internet resource, activated by CARLI)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WFcGL-La6SgRvWmybbpMcZVF0YT0peCtpNtUF6Yr7QP-9M-lD1hd4KZQmbTKTyXzTycwAnFgUoCQJJCI3iwaKCY2vshyt1kAOrRK5ke4QzeA2ub6P-w_dhxZEdSyMO7TvUlq6bbo-HXY-QUVDwWBo7HQVqlCfL8EypW6nVd1Les1_FfJcxaGq4mMCLn_ouqiDvgHL7-cjvzhJne65Woe1CjSyi3KYG9CyxSaslGUk37egf0NBHpYZqrTxTOCRjXP2QuEbb3jFWbK5NuRBZ1VaBmQG0496hNiQDTQR9pHNR6-zyTbcX13e9a79qkaCb2IRT32prBRDrpNIK86t7CZG5rnMDCKzLEdwEYRaGa2GnG4pV41A0KNjJSKCRprvQLsYF3YPGA-01UIJ2zUWxVrrUIlMW2WMQJuMCw_CmmqpqRKIUx2L59Q5srlMS0qnSOnUUTrlHpw2fV7K9Bl_tu7UzEgrUZqkEXdFByWXHhw3j1EIyLOhCzueUZtEEZKVsQe7Je-az_EIQTGP8OVigatNA0qwvfikGD25RNu4G_IwCjw4q_n_OazfZ7H_v-YHsBrR2qQw-aAD7enrzB4i0JlmR25lfwCgyPeD
  priority: 102
  providerName: Springer Nature
Title Immune correlates of postexposure vaccine protection against Marburg virus
URI https://link.springer.com/article/10.1038/s41598-020-59976-3
https://www.ncbi.nlm.nih.gov/pubmed/32080323
https://www.proquest.com/docview/2359369838
https://www.proquest.com/docview/2369397784
https://pubmed.ncbi.nlm.nih.gov/PMC7033120
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9REBIv0xgMskFlJN5GWBKnsf0wTV1FBZVaoUGlvkWO60ClKmX9QPDf7y4fRV0BaS-JEtv5uPPlfpfz3QGcWhSgKPIkIjeLBorxjauSFK1WTw6tEqmR-SKabi-67IedQWOwAVW5o5KAs1dNO6on1Z-Oz5_-PP9Egf9RhIzL7zNUQhQohoZQQ6F6dXkNtlAzCRLUbgn3i1zfgQp9VcbOvD50VT-tgc71tZP_OFBzvdT-CB9KQMmaxQzYhQ2bfYLtosTk8x50rigAxDJDVTjGBCzZJGUPFNrxhNvF1LJHbci7zsqUDcgopu_0CHEj62oi-h17HE0Xs33oty9uW5duWT_BNaEI565UVooh11GgFedWNiIj01QmBlFbkiLw8HytjFZDToeUx0YgINKhEgHBJs0_w2Y2yewhMO5pq4UStmEsirzWvhKJtsoYgfYaFw74FdViUyYXpxoX4zh3cnMZF5SOkdJxTumYO_BtOeahSK3xbu-jihlxNUvigOcFCSWXDpwsm1FAyOuhMztZUJ9IEcqVoQMHBe-Wt-MBAmYe4MXFCleXHSj59mpLNrrPk3Djl5L7gefAWcX_l8d6-y2-_F_3r7AT0NykEHrvCDbn04U9RhA0T-pQEwNRh61ms3PTwf2vi971bzzbilr1_MdCPZ_7fwE1DgcP
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcUHkHChgJThA1sbOxfagqHq122-4KoVbqzThep6xUZZd9FPqn-I2dyataKnrrJVIUx4lnxp5vPJ4ZgHceJ1CaRgqRm0cDxcUu1FmOVmukRl7L3KnyEM1gmPaOk_2T7ska_G1iYehYZbMmlgv1aOJoj3yLi7L2nBJqZ_orpKpR5F1tSmhUYnHgL36jyTbf7n9F_r7nfG_36EsvrKsKhC6RySJU2is5EjblFo15r7qpU3muModYJstRHUex1c7qkaBbyu4iESbYREtOYMIK7PcOrCcCG3Zg_fPu8Nv3dleH_GZJrOvonEiorTlqSIpiQyutq1H3h2JVA16DtddPZ_7joi01394GPKghK_tUydhDWPPFI7hbFbG8eAz7fQox8cxRnY8zgq5skrMpBY_8wety5tm5deS_Z3VSCBQFZk_tGJEpG1hi6yk7H8-W8ydwfCu0fAqdYlL458BEZL2VWvqu87ioWBtrmVmvnZNoEQoZQNxQzbg6fTlV0TgzpRtdKFNR2iClTUlpIwL40L4zrZJ33Nh6s2GGqSfy3FyJXQBv28c4BcmvYgs_WVKbVBOOVkkAzyretZ8THCG54Ni5XOFq24DSe68-KcY_yzTfuBaLmEcBfGz4f_Vb_x_Fi5tH8Qbu9Y4Gh-awPzx4Cfc5ySUF6Eeb0FnMlv4VQqxF9rqWawY_bnsqXQITyDaf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiFJoA6UYqZwgamInsX1ACLWsui2tOFBpb8bxOu1KVXbZR6F_jV_HTF7VUtFbL5EiO44zD_ubjGcGYNejAmVZpBC5eTRQXOxCnRdotUZq6LUsnKoO0ZycZodnydEgHazAnzYWho5VtmtitVAPx47-ke9xUdWeU0LtFc2xiG8HvU-TnyFVkCJPa1tOoxaRY3_9C8232cf-AfL6Hee9L9_3D8OmwkDoEpnMQ6W9kkNhM27RsPcqzZwqCpU7xDV5gVtzFFvtrB4KuqVMLxIhg0205AQsrMBxH8CaFGlMOiYHsvu_Qx60JNZNnE6E057hXknxbGivpRpRQCiW98JbAPf2Oc1_nLXVHth7Ck8a8Mo-19K2Diu-fAYP63KW1xtw1KdgE88cVfy4JBDLxgWbUBjJb7wupp5dWUeefNakh0ChYPbcjhCjshNLDD5nV6PpYvYczu6Fki9gtRyXfguYiKy3UkufOo_Li7Wxlrn12jmJtqGQAcQt1YxrEplTPY1LUznUhTI1pQ1S2lSUNiKA990zkzqNx529t1tmmEalZ-ZGAAN42zWjMpKHxZZ-vKA-mSZErZIANmveda8THMG54Di4XOJq14ESfS-3lKOLKuE3rsoi5lEAH1r-30zr_1_x8u6veAOPUIHM1_7p8St4zEksKVI_2obV-XThXyPWmuc7lVAz-HHfWvQXOuU5bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immune+correlates+of+postexposure+vaccine+protection+against+Marburg+virus&rft.jtitle=Scientific+reports&rft.au=Woolsey%2C+Courtney&rft.au=Jankeel%2C+Allen&rft.au=Matassov%2C+Demetrius&rft.au=Geisbert%2C+Joan+B.&rft.date=2020-02-20&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-59976-3&rft.externalDocID=10_1038_s41598_020_59976_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon