Immune correlates of postexposure vaccine protection against Marburg virus
Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (...
Saved in:
Published in | Scientific reports Vol. 10; no. 1; p. 3071 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.02.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60–75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20–30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80–89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g.,
PD-1
,
LAG3
) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival. |
---|---|
AbstractList | Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60-75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20-30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80-89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1, LAG3) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival.Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60-75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20-30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80-89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1, LAG3) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival. Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60–75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20–30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80–89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1 , LAG3 ) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival. Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60-75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20-30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80-89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1, LAG3) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival. |
ArticleNumber | 3071 |
Author | Mire, Chad E. Borisevich, Viktoriya Gerardi, Cheryl S. Jankeel, Allen Fenton, Karla A. Geisbert, Joan B. Deer, Daniel J. Eldridge, John H. Agans, Krystle N. Woolsey, Courtney Matassov, Demetrius Messaoudi, Ilhem Geisbert, Thomas W. Latham, Theresa E. Cross, Robert W. |
Author_xml | – sequence: 1 givenname: Courtney orcidid: 0000-0003-3389-0137 surname: Woolsey fullname: Woolsey, Courtney organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 2 givenname: Allen surname: Jankeel fullname: Jankeel, Allen organization: Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine – sequence: 3 givenname: Demetrius surname: Matassov fullname: Matassov, Demetrius organization: Department of Virology and Vaccine Vectors, Profectus BioSciences Inc – sequence: 4 givenname: Joan B. surname: Geisbert fullname: Geisbert, Joan B. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 5 givenname: Krystle N. orcidid: 0000-0002-7319-6935 surname: Agans fullname: Agans, Krystle N. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 6 givenname: Viktoriya surname: Borisevich fullname: Borisevich, Viktoriya organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 7 givenname: Robert W. surname: Cross fullname: Cross, Robert W. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 8 givenname: Daniel J. surname: Deer fullname: Deer, Daniel J. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 9 givenname: Karla A. surname: Fenton fullname: Fenton, Karla A. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 10 givenname: Theresa E. surname: Latham fullname: Latham, Theresa E. organization: Department of Virology and Vaccine Vectors, Profectus BioSciences Inc – sequence: 11 givenname: Cheryl S. surname: Gerardi fullname: Gerardi, Cheryl S. organization: Department of Virology and Vaccine Vectors, Profectus BioSciences Inc – sequence: 12 givenname: Chad E. orcidid: 0000-0001-7596-1808 surname: Mire fullname: Mire, Chad E. organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch – sequence: 13 givenname: John H. surname: Eldridge fullname: Eldridge, John H. organization: Department of Virology and Vaccine Vectors, Profectus BioSciences Inc., Department of Immunology, Profectus BioSciences Inc – sequence: 14 givenname: Ilhem surname: Messaoudi fullname: Messaoudi, Ilhem organization: Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine – sequence: 15 givenname: Thomas W. surname: Geisbert fullname: Geisbert, Thomas W. email: twgeisbe@utmb.edu organization: Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston National Laboratory, University of Texas Medical Branch |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32080323$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9PHCEYxkljU636BXowk_TSy7TAywxwMWmMbW1seqlnwrLvrJgZWIHZ6Lcv29XWepADf8LvefLA85bshRiQkHeMfmQU1KcsWKdVSzltO61l38IrcsCp6FoOnO892e-T45xvaB0d14LpN2QfOFUUOByQ7xfTNAdsXEwJR1swN3Fo1jEXvKvznLDZWOd8RdYpFnTFx9DYlfUhl-aHTYs5rZqNT3M-Iq8HO2Y8flgPydWX819n39rLn18vzj5ftk5IUVqlUckl2J5bDYCq650aBrVwHdOLQYmeMqud1UvYHrkUTPKOWqElV6C5hUNyuvNdz4sJlw5DSXY06-Qnm-5NtN78fxP8tVnFjZEUgHFaDT48GKR4O2MuZvLZ4TjagHHOhkOvQUupREXfP0Nv4pxCfV6lOl1BBapSJ08T_Y3y-M0VUDvApZhzwsE4X-z2K2tAPxpGzbZUsyvV1FLNn1LNVsqfSR_dXxTBTpQrHFaY_sV-QfUb1Jy0Ow |
CitedBy_id | crossref_primary_10_3390_vaccines10091384 crossref_primary_10_3390_vaccines10101582 crossref_primary_10_1128_mBio_01517_21 crossref_primary_10_1080_08916934_2022_2103800 crossref_primary_10_1016_j_vaccine_2023_12_053 crossref_primary_10_1038_s41467_023_37050_6 crossref_primary_10_1055_s_0040_1716334 crossref_primary_10_1016_j_celrep_2022_111094 crossref_primary_10_1172_JCI164946 crossref_primary_10_1080_22221751_2022_2086072 crossref_primary_10_3390_v16081181 crossref_primary_10_1093_infdis_jiad207 crossref_primary_10_1016_j_banm_2023_02_013 crossref_primary_10_1371_journal_pntd_0010433 crossref_primary_10_1080_07391102_2024_2446673 crossref_primary_10_1093_infdis_jiad157 crossref_primary_10_1038_s41598_023_31027_7 crossref_primary_10_1080_17460441_2024_2386100 crossref_primary_10_1177_1945892421998143 crossref_primary_10_1371_journal_ppat_1010805 crossref_primary_10_1073_pnas_2200065119 crossref_primary_10_3390_pathogens10091092 |
Cites_doi | 10.1073/pnas.1209591110 10.3201/eid2007.131265 10.1038/nm1258 10.1182/blood-2009-02-203141 10.1016/j.ebiom.2017.03.045 10.1007/s00705-017-3462-6 10.1016/j.celrep.2016.01.049 10.3389/fimmu.2017.00050 10.1038/nature17949 10.1093/infdis/jiv351 10.1089/vim.2008.0023 10.1128/JVI.01768-07 10.1093/infdis/jiy352 10.1093/infdis/jiy293 10.1073/pnas.90.13.5914 10.3201/eid1607.100159 10.1002/1521-4141(200010)30:10<2972::AID-IMMU2972>3.0.CO;2-# 10.1093/nar/gku1003 10.1371/journal.pone.0094355 10.1073/pnas.1620959114 10.1016/S0140-6736(06)68546-2 10.1038/sj.gene.6364173 10.1038/s41598-017-01032-8 10.1016/j.it.2013.10.004 10.1084/jem.20170457 10.3389/fimmu.2014.00046 10.3201/eid2406.172165 10.1128/JVI.01147-15 10.1371/journal.ppat.1000536 10.1016/S1471-4906(01)02060-9 10.3389/fimmu.2016.00635 10.1073/pnas.1114981109 10.1128/JVI.02575-10 10.1089/vim.2014.0069 10.1016/j.chom.2018.08.003 10.1007/978-3-8274-2219-4 10.1089/vim.2014.0108 10.1128/JVI.01142-15 10.1371/journal.pone.0183594 10.1186/1471-2164-15-960 10.1016/j.celrep.2014.05.038 10.1128/JVI.00543-16 10.1002/eji.201242433 10.1016/j.immuni.2008.08.017 10.1016/S0140-6736(16)32621-6 10.1128/JVI.00959-06 10.1084/jem.20170161 10.1038/nrd.2017.251 10.1016/j.coi.2005.04.005 10.1371/journal.pone.0191010 10.1093/bioinformatics/btw535 10.1016/j.immuni.2017.12.004 10.1172/JCI83162 10.1093/nar/gks1215 10.4049/jimmunol.1201819 10.3389/fimmu.2019.00327 10.1128/JVI.75.22.11025-11033.2001 10.1006/viro.1999.9614 10.1093/infdis/jiw218 10.1111/j.1365-2567.2008.02813.x 10.1083/jcb.112.3.377 10.1111/j.1365-2443.2008.01197.x 10.1038/sj.cr.7310002 10.4049/jimmunol.1502487 10.1084/jem.20032141 10.3389/fimmu.2018.03071 10.1007/s00441-001-0479-6 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-020-59976-3 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (ProQuest) Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC7033120 32080323 10_1038_s41598_020_59976_3 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: U19 AI142785 – fundername: NIAID NIH HHS grantid: UC7 AI094660 – fundername: NIAID NIH HHS grantid: U19 AI109711 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c474t-89e87d3a62a933e856c8ff8bc519bf84601a9ca9d39bf827417250a49728392a3 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 17:41:40 EDT 2025 Thu Jul 10 23:50:40 EDT 2025 Wed Aug 13 07:18:22 EDT 2025 Thu Apr 03 07:07:05 EDT 2025 Thu Apr 24 22:53:05 EDT 2025 Tue Jul 01 03:24:00 EDT 2025 Fri Feb 21 02:36:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-89e87d3a62a933e856c8ff8bc519bf84601a9ca9d39bf827417250a49728392a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7319-6935 0000-0001-7596-1808 0000-0003-3389-0137 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-020-59976-3 |
PMID | 32080323 |
PQID | 2359369838 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7033120 proquest_miscellaneous_2369397784 proquest_journals_2359369838 pubmed_primary_32080323 crossref_citationtrail_10_1038_s41598_020_59976_3 crossref_primary_10_1038_s41598_020_59976_3 springer_journals_10_1038_s41598_020_59976_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-20 |
PublicationDateYYYYMMDD | 2020-02-20 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | SingerBDKingLSD’AlessioFRRegulatory T Cells as ImmunotherapyFrontiers in Immunology201454624575095392006510.3389/fimmu.2014.000461:CAS:528:DC%2BC2MXht1ehurvE StonierSWMarburg virus survivor immune responses are Th1 skewed with limited neutralizing antibody responsesJ Exp Med201721492563257228724616558412510.1084/jem.201701611:CAS:528:DC%2BC1cXjtlems7c%3D TanakaTHu-LiJSederRAFazekas de St GrothBPaulWEInterleukin 4 suppresses interleukin 2 and interferon gamma production by naive T cells stimulated by accessory cell-dependent receptor engagementProceedings of the National Academy of Sciences of the United States of America19939013591459181993PNAS...90.5914T1:CAS:528:DyaK3sXkvFegurw%3D81009984683710.1073/pnas.90.13.5914 WilliamsKJQiuXFernandoLJonesSMAlimontiJBVSVΔG/EBOV GP-induced innate protection enhances natural killer cell activity to increase survival in a lethal mouse adapted Ebola virus infectionViral Immunol.201528151611:CAS:528:DC%2BC2MXjvFWntw%3D%3D2549445710.1089/vim.2014.0069 de La VegaM-AEbola viral load at diagnosis associates with patient outcome and outbreak evolutionThe Journal of Clinical Investigation2015125124421442810.1172/JCI83162 Knust, B. et al. Multidistrict Outbreak of Marburg Virus Disease-Uganda, 2012. The Journal of infectious diseases, 212 Suppl 2(Suppl 2), S119–S128 (2015). CrossRWMireCEFeldmannHGeisbertTWPost-exposure treatments for Ebola and Marburg virus infectionsNature Reviews Drug Discovery2018174131:CAS:528:DC%2BC1cXhvVeqtLo%3D2937513910.1038/nrd.2017.251 FritzEGeisbertJBGeisbertTWHensleyLEReedDSCellular Immune Response to Marburg Virus Infection in Cynomolgus MacaquesViral Immunol.20082133553631:CAS:528:DC%2BD1cXhtFWiur7P1878894310.1089/vim.2008.0023 RanaMAModulation of Wnt signaling pathway by hepatitis B virusArch Virol201716210293729472868528610.1007/s00705-017-3462-61:CAS:528:DC%2BC2sXhtFelsL7L WeinsteinJSSTAT4 and T-bet control follicular helper T cell development in viral infectionsThe Journal of Experimental Medicine201821513373551:CAS:528:DC%2BC1cXhsF2rt7jN29212666574884910.1084/jem.20170457 Villaseñor, T. et al Activation of the Wnt pathway by Mycobacterium tuberculosis: A Wnt-Wnt Situation. Frontiers in Immunology, 8(FEB), 1–16 (2017). SchusterNKrieglsteinKMechanisms of TGF-β-mediated apoptosisCell and Tissue Research200230711141:CAS:528:DC%2BD3MXovFSgsLs%3D1181030910.1007/s00441-001-0479-6 Henao-RestrepoAMEfficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!)The Lancet2017389100685055181:CAS:528:DC%2BC28XitFGitbbJ10.1016/S0140-6736(16)32621-6 LinKLTemporal Characterization of Marburg Virus Angola Infection following Aerosol Challenge in Rhesus MacaquesJournal of Virology20158919987598851:CAS:528:DC%2BC2MXhvFCjsbrJ26202230457792010.1128/JVI.01147-15 LiSGowansEJChougnetCPlebanskiMDittmerUNatural Regulatory T Cells and Persistent Viral InfectionJournal of Virology200882121301:CAS:528:DC%2BD1cXosQ%3D%3D1785553710.1128/JVI.01768-07 SchoeppRJRossiCAKhanSHGobaAFairJNUndiagnosed acute viral febrile illnesses, Sierra LeoneEmerg Infect Dis201420711768224959946407386410.3201/eid2007.131265 ZhaoFParacrine Wnt5a-β-Catenin Signaling Triggers a Metabolic Program that Drives Dendritic Cell TolerizationImmunity2018481147160.e71:CAS:528:DC%2BC1cXhtVOisrc%3D29343435577728710.1016/j.immuni.2017.12.004 Centers for Disease Control and Prevention. CDC Newsroom Releases. Deadly Marburg Virus Found in Sierra Leone Bats, 21 December 2018. Atlanta, Georgia: Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/media/releases/2018/p1220-marburg-found-in-bats.html. Accessed 19 February 2019. SojkaDKHuangY-HFowellDJMechanisms of regulatory T-cell suppression – a diverse arsenal for a moving targetImmunology2008124113221:CAS:528:DC%2BD1cXltlens7s%3D18346152243437510.1111/j.1365-2567.2008.02813.x SchneiderPThe role of APRIL and BAFF in lymphocyte activationCurrent Opinion in Immunology20051732822891:CAS:528:DC%2BD2MXjvFeksLs%3D1588611810.1016/j.coi.2005.04.005 PawęskaJTMarburg Virus Infection in Egyptian Rousette Bats, South Africa, 2013–2014Emerging Infectious Diseases20182461134113729774854600485310.3201/eid2406.172165 Daddario-DiCaprioKMM. Cross-Protection against Marburg Virus Strains by Using a Live, Attenuated Recombinant VaccineJournal of Virology20068019965996661:CAS:528:DC%2BD28XhtVWgt77P16973570161722210.1128/JVI.00959-06 YaoSPD-1 on dendritic cells impedes innate immunity against bacterial infectionBlood2009113581181:CAS:528:DC%2BD1MXnsVSksb8%3D19339692270032010.1182/blood-2009-02-203141 AndersonSLCartonJMLouJXingLRubinBYInterferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virusVirology199925618141:CAS:528:DyaK1MXhvFWiu74%3D1008722110.1006/viro.1999.9614 ZhuJYamaneHCote-SierraJGuoLPaulWEGATA-3 promotes Th2 responses through three different mechanisms: Induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factorsCell Research20061613101:CAS:528:DC%2BD28XlvFSitw%3D%3D1646787010.1038/sj.cr.7310002 RusinovaIrinaForsterSamYuSimonKannanAnithaMasseMarionCummingHelenChapmanRossHertzogPaul J.INTERFEROME v2.0: an updated database of annotated interferon-regulated genesNucleic Acids Research201241D1D1040D104623203888353120510.1093/nar/gks12151:CAS:528:DC%2BC38XhvV2ksbfJ ThieuVTStat4 is required for T-bet to promote IL-12-dependent Th1 fate determinationImmunity20082956796901:CAS:528:DC%2BD1cXhsVaqs7fL18993086276804010.1016/j.immuni.2008.08.017 CoffinKMPersistent Marburg Virus Infection in the Testes of Nonhuman Primate SurvivorsCell Host & Microbe2018243405416.e31:CAS:528:DC%2BC1cXhs1enurfE10.1016/j.chom.2018.08.003 MoreSRegulation of influenza virus replication by Wnt/β-catenin signalingPLoS One201813112110.1371/journal.pone.01910101:CAS:528:DC%2BC1cXhs1Wksr7L WoolseyCPostexposure Efficacy of Recombinant Vesicular Stomatitis Virus Vectors Against High and Low Doses of Marburg Virus Variant Angola in Nonhuman PrimatesThe Journal of infectious diseases2018218suppl_5S582S587377281829939296624956510.1093/infdis/jiy293 FrishbergABrodtASteuermanYGat-ViksIImmQuant: a user-friendly tool for inferring immune cell-type composition from gene- expression dataBioinformatics20163224384238431:CAS:528:DC%2BC2sXhsVSksrzL27531105516706210.1093/bioinformatics/btw535 World Health Organization. Disease Outbreak News- Marburg virus disease – Uganda, 25 October 2017. Geneva, Switzerland: World Health Organization. Available at: https://www.who.int/csr/don/25-october-2017-marburg-uganda/en/. Accessed 19 February 2019. ValmasCBaslerCFMarburg Virus VP40 Antagonizes Interferon Signaling in a Species-Specific MannerJournal of Virology2011859430943171:CAS:528:DC%2BC3MXhtVSmsLnJ21325424312624810.1128/JVI.02575-10 StröherUInfection and activation of monocytes by Marburg and Ebola virusesJournal of Virology2001752211025331160274311468310.1128/JVI.75.22.11025-11033.2001 Murphy, K, Travers, P, and Walport, M. Janeway’s Immunobiology Seventh Edition. (Garland Science, New York, 2008). World Health Organization. Preliminary results on the efficacy of rVSV-ZEBOV-GP Ebola vaccine using the ring vaccination strategy in the control of an Ebola outbreak in the Democratic Republic of the Congo: an example of integration of research into epidemic response. Geneva, Switzerland: World Health Organization. Available at: https://www.who.int/csr/resources/publications/ebola/ebola-ring-vaccination-results-12-april-2019.pdf. Accessed 07 January 2020. MireCEDurability of a vesicular stomatitis virus-based marburg virus vaccine in nonhuman primatesPloS One201494e943552014PLoSO...994355M24759889399738310.1371/journal.pone.00943551:CAS:528:DC%2BC2cXhsFemur7L HarmonBA Genome-Wide RNA Interference Screen Identifies a Role for Wnt/β-Catenin Signaling during Rift Valley Fever Virus InfectionJournal of Virology20169016708470971:CAS:528:DC%2BC28XhslyrtL7E27226375498466210.1128/JVI.00543-16 BoisenMLMultiple circulating infections can mimic the early stages of viral hemorrhagic fevers and possible human exposure to filoviruses in Sierra Leone prior to the 2014 outbreakViral Immunol201528119311:CAS:528:DC%2BC2MXjvFWnsA%3D%3D25531344428711610.1089/vim.2014.0108 JonesSMLive attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg virusesNature Medicine20051177867901:CAS:528:DC%2BD2MXmt1aju7Y%3D1593749510.1038/nm1258 LiuSYSanchezDJAliyariRLuSChengGSystematic identification of type I and type II interferon-induced antiviral factorsProceedings of the National Academy of Sciences201210911423942442012PNAS..109.4239L1:CAS:528:DC%2BC38XkslCltbk%3D10.1073/pnas.1114981109 SchaaleKWnt6 Is Expressed in Granulomatous Lesions of Mycobacterium tuberculosis-Infected Mice and Is Involved in Macrophage Differentiation and ProliferationThe Journal of Immunology201319110518251951:CAS:528:DC%2BC3sXhslWls7fM2412368110.4049/jimmunol.1201819 WarfieldKLRole of natural killer cells in innate protection against lethal ebola virus infectionThe Journal of experimental medicine200420021691791:CAS:528:DC%2BD2cXmtFSqsrc%3D15249592221200710.1084/jem.20032141 SuBWaneckGLFlavellRABothwellALThe glycosyl phosphatidylinositol anchor is critical for Ly-6A/E-mediated T cell activationJ Cell Biol19911123773841:CAS:528:DyaK3MXmtVWhtQ%3D%3D182508410.1083/jcb.112.3.377 MavinEHuman Regulatory T Cells Mediate Transcriptional Modulation of Dendritic Cell FunctionThe Journal of Immunology201719811381461:CAS:528:DC%2BC28XitFSgu7%2FF2789517310.4049/jimmunol.1502487 DahlkeCDose-dependent T-cell Dynamics and Cytokine Cascade Following rVSV-ZEBOV ImmunizationEBioMedicine20171910711828434944544060610.1016/j.ebiom.2017.03.045 EdwardsMRDifferential regulation of interferon responses by Ebola and Marburg virus VP35 proteinsCell Reports2016147163216401:CAS:528:DC%2BC28XisFOht7c%3D2687616510.1016/j.celrep.2016.01.049 LeeJThe MHC class C Dahlke (59976_CR23) 2017; 19 59976_CR1 K Schaale (59976_CR49) 2013; 191 59976_CR2 AR Abbas (59976_CR51) 2005; 6 59976_CR3 59976_CR4 IS Caballero (59976_CR28) 2014; 15 59976_CR7 E Fritz (59976_CR60) 2008; 21 SM Jones (59976_CR12) 2005; 11 B Su (59976_CR31) 1991; 112 59976_CR26 SL Anderson (59976_CR34) 1999; 256 59976_CR68 59976_CR69 JS Weinstein (59976_CR38) 2018; 215 TW Geisbert (59976_CR15) 2010; 16 A Marzi (59976_CR20) 2016; 214 KM Daddario-DiCaprio (59976_CR18) 2006; 367 ML Boisen (59976_CR8) 2015; 28 MA Rana (59976_CR71) 2017; 162 JH Connor (59976_CR27) 2015; 89 C Valmas (59976_CR57) 2011; 85 KL Lin (59976_CR63) 2015; 89 S Shydlovskyi (59976_CR35) 2017; 114 E Speranza (59976_CR24) 2018; 218 CE Mire (59976_CR19) 2014; 9 VT Thieu (59976_CR37) 2008; 29 A Marzi (59976_CR13) 2019; 9 L Cosmi (59976_CR41) 2000; 30 MR Edwards (59976_CR58) 2016; 14 E Mavin (59976_CR48) 2017; 198 D Szklarczyk (59976_CR33) 2015; 43 M-A de La Vega (59976_CR25) 2015; 125 U Ströher (59976_CR52) 2001; 75 KM Daddario-DiCaprio (59976_CR14) 2006; 80 S More (59976_CR70) 2018; 13 AM Henao-Restrepo (59976_CR10) 2017; 389 KJ Williams (59976_CR56) 2015; 28 S Backes (59976_CR32) 2014; 8 BD Singer (59976_CR54) 2014; 5 J Lee (59976_CR64) 2017; 12 RJ Schoepp (59976_CR9) 2014; 20 C Woolsey (59976_CR17) 2018; 218 E Maier (59976_CR43) 2012; 42 S Yao (59976_CR66) 2009; 113 59976_CR40 AR Menicucci (59976_CR22) 2017; 7 SW Stonier (59976_CR61) 2017; 214 E Schmitt (59976_CR44) 2014; 35 F Zhao (59976_CR47) 2018; 48 SY Liu (59976_CR29) 2012; 109 N Schuster (59976_CR45) 2002; 307 KL Warfield (59976_CR55) 2004; 200 T Tanaka (59976_CR62) 1993; 90 J Zhu (59976_CR42) 2006; 16 MA Cooper (59976_CR59) 2001; 22 YL Chen (59976_CR30) 2008; 13 Irina Rusinova (59976_CR36) 2012; 41 JS Towner (59976_CR5) 2009; 5 JT Pawęska (59976_CR6) 2018; 24 KM Coffin (59976_CR53) 2018; 24 P Schneider (59976_CR39) 2005; 17 A Frishberg (59976_CR50) 2016; 32 59976_CR11 RW Cross (59976_CR16) 2018; 17 P Ruibal (59976_CR73) 2016; 533 IT Schrijver (59976_CR65) 2019; 10 B Harmon (59976_CR72) 2016; 90 A Marzi (59976_CR21) 2013; 110 DK Sojka (59976_CR46) 2008; 124 S Li (59976_CR67) 2008; 82 |
References_xml | – reference: BoisenMLMultiple circulating infections can mimic the early stages of viral hemorrhagic fevers and possible human exposure to filoviruses in Sierra Leone prior to the 2014 outbreakViral Immunol201528119311:CAS:528:DC%2BC2MXjvFWnsA%3D%3D25531344428711610.1089/vim.2014.0108 – reference: Feldmann, H., Sanchez, A. & Geisbert, T. W. Fields Virology: Sixth Edition. Filoviridae: Ebola and Marburg Viruses. (Lippincott, Williams, and Wilkins, Philadelphia, 2013). – reference: RusinovaIrinaForsterSamYuSimonKannanAnithaMasseMarionCummingHelenChapmanRossHertzogPaul J.INTERFEROME v2.0: an updated database of annotated interferon-regulated genesNucleic Acids Research201241D1D1040D104623203888353120510.1093/nar/gks12151:CAS:528:DC%2BC38XhvV2ksbfJ – reference: ChenYLLinDWChangZFIdentification of a putative human mitochondrial thymidine monophosphate kinase associated with monocytic/macrophage terminal differentiationGenes to Cells20081376796891:CAS:528:DC%2BD1cXosVKrsr4%3D1849835410.1111/j.1365-2443.2008.01197.x – reference: SzklarczykDSTRING v10: protein–protein interaction networks, integrated over the tree of lifeNucleic Acids Research201543D1D447D4521:CAS:528:DC%2BC2sXhtVymt7bE2535255310.1093/nar/gku1003 – reference: LiSGowansEJChougnetCPlebanskiMDittmerUNatural Regulatory T Cells and Persistent Viral InfectionJournal of Virology200882121301:CAS:528:DC%2BD1cXosQ%3D%3D1785553710.1128/JVI.01768-07 – reference: PawęskaJTMarburg Virus Infection in Egyptian Rousette Bats, South Africa, 2013–2014Emerging Infectious Diseases20182461134113729774854600485310.3201/eid2406.172165 – reference: FrishbergABrodtASteuermanYGat-ViksIImmQuant: a user-friendly tool for inferring immune cell-type composition from gene- expression dataBioinformatics20163224384238431:CAS:528:DC%2BC2sXhsVSksrzL27531105516706210.1093/bioinformatics/btw535 – reference: CooperMAFehnigerTACaligiuriMAThe biology of human natural killer-cell subsetsTrends Immunol.200122116336401:CAS:528:DC%2BD3MXot1Siuro%3D1169822510.1016/S1471-4906(01)02060-9 – reference: World Health Organization. Preliminary results on the efficacy of rVSV-ZEBOV-GP Ebola vaccine using the ring vaccination strategy in the control of an Ebola outbreak in the Democratic Republic of the Congo: an example of integration of research into epidemic response. Geneva, Switzerland: World Health Organization. Available at: https://www.who.int/csr/resources/publications/ebola/ebola-ring-vaccination-results-12-april-2019.pdf. Accessed 07 January 2020. – reference: JonesSMLive attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg virusesNature Medicine20051177867901:CAS:528:DC%2BD2MXmt1aju7Y%3D1593749510.1038/nm1258 – reference: BackesSThe Mammalian Response to Virus Infection Is Independent of Small RNA SilencingCell Reports2014811141251:CAS:528:DC%2BC2cXhtVCjurzP2495365610.1016/j.celrep.2014.05.038 – reference: RuibalPUnique human immune signature of Ebola virus disease in GuineaNature201653376011001042016Natur.533..100R1:CAS:528:DC%2BC28XntlKhtL4%3D27147028487696010.1038/nature17949 – reference: Daddario-DiCaprioKMPostexposure protection against Marburg haemorrhagic fever with recombinant vesicular stomatitis virus vectors in non-human primates: an efficacy assessmentLancet2006367952013994041665064910.1016/S0140-6736(06)68546-2 – reference: FritzEGeisbertJBGeisbertTWHensleyLEReedDSCellular Immune Response to Marburg Virus Infection in Cynomolgus MacaquesViral Immunol.20082133553631:CAS:528:DC%2BD1cXhtFWiur7P1878894310.1089/vim.2008.0023 – reference: ShydlovskyiSNucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1Proceedings of the National Academy of Sciences201711428E5559E55681:CAS:528:DC%2BC2sXhtVGns7nJ10.1073/pnas.1620959114 – reference: ZhaoFParacrine Wnt5a-β-Catenin Signaling Triggers a Metabolic Program that Drives Dendritic Cell TolerizationImmunity2018481147160.e71:CAS:528:DC%2BC1cXhtVOisrc%3D29343435577728710.1016/j.immuni.2017.12.004 – reference: SchaaleKWnt6 Is Expressed in Granulomatous Lesions of Mycobacterium tuberculosis-Infected Mice and Is Involved in Macrophage Differentiation and ProliferationThe Journal of Immunology201319110518251951:CAS:528:DC%2BC3sXhslWls7fM2412368110.4049/jimmunol.1201819 – reference: Daddario-DiCaprioKMM. Cross-Protection against Marburg Virus Strains by Using a Live, Attenuated Recombinant VaccineJournal of Virology20068019965996661:CAS:528:DC%2BD28XhtVWgt77P16973570161722210.1128/JVI.00959-06 – reference: RanaMAModulation of Wnt signaling pathway by hepatitis B virusArch Virol201716210293729472868528610.1007/s00705-017-3462-61:CAS:528:DC%2BC2sXhtFelsL7L – reference: CrossRWMireCEFeldmannHGeisbertTWPost-exposure treatments for Ebola and Marburg virus infectionsNature Reviews Drug Discovery2018174131:CAS:528:DC%2BC1cXhvVeqtLo%3D2937513910.1038/nrd.2017.251 – reference: LiuSYSanchezDJAliyariRLuSChengGSystematic identification of type I and type II interferon-induced antiviral factorsProceedings of the National Academy of Sciences201210911423942442012PNAS..109.4239L1:CAS:528:DC%2BC38XkslCltbk%3D10.1073/pnas.1114981109 – reference: AndersonSLCartonJMLouJXingLRubinBYInterferon-induced guanylate binding protein-1 (GBP-1) mediates an antiviral effect against vesicular stomatitis virus and encephalomyocarditis virusVirology199925618141:CAS:528:DyaK1MXhvFWiu74%3D1008722110.1006/viro.1999.9614 – reference: MarziAEfficacy of Vesicular Stomatitis Virus–Ebola Virus Postexposure Treatment in Rhesus Macaques Infected With Ebola Virus MakonaThe Journal of Infectious Diseases2016214Suppl 3S360S3661:CAS:528:DC%2BC1cXktFCgtbw%3D27496978505046810.1093/infdis/jiw218 – reference: ConnorJHTranscriptional Profiling of the Immune Response to Marburg Virus InfectionJournal of Virology20158919986598741:CAS:528:DC%2BC2MXhvFKnu7vO26202234457790110.1128/JVI.01142-15 – reference: MavinEHuman Regulatory T Cells Mediate Transcriptional Modulation of Dendritic Cell FunctionThe Journal of Immunology201719811381461:CAS:528:DC%2BC28XitFSgu7%2FF2789517310.4049/jimmunol.1502487 – reference: Henao-RestrepoAMEfficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!)The Lancet2017389100685055181:CAS:528:DC%2BC28XitFGitbbJ10.1016/S0140-6736(16)32621-6 – reference: Murphy, K, Travers, P, and Walport, M. Janeway’s Immunobiology Seventh Edition. (Garland Science, New York, 2008). – reference: SojkaDKHuangY-HFowellDJMechanisms of regulatory T-cell suppression – a diverse arsenal for a moving targetImmunology2008124113221:CAS:528:DC%2BD1cXltlens7s%3D18346152243437510.1111/j.1365-2567.2008.02813.x – reference: World Health Organization. Disease Outbreak News- Marburg virus disease – Uganda, 25 October 2017. Geneva, Switzerland: World Health Organization. Available at: https://www.who.int/csr/don/25-october-2017-marburg-uganda/en/. Accessed 19 February 2019. – reference: MarziAProtection Against Marburg Virus Using a Recombinant VSV-Vaccine Depends on T and B Cell ActivationFrontiers in immunology20199307130723475635010310.3389/fimmu.2018.030711:CAS:528:DC%2BC1MXht1eqt7vK – reference: SingerBDKingLSD’AlessioFRRegulatory T Cells as ImmunotherapyFrontiers in Immunology201454624575095392006510.3389/fimmu.2014.000461:CAS:528:DC%2BC2MXht1ehurvE – reference: ThieuVTStat4 is required for T-bet to promote IL-12-dependent Th1 fate determinationImmunity20082956796901:CAS:528:DC%2BD1cXhsVaqs7fL18993086276804010.1016/j.immuni.2008.08.017 – reference: LinKLTemporal Characterization of Marburg Virus Angola Infection following Aerosol Challenge in Rhesus MacaquesJournal of Virology20158919987598851:CAS:528:DC%2BC2MXhvFCjsbrJ26202230457792010.1128/JVI.01147-15 – reference: CaballeroISLassa and Marburg viruses elicit distinct host transcriptional responses early after infectionBMC Genomics201415125377889423272110.1186/1471-2164-15-9601:CAS:528:DC%2BC2MXhtl2rtLk%3D – reference: MoreSRegulation of influenza virus replication by Wnt/β-catenin signalingPLoS One201813112110.1371/journal.pone.01910101:CAS:528:DC%2BC1cXhs1Wksr7L – reference: Villaseñor, T. et al Activation of the Wnt pathway by Mycobacterium tuberculosis: A Wnt-Wnt Situation. Frontiers in Immunology, 8(FEB), 1–16 (2017). – reference: TanakaTHu-LiJSederRAFazekas de St GrothBPaulWEInterleukin 4 suppresses interleukin 2 and interferon gamma production by naive T cells stimulated by accessory cell-dependent receptor engagementProceedings of the National Academy of Sciences of the United States of America19939013591459181993PNAS...90.5914T1:CAS:528:DyaK3sXkvFegurw%3D81009984683710.1073/pnas.90.13.5914 – reference: SchoeppRJRossiCAKhanSHGobaAFairJNUndiagnosed acute viral febrile illnesses, Sierra LeoneEmerg Infect Dis201420711768224959946407386410.3201/eid2007.131265 – reference: LeeJThe MHC class II antigen presentation pathway in human monocytes differs by subset and is regulated by cytokinesPLoS One2017128e018359428832681556822410.1371/journal.pone.01835941:CAS:528:DC%2BC1cXps1aqsw%3D%3D – reference: CosmiLCRTH2 is the most reliable marker for the detection of circulating human type 2 Th and type 2 T cytotoxic cells in health and diseaseEuropean Journal of Immunology20003010297291:CAS:528:DC%2BD3cXnslKrsL4%3D1106908010.1002/1521-4141(200010)30:10<2972::AID-IMMU2972>3.0.CO;2-# – reference: HarmonBA Genome-Wide RNA Interference Screen Identifies a Role for Wnt/β-Catenin Signaling during Rift Valley Fever Virus InfectionJournal of Virology20169016708470971:CAS:528:DC%2BC28XhslyrtL7E27226375498466210.1128/JVI.00543-16 – reference: SchneiderPThe role of APRIL and BAFF in lymphocyte activationCurrent Opinion in Immunology20051732822891:CAS:528:DC%2BD2MXjvFeksLs%3D1588611810.1016/j.coi.2005.04.005 – reference: SchusterNKrieglsteinKMechanisms of TGF-β-mediated apoptosisCell and Tissue Research200230711141:CAS:528:DC%2BD3MXovFSgsLs%3D1181030910.1007/s00441-001-0479-6 – reference: MenicucciARSureshchandraSMarziAFeldmannHMessaoudiITranscriptomic analysis reveals a previously unknown role for CD8+ T-cells in rVSV-EBOV mediated protectionScientific Reports2017712017NatSR...7..919M28428619543051610.1038/s41598-017-01032-81:CAS:528:DC%2BC2sXhslGmtLnF – reference: YaoSPD-1 on dendritic cells impedes innate immunity against bacterial infectionBlood2009113581181:CAS:528:DC%2BD1MXnsVSksb8%3D19339692270032010.1182/blood-2009-02-203141 – reference: StröherUInfection and activation of monocytes by Marburg and Ebola virusesJournal of Virology2001752211025331160274311468310.1128/JVI.75.22.11025-11033.2001 – reference: MarziAAntibodies are necessary for rVSV/ZEBOV-GP–mediated protection against lethal Ebola virus challenge in nonhuman primatesProceedings of the National Academy of Sciences of the United States of America20131105189318982013PNAS..110.1893M1:CAS:528:DC%2BC3sXisl2nsLo%3D23319647356284410.1073/pnas.1209591110 – reference: SperanzaET-Cell Receptor Diversity and the Control of T-Cell Homeostasis Mark Ebola Virus Disease Survival in HumansThe Journal of Infectious Diseases20182185S508S518299860357191875 – reference: de La VegaM-AEbola viral load at diagnosis associates with patient outcome and outbreak evolutionThe Journal of Clinical Investigation2015125124421442810.1172/JCI83162 – reference: WeinsteinJSSTAT4 and T-bet control follicular helper T cell development in viral infectionsThe Journal of Experimental Medicine201821513373551:CAS:528:DC%2BC1cXhsF2rt7jN29212666574884910.1084/jem.20170457 – reference: SchmittEKleinMBoppTTh9 cells, new players in adaptive immunityTrends in Immunology201435261681:CAS:528:DC%2BC3sXhslGmtbbN2421573910.1016/j.it.2013.10.004 – reference: WoolseyCPostexposure Efficacy of Recombinant Vesicular Stomatitis Virus Vectors Against High and Low Doses of Marburg Virus Variant Angola in Nonhuman PrimatesThe Journal of infectious diseases2018218suppl_5S582S587377281829939296624956510.1093/infdis/jiy293 – reference: ValmasCBaslerCFMarburg Virus VP40 Antagonizes Interferon Signaling in a Species-Specific MannerJournal of Virology2011859430943171:CAS:528:DC%2BC3MXhtVSmsLnJ21325424312624810.1128/JVI.02575-10 – reference: AbbasARImmune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression dataGenes. Immunity200563193311:CAS:528:DC%2BD2MXks1Gmsbc%3D1578905810.1038/sj.gene.6364173 – reference: SchrijverITThéroudeCRogerTMyeloid-Derived Suppressor Cells in SepsisFrontiers in immunology2019103271:CAS:528:DC%2BC1MXhtlKhurzI30873175640098010.3389/fimmu.2019.00327 – reference: MaierEDuschlAHorejs-HoeckJSTAT6-dependent and -independent mechanisms in Th2 polarizationEuropean Journal of Immunology201242112827331:CAS:528:DC%2BC38XhsVKgsrjJ23041833355772110.1002/eji.201242433 – reference: World Health Organization. Ebola virus disease. Fact sheet, 12 February 2018. Geneva, Switzerland: World Health Organization. Available at https://www.who.int/news-room/fact-sheets/detail/ebola-virus-disease. Accessed 19 February 2019. – reference: ZhuJYamaneHCote-SierraJGuoLPaulWEGATA-3 promotes Th2 responses through three different mechanisms: Induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factorsCell Research20061613101:CAS:528:DC%2BD28XlvFSitw%3D%3D1646787010.1038/sj.cr.7310002 – reference: TownerJSIsolation of genetically diverse Marburg viruses from Egyptian fruit batsPLoS pathogens200957e100053619649327271340410.1371/journal.ppat.10005361:CAS:528:DC%2BD1MXhtVShtLbM – reference: CoffinKMPersistent Marburg Virus Infection in the Testes of Nonhuman Primate SurvivorsCell Host & Microbe2018243405416.e31:CAS:528:DC%2BC1cXhs1enurfE10.1016/j.chom.2018.08.003 – reference: WilliamsKJQiuXFernandoLJonesSMAlimontiJBVSVΔG/EBOV GP-induced innate protection enhances natural killer cell activity to increase survival in a lethal mouse adapted Ebola virus infectionViral Immunol.201528151611:CAS:528:DC%2BC2MXjvFWntw%3D%3D2549445710.1089/vim.2014.0069 – reference: SuBWaneckGLFlavellRABothwellALThe glycosyl phosphatidylinositol anchor is critical for Ly-6A/E-mediated T cell activationJ Cell Biol19911123773841:CAS:528:DyaK3MXmtVWhtQ%3D%3D182508410.1083/jcb.112.3.377 – reference: WarfieldKLRole of natural killer cells in innate protection against lethal ebola virus infectionThe Journal of experimental medicine200420021691791:CAS:528:DC%2BD2cXmtFSqsrc%3D15249592221200710.1084/jem.20032141 – reference: GeisbertTWPostexposure treatment of Marburg virus infectionEmerging Infectious Dieases2010161119112210.3201/eid1607.100159 – reference: EdwardsMRDifferential regulation of interferon responses by Ebola and Marburg virus VP35 proteinsCell Reports2016147163216401:CAS:528:DC%2BC28XisFOht7c%3D2687616510.1016/j.celrep.2016.01.049 – reference: StonierSWMarburg virus survivor immune responses are Th1 skewed with limited neutralizing antibody responsesJ Exp Med201721492563257228724616558412510.1084/jem.201701611:CAS:528:DC%2BC1cXjtlems7c%3D – reference: Centers for Disease Control and Prevention. Marburg hemorrhagic fever. Outbreaks Chronology: Marburg Hemorrhagic Fever, 01 Decemberb 2014. Atlanta, Georgia: Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/vhf/marburg/outbreaks/chronology.html. Accessed 19 February 2019. – reference: MireCEDurability of a vesicular stomatitis virus-based marburg virus vaccine in nonhuman primatesPloS One201494e943552014PLoSO...994355M24759889399738310.1371/journal.pone.00943551:CAS:528:DC%2BC2cXhsFemur7L – reference: Brandenburg, J., Reiling, N. The Wnt blows: On the functional role of Wnt signaling in mycobacterium tuberculosis infection and beyond. Frontiers in Immunology, 7(DEC), 1–11 (2016). – reference: Knust, B. et al. Multidistrict Outbreak of Marburg Virus Disease-Uganda, 2012. The Journal of infectious diseases, 212 Suppl 2(Suppl 2), S119–S128 (2015). – reference: Centers for Disease Control and Prevention. CDC Newsroom Releases. Deadly Marburg Virus Found in Sierra Leone Bats, 21 December 2018. Atlanta, Georgia: Centers for Disease Control and Prevention. Available at: https://www.cdc.gov/media/releases/2018/p1220-marburg-found-in-bats.html. Accessed 19 February 2019. – reference: DahlkeCDose-dependent T-cell Dynamics and Cytokine Cascade Following rVSV-ZEBOV ImmunizationEBioMedicine20171910711828434944544060610.1016/j.ebiom.2017.03.045 – volume: 110 start-page: 1893 issue: 5 year: 2013 ident: 59976_CR21 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.1209591110 – volume: 20 start-page: 1176 issue: 7 year: 2014 ident: 59976_CR9 publication-title: Emerg Infect Dis doi: 10.3201/eid2007.131265 – ident: 59976_CR11 – volume: 11 start-page: 786 issue: 7 year: 2005 ident: 59976_CR12 publication-title: Nature Medicine doi: 10.1038/nm1258 – volume: 113 start-page: 5811 year: 2009 ident: 59976_CR66 publication-title: Blood doi: 10.1182/blood-2009-02-203141 – volume: 19 start-page: 107 year: 2017 ident: 59976_CR23 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2017.03.045 – volume: 162 start-page: 2937 issue: 10 year: 2017 ident: 59976_CR71 publication-title: Arch Virol doi: 10.1007/s00705-017-3462-6 – volume: 14 start-page: 1632 issue: 7 year: 2016 ident: 59976_CR58 publication-title: Cell Reports doi: 10.1016/j.celrep.2016.01.049 – ident: 59976_CR69 doi: 10.3389/fimmu.2017.00050 – volume: 533 start-page: 100 issue: 7601 year: 2016 ident: 59976_CR73 publication-title: Nature doi: 10.1038/nature17949 – ident: 59976_CR26 doi: 10.1093/infdis/jiv351 – volume: 21 start-page: 355 issue: 3 year: 2008 ident: 59976_CR60 publication-title: Viral Immunol. doi: 10.1089/vim.2008.0023 – volume: 82 start-page: 21 issue: 1 year: 2008 ident: 59976_CR67 publication-title: Journal of Virology doi: 10.1128/JVI.01768-07 – ident: 59976_CR3 – volume: 218 start-page: S508 issue: 5 year: 2018 ident: 59976_CR24 publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jiy352 – ident: 59976_CR7 – volume: 218 start-page: S582 issue: suppl_5 year: 2018 ident: 59976_CR17 publication-title: The Journal of infectious diseases doi: 10.1093/infdis/jiy293 – volume: 90 start-page: 5914 issue: 13 year: 1993 ident: 59976_CR62 publication-title: Proceedings of the National Academy of Sciences of the United States of America doi: 10.1073/pnas.90.13.5914 – volume: 16 start-page: 1119 year: 2010 ident: 59976_CR15 publication-title: Emerging Infectious Dieases doi: 10.3201/eid1607.100159 – volume: 30 start-page: 2972 issue: 10 year: 2000 ident: 59976_CR41 publication-title: European Journal of Immunology doi: 10.1002/1521-4141(200010)30:10<2972::AID-IMMU2972>3.0.CO;2-# – volume: 43 start-page: D447 issue: D1 year: 2015 ident: 59976_CR33 publication-title: Nucleic Acids Research doi: 10.1093/nar/gku1003 – volume: 9 start-page: e94355 issue: 4 year: 2014 ident: 59976_CR19 publication-title: PloS One doi: 10.1371/journal.pone.0094355 – volume: 114 start-page: E5559 issue: 28 year: 2017 ident: 59976_CR35 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1620959114 – volume: 367 start-page: 1399 issue: 9520 year: 2006 ident: 59976_CR18 publication-title: Lancet doi: 10.1016/S0140-6736(06)68546-2 – volume: 6 start-page: 319 year: 2005 ident: 59976_CR51 publication-title: Genes. Immunity doi: 10.1038/sj.gene.6364173 – volume: 7 issue: 1 year: 2017 ident: 59976_CR22 publication-title: Scientific Reports doi: 10.1038/s41598-017-01032-8 – volume: 35 start-page: 61 issue: 2 year: 2014 ident: 59976_CR44 publication-title: Trends in Immunology doi: 10.1016/j.it.2013.10.004 – volume: 215 start-page: 337 issue: 1 year: 2018 ident: 59976_CR38 publication-title: The Journal of Experimental Medicine doi: 10.1084/jem.20170457 – volume: 5 start-page: 46 year: 2014 ident: 59976_CR54 publication-title: Frontiers in Immunology doi: 10.3389/fimmu.2014.00046 – volume: 24 start-page: 1134 issue: 6 year: 2018 ident: 59976_CR6 publication-title: Emerging Infectious Diseases doi: 10.3201/eid2406.172165 – ident: 59976_CR4 – volume: 89 start-page: 9875 issue: 19 year: 2015 ident: 59976_CR63 publication-title: Journal of Virology doi: 10.1128/JVI.01147-15 – volume: 5 start-page: e1000536 issue: 7 year: 2009 ident: 59976_CR5 publication-title: PLoS pathogens doi: 10.1371/journal.ppat.1000536 – volume: 22 start-page: 633 issue: 11 year: 2001 ident: 59976_CR59 publication-title: Trends Immunol. doi: 10.1016/S1471-4906(01)02060-9 – ident: 59976_CR68 doi: 10.3389/fimmu.2016.00635 – volume: 109 start-page: 4239 issue: 11 year: 2012 ident: 59976_CR29 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1114981109 – volume: 85 start-page: 4309 issue: 9 year: 2011 ident: 59976_CR57 publication-title: Journal of Virology doi: 10.1128/JVI.02575-10 – volume: 28 start-page: 51 issue: 1 year: 2015 ident: 59976_CR56 publication-title: Viral Immunol. doi: 10.1089/vim.2014.0069 – volume: 24 start-page: 405 issue: 3 year: 2018 ident: 59976_CR53 publication-title: Cell Host & Microbe doi: 10.1016/j.chom.2018.08.003 – ident: 59976_CR40 doi: 10.1007/978-3-8274-2219-4 – volume: 28 start-page: 19 issue: 1 year: 2015 ident: 59976_CR8 publication-title: Viral Immunol doi: 10.1089/vim.2014.0108 – volume: 89 start-page: 9865 issue: 19 year: 2015 ident: 59976_CR27 publication-title: Journal of Virology doi: 10.1128/JVI.01142-15 – volume: 12 start-page: e0183594 issue: 8 year: 2017 ident: 59976_CR64 publication-title: PLoS One doi: 10.1371/journal.pone.0183594 – volume: 15 issue: 1 year: 2014 ident: 59976_CR28 publication-title: BMC Genomics doi: 10.1186/1471-2164-15-960 – volume: 8 start-page: 114 issue: 1 year: 2014 ident: 59976_CR32 publication-title: Cell Reports doi: 10.1016/j.celrep.2014.05.038 – ident: 59976_CR1 – volume: 90 start-page: 7084 issue: 16 year: 2016 ident: 59976_CR72 publication-title: Journal of Virology doi: 10.1128/JVI.00543-16 – volume: 42 start-page: 2827 issue: 11 year: 2012 ident: 59976_CR43 publication-title: European Journal of Immunology doi: 10.1002/eji.201242433 – volume: 29 start-page: 679 issue: 5 year: 2008 ident: 59976_CR37 publication-title: Immunity doi: 10.1016/j.immuni.2008.08.017 – volume: 389 start-page: 505 issue: 10068 year: 2017 ident: 59976_CR10 publication-title: The Lancet doi: 10.1016/S0140-6736(16)32621-6 – volume: 80 start-page: 9659 issue: 19 year: 2006 ident: 59976_CR14 publication-title: Journal of Virology doi: 10.1128/JVI.00959-06 – volume: 214 start-page: 2563 issue: 9 year: 2017 ident: 59976_CR61 publication-title: J Exp Med doi: 10.1084/jem.20170161 – volume: 17 start-page: 413 year: 2018 ident: 59976_CR16 publication-title: Nature Reviews Drug Discovery doi: 10.1038/nrd.2017.251 – volume: 17 start-page: 282 issue: 3 year: 2005 ident: 59976_CR39 publication-title: Current Opinion in Immunology doi: 10.1016/j.coi.2005.04.005 – volume: 13 start-page: 1 issue: 1 year: 2018 ident: 59976_CR70 publication-title: PLoS One doi: 10.1371/journal.pone.0191010 – volume: 32 start-page: 3842 issue: 24 year: 2016 ident: 59976_CR50 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw535 – volume: 48 start-page: 147 issue: 1 year: 2018 ident: 59976_CR47 publication-title: Immunity doi: 10.1016/j.immuni.2017.12.004 – volume: 125 start-page: 4421 issue: 12 year: 2015 ident: 59976_CR25 publication-title: The Journal of Clinical Investigation doi: 10.1172/JCI83162 – volume: 41 start-page: D1040 issue: D1 year: 2012 ident: 59976_CR36 publication-title: Nucleic Acids Research doi: 10.1093/nar/gks1215 – volume: 191 start-page: 5182 issue: 10 year: 2013 ident: 59976_CR49 publication-title: The Journal of Immunology doi: 10.4049/jimmunol.1201819 – volume: 10 start-page: 327 year: 2019 ident: 59976_CR65 publication-title: Frontiers in immunology doi: 10.3389/fimmu.2019.00327 – volume: 75 start-page: 11025 issue: 22 year: 2001 ident: 59976_CR52 publication-title: Journal of Virology doi: 10.1128/JVI.75.22.11025-11033.2001 – volume: 256 start-page: 8 issue: 1 year: 1999 ident: 59976_CR34 publication-title: Virology doi: 10.1006/viro.1999.9614 – volume: 214 start-page: S360 issue: Suppl 3 year: 2016 ident: 59976_CR20 publication-title: The Journal of Infectious Diseases doi: 10.1093/infdis/jiw218 – volume: 124 start-page: 13 issue: 1 year: 2008 ident: 59976_CR46 publication-title: Immunology doi: 10.1111/j.1365-2567.2008.02813.x – ident: 59976_CR2 – volume: 112 start-page: 377 year: 1991 ident: 59976_CR31 publication-title: J Cell Biol doi: 10.1083/jcb.112.3.377 – volume: 13 start-page: 679 issue: 7 year: 2008 ident: 59976_CR30 publication-title: Genes to Cells doi: 10.1111/j.1365-2443.2008.01197.x – volume: 16 start-page: 3 issue: 1 year: 2006 ident: 59976_CR42 publication-title: Cell Research doi: 10.1038/sj.cr.7310002 – volume: 198 start-page: 138 issue: 1 year: 2017 ident: 59976_CR48 publication-title: The Journal of Immunology doi: 10.4049/jimmunol.1502487 – volume: 200 start-page: 169 issue: 2 year: 2004 ident: 59976_CR55 publication-title: The Journal of experimental medicine doi: 10.1084/jem.20032141 – volume: 9 start-page: 3071 year: 2019 ident: 59976_CR13 publication-title: Frontiers in immunology doi: 10.3389/fimmu.2018.03071 – volume: 307 start-page: 1 issue: 1 year: 2002 ident: 59976_CR45 publication-title: Cell and Tissue Research doi: 10.1007/s00441-001-0479-6 |
SSID | ssj0000529419 |
Score | 2.4187205 |
Snippet | Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3071 |
SubjectTerms | 13/31 38/91 631/326/590/1867 631/326/596/2041 Animals Antibodies, Viral - biosynthesis Antibodies, Viral - immunology Antiviral drugs Cytokines - blood Cytotoxicity, Immunologic Disease transmission Dose-Response Relationship, Immunologic Down-Regulation - genetics Female Filoviridae Gene mapping Histocompatibility antigen HLA Humanities and Social Sciences Immune checkpoint Immunization Immunoregulation Immunostimulation Infectious diseases Inflammation - blood Inflammation - immunology Interferon Interferons - genetics Interferons - metabolism Killer Cells, Natural - immunology Lymphocytes T Macaca mulatta - immunology Macaca mulatta - virology Male Marburg disease Marburg Virus Disease - blood Marburg Virus Disease - genetics Marburg Virus Disease - immunology Marburg Virus Disease - virology Marburgvirus - immunology Medical prognosis Monocytes multidisciplinary PD-1 protein Peripheral blood Post-Exposure Prophylaxis Recombination, Genetic - genetics RNA, Messenger - genetics RNA, Messenger - metabolism Science Science (multidisciplinary) Stomatitis T-Lymphocytes, Helper-Inducer - immunology Th1 Cells - immunology Th2 Cells - immunology Transcription Transcriptome - genetics Up-Regulation - genetics Vaccines Vectors Vesiculovirus - genetics Viral Load - immunology Viral Vaccines - immunology Viruses |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED_8QPBF_LY6JYJvWmybrkmeRMQxB_NJYW8lzVIdSDf3Ifrfe9dmHVP0pVCSfuQul_wu9wVwYVGAkiSQiNwsKigmNL7KctRaA9m3SuRGlk403cek_Rx3es2eO3CbOLfK-ZpYLtT9oaEz8uuIl7XnJJc3o3efqkaRddWV0FiFdUpdRi5doifqMxayYsWhcrEyAZfXE9yvKKYMdaamwp3Y58v70S-Q-dtX8ofBtNyHWtuw5QAku604vgMrttiFjaqk5NcedB4o4MMyQ1U33ghIsmHORhTK8YnX2diyD23Ims5cigZkDNMveoA4kXU1EfmFfQzGs8k-PLfun-7avquX4JtYxFNfKitFn-sk0opzK5uJkXkuM4MoLcsRaAShVkarPqdbylsjEADpWImIYJLmB7BWDAt7BIwH2mqhhG0aiyKudahEpq0yRqB-xoUH4ZxqqXHJxKmmxVtaGrW5TCtKp0jptKR0yj24rJ8ZVak0_u3dmDMjdWI1SReTwIPzuhkFgqwcurDDGfVJFKFaGXtwWPGu_hyPECDzCF8ulrhad6Bk28stxeC1TLqNKyMPo8CDqzn_F7_19yiO_x_FCWxGNBcpRD5owNp0PLOnCHKm2Vk5k78B6Cn5tw priority: 102 providerName: ProQuest – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7WFcGL-La6SgRvWmybbpMcZVF0YT0peCtpNtUF6Yr7QP-9M-lD1hd4KZQmbTKTyXzTycwAnFgUoCQJJCI3iwaKCY2vshyt1kAOrRK5ke4QzeA2ub6P-w_dhxZEdSyMO7TvUlq6bbo-HXY-QUVDwWBo7HQVqlCfL8EypW6nVd1Les1_FfJcxaGq4mMCLn_ouqiDvgHL7-cjvzhJne65Woe1CjSyi3KYG9CyxSaslGUk37egf0NBHpYZqrTxTOCRjXP2QuEbb3jFWbK5NuRBZ1VaBmQG0496hNiQDTQR9pHNR6-zyTbcX13e9a79qkaCb2IRT32prBRDrpNIK86t7CZG5rnMDCKzLEdwEYRaGa2GnG4pV41A0KNjJSKCRprvQLsYF3YPGA-01UIJ2zUWxVrrUIlMW2WMQJuMCw_CmmqpqRKIUx2L59Q5srlMS0qnSOnUUTrlHpw2fV7K9Bl_tu7UzEgrUZqkEXdFByWXHhw3j1EIyLOhCzueUZtEEZKVsQe7Je-az_EIQTGP8OVigatNA0qwvfikGD25RNu4G_IwCjw4q_n_OazfZ7H_v-YHsBrR2qQw-aAD7enrzB4i0JlmR25lfwCgyPeD priority: 102 providerName: Springer Nature |
Title | Immune correlates of postexposure vaccine protection against Marburg virus |
URI | https://link.springer.com/article/10.1038/s41598-020-59976-3 https://www.ncbi.nlm.nih.gov/pubmed/32080323 https://www.proquest.com/docview/2359369838 https://www.proquest.com/docview/2369397784 https://pubmed.ncbi.nlm.nih.gov/PMC7033120 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9REBIv0xgMskFlJN5GWBKnsf0wTV1FBZVaoUGlvkWO60ClKmX9QPDf7y4fRV0BaS-JEtv5uPPlfpfz3QGcWhSgKPIkIjeLBorxjauSFK1WTw6tEqmR-SKabi-67IedQWOwAVW5o5KAs1dNO6on1Z-Oz5_-PP9Egf9RhIzL7zNUQhQohoZQQ6F6dXkNtlAzCRLUbgn3i1zfgQp9VcbOvD50VT-tgc71tZP_OFBzvdT-CB9KQMmaxQzYhQ2bfYLtosTk8x50rigAxDJDVTjGBCzZJGUPFNrxhNvF1LJHbci7zsqUDcgopu_0CHEj62oi-h17HE0Xs33oty9uW5duWT_BNaEI565UVooh11GgFedWNiIj01QmBlFbkiLw8HytjFZDToeUx0YgINKhEgHBJs0_w2Y2yewhMO5pq4UStmEsirzWvhKJtsoYgfYaFw74FdViUyYXpxoX4zh3cnMZF5SOkdJxTumYO_BtOeahSK3xbu-jihlxNUvigOcFCSWXDpwsm1FAyOuhMztZUJ9IEcqVoQMHBe-Wt-MBAmYe4MXFCleXHSj59mpLNrrPk3Djl5L7gefAWcX_l8d6-y2-_F_3r7AT0NykEHrvCDbn04U9RhA0T-pQEwNRh61ms3PTwf2vi971bzzbilr1_MdCPZ_7fwE1DgcP |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcUHkHChgJThA1sbOxfagqHq122-4KoVbqzThep6xUZZd9FPqn-I2dyataKnrrJVIUx4lnxp5vPJ4ZgHceJ1CaRgqRm0cDxcUu1FmOVmukRl7L3KnyEM1gmPaOk_2T7ska_G1iYehYZbMmlgv1aOJoj3yLi7L2nBJqZ_orpKpR5F1tSmhUYnHgL36jyTbf7n9F_r7nfG_36EsvrKsKhC6RySJU2is5EjblFo15r7qpU3muModYJstRHUex1c7qkaBbyu4iESbYREtOYMIK7PcOrCcCG3Zg_fPu8Nv3dleH_GZJrOvonEiorTlqSIpiQyutq1H3h2JVA16DtddPZ_7joi01394GPKghK_tUydhDWPPFI7hbFbG8eAz7fQox8cxRnY8zgq5skrMpBY_8wety5tm5deS_Z3VSCBQFZk_tGJEpG1hi6yk7H8-W8ydwfCu0fAqdYlL458BEZL2VWvqu87ioWBtrmVmvnZNoEQoZQNxQzbg6fTlV0TgzpRtdKFNR2iClTUlpIwL40L4zrZJ33Nh6s2GGqSfy3FyJXQBv28c4BcmvYgs_WVKbVBOOVkkAzyretZ8THCG54Ni5XOFq24DSe68-KcY_yzTfuBaLmEcBfGz4f_Vb_x_Fi5tH8Qbu9Y4Gh-awPzx4Cfc5ySUF6Eeb0FnMlv4VQqxF9rqWawY_bnsqXQITyDaf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VViAuiFJoA6UYqZwgamInsX1ACLWsui2tOFBpb8bxOu1KVXbZR6F_jV_HTF7VUtFbL5EiO44zD_ubjGcGYNejAmVZpBC5eTRQXOxCnRdotUZq6LUsnKoO0ZycZodnydEgHazAnzYWho5VtmtitVAPx47-ke9xUdWeU0LtFc2xiG8HvU-TnyFVkCJPa1tOoxaRY3_9C8232cf-AfL6Hee9L9_3D8OmwkDoEpnMQ6W9kkNhM27RsPcqzZwqCpU7xDV5gVtzFFvtrB4KuqVMLxIhg0205AQsrMBxH8CaFGlMOiYHsvu_Qx60JNZNnE6E057hXknxbGivpRpRQCiW98JbAPf2Oc1_nLXVHth7Ck8a8Mo-19K2Diu-fAYP63KW1xtw1KdgE88cVfy4JBDLxgWbUBjJb7wupp5dWUeefNakh0ChYPbcjhCjshNLDD5nV6PpYvYczu6Fki9gtRyXfguYiKy3UkufOo_Li7Wxlrn12jmJtqGQAcQt1YxrEplTPY1LUznUhTI1pQ1S2lSUNiKA990zkzqNx529t1tmmEalZ-ZGAAN42zWjMpKHxZZ-vKA-mSZErZIANmveda8THMG54Di4XOJq14ESfS-3lKOLKuE3rsoi5lEAH1r-30zr_1_x8u6veAOPUIHM1_7p8St4zEksKVI_2obV-XThXyPWmuc7lVAz-HHfWvQXOuU5bw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Immune+correlates+of+postexposure+vaccine+protection+against+Marburg+virus&rft.jtitle=Scientific+reports&rft.au=Woolsey%2C+Courtney&rft.au=Jankeel%2C+Allen&rft.au=Matassov%2C+Demetrius&rft.au=Geisbert%2C+Joan+B.&rft.date=2020-02-20&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-59976-3&rft.externalDocID=10_1038_s41598_020_59976_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |