Aging and white matter microstructure and macrostructure: a longitudinal multi-site diffusion MRI study of 1218 participants

Quantifying the microstructural and macrostructural geometrical features of the human brain’s connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets tot...

Full description

Saved in:
Bibliographic Details
Published inBrain Structure and Function Vol. 227; no. 6; pp. 2111 - 2125
Main Authors Schilling, Kurt G., Archer, Derek, Yeh, Fang-Cheng, Rheault, Francois, Cai, Leon Y., Hansen, Colin, Yang, Qi, Ramdass, Karthik, Shafer, Andrea T., Resnick, Susan M., Pechman, Kimberly R., Gifford, Katherine A., Hohman, Timothy J., Jefferson, Angela, Anderson, Adam W., Kang, Hakmook, Landman, Bennett A.
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.07.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1863-2653
1863-2661
1863-2661
0340-2061
DOI10.1007/s00429-022-02503-z

Cover

Loading…
Abstract Quantifying the microstructural and macrostructural geometrical features of the human brain’s connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets totaling in 1218 subjects and 2459 sessions of people aged 50–97 years. Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging data set, Cambridge Centre for Ageing Neuroscience data set, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging and could facilitate comparisons in a variety of diseases or abnormal conditions.
AbstractList Quantifying the microstructural and macrostructural geometrical features of the human brain’s connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets totaling in 1218 subjects and 2459 sessions of people aged 50–97 years. Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging data set, Cambridge Centre for Ageing Neuroscience data set, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging and could facilitate comparisons in a variety of diseases or abnormal conditions.
Quantifying the microstructural and macrostructural geometrical features of the human brain's connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets totaling in 1218 subjects and 2459 sessions of people aged 50-97 years. Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging data set, Cambridge Centre for Ageing Neuroscience data set, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging and could facilitate comparisons in a variety of diseases or abnormal conditions.
Quantifying the microstructural and macrostructural geometrical features of the human brain's connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets totaling in 1218 subjects and 2459 sessions of people aged 50-97 years. Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging data set, Cambridge Centre for Ageing Neuroscience data set, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging and could facilitate comparisons in a variety of diseases or abnormal conditions.Quantifying the microstructural and macrostructural geometrical features of the human brain's connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets totaling in 1218 subjects and 2459 sessions of people aged 50-97 years. Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging data set, Cambridge Centre for Ageing Neuroscience data set, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging and could facilitate comparisons in a variety of diseases or abnormal conditions.
Author Ramdass, Karthik
Pechman, Kimberly R.
Jefferson, Angela
Yeh, Fang-Cheng
Kang, Hakmook
Archer, Derek
Anderson, Adam W.
Landman, Bennett A.
Rheault, Francois
Hohman, Timothy J.
Cai, Leon Y.
Resnick, Susan M.
Schilling, Kurt G.
Hansen, Colin
Yang, Qi
Gifford, Katherine A.
Shafer, Andrea T.
AuthorAffiliation 3 Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
2 Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
5 Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
8 Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
11 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
10 Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
4 Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
7 Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
9 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
6 Department of Neurological Surgery, University of Pittsburgh Medical Center, P
AuthorAffiliation_xml – name: 11 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
– name: 3 Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
– name: 6 Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
– name: 7 Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
– name: 9 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
– name: 2 Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
– name: 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
– name: 5 Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
– name: 8 Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
– name: 10 Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
– name: 4 Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
Author_xml – sequence: 1
  givenname: Kurt G.
  orcidid: 0000-0003-3686-7645
  surname: Schilling
  fullname: Schilling, Kurt G.
  email: kurt.g.schilling.1@vumc.org
  organization: Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
– sequence: 2
  givenname: Derek
  surname: Archer
  fullname: Archer, Derek
  organization: Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Department of Neurology, Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine
– sequence: 3
  givenname: Fang-Cheng
  surname: Yeh
  fullname: Yeh, Fang-Cheng
  organization: Department of Neurological Surgery, University of Pittsburgh Medical Center, Department of Bioengineering, University of Pittsburgh
– sequence: 4
  givenname: Francois
  surname: Rheault
  fullname: Rheault, Francois
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University
– sequence: 5
  givenname: Leon Y.
  surname: Cai
  fullname: Cai, Leon Y.
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University
– sequence: 6
  givenname: Colin
  surname: Hansen
  fullname: Hansen, Colin
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University
– sequence: 7
  givenname: Qi
  surname: Yang
  fullname: Yang, Qi
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University
– sequence: 8
  givenname: Karthik
  surname: Ramdass
  fullname: Ramdass, Karthik
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University
– sequence: 9
  givenname: Andrea T.
  surname: Shafer
  fullname: Shafer, Andrea T.
  organization: Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health
– sequence: 10
  givenname: Susan M.
  surname: Resnick
  fullname: Resnick, Susan M.
  organization: Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health
– sequence: 11
  givenname: Kimberly R.
  surname: Pechman
  fullname: Pechman, Kimberly R.
  organization: Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Department of Neurology, Vanderbilt University Medical Center
– sequence: 12
  givenname: Katherine A.
  surname: Gifford
  fullname: Gifford, Katherine A.
  organization: Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Department of Neurology, Vanderbilt University Medical Center
– sequence: 13
  givenname: Timothy J.
  surname: Hohman
  fullname: Hohman, Timothy J.
  organization: Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Department of Neurology, Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine
– sequence: 14
  givenname: Angela
  surname: Jefferson
  fullname: Jefferson, Angela
  organization: Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Department of Neurology, Vanderbilt University Medical Center, Department of Medicine, Vanderbilt University Medical Center
– sequence: 15
  givenname: Adam W.
  surname: Anderson
  fullname: Anderson, Adam W.
  organization: Department of Biomedical Engineering, Vanderbilt University
– sequence: 16
  givenname: Hakmook
  surname: Kang
  fullname: Kang, Hakmook
  organization: Department of Biostatistics, Vanderbilt University
– sequence: 17
  givenname: Bennett A.
  surname: Landman
  fullname: Landman, Bennett A.
  organization: Department of Electrical Engineering and Computer Science, Vanderbilt University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35604444$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtrFjEYhYNU7EX_gAsJuHEzmsskk7gQSvFSqAii65DJZKYpM8lnLkpLf3wz_epn7aKBkJA85-TNew7Bng_eAvASo7cYoe5dQqglskGE1MkQba6egAMsOG0I53hvt2d0HxymdIEQkwLLZ2CfMo7aOg7A9fHk_AS1H-Cfc5ctXHTONsLFmRhSjsXkEu3t_aLvH72HGs7BTy6XwXk9w6XM2TVp9RjcOJbkgodfv5_CVIlLGEaICRZwo2N2xm20z-k5eDrqOdkXd-sR-Pnp44-TL83Zt8-nJ8dnjWm7NjeCDS0ebIfZIMyIRoqZ1D3RWkqJpSBUWEJlj3vJeN9xMSKhGafI9r01RGp6BD5sfTelX-xgrM9Rz2oT3aLjpQraqf9vvDtXU_itJG8FYrQavLkziOFXsSmrxSVj51l7G0pStd-C4E62qKKvH6AXocTaoJUStesck5V6db-iXSl_g6kA2QJrz1O04w7BSK3pq236qqavbtNXV1UkHoiMyzrXIOqv3Py4lG6lqb7jJxv_lf2I6gbvbMZf
CitedBy_id crossref_primary_10_1111_cns_14149
crossref_primary_10_1038_s42003_025_07475_4
crossref_primary_10_37586_2949_4745_2_2023_71_79
crossref_primary_10_1007_s11357_024_01486_5
crossref_primary_10_1002_alz_14371
crossref_primary_10_1162_imag_a_00247
crossref_primary_10_1162_imag_a_00125
crossref_primary_10_31083_JIN25816
crossref_primary_10_1016_j_dcn_2023_101307
crossref_primary_10_1162_imag_a_00023
crossref_primary_10_1016_j_media_2024_103101
crossref_primary_10_1134_S2079057024600198
crossref_primary_10_3389_fnagi_2023_1096206
crossref_primary_10_1016_j_neurobiolaging_2022_12_016
crossref_primary_10_1001_jamanetworkopen_2023_34483
crossref_primary_10_1016_j_engappai_2023_106596
crossref_primary_10_1007_s11357_023_00982_4
crossref_primary_10_1007_s10278_024_01253_0
crossref_primary_10_3389_fnagi_2024_1485657
crossref_primary_10_1002_dad2_70010
crossref_primary_10_3389_fneur_2024_1360273
crossref_primary_10_1016_j_pnpbp_2023_110868
crossref_primary_10_1007_s10489_024_05817_z
crossref_primary_10_1109_TCDS_2024_3349593
crossref_primary_10_3233_JAD_230481
crossref_primary_10_1523_ENEURO_0180_24_2024
crossref_primary_10_34133_research_0500
crossref_primary_10_1016_S2215_0366_24_00291_8
crossref_primary_10_1162_imag_a_00497
crossref_primary_10_1016_j_bpsgos_2024_100323
Cites_doi 10.1007/s12264-013-1432-x
10.1371/journal.pone.0022734
10.1371/journal.pone.0080713
10.1016/j.nicl.2018.08.021
10.3389/fninf.2011.00023
10.1016/j.neuroimage.2020.116923
10.1007/s00702-013-0971-7
10.3233/JAD-150914
10.1016/j.heliyon.2022.e08725
10.1002/jmri.21053
10.1038/ncomms13629
10.1016/j.neuroimage.2020.117128
10.1016/j.neuroimage.2017.10.046
10.1371/journal.pone.0156770
10.1101/2021.03.17.435872
10.1002/mrm.21965
10.1016/j.neuroimage.2019.01.077
10.1007/s11682-021-00548-y
10.1016/j.neurobiolaging.2013.12.001
10.1111/j.1530-0277.1992.tb00702.x
10.1093/braincomms/fcab065
10.1016/j.neuroimage.2012.02.071
10.1016/j.neuroimage.2007.02.056
10.1016/j.mri.2006.09.045
10.1016/j.neuroimage.2015.09.018
10.1016/j.neuroimage.2007.12.053
10.1016/j.neuroimage.2010.03.004
10.1109/TMI.2013.2285500
10.1016/j.neuroimage.2018.07.070
10.1016/j.neurobiolaging.2020.01.009
10.1016/j.jalz.2014.06.011
10.1016/j.neuroimage.2017.08.047
10.1109/TMI.2010.2045126
10.1093/gerona/glz289
10.1016/j.neurobiolaging.2009.02.008
10.1016/j.neurobiolaging.2020.10.006
10.1016/j.pscychresns.2016.04.005
10.1007/s12264-020-00558-8
10.1016/j.neuroimage.2009.09.051
10.1016/j.neurobiolaging.2019.11.014
10.1016/j.neurobiolaging.2006.09.003
10.1002/hbm.24917
10.1016/j.neuroimage.2019.116137
10.1073/pnas.1902376116
10.1002/mrm.20283
10.1016/j.neuroimage.2021.118451
10.1016/j.neuroimage.2018.12.009
10.1016/j.neuroimage.2011.01.032
10.1016/j.neuroimage.2011.11.094
10.1038/s41598-020-74054-4
10.1371/journal.pone.0123656
10.1016/j.neuroimage.2019.02.036
10.3389/fnagi.2018.00235
10.1016/j.neuroimage.2021.118502
10.1016/j.neuroimage.2020.117441
10.3389/fnagi.2020.00218
10.1101/2020.04.19.049544
10.1016/j.neuroimage.2018.05.027
10.1007/s13311-018-0663-y
10.3233/JAD-200840
10.1016/j.neuroimage.2016.04.041
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022
– notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7X7
7XB
88A
88E
88G
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2M
M7P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
Q9U
7X8
5PM
DOI 10.1007/s00429-022-02503-z
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & allied health premium.
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Psychology Database
Biological Science Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Psychology
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Zoology
Medicine
EISSN 1863-2661
0340-2061
EndPage 2125
ExternalDocumentID PMC9648053
35604444
10_1007_s00429_022_02503_z
Genre Journal Article
Review
GrantInformation_xml – fundername: National Science Foundation
  grantid: #1452485
  funderid: http://dx.doi.org/10.13039/501100008982
– fundername: Foundation for the National Institutes of Health
  grantid: R01EB017230
  funderid: http://dx.doi.org/10.13039/100000009
– fundername: NIA NIH HHS
  grantid: K01 AG073584
– fundername: NIBIB NIH HHS
  grantid: R01 EB017230
– fundername: NCRR NIH HHS
  grantid: UL1 RR024975
– fundername: NIA NIH HHS
  grantid: R01 AG034962
– fundername: NIA NIH HHS
  grantid: L30 AG060964
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
203
23N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5VS
67Z
6J9
6NX
78A
7RV
7X7
88A
88E
8AO
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LK8
LLZTM
M0L
M1P
M2M
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P9S
PF-
PQQKQ
PROAC
PSQYO
PSYQQ
PT4
Q2X
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S37
S3B
SAP
SBL
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
TEORI
TSG
TSK
TSV
TT1
TUC
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7U
Z82
Z83
Z87
Z8V
Z8W
Z91
ZMTXR
ZOVNA
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7TK
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-85d41de715d8cf0f3159ab2aa999198238e239b1b956b768f08a5630ebbec29a3
IEDL.DBID AGYKE
ISSN 1863-2653
1863-2661
IngestDate Thu Aug 21 18:39:21 EDT 2025
Tue Aug 05 11:23:24 EDT 2025
Fri Jul 25 10:22:41 EDT 2025
Mon Jul 21 05:54:32 EDT 2025
Thu Apr 24 22:54:53 EDT 2025
Tue Jul 01 00:38:18 EDT 2025
Fri Feb 21 02:46:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Aging
Diffusion MRI
Volume
White matter
Tractography
Language English
License 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-85d41de715d8cf0f3159ab2aa999198238e239b1b956b768f08a5630ebbec29a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
Author contributions All authors contributed to the study conception and design. Data collection was performed by the Baltimore Longitudinal Study of Aging at the National Institutes of Aging, and the Vanderbilt Memory & Aging Project (VMAP). All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
ORCID 0000-0003-3686-7645
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9648053
PMID 35604444
PQID 2680446120
PQPubID 38983
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9648053
proquest_miscellaneous_2668217940
proquest_journals_2680446120
pubmed_primary_35604444
crossref_primary_10_1007_s00429_022_02503_z
crossref_citationtrail_10_1007_s00429_022_02503_z
springer_journals_10_1007_s00429_022_02503_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle Brain Structure and Function
PublicationTitleAbbrev Brain Struct Funct
PublicationTitleAlternate Brain Struct Funct
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Coutu, Chen, Rosas, Salat (CR9) 2014; 35
Kimmel, Alhassoon, Wollman (CR26) 2016; 251
Wang, Knol, Tiulpin (CR50) 2019; 116
Farrell, Landman, Jones (CR15) 2007; 26
Mirzaalian, Ning, Savadjiev (CR31) 2016; 07
Toschi, Gisbert, Passamonti, Canals, De Santis (CR48) 2020; 02
Fillard, Descoteaux, Goh (CR16) 2011; 56
Chamberland, Tax, Jones (CR6) 2018; 20
Isaac Tseng, Hsu, Chen (CR21) 2021; 98
Tournier, Smith, Raffelt (CR49) 2019; 202
Yap, Teh, Fusar-Poli, Sum, Kuswanto, Sim (CR57) 2013; 120
Dong, Jelescu, Ades-Aron (CR13) 2020; 89
Pfefferbaum, Lim, Zipursky (CR35) 1992; 16
Abe, Yamasue, Aoki (CR1) 2008; 29
Warrington, Bryant, Khrapitchev (CR51) 2020; 217
Schilling, Tax, Rheault (CR41) 2021; 242
Lawrence, Nabulsi, Santhalingam (CR28) 2021; 15
Lebel, Walker, Leemans, Phillips, Beaulieu (CR29) 2008; 40
Tax, Grussu, Kaden (CR45) 2019
Landman, Farrell, Jones, Smith, Prince, Mori (CR27) 2007; 36
Chang, Owen, Pojman (CR8) 2015; 10
Giorgio, Santelli, Tomassini (CR18) 2010; 51
Molloy, Nugent, Bokde (CR32) 2021; 76
Zuo, Hu, Liu, Sui, Liu, Jiang (CR64) 2021; 37
Ramanoel, Hoyau, Kauffmann (CR36) 2018; 10
Yeh, Panesar, Barrios (CR62) 2019; 16
Yeh, Wedeen, Tseng (CR59) 2010; 29
Guevara, Duclap, Poupon (CR19) 2012; 61
Cox, Ritchie, Tucker-Drob (CR10) 2016; 7
Jones (CR23) 2010
Wasserthal, Neher, Maier-Hein (CR52) 2018; 183
Wheeler-Kingshott, Cercignani (CR53) 2009; 61
Schilling, Rheault, Petit (CR39) 2021; 243
Fortin, Parker, Tunç (CR17) 2017; 11
de Groot, Ikram, Akoudad (CR12) 2015; 11
Bergfield, Hanson, Chen (CR4) 2010; 49
Taylor, Williams, Cusack (CR46) 2017; 144
Chandio, Risacher, Pestilli (CR7) 2020; 10
Jorge, Martins, Canario (CR25) 2021; 80
Yeh (CR58) 2020
Lebel, Gee, Camicioli, Wieler, Martin, Beaulieu (CR30) 2012; 60
Bigham, Zamanpour, Zare (CR5) 2022; 8
Williams, An, Beason-Held (CR54) 2019; 188
Daducci, Canales-Rodríguez, Descoteaux (CR11) 2014; 33
Yeh, Panesar, Fernandes (CR61) 2018; 178
Terribilli, Schaufelberger, Duran (CR47) 2011; 32
Beck, de Lange, Maximov (CR3) 2021; 224
Fan, Tian, Ohringer (CR14) 2019; 191
Schilling, Janve, Gao, Stepniewska, Landman, Anderson (CR38) 2018; 01
Rheault, De Benedictis, Daducci (CR37) 2020; 41
Nicolas, Hiba, Dilharreguy (CR33) 2020; 12
Jefferson, Gifford, Acosta (CR22) 2016; 52
Taki, Thyreau, Kinomura (CR44) 2011; 6
Schilling, Tax, Rheault (CR40) 2021
Yeh, Verstynen, Wang, Fernandez-Miranda, Tseng (CR60) 2013; 8
Guo, Zhang, Zhou (CR20) 2014; 30
Storsve, Fjell, Yendiki, Walhovd (CR43) 2016; 11
Ning, Bonet-Carne, Grussu (CR34) 2020; 221
Jones, Basser (CR24) 2004; 52
Winter, Tallantyre, Brice, Robertson, Jones, Chamberland (CR55) 2021
Ardekani, Kumar, Bartzokis, Sinha (CR2) 2007; 25
Yendiki, Panneck, Srinivasan (CR63) 2011; 5
F Rheault (2503_CR37) 2020; 41
M Chamberland (2503_CR6) 2018; 20
OA Williams (2503_CR54) 2019; 188
L Jorge (2503_CR25) 2021; 80
AB Storsve (2503_CR43) 2016; 11
J Wang (2503_CR50) 2019; 116
F-C Yeh (2503_CR58) 2020
WY Isaac Tseng (2503_CR21) 2021; 98
CM Tax (2503_CR45) 2019
CL Kimmel (2503_CR26) 2016; 251
DK Jones (2503_CR23) 2010
FC Yeh (2503_CR60) 2013; 8
DK Jones (2503_CR24) 2004; 52
S Warrington (2503_CR51) 2020; 217
JP Coutu (2503_CR9) 2014; 35
S Ardekani (2503_CR2) 2007; 25
YS Chang (2503_CR8) 2015; 10
QJ Yap (2503_CR57) 2013; 120
A Pfefferbaum (2503_CR35) 1992; 16
FC Yeh (2503_CR59) 2010; 29
A Giorgio (2503_CR18) 2010; 51
L Ning (2503_CR34) 2020; 221
SR Cox (2503_CR10) 2016; 7
N Zuo (2503_CR64) 2021; 37
P Guevara (2503_CR19) 2012; 61
Y Guo (2503_CR20) 2014; 30
C Lebel (2503_CR29) 2008; 40
Q Fan (2503_CR14) 2019; 191
AL Jefferson (2503_CR22) 2016; 52
JD Tournier (2503_CR49) 2019; 202
A Yendiki (2503_CR63) 2011; 5
S Ramanoel (2503_CR36) 2018; 10
KG Schilling (2503_CR38) 2018; 01
C Lebel (2503_CR30) 2012; 60
JW Dong (2503_CR13) 2020; 89
M Winter (2503_CR55) 2021
M de Groot (2503_CR12) 2015; 11
BQ Chandio (2503_CR7) 2020; 10
CJ Molloy (2503_CR32) 2021; 76
N Toschi (2503_CR48) 2020; 02
FC Yeh (2503_CR62) 2019; 16
JP Fortin (2503_CR17) 2017; 11
H Mirzaalian (2503_CR31) 2016; 07
D Beck (2503_CR3) 2021; 224
BA Landman (2503_CR27) 2007; 36
R Nicolas (2503_CR33) 2020; 12
O Abe (2503_CR1) 2008; 29
J Wasserthal (2503_CR52) 2018; 183
KE Lawrence (2503_CR28) 2021; 15
P Fillard (2503_CR16) 2011; 56
Y Taki (2503_CR44) 2011; 6
D Terribilli (2503_CR47) 2011; 32
KL Bergfield (2503_CR4) 2010; 49
JR Taylor (2503_CR46) 2017; 144
FC Yeh (2503_CR61) 2018; 178
B Bigham (2503_CR5) 2022; 8
KG Schilling (2503_CR39) 2021; 243
KG Schilling (2503_CR41) 2021; 242
A Daducci (2503_CR11) 2014; 33
JA Farrell (2503_CR15) 2007; 26
KG Schilling (2503_CR40) 2021
CA Wheeler-Kingshott (2503_CR53) 2009; 61
References_xml – volume: 30
  start-page: 477
  issue: 3
  year: 2014
  end-page: 489
  ident: CR20
  article-title: Grey-matter volume as a potential feature for the classification of Alzheimer’s disease and mild cognitive impairment: an exploratory study
  publication-title: Neurosci Bull
  doi: 10.1007/s12264-013-1432-x
– volume: 6
  issue: 7
  year: 2011
  ident: CR44
  article-title: Correlations among brain gray matter volumes, age, gender, and hemisphere in healthy individuals
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022734
– volume: 8
  issue: 11
  year: 2013
  ident: CR60
  article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0080713
– volume: 20
  start-page: 458
  year: 2018
  end-page: 465
  ident: CR6
  article-title: Meyer’s loop tractography for image-guided surgery depends on imaging protocol and hardware
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.08.021
– volume: 5
  start-page: 23
  year: 2011
  ident: CR63
  article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2011.00023
– volume: 217
  start-page: 116923
  year: 2020
  ident: CR51
  article-title: XTRACT—standardised protocols for automated tractography in the human and macaque brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116923
– volume: 120
  start-page: 1369
  issue: 9
  year: 2013
  end-page: 1395
  ident: CR57
  article-title: Tracking cerebral white matter changes across the lifespan: insights from diffusion tensor imaging studies
  publication-title: J Neural Transm (Vienna)
  doi: 10.1007/s00702-013-0971-7
– volume: 52
  start-page: 539
  issue: 2
  year: 2016
  end-page: 559
  ident: CR22
  article-title: The Vanderbilt memory & aging project: study design and baseline cohort overview
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-150914
– volume: 8
  start-page: 08725
  issue: 1
  year: 2022
  ident: CR5
  article-title: Alzheimer’s disease neuroimaging I. Features of the superficial white matter as biomarkers for the detection of Alzheimer’s disease and mild cognitive impairment: a diffusion tensor imaging study
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e08725
– volume: 26
  start-page: 756
  issue: 3
  year: 2007
  end-page: 67
  ident: CR15
  article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21053
– volume: 7
  start-page: 13629
  year: 2016
  ident: CR10
  article-title: Ageing and brain white matter structure in 3513 UK Biobank participants
  publication-title: Nat Commun
  doi: 10.1038/ncomms13629
– volume: 221
  start-page: 117128
  year: 2020
  ident: CR34
  article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and results
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117128
– volume: 01
  start-page: 200
  issue: 165
  year: 2018
  end-page: 221
  ident: CR38
  article-title: Histological validation of diffusion MRI fiber orientation distributions and dispersion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.10.046
– volume: 11
  issue: 6
  year: 2016
  ident: CR43
  article-title: Longitudinal changes in white matter tract integrity across the adult lifespan and its relation to cortical thinning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0156770
– year: 2021
  ident: CR40
  article-title: Fiber tractography bundle segmentation depends on scanner effects, acquisition, diffusion sensitization, and bundle segmentation workflow
  publication-title: bioRxiv
  doi: 10.1101/2021.03.17.435872
– volume: 61
  start-page: 1255
  issue: 5
  year: 2009
  end-page: 1260
  ident: CR53
  article-title: About, “axial” and “radial” diffusivities
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21965
– year: 2019
  ident: CR45
  article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.077
– volume: 15
  start-page: 2813
  issue: 6
  year: 2021
  end-page: 2823
  ident: CR28
  article-title: Age and sex effects on advanced white matter microstructure measures in 15,628 older adults: a UK biobank study
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-021-00548-y
– volume: 35
  start-page: 1412
  issue: 6
  year: 2014
  end-page: 1421
  ident: CR9
  article-title: Non-Gaussian water diffusion in aging white matter
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2013.12.001
– volume: 16
  start-page: 1078
  issue: 6
  year: 1992
  end-page: 1089
  ident: CR35
  article-title: Brain gray and white matter volume loss accelerates with aging in chronic alcoholics: a quantitative MRI study
  publication-title: Alcohol Clin Exp Res
  doi: 10.1111/j.1530-0277.1992.tb00702.x
– year: 2021
  ident: CR55
  article-title: Tract-specific MRI measures explain learning and recall differences in multiple sclerosis
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcab065
– volume: 61
  start-page: 1083
  issue: 4
  year: 2012
  end-page: 1099
  ident: CR19
  article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.071
– volume: 36
  start-page: 1123
  issue: 4
  year: 2007
  end-page: 38
  ident: CR27
  article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.056
– volume: 25
  start-page: 154
  issue: 2
  year: 2007
  end-page: 167
  ident: CR2
  article-title: Exploratory voxel-based analysis of diffusion indices and hemispheric asymmetry in normal aging
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2006.09.045
– volume: 144
  start-page: 262
  issue: Pt B
  year: 2017
  end-page: 269
  ident: CR46
  article-title: The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.09.018
– volume: 40
  start-page: 1044
  issue: 3
  year: 2008
  end-page: 1055
  ident: CR29
  article-title: Microstructural maturation of the human brain from childhood to adulthood
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.12.053
– volume: 51
  start-page: 943
  issue: 3
  year: 2010
  end-page: 951
  ident: CR18
  article-title: Age-related changes in grey and white matter structure throughout adulthood
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.004
– volume: 33
  start-page: 384
  issue: 2
  year: 2014
  end-page: 399
  ident: CR11
  article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2013.2285500
– volume: 183
  start-page: 239
  year: 2018
  end-page: 253
  ident: CR52
  article-title: TractSeg—fast and accurate white matter tract segmentation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.070
– volume: 89
  start-page: 118
  year: 2020
  end-page: 128
  ident: CR13
  article-title: Diffusion MRI biomarkers of white matter microstructure vary nonmonotonically with increasing cerebral amyloid deposition
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2020.01.009
– volume: 11
  start-page: 321
  issue: 3
  year: 2015
  end-page: 330
  ident: CR12
  article-title: Tract-specific white matter degeneration in aging: the Rotterdam study
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2014.06.011
– volume: 11
  start-page: 149
  issue: 161
  year: 2017
  end-page: 170
  ident: CR17
  article-title: Harmonization of multi-site diffusion tensor imaging data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.047
– volume: 29
  start-page: 1626
  issue: 9
  year: 2010
  end-page: 1635
  ident: CR59
  article-title: Generalized q-sampling imaging
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2045126
– volume: 76
  start-page: 945
  issue: 6
  year: 2021
  end-page: 954
  ident: CR32
  article-title: Alterations in diffusion measures of white matter integrity associated with healthy aging
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/glz289
– volume: 32
  start-page: 354
  issue: 2
  year: 2011
  end-page: 368
  ident: CR47
  article-title: Age-related gray matter volume changes in the brain during non-elderly adulthood
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2009.02.008
– volume: 98
  start-page: 160
  year: 2021
  end-page: 172
  ident: CR21
  article-title: Microstructural differences in white matter tracts across middle to late adulthood: a diffusion MRI study on 7167 UK Biobank participants
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2020.10.006
– volume: 251
  start-page: 15
  year: 2016
  end-page: 25
  ident: CR26
  article-title: Age-related parieto-occipital and other gray matter changes in borderline personality disorder: a meta-analysis of cortical and subcortical structures
  publication-title: Psychiatry Res Neuroimaging
  doi: 10.1016/j.pscychresns.2016.04.005
– volume: 37
  start-page: 94
  issue: 1
  year: 2021
  end-page: 98
  ident: CR64
  article-title: Gray matter-based age prediction characterizes different regional patterns
  publication-title: Neurosci Bull
  doi: 10.1007/s12264-020-00558-8
– volume: 49
  start-page: 1750
  issue: 2
  year: 2010
  end-page: 1759
  ident: CR4
  article-title: Age-related networks of regional covariance in MRI gray matter: reproducible multivariate patterns in healthy aging
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.051
– start-page: 767
  year: 2010
  ident: CR23
  publication-title: Diffusion MRI: theory, methods, and application
– volume: 02
  start-page: 191
  issue: 86
  year: 2020
  end-page: 200
  ident: CR48
  article-title: Multishell diffusion imaging reveals sex-specific trajectories of early white matter degeneration in normal aging
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2019.11.014
– volume: 29
  start-page: 102
  issue: 1
  year: 2008
  end-page: 116
  ident: CR1
  article-title: Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2006.09.003
– volume: 41
  start-page: 1859
  issue: 7
  year: 2020
  end-page: 1874
  ident: CR37
  article-title: Tractostorm: the what, why, and how of tractography dissection reproducibility
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.24917
– volume: 202
  start-page: 116137
  year: 2019
  ident: CR49
  article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116137
– volume: 116
  start-page: 21213
  issue: 42
  year: 2019
  end-page: 21218
  ident: CR50
  article-title: Gray matter age prediction as a biomarker for risk of dementia
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1902376116
– volume: 52
  start-page: 979
  issue: 5
  year: 2004
  end-page: 993
  ident: CR24
  article-title: “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20283
– volume: 242
  start-page: 118451
  year: 2021
  ident: CR41
  article-title: Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118451
– volume: 188
  start-page: 572
  year: 2019
  end-page: 583
  ident: CR54
  article-title: Vascular burden and APOE epsilon4 are associated with white matter microstructural decline in cognitively normal older adults
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.12.009
– volume: 56
  start-page: 220
  issue: 1
  year: 2011
  end-page: 234
  ident: CR16
  article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.032
– volume: 60
  start-page: 340
  issue: 1
  year: 2012
  end-page: 352
  ident: CR30
  article-title: Diffusion tensor imaging of white matter tract evolution over the lifespan
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.094
– volume: 10
  start-page: 17149
  issue: 1
  year: 2020
  ident: CR7
  article-title: Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-74054-4
– volume: 10
  issue: 6
  year: 2015
  ident: CR8
  article-title: White matter changes of neurite density and fiber orientation dispersion during human brain maturation
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0123656
– volume: 191
  start-page: 325
  year: 2019
  end-page: 336
  ident: CR14
  article-title: Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.02.036
– volume: 10
  start-page: 235
  year: 2018
  ident: CR36
  article-title: Gray matter volume and cognitive performance during normal aging. A Voxel-based morphometry study
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00235
– volume: 243
  start-page: 118502
  year: 2021
  ident: CR39
  article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset?
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118502
– volume: 224
  start-page: 117441
  year: 2021
  ident: CR3
  article-title: White matter microstructure across the adult lifespan: a mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117441
– volume: 12
  start-page: 218
  year: 2020
  ident: CR33
  article-title: Changes over time of diffusion MRI in the white matter of aging brain, a good predictor of verbal recall
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2020.00218
– year: 2020
  ident: CR58
  article-title: Shape analysis of the human association pathways
  publication-title: bioRxiv
  doi: 10.1101/2020.04.19.049544
– volume: 178
  start-page: 57
  year: 2018
  end-page: 68
  ident: CR61
  article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.05.027
– volume: 16
  start-page: 52
  issue: 1
  year: 2019
  end-page: 58
  ident: CR62
  article-title: Automatic removal of false connections in diffusion MRI tractography using topology-informed pruning (TIP)
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-018-0663-y
– volume: 80
  start-page: 113
  issue: 1
  year: 2021
  end-page: 132
  ident: CR25
  article-title: Investigating the spatial associations between amyloid-beta deposition, grey matter volume, and neuroinflammation in Alzheimer’s disease
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-200840
– volume: 07
  start-page: 311
  issue: 135
  year: 2016
  end-page: 323
  ident: CR31
  article-title: Inter-site and inter-scanner diffusion MRI data harmonization
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.041
– volume: 12
  start-page: 218
  year: 2020
  ident: 2503_CR33
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2020.00218
– volume: 7
  start-page: 13629
  year: 2016
  ident: 2503_CR10
  publication-title: Nat Commun
  doi: 10.1038/ncomms13629
– volume: 202
  start-page: 116137
  year: 2019
  ident: 2503_CR49
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.116137
– volume: 61
  start-page: 1255
  issue: 5
  year: 2009
  ident: 2503_CR53
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21965
– volume: 10
  issue: 6
  year: 2015
  ident: 2503_CR8
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0123656
– volume: 242
  start-page: 118451
  year: 2021
  ident: 2503_CR41
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118451
– volume: 178
  start-page: 57
  year: 2018
  ident: 2503_CR61
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.05.027
– volume: 20
  start-page: 458
  year: 2018
  ident: 2503_CR6
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2018.08.021
– volume: 120
  start-page: 1369
  issue: 9
  year: 2013
  ident: 2503_CR57
  publication-title: J Neural Transm (Vienna)
  doi: 10.1007/s00702-013-0971-7
– volume: 10
  start-page: 235
  year: 2018
  ident: 2503_CR36
  publication-title: Front Aging Neurosci
  doi: 10.3389/fnagi.2018.00235
– volume: 6
  issue: 7
  year: 2011
  ident: 2503_CR44
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022734
– volume: 41
  start-page: 1859
  issue: 7
  year: 2020
  ident: 2503_CR37
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.24917
– volume: 26
  start-page: 756
  issue: 3
  year: 2007
  ident: 2503_CR15
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21053
– volume: 40
  start-page: 1044
  issue: 3
  year: 2008
  ident: 2503_CR29
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.12.053
– volume: 243
  start-page: 118502
  year: 2021
  ident: 2503_CR39
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.118502
– volume: 52
  start-page: 979
  issue: 5
  year: 2004
  ident: 2503_CR24
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20283
– volume: 52
  start-page: 539
  issue: 2
  year: 2016
  ident: 2503_CR22
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-150914
– volume: 35
  start-page: 1412
  issue: 6
  year: 2014
  ident: 2503_CR9
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2013.12.001
– volume: 51
  start-page: 943
  issue: 3
  year: 2010
  ident: 2503_CR18
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.03.004
– volume: 116
  start-page: 21213
  issue: 42
  year: 2019
  ident: 2503_CR50
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1902376116
– volume: 11
  issue: 6
  year: 2016
  ident: 2503_CR43
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0156770
– volume: 02
  start-page: 191
  issue: 86
  year: 2020
  ident: 2503_CR48
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2019.11.014
– volume: 11
  start-page: 321
  issue: 3
  year: 2015
  ident: 2503_CR12
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2014.06.011
– volume: 10
  start-page: 17149
  issue: 1
  year: 2020
  ident: 2503_CR7
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-74054-4
– volume: 37
  start-page: 94
  issue: 1
  year: 2021
  ident: 2503_CR64
  publication-title: Neurosci Bull
  doi: 10.1007/s12264-020-00558-8
– volume: 89
  start-page: 118
  year: 2020
  ident: 2503_CR13
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2020.01.009
– volume: 56
  start-page: 220
  issue: 1
  year: 2011
  ident: 2503_CR16
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.01.032
– volume: 15
  start-page: 2813
  issue: 6
  year: 2021
  ident: 2503_CR28
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-021-00548-y
– year: 2021
  ident: 2503_CR55
  publication-title: Brain Commun
  doi: 10.1093/braincomms/fcab065
– volume: 188
  start-page: 572
  year: 2019
  ident: 2503_CR54
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.12.009
– volume: 30
  start-page: 477
  issue: 3
  year: 2014
  ident: 2503_CR20
  publication-title: Neurosci Bull
  doi: 10.1007/s12264-013-1432-x
– volume: 25
  start-page: 154
  issue: 2
  year: 2007
  ident: 2503_CR2
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2006.09.045
– volume: 217
  start-page: 116923
  year: 2020
  ident: 2503_CR51
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.116923
– volume: 60
  start-page: 340
  issue: 1
  year: 2012
  ident: 2503_CR30
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.11.094
– volume: 5
  start-page: 23
  year: 2011
  ident: 2503_CR63
  publication-title: Front Neuroinform
  doi: 10.3389/fninf.2011.00023
– volume: 29
  start-page: 102
  issue: 1
  year: 2008
  ident: 2503_CR1
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2006.09.003
– volume: 33
  start-page: 384
  issue: 2
  year: 2014
  ident: 2503_CR11
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2013.2285500
– volume: 01
  start-page: 200
  issue: 165
  year: 2018
  ident: 2503_CR38
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.10.046
– volume: 8
  issue: 11
  year: 2013
  ident: 2503_CR60
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0080713
– volume: 76
  start-page: 945
  issue: 6
  year: 2021
  ident: 2503_CR32
  publication-title: J Gerontol A Biol Sci Med Sci
  doi: 10.1093/gerona/glz289
– volume: 221
  start-page: 117128
  year: 2020
  ident: 2503_CR34
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117128
– volume: 07
  start-page: 311
  issue: 135
  year: 2016
  ident: 2503_CR31
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.04.041
– volume: 11
  start-page: 149
  issue: 161
  year: 2017
  ident: 2503_CR17
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2017.08.047
– volume: 191
  start-page: 325
  year: 2019
  ident: 2503_CR14
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.02.036
– volume: 32
  start-page: 354
  issue: 2
  year: 2011
  ident: 2503_CR47
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2009.02.008
– volume: 98
  start-page: 160
  year: 2021
  ident: 2503_CR21
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2020.10.006
– year: 2021
  ident: 2503_CR40
  publication-title: bioRxiv
  doi: 10.1101/2021.03.17.435872
– volume: 80
  start-page: 113
  issue: 1
  year: 2021
  ident: 2503_CR25
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-200840
– volume: 36
  start-page: 1123
  issue: 4
  year: 2007
  ident: 2503_CR27
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.02.056
– volume: 49
  start-page: 1750
  issue: 2
  year: 2010
  ident: 2503_CR4
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.09.051
– year: 2019
  ident: 2503_CR45
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2019.01.077
– volume: 183
  start-page: 239
  year: 2018
  ident: 2503_CR52
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.07.070
– start-page: 767
  volume-title: Diffusion MRI: theory, methods, and application
  year: 2010
  ident: 2503_CR23
– volume: 224
  start-page: 117441
  year: 2021
  ident: 2503_CR3
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2020.117441
– volume: 16
  start-page: 1078
  issue: 6
  year: 1992
  ident: 2503_CR35
  publication-title: Alcohol Clin Exp Res
  doi: 10.1111/j.1530-0277.1992.tb00702.x
– volume: 144
  start-page: 262
  issue: Pt B
  year: 2017
  ident: 2503_CR46
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.09.018
– year: 2020
  ident: 2503_CR58
  publication-title: bioRxiv
  doi: 10.1101/2020.04.19.049544
– volume: 251
  start-page: 15
  year: 2016
  ident: 2503_CR26
  publication-title: Psychiatry Res Neuroimaging
  doi: 10.1016/j.pscychresns.2016.04.005
– volume: 29
  start-page: 1626
  issue: 9
  year: 2010
  ident: 2503_CR59
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2010.2045126
– volume: 16
  start-page: 52
  issue: 1
  year: 2019
  ident: 2503_CR62
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-018-0663-y
– volume: 8
  start-page: 08725
  issue: 1
  year: 2022
  ident: 2503_CR5
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e08725
– volume: 61
  start-page: 1083
  issue: 4
  year: 2012
  ident: 2503_CR19
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.071
SSID ssj0059819
ssj0012825
Score 2.514285
SecondaryResourceType review_article
Snippet Quantifying the microstructural and macrostructural geometrical features of the human brain’s connections is necessary for understanding normal aging and...
Quantifying the microstructural and macrostructural geometrical features of the human brain's connections is necessary for understanding normal aging and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2111
SubjectTerms Age
Aging
Biomedical and Life Sciences
Biomedicine
Brain - diagnostic imaging
Cell Biology
Cross-Sectional Studies
Diffusion Magnetic Resonance Imaging - methods
Diffusion Tensor Imaging - methods
Humans
Longitudinal Studies
Magnetic resonance imaging
Nervous system
Neuroimaging
Neurology
Neurosciences
Original Article
Substantia alba
Thalamus
White Matter - diagnostic imaging
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0RPFFdM-P6ikRxBcNtmnaJr7IIh6nsD6IB4svJWlSFG7b9XaXw8M_3sxs2nM9vL61SenHTCYzmcnvB_AiR8wuLz1PlfVclqnmxpSG02TlKtVai5uTZ5_Lo2P5aV7M44LbKpZVDjaRDLXrG1wjfyNKhbnHTKTvlj85skZhdjVSaFyHGwhdhsFXNR8Drgz3ZQ4nhVbE8pGpMucivGDcQUP76MgscyxsR5cg5-e7s9Ql1_NyBeU_aVSanQ7vwp3oVrLpVg_uwTXfTWB_2oWQevGLvWRU6Ekr6BO4NYv59Anc_NbTxX34PUW2ImY6x84ws8AWBLzJFliwtwWZ3Zx6al-Yvy-9ZYad9Mh6tHHIsMWoRJHjb2PIvrLB5Tg2-_KREZIt61uWhQmfLU0s6O7Wq_twfPjh6_sjHpkZeCMrueaqcDJzvsoKp5o2bfPgFBkrjEF3U6vgBniRa5vZEH3ZENC0qTIIROZtUBmhTf4A9rq-84-AVT41ToewptRONrYwyssmt21rfamNFglkgyTqJsKWI3vGST0CLpP06iC9mqRXnyfwarxnuQXtuLL3wSDgOg7gVX2hbgk8H5vD0MN8iul8v8E-pRJo0EKfh1t9GB-XB09ShiOBakdTxg4I673b0v34TvDeupQqmMYEXg86dfFa__-Kx1d_xRO4LUi_sdD4APaCkvinwZ1a22c0Zv4ALsYb3g
  priority: 102
  providerName: ProQuest
Title Aging and white matter microstructure and macrostructure: a longitudinal multi-site diffusion MRI study of 1218 participants
URI https://link.springer.com/article/10.1007/s00429-022-02503-z
https://www.ncbi.nlm.nih.gov/pubmed/35604444
https://www.proquest.com/docview/2680446120
https://www.proquest.com/docview/2668217940
https://pubmed.ncbi.nlm.nih.gov/PMC9648053
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5im5B44bJxKYzKSIgX8JSLk9i8tahlgFahiUqFl8hOHIFYk4k2QlT8eM5xLtANkNaXVvVpG7vHx59zPn8H4GlIml1WWO5JY7mIPcW1jjV3i1WeyMIYOpx8MouP5-LtIlq0h8JWHdu9S0m6SN0fdnOxkxP7nNbtkG92YA_xh4fevTd6_fHdpIvAkZKuoIcv45AHeC3tYZm_f8v2gnQJZV4mS17ImLqFaHoL5l0XGv7J16N6bY6yzQV1x6v28TbcbJEpGzWudAeu2XIfDkYl7sqXP9gz5rii7ib8Plz_VLlXB_BzRFWOmC5z9p0yEmzpBDvZkoh-jTht_c269qX-862XTLOziqol1TlV5mKO2sgpmc2oaktNt_HYyekb5hRwWVUwH4ECO9ctEbxcr-7CfDr58OqYtxUdeCYSseYyyoWf28SPcpkVXhEimNIm0JpgqpIIH2wQKuMb3LUZ3AgVntQkYGYNulqgdHgPdsuqtA-AJdbTucLtUKxykZlISyuy0BSFsbHSKhiA3_2tadbKnVPVjbO0F2p2g53iYKdusNPNAJ73nzlvxD7-a33YeUvaTvxVGsSSUuR-4A3gSd-MU5byMLq0VU02sQwoEKLN_ca5-p8LEYEKfAwg2XK73oDkwLdbyi-fnSy4ioXEkDqAF51v_b6sf_fi4dXMH8GNwLknEZYPYRedxj5GWLY2Q9hJFskQ5-J0PJ4N2zmJz-PJ7P3pL4UKNIE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRgvCDoYgQFGAl7AInHSxEZCqAKmlq17QJtU7SXYiSOQ1qTQVtMm_ib-Ru6cj1Em9ra-JXaaune-D9_d7wCeh4TZZSPLfWksj2Jfca1jzZ2yyhNZGEPFyeP9eHgYfZ70J2vwu62FobTKViY6QZ1XGZ2RvxGxpNhjIPz3sx-cukZRdLVtoVGzxa49PUGXbf5u9BHp-0KInU8HH4a86SrAsyiJFlz28yjIbRL0c5kVfhGiQtdGaE2mkpKowqwIlQkMeg4GjfHCl5pAtKzB5QqlQ_zea3Ad1-JTCmEy6Ry8gOpA24u-kq6rSCDjkAv8Q5qKHVe359QAp0R6MkFCfraqFS-YuhczNv8J2zptuHMHbjdmLBvUfHcX1mzZg81BiS789JS9ZC6x1J3Y9-DmuInf9-DGUeVubsKvAXVHYrrM2QlFMtjUAX2yKSUI1qC2y5_WjU_137feMs2OK-qytMypoxdzKZGcyMSo28uSjv_Y-MuIOeRcVhUsQAODzXSTQF4u5vfg8Epodh_Wy6q0D4Al1te5QjcqVnmUmb6WNspCUxTGxkor4UHQUiLNGph06tZxnHYAz456KVIvddRLzzx41T0zq0FCLp293RI4bQTGPD1nbw-edcO41Sl-o0tbLWlOLAUJUJyzVfND97oQLdcIPx4kK5zSTSAY8dWR8vs3Byeu4kiiKPbgdctT5z_r_6t4ePkqnsLG8GC8l-6N9ncfwS3heJ2SnLdhHRnGPkZTbmGeuP3D4OtVb9g_qRVYRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISZe0Oj4CAwwEvAC1hLHTRwkhCpGtTI6IcSkipdgJ45AWpNCW02b9pfx13HnfIwysbf1LbHT1L07353v7ncAz0LC7LLScl8Zy2XkJ1zrSHOnrPJYFcZQcfL4INo7lB8m_cka_G5rYSitst0T3UadVxmdke-ISFHsMRD-TtGkRXzaHb6d_eTUQYoirW07jZpF9u3JMbpv8zejXaT1cyGG77-82-NNhwGeyVguuOrnMshtHPRzlRV-EaJy10ZoTWZTolCdWREmJjDoRRg0zAtfaQLUsgaXLhId4vdeg-txiGoTZSmedM5eQDWh7UU_Ua7DSKCikAv8c5rqHVfD51QCp6R6MkdCfrqqIS-YvRezN_8J4TrNONyEW41JywY1D96GNVv2YGtQojs_PWEvmEsydaf3PdgYN7H8Htz4WrmbW3A2oE5JTJc5O6aoBps60E82pWTBGuB2-cu68an--9ZrptlRRR2Xljl192IuPZITmRh1flnSUSAbfx4xh6LLqoIFaGywmW6SycvF_A4cXgnN7sJ6WZX2PrDY-jpP0KWKklxmpq-VlVloisLYKNGJ8CBoKZFmDWQ6de44SjuwZ0e9FKmXOuqlpx687J6Z1YAhl87ebgmcNpvHPD1ndQ-edsMo9hTL0aWtljQnUoI2U5xzr-aH7nUhWrESPx7EK5zSTSBI8dWR8sd3By2eRFLhtuzBq5anzn_W_1fx4PJVPIENFNX04-hg_yHcFI7VKd95G9aRX-wjtOoW5rETHwbfrlpe_wDeuFx9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aging+and+white+matter+microstructure+and+macrostructure%3A+a+longitudinal+multi-site+diffusion+MRI+study+of+1218+participants&rft.jtitle=Brain+structure+%26+function&rft.au=Schilling%2C+Kurt+G&rft.au=Archer%2C+Derek&rft.au=Yeh%2C+Fang-Cheng&rft.au=Rheault%2C+Francois&rft.date=2022-07-01&rft.issn=1863-2661&rft.eissn=1863-2661&rft.volume=227&rft.issue=6&rft.spage=2111&rft_id=info:doi/10.1007%2Fs00429-022-02503-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2653&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2653&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2653&client=summon