Aging and white matter microstructure and macrostructure: a longitudinal multi-site diffusion MRI study of 1218 participants
Quantifying the microstructural and macrostructural geometrical features of the human brain’s connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets tot...
Saved in:
Published in | Brain Structure and Function Vol. 227; no. 6; pp. 2111 - 2125 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1863-2653 1863-2661 1863-2661 0340-2061 |
DOI | 10.1007/s00429-022-02503-z |
Cover
Loading…
Abstract | Quantifying the microstructural and macrostructural geometrical features of the human brain’s connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets totaling in 1218 subjects and 2459 sessions of people aged 50–97 years. Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging data set, Cambridge Centre for Ageing Neuroscience data set, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging and could facilitate comparisons in a variety of diseases or abnormal conditions. |
---|---|
AbstractList | Quantifying the microstructural and macrostructural geometrical features of the human brain’s connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets totaling in 1218 subjects and 2459 sessions of people aged 50–97 years. Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging data set, Cambridge Centre for Ageing Neuroscience data set, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging and could facilitate comparisons in a variety of diseases or abnormal conditions. Quantifying the microstructural and macrostructural geometrical features of the human brain's connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets totaling in 1218 subjects and 2459 sessions of people aged 50-97 years. Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging data set, Cambridge Centre for Ageing Neuroscience data set, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging and could facilitate comparisons in a variety of diseases or abnormal conditions. Quantifying the microstructural and macrostructural geometrical features of the human brain's connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets totaling in 1218 subjects and 2459 sessions of people aged 50-97 years. Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging data set, Cambridge Centre for Ageing Neuroscience data set, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging and could facilitate comparisons in a variety of diseases or abnormal conditions.Quantifying the microstructural and macrostructural geometrical features of the human brain's connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets totaling in 1218 subjects and 2459 sessions of people aged 50-97 years. Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging data set, Cambridge Centre for Ageing Neuroscience data set, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging and could facilitate comparisons in a variety of diseases or abnormal conditions. |
Author | Ramdass, Karthik Pechman, Kimberly R. Jefferson, Angela Yeh, Fang-Cheng Kang, Hakmook Archer, Derek Anderson, Adam W. Landman, Bennett A. Rheault, Francois Hohman, Timothy J. Cai, Leon Y. Resnick, Susan M. Schilling, Kurt G. Hansen, Colin Yang, Qi Gifford, Katherine A. Shafer, Andrea T. |
AuthorAffiliation | 3 Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA 2 Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA 5 Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA 8 Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA 11 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA 10 Department of Biostatistics, Vanderbilt University, Nashville, TN, USA 4 Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA 7 Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA 9 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA 6 Department of Neurological Surgery, University of Pittsburgh Medical Center, P |
AuthorAffiliation_xml | – name: 11 Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA – name: 3 Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA – name: 6 Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA – name: 7 Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA – name: 9 Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA – name: 2 Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA – name: 1 Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA – name: 5 Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA – name: 8 Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA – name: 10 Department of Biostatistics, Vanderbilt University, Nashville, TN, USA – name: 4 Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA |
Author_xml | – sequence: 1 givenname: Kurt G. orcidid: 0000-0003-3686-7645 surname: Schilling fullname: Schilling, Kurt G. email: kurt.g.schilling.1@vumc.org organization: Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center – sequence: 2 givenname: Derek surname: Archer fullname: Archer, Derek organization: Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Department of Neurology, Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine – sequence: 3 givenname: Fang-Cheng surname: Yeh fullname: Yeh, Fang-Cheng organization: Department of Neurological Surgery, University of Pittsburgh Medical Center, Department of Bioengineering, University of Pittsburgh – sequence: 4 givenname: Francois surname: Rheault fullname: Rheault, Francois organization: Department of Electrical Engineering and Computer Science, Vanderbilt University – sequence: 5 givenname: Leon Y. surname: Cai fullname: Cai, Leon Y. organization: Department of Electrical Engineering and Computer Science, Vanderbilt University – sequence: 6 givenname: Colin surname: Hansen fullname: Hansen, Colin organization: Department of Electrical Engineering and Computer Science, Vanderbilt University – sequence: 7 givenname: Qi surname: Yang fullname: Yang, Qi organization: Department of Electrical Engineering and Computer Science, Vanderbilt University – sequence: 8 givenname: Karthik surname: Ramdass fullname: Ramdass, Karthik organization: Department of Electrical Engineering and Computer Science, Vanderbilt University – sequence: 9 givenname: Andrea T. surname: Shafer fullname: Shafer, Andrea T. organization: Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health – sequence: 10 givenname: Susan M. surname: Resnick fullname: Resnick, Susan M. organization: Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health – sequence: 11 givenname: Kimberly R. surname: Pechman fullname: Pechman, Kimberly R. organization: Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Department of Neurology, Vanderbilt University Medical Center – sequence: 12 givenname: Katherine A. surname: Gifford fullname: Gifford, Katherine A. organization: Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Department of Neurology, Vanderbilt University Medical Center – sequence: 13 givenname: Timothy J. surname: Hohman fullname: Hohman, Timothy J. organization: Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Department of Neurology, Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Vanderbilt University School of Medicine – sequence: 14 givenname: Angela surname: Jefferson fullname: Jefferson, Angela organization: Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Department of Neurology, Vanderbilt University Medical Center, Department of Medicine, Vanderbilt University Medical Center – sequence: 15 givenname: Adam W. surname: Anderson fullname: Anderson, Adam W. organization: Department of Biomedical Engineering, Vanderbilt University – sequence: 16 givenname: Hakmook surname: Kang fullname: Kang, Hakmook organization: Department of Biostatistics, Vanderbilt University – sequence: 17 givenname: Bennett A. surname: Landman fullname: Landman, Bennett A. organization: Department of Electrical Engineering and Computer Science, Vanderbilt University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35604444$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtrFjEYhYNU7EX_gAsJuHEzmsskk7gQSvFSqAii65DJZKYpM8lnLkpLf3wz_epn7aKBkJA85-TNew7Bng_eAvASo7cYoe5dQqglskGE1MkQba6egAMsOG0I53hvt2d0HxymdIEQkwLLZ2CfMo7aOg7A9fHk_AS1H-Cfc5ctXHTONsLFmRhSjsXkEu3t_aLvH72HGs7BTy6XwXk9w6XM2TVp9RjcOJbkgodfv5_CVIlLGEaICRZwo2N2xm20z-k5eDrqOdkXd-sR-Pnp44-TL83Zt8-nJ8dnjWm7NjeCDS0ebIfZIMyIRoqZ1D3RWkqJpSBUWEJlj3vJeN9xMSKhGafI9r01RGp6BD5sfTelX-xgrM9Rz2oT3aLjpQraqf9vvDtXU_itJG8FYrQavLkziOFXsSmrxSVj51l7G0pStd-C4E62qKKvH6AXocTaoJUStesck5V6db-iXSl_g6kA2QJrz1O04w7BSK3pq236qqavbtNXV1UkHoiMyzrXIOqv3Py4lG6lqb7jJxv_lf2I6gbvbMZf |
CitedBy_id | crossref_primary_10_1111_cns_14149 crossref_primary_10_1038_s42003_025_07475_4 crossref_primary_10_37586_2949_4745_2_2023_71_79 crossref_primary_10_1007_s11357_024_01486_5 crossref_primary_10_1002_alz_14371 crossref_primary_10_1162_imag_a_00247 crossref_primary_10_1162_imag_a_00125 crossref_primary_10_31083_JIN25816 crossref_primary_10_1016_j_dcn_2023_101307 crossref_primary_10_1162_imag_a_00023 crossref_primary_10_1016_j_media_2024_103101 crossref_primary_10_1134_S2079057024600198 crossref_primary_10_3389_fnagi_2023_1096206 crossref_primary_10_1016_j_neurobiolaging_2022_12_016 crossref_primary_10_1001_jamanetworkopen_2023_34483 crossref_primary_10_1016_j_engappai_2023_106596 crossref_primary_10_1007_s11357_023_00982_4 crossref_primary_10_1007_s10278_024_01253_0 crossref_primary_10_3389_fnagi_2024_1485657 crossref_primary_10_1002_dad2_70010 crossref_primary_10_3389_fneur_2024_1360273 crossref_primary_10_1016_j_pnpbp_2023_110868 crossref_primary_10_1007_s10489_024_05817_z crossref_primary_10_1109_TCDS_2024_3349593 crossref_primary_10_3233_JAD_230481 crossref_primary_10_1523_ENEURO_0180_24_2024 crossref_primary_10_34133_research_0500 crossref_primary_10_1016_S2215_0366_24_00291_8 crossref_primary_10_1162_imag_a_00497 crossref_primary_10_1016_j_bpsgos_2024_100323 |
Cites_doi | 10.1007/s12264-013-1432-x 10.1371/journal.pone.0022734 10.1371/journal.pone.0080713 10.1016/j.nicl.2018.08.021 10.3389/fninf.2011.00023 10.1016/j.neuroimage.2020.116923 10.1007/s00702-013-0971-7 10.3233/JAD-150914 10.1016/j.heliyon.2022.e08725 10.1002/jmri.21053 10.1038/ncomms13629 10.1016/j.neuroimage.2020.117128 10.1016/j.neuroimage.2017.10.046 10.1371/journal.pone.0156770 10.1101/2021.03.17.435872 10.1002/mrm.21965 10.1016/j.neuroimage.2019.01.077 10.1007/s11682-021-00548-y 10.1016/j.neurobiolaging.2013.12.001 10.1111/j.1530-0277.1992.tb00702.x 10.1093/braincomms/fcab065 10.1016/j.neuroimage.2012.02.071 10.1016/j.neuroimage.2007.02.056 10.1016/j.mri.2006.09.045 10.1016/j.neuroimage.2015.09.018 10.1016/j.neuroimage.2007.12.053 10.1016/j.neuroimage.2010.03.004 10.1109/TMI.2013.2285500 10.1016/j.neuroimage.2018.07.070 10.1016/j.neurobiolaging.2020.01.009 10.1016/j.jalz.2014.06.011 10.1016/j.neuroimage.2017.08.047 10.1109/TMI.2010.2045126 10.1093/gerona/glz289 10.1016/j.neurobiolaging.2009.02.008 10.1016/j.neurobiolaging.2020.10.006 10.1016/j.pscychresns.2016.04.005 10.1007/s12264-020-00558-8 10.1016/j.neuroimage.2009.09.051 10.1016/j.neurobiolaging.2019.11.014 10.1016/j.neurobiolaging.2006.09.003 10.1002/hbm.24917 10.1016/j.neuroimage.2019.116137 10.1073/pnas.1902376116 10.1002/mrm.20283 10.1016/j.neuroimage.2021.118451 10.1016/j.neuroimage.2018.12.009 10.1016/j.neuroimage.2011.01.032 10.1016/j.neuroimage.2011.11.094 10.1038/s41598-020-74054-4 10.1371/journal.pone.0123656 10.1016/j.neuroimage.2019.02.036 10.3389/fnagi.2018.00235 10.1016/j.neuroimage.2021.118502 10.1016/j.neuroimage.2020.117441 10.3389/fnagi.2020.00218 10.1101/2020.04.19.049544 10.1016/j.neuroimage.2018.05.027 10.1007/s13311-018-0663-y 10.3233/JAD-200840 10.1016/j.neuroimage.2016.04.041 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88A 88E 88G 8AO 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M2M M7P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ Q9U 7X8 5PM |
DOI | 10.1007/s00429-022-02503-z |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & allied health premium. Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Psychology Database Biological Science Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Psychology ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Zoology Medicine |
EISSN | 1863-2661 0340-2061 |
EndPage | 2125 |
ExternalDocumentID | PMC9648053 35604444 10_1007_s00429_022_02503_z |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Science Foundation grantid: #1452485 funderid: http://dx.doi.org/10.13039/501100008982 – fundername: Foundation for the National Institutes of Health grantid: R01EB017230 funderid: http://dx.doi.org/10.13039/100000009 – fundername: NIA NIH HHS grantid: K01 AG073584 – fundername: NIBIB NIH HHS grantid: R01 EB017230 – fundername: NCRR NIH HHS grantid: UL1 RR024975 – fundername: NIA NIH HHS grantid: R01 AG034962 – fundername: NIA NIH HHS grantid: L30 AG060964 |
GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 203 23N 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5VS 67Z 6J9 6NX 78A 7RV 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADYPR ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD AZFZN AZQEC B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BKEYQ BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LK8 LLZTM M0L M1P M2M M4Y M7P MA- N2Q N9A NAPCQ NB0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P9S PF- PQQKQ PROAC PSQYO PSYQQ PT4 Q2X QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S37 S3B SAP SBL SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 TEORI TSG TSK TSV TT1 TUC U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7U Z82 Z83 Z87 Z8V Z8W Z91 ZMTXR ZOVNA ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7TK 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c474t-85d41de715d8cf0f3159ab2aa999198238e239b1b956b768f08a5630ebbec29a3 |
IEDL.DBID | AGYKE |
ISSN | 1863-2653 1863-2661 |
IngestDate | Thu Aug 21 18:39:21 EDT 2025 Tue Aug 05 11:23:24 EDT 2025 Fri Jul 25 10:22:41 EDT 2025 Mon Jul 21 05:54:32 EDT 2025 Thu Apr 24 22:54:53 EDT 2025 Tue Jul 01 00:38:18 EDT 2025 Fri Feb 21 02:46:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Aging Diffusion MRI Volume White matter Tractography |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-85d41de715d8cf0f3159ab2aa999198238e239b1b956b768f08a5630ebbec29a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 Author contributions All authors contributed to the study conception and design. Data collection was performed by the Baltimore Longitudinal Study of Aging at the National Institutes of Aging, and the Vanderbilt Memory & Aging Project (VMAP). All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. |
ORCID | 0000-0003-3686-7645 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9648053 |
PMID | 35604444 |
PQID | 2680446120 |
PQPubID | 38983 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9648053 proquest_miscellaneous_2668217940 proquest_journals_2680446120 pubmed_primary_35604444 crossref_primary_10_1007_s00429_022_02503_z crossref_citationtrail_10_1007_s00429_022_02503_z springer_journals_10_1007_s00429_022_02503_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
PublicationTitle | Brain Structure and Function |
PublicationTitleAbbrev | Brain Struct Funct |
PublicationTitleAlternate | Brain Struct Funct |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Coutu, Chen, Rosas, Salat (CR9) 2014; 35 Kimmel, Alhassoon, Wollman (CR26) 2016; 251 Wang, Knol, Tiulpin (CR50) 2019; 116 Farrell, Landman, Jones (CR15) 2007; 26 Mirzaalian, Ning, Savadjiev (CR31) 2016; 07 Toschi, Gisbert, Passamonti, Canals, De Santis (CR48) 2020; 02 Fillard, Descoteaux, Goh (CR16) 2011; 56 Chamberland, Tax, Jones (CR6) 2018; 20 Isaac Tseng, Hsu, Chen (CR21) 2021; 98 Tournier, Smith, Raffelt (CR49) 2019; 202 Yap, Teh, Fusar-Poli, Sum, Kuswanto, Sim (CR57) 2013; 120 Dong, Jelescu, Ades-Aron (CR13) 2020; 89 Pfefferbaum, Lim, Zipursky (CR35) 1992; 16 Abe, Yamasue, Aoki (CR1) 2008; 29 Warrington, Bryant, Khrapitchev (CR51) 2020; 217 Schilling, Tax, Rheault (CR41) 2021; 242 Lawrence, Nabulsi, Santhalingam (CR28) 2021; 15 Lebel, Walker, Leemans, Phillips, Beaulieu (CR29) 2008; 40 Tax, Grussu, Kaden (CR45) 2019 Landman, Farrell, Jones, Smith, Prince, Mori (CR27) 2007; 36 Chang, Owen, Pojman (CR8) 2015; 10 Giorgio, Santelli, Tomassini (CR18) 2010; 51 Molloy, Nugent, Bokde (CR32) 2021; 76 Zuo, Hu, Liu, Sui, Liu, Jiang (CR64) 2021; 37 Ramanoel, Hoyau, Kauffmann (CR36) 2018; 10 Yeh, Panesar, Barrios (CR62) 2019; 16 Yeh, Wedeen, Tseng (CR59) 2010; 29 Guevara, Duclap, Poupon (CR19) 2012; 61 Cox, Ritchie, Tucker-Drob (CR10) 2016; 7 Jones (CR23) 2010 Wasserthal, Neher, Maier-Hein (CR52) 2018; 183 Wheeler-Kingshott, Cercignani (CR53) 2009; 61 Schilling, Rheault, Petit (CR39) 2021; 243 Fortin, Parker, Tunç (CR17) 2017; 11 de Groot, Ikram, Akoudad (CR12) 2015; 11 Bergfield, Hanson, Chen (CR4) 2010; 49 Taylor, Williams, Cusack (CR46) 2017; 144 Chandio, Risacher, Pestilli (CR7) 2020; 10 Jorge, Martins, Canario (CR25) 2021; 80 Yeh (CR58) 2020 Lebel, Gee, Camicioli, Wieler, Martin, Beaulieu (CR30) 2012; 60 Bigham, Zamanpour, Zare (CR5) 2022; 8 Williams, An, Beason-Held (CR54) 2019; 188 Daducci, Canales-Rodríguez, Descoteaux (CR11) 2014; 33 Yeh, Panesar, Fernandes (CR61) 2018; 178 Terribilli, Schaufelberger, Duran (CR47) 2011; 32 Beck, de Lange, Maximov (CR3) 2021; 224 Fan, Tian, Ohringer (CR14) 2019; 191 Schilling, Janve, Gao, Stepniewska, Landman, Anderson (CR38) 2018; 01 Rheault, De Benedictis, Daducci (CR37) 2020; 41 Nicolas, Hiba, Dilharreguy (CR33) 2020; 12 Jefferson, Gifford, Acosta (CR22) 2016; 52 Taki, Thyreau, Kinomura (CR44) 2011; 6 Schilling, Tax, Rheault (CR40) 2021 Yeh, Verstynen, Wang, Fernandez-Miranda, Tseng (CR60) 2013; 8 Guo, Zhang, Zhou (CR20) 2014; 30 Storsve, Fjell, Yendiki, Walhovd (CR43) 2016; 11 Ning, Bonet-Carne, Grussu (CR34) 2020; 221 Jones, Basser (CR24) 2004; 52 Winter, Tallantyre, Brice, Robertson, Jones, Chamberland (CR55) 2021 Ardekani, Kumar, Bartzokis, Sinha (CR2) 2007; 25 Yendiki, Panneck, Srinivasan (CR63) 2011; 5 F Rheault (2503_CR37) 2020; 41 M Chamberland (2503_CR6) 2018; 20 OA Williams (2503_CR54) 2019; 188 L Jorge (2503_CR25) 2021; 80 AB Storsve (2503_CR43) 2016; 11 J Wang (2503_CR50) 2019; 116 F-C Yeh (2503_CR58) 2020 WY Isaac Tseng (2503_CR21) 2021; 98 CM Tax (2503_CR45) 2019 CL Kimmel (2503_CR26) 2016; 251 DK Jones (2503_CR23) 2010 FC Yeh (2503_CR60) 2013; 8 DK Jones (2503_CR24) 2004; 52 S Warrington (2503_CR51) 2020; 217 JP Coutu (2503_CR9) 2014; 35 S Ardekani (2503_CR2) 2007; 25 YS Chang (2503_CR8) 2015; 10 QJ Yap (2503_CR57) 2013; 120 A Pfefferbaum (2503_CR35) 1992; 16 FC Yeh (2503_CR59) 2010; 29 A Giorgio (2503_CR18) 2010; 51 L Ning (2503_CR34) 2020; 221 SR Cox (2503_CR10) 2016; 7 N Zuo (2503_CR64) 2021; 37 P Guevara (2503_CR19) 2012; 61 Y Guo (2503_CR20) 2014; 30 C Lebel (2503_CR29) 2008; 40 Q Fan (2503_CR14) 2019; 191 AL Jefferson (2503_CR22) 2016; 52 JD Tournier (2503_CR49) 2019; 202 A Yendiki (2503_CR63) 2011; 5 S Ramanoel (2503_CR36) 2018; 10 KG Schilling (2503_CR38) 2018; 01 C Lebel (2503_CR30) 2012; 60 JW Dong (2503_CR13) 2020; 89 M Winter (2503_CR55) 2021 M de Groot (2503_CR12) 2015; 11 BQ Chandio (2503_CR7) 2020; 10 CJ Molloy (2503_CR32) 2021; 76 N Toschi (2503_CR48) 2020; 02 FC Yeh (2503_CR62) 2019; 16 JP Fortin (2503_CR17) 2017; 11 H Mirzaalian (2503_CR31) 2016; 07 D Beck (2503_CR3) 2021; 224 BA Landman (2503_CR27) 2007; 36 R Nicolas (2503_CR33) 2020; 12 O Abe (2503_CR1) 2008; 29 J Wasserthal (2503_CR52) 2018; 183 KE Lawrence (2503_CR28) 2021; 15 P Fillard (2503_CR16) 2011; 56 Y Taki (2503_CR44) 2011; 6 D Terribilli (2503_CR47) 2011; 32 KL Bergfield (2503_CR4) 2010; 49 JR Taylor (2503_CR46) 2017; 144 FC Yeh (2503_CR61) 2018; 178 B Bigham (2503_CR5) 2022; 8 KG Schilling (2503_CR39) 2021; 243 KG Schilling (2503_CR41) 2021; 242 A Daducci (2503_CR11) 2014; 33 JA Farrell (2503_CR15) 2007; 26 KG Schilling (2503_CR40) 2021 CA Wheeler-Kingshott (2503_CR53) 2009; 61 |
References_xml | – volume: 30 start-page: 477 issue: 3 year: 2014 end-page: 489 ident: CR20 article-title: Grey-matter volume as a potential feature for the classification of Alzheimer’s disease and mild cognitive impairment: an exploratory study publication-title: Neurosci Bull doi: 10.1007/s12264-013-1432-x – volume: 6 issue: 7 year: 2011 ident: CR44 article-title: Correlations among brain gray matter volumes, age, gender, and hemisphere in healthy individuals publication-title: PLoS One doi: 10.1371/journal.pone.0022734 – volume: 8 issue: 11 year: 2013 ident: CR60 article-title: Deterministic diffusion fiber tracking improved by quantitative anisotropy publication-title: PLoS One doi: 10.1371/journal.pone.0080713 – volume: 20 start-page: 458 year: 2018 end-page: 465 ident: CR6 article-title: Meyer’s loop tractography for image-guided surgery depends on imaging protocol and hardware publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.08.021 – volume: 5 start-page: 23 year: 2011 ident: CR63 article-title: Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy publication-title: Front Neuroinform doi: 10.3389/fninf.2011.00023 – volume: 217 start-page: 116923 year: 2020 ident: CR51 article-title: XTRACT—standardised protocols for automated tractography in the human and macaque brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116923 – volume: 120 start-page: 1369 issue: 9 year: 2013 end-page: 1395 ident: CR57 article-title: Tracking cerebral white matter changes across the lifespan: insights from diffusion tensor imaging studies publication-title: J Neural Transm (Vienna) doi: 10.1007/s00702-013-0971-7 – volume: 52 start-page: 539 issue: 2 year: 2016 end-page: 559 ident: CR22 article-title: The Vanderbilt memory & aging project: study design and baseline cohort overview publication-title: J Alzheimers Dis doi: 10.3233/JAD-150914 – volume: 8 start-page: 08725 issue: 1 year: 2022 ident: CR5 article-title: Alzheimer’s disease neuroimaging I. Features of the superficial white matter as biomarkers for the detection of Alzheimer’s disease and mild cognitive impairment: a diffusion tensor imaging study publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e08725 – volume: 26 start-page: 756 issue: 3 year: 2007 end-page: 67 ident: CR15 article-title: Effects of signal-to-noise ratio on the accuracy and reproducibility of diffusion tensor imaging-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5 T publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21053 – volume: 7 start-page: 13629 year: 2016 ident: CR10 article-title: Ageing and brain white matter structure in 3513 UK Biobank participants publication-title: Nat Commun doi: 10.1038/ncomms13629 – volume: 221 start-page: 117128 year: 2020 ident: CR34 article-title: Cross-scanner and cross-protocol multi-shell diffusion MRI data harmonization: algorithms and results publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117128 – volume: 01 start-page: 200 issue: 165 year: 2018 end-page: 221 ident: CR38 article-title: Histological validation of diffusion MRI fiber orientation distributions and dispersion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.10.046 – volume: 11 issue: 6 year: 2016 ident: CR43 article-title: Longitudinal changes in white matter tract integrity across the adult lifespan and its relation to cortical thinning publication-title: PLoS One doi: 10.1371/journal.pone.0156770 – year: 2021 ident: CR40 article-title: Fiber tractography bundle segmentation depends on scanner effects, acquisition, diffusion sensitization, and bundle segmentation workflow publication-title: bioRxiv doi: 10.1101/2021.03.17.435872 – volume: 61 start-page: 1255 issue: 5 year: 2009 end-page: 1260 ident: CR53 article-title: About, “axial” and “radial” diffusivities publication-title: Magn Reson Med doi: 10.1002/mrm.21965 – year: 2019 ident: CR45 article-title: Cross-scanner and cross-protocol diffusion MRI data harmonisation: a benchmark database and evaluation of algorithms publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.077 – volume: 15 start-page: 2813 issue: 6 year: 2021 end-page: 2823 ident: CR28 article-title: Age and sex effects on advanced white matter microstructure measures in 15,628 older adults: a UK biobank study publication-title: Brain Imaging Behav doi: 10.1007/s11682-021-00548-y – volume: 35 start-page: 1412 issue: 6 year: 2014 end-page: 1421 ident: CR9 article-title: Non-Gaussian water diffusion in aging white matter publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2013.12.001 – volume: 16 start-page: 1078 issue: 6 year: 1992 end-page: 1089 ident: CR35 article-title: Brain gray and white matter volume loss accelerates with aging in chronic alcoholics: a quantitative MRI study publication-title: Alcohol Clin Exp Res doi: 10.1111/j.1530-0277.1992.tb00702.x – year: 2021 ident: CR55 article-title: Tract-specific MRI measures explain learning and recall differences in multiple sclerosis publication-title: Brain Commun doi: 10.1093/braincomms/fcab065 – volume: 61 start-page: 1083 issue: 4 year: 2012 end-page: 1099 ident: CR19 article-title: Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.071 – volume: 36 start-page: 1123 issue: 4 year: 2007 end-page: 38 ident: CR27 article-title: Effects of diffusion weighting schemes on the reproducibility of DTI-derived fractional anisotropy, mean diffusivity, and principal eigenvector measurements at 1.5T publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.056 – volume: 25 start-page: 154 issue: 2 year: 2007 end-page: 167 ident: CR2 article-title: Exploratory voxel-based analysis of diffusion indices and hemispheric asymmetry in normal aging publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2006.09.045 – volume: 144 start-page: 262 issue: Pt B year: 2017 end-page: 269 ident: CR46 article-title: The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data repository: structural and functional MRI, MEG, and cognitive data from a cross-sectional adult lifespan sample publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.09.018 – volume: 40 start-page: 1044 issue: 3 year: 2008 end-page: 1055 ident: CR29 article-title: Microstructural maturation of the human brain from childhood to adulthood publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.053 – volume: 51 start-page: 943 issue: 3 year: 2010 end-page: 951 ident: CR18 article-title: Age-related changes in grey and white matter structure throughout adulthood publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.004 – volume: 33 start-page: 384 issue: 2 year: 2014 end-page: 399 ident: CR11 article-title: Quantitative comparison of reconstruction methods for intra-voxel fiber recovery from diffusion MRI publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2013.2285500 – volume: 183 start-page: 239 year: 2018 end-page: 253 ident: CR52 article-title: TractSeg—fast and accurate white matter tract segmentation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.070 – volume: 89 start-page: 118 year: 2020 end-page: 128 ident: CR13 article-title: Diffusion MRI biomarkers of white matter microstructure vary nonmonotonically with increasing cerebral amyloid deposition publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2020.01.009 – volume: 11 start-page: 321 issue: 3 year: 2015 end-page: 330 ident: CR12 article-title: Tract-specific white matter degeneration in aging: the Rotterdam study publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2014.06.011 – volume: 11 start-page: 149 issue: 161 year: 2017 end-page: 170 ident: CR17 article-title: Harmonization of multi-site diffusion tensor imaging data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.047 – volume: 29 start-page: 1626 issue: 9 year: 2010 end-page: 1635 ident: CR59 article-title: Generalized q-sampling imaging publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2010.2045126 – volume: 76 start-page: 945 issue: 6 year: 2021 end-page: 954 ident: CR32 article-title: Alterations in diffusion measures of white matter integrity associated with healthy aging publication-title: J Gerontol A Biol Sci Med Sci doi: 10.1093/gerona/glz289 – volume: 32 start-page: 354 issue: 2 year: 2011 end-page: 368 ident: CR47 article-title: Age-related gray matter volume changes in the brain during non-elderly adulthood publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2009.02.008 – volume: 98 start-page: 160 year: 2021 end-page: 172 ident: CR21 article-title: Microstructural differences in white matter tracts across middle to late adulthood: a diffusion MRI study on 7167 UK Biobank participants publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2020.10.006 – volume: 251 start-page: 15 year: 2016 end-page: 25 ident: CR26 article-title: Age-related parieto-occipital and other gray matter changes in borderline personality disorder: a meta-analysis of cortical and subcortical structures publication-title: Psychiatry Res Neuroimaging doi: 10.1016/j.pscychresns.2016.04.005 – volume: 37 start-page: 94 issue: 1 year: 2021 end-page: 98 ident: CR64 article-title: Gray matter-based age prediction characterizes different regional patterns publication-title: Neurosci Bull doi: 10.1007/s12264-020-00558-8 – volume: 49 start-page: 1750 issue: 2 year: 2010 end-page: 1759 ident: CR4 article-title: Age-related networks of regional covariance in MRI gray matter: reproducible multivariate patterns in healthy aging publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.09.051 – start-page: 767 year: 2010 ident: CR23 publication-title: Diffusion MRI: theory, methods, and application – volume: 02 start-page: 191 issue: 86 year: 2020 end-page: 200 ident: CR48 article-title: Multishell diffusion imaging reveals sex-specific trajectories of early white matter degeneration in normal aging publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2019.11.014 – volume: 29 start-page: 102 issue: 1 year: 2008 end-page: 116 ident: CR1 article-title: Aging in the CNS: comparison of gray/white matter volume and diffusion tensor data publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2006.09.003 – volume: 41 start-page: 1859 issue: 7 year: 2020 end-page: 1874 ident: CR37 article-title: Tractostorm: the what, why, and how of tractography dissection reproducibility publication-title: Hum Brain Mapp doi: 10.1002/hbm.24917 – volume: 202 start-page: 116137 year: 2019 ident: CR49 article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116137 – volume: 116 start-page: 21213 issue: 42 year: 2019 end-page: 21218 ident: CR50 article-title: Gray matter age prediction as a biomarker for risk of dementia publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1902376116 – volume: 52 start-page: 979 issue: 5 year: 2004 end-page: 993 ident: CR24 article-title: “Squashing peanuts and smashing pumpkins”: how noise distorts diffusion-weighted MR data publication-title: Magn Reson Med doi: 10.1002/mrm.20283 – volume: 242 start-page: 118451 year: 2021 ident: CR41 article-title: Fiber tractography bundle segmentation depends on scanner effects, vendor effects, acquisition resolution, diffusion sampling scheme, diffusion sensitization, and bundle segmentation workflow publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118451 – volume: 188 start-page: 572 year: 2019 end-page: 583 ident: CR54 article-title: Vascular burden and APOE epsilon4 are associated with white matter microstructural decline in cognitively normal older adults publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.12.009 – volume: 56 start-page: 220 issue: 1 year: 2011 end-page: 234 ident: CR16 article-title: Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.032 – volume: 60 start-page: 340 issue: 1 year: 2012 end-page: 352 ident: CR30 article-title: Diffusion tensor imaging of white matter tract evolution over the lifespan publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.094 – volume: 10 start-page: 17149 issue: 1 year: 2020 ident: CR7 article-title: Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations publication-title: Sci Rep doi: 10.1038/s41598-020-74054-4 – volume: 10 issue: 6 year: 2015 ident: CR8 article-title: White matter changes of neurite density and fiber orientation dispersion during human brain maturation publication-title: PLoS One doi: 10.1371/journal.pone.0123656 – volume: 191 start-page: 325 year: 2019 end-page: 336 ident: CR14 article-title: Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.02.036 – volume: 10 start-page: 235 year: 2018 ident: CR36 article-title: Gray matter volume and cognitive performance during normal aging. A Voxel-based morphometry study publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2018.00235 – volume: 243 start-page: 118502 year: 2021 ident: CR39 article-title: Tractography dissection variability: what happens when 42 groups dissect 14 white matter bundles on the same dataset? publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118502 – volume: 224 start-page: 117441 year: 2021 ident: CR3 article-title: White matter microstructure across the adult lifespan: a mixed longitudinal and cross-sectional study using advanced diffusion models and brain-age prediction publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117441 – volume: 12 start-page: 218 year: 2020 ident: CR33 article-title: Changes over time of diffusion MRI in the white matter of aging brain, a good predictor of verbal recall publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2020.00218 – year: 2020 ident: CR58 article-title: Shape analysis of the human association pathways publication-title: bioRxiv doi: 10.1101/2020.04.19.049544 – volume: 178 start-page: 57 year: 2018 end-page: 68 ident: CR61 article-title: Population-averaged atlas of the macroscale human structural connectome and its network topology publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.05.027 – volume: 16 start-page: 52 issue: 1 year: 2019 end-page: 58 ident: CR62 article-title: Automatic removal of false connections in diffusion MRI tractography using topology-informed pruning (TIP) publication-title: Neurotherapeutics doi: 10.1007/s13311-018-0663-y – volume: 80 start-page: 113 issue: 1 year: 2021 end-page: 132 ident: CR25 article-title: Investigating the spatial associations between amyloid-beta deposition, grey matter volume, and neuroinflammation in Alzheimer’s disease publication-title: J Alzheimers Dis doi: 10.3233/JAD-200840 – volume: 07 start-page: 311 issue: 135 year: 2016 end-page: 323 ident: CR31 article-title: Inter-site and inter-scanner diffusion MRI data harmonization publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.041 – volume: 12 start-page: 218 year: 2020 ident: 2503_CR33 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2020.00218 – volume: 7 start-page: 13629 year: 2016 ident: 2503_CR10 publication-title: Nat Commun doi: 10.1038/ncomms13629 – volume: 202 start-page: 116137 year: 2019 ident: 2503_CR49 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.116137 – volume: 61 start-page: 1255 issue: 5 year: 2009 ident: 2503_CR53 publication-title: Magn Reson Med doi: 10.1002/mrm.21965 – volume: 10 issue: 6 year: 2015 ident: 2503_CR8 publication-title: PLoS One doi: 10.1371/journal.pone.0123656 – volume: 242 start-page: 118451 year: 2021 ident: 2503_CR41 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118451 – volume: 178 start-page: 57 year: 2018 ident: 2503_CR61 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.05.027 – volume: 20 start-page: 458 year: 2018 ident: 2503_CR6 publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2018.08.021 – volume: 120 start-page: 1369 issue: 9 year: 2013 ident: 2503_CR57 publication-title: J Neural Transm (Vienna) doi: 10.1007/s00702-013-0971-7 – volume: 10 start-page: 235 year: 2018 ident: 2503_CR36 publication-title: Front Aging Neurosci doi: 10.3389/fnagi.2018.00235 – volume: 6 issue: 7 year: 2011 ident: 2503_CR44 publication-title: PLoS One doi: 10.1371/journal.pone.0022734 – volume: 41 start-page: 1859 issue: 7 year: 2020 ident: 2503_CR37 publication-title: Hum Brain Mapp doi: 10.1002/hbm.24917 – volume: 26 start-page: 756 issue: 3 year: 2007 ident: 2503_CR15 publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21053 – volume: 40 start-page: 1044 issue: 3 year: 2008 ident: 2503_CR29 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.12.053 – volume: 243 start-page: 118502 year: 2021 ident: 2503_CR39 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2021.118502 – volume: 52 start-page: 979 issue: 5 year: 2004 ident: 2503_CR24 publication-title: Magn Reson Med doi: 10.1002/mrm.20283 – volume: 52 start-page: 539 issue: 2 year: 2016 ident: 2503_CR22 publication-title: J Alzheimers Dis doi: 10.3233/JAD-150914 – volume: 35 start-page: 1412 issue: 6 year: 2014 ident: 2503_CR9 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2013.12.001 – volume: 51 start-page: 943 issue: 3 year: 2010 ident: 2503_CR18 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.03.004 – volume: 116 start-page: 21213 issue: 42 year: 2019 ident: 2503_CR50 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1902376116 – volume: 11 issue: 6 year: 2016 ident: 2503_CR43 publication-title: PLoS One doi: 10.1371/journal.pone.0156770 – volume: 02 start-page: 191 issue: 86 year: 2020 ident: 2503_CR48 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2019.11.014 – volume: 11 start-page: 321 issue: 3 year: 2015 ident: 2503_CR12 publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2014.06.011 – volume: 10 start-page: 17149 issue: 1 year: 2020 ident: 2503_CR7 publication-title: Sci Rep doi: 10.1038/s41598-020-74054-4 – volume: 37 start-page: 94 issue: 1 year: 2021 ident: 2503_CR64 publication-title: Neurosci Bull doi: 10.1007/s12264-020-00558-8 – volume: 89 start-page: 118 year: 2020 ident: 2503_CR13 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2020.01.009 – volume: 56 start-page: 220 issue: 1 year: 2011 ident: 2503_CR16 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.01.032 – volume: 15 start-page: 2813 issue: 6 year: 2021 ident: 2503_CR28 publication-title: Brain Imaging Behav doi: 10.1007/s11682-021-00548-y – year: 2021 ident: 2503_CR55 publication-title: Brain Commun doi: 10.1093/braincomms/fcab065 – volume: 188 start-page: 572 year: 2019 ident: 2503_CR54 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.12.009 – volume: 30 start-page: 477 issue: 3 year: 2014 ident: 2503_CR20 publication-title: Neurosci Bull doi: 10.1007/s12264-013-1432-x – volume: 25 start-page: 154 issue: 2 year: 2007 ident: 2503_CR2 publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2006.09.045 – volume: 217 start-page: 116923 year: 2020 ident: 2503_CR51 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.116923 – volume: 60 start-page: 340 issue: 1 year: 2012 ident: 2503_CR30 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.11.094 – volume: 5 start-page: 23 year: 2011 ident: 2503_CR63 publication-title: Front Neuroinform doi: 10.3389/fninf.2011.00023 – volume: 29 start-page: 102 issue: 1 year: 2008 ident: 2503_CR1 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2006.09.003 – volume: 33 start-page: 384 issue: 2 year: 2014 ident: 2503_CR11 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2013.2285500 – volume: 01 start-page: 200 issue: 165 year: 2018 ident: 2503_CR38 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.10.046 – volume: 8 issue: 11 year: 2013 ident: 2503_CR60 publication-title: PLoS One doi: 10.1371/journal.pone.0080713 – volume: 76 start-page: 945 issue: 6 year: 2021 ident: 2503_CR32 publication-title: J Gerontol A Biol Sci Med Sci doi: 10.1093/gerona/glz289 – volume: 221 start-page: 117128 year: 2020 ident: 2503_CR34 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117128 – volume: 07 start-page: 311 issue: 135 year: 2016 ident: 2503_CR31 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.04.041 – volume: 11 start-page: 149 issue: 161 year: 2017 ident: 2503_CR17 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2017.08.047 – volume: 191 start-page: 325 year: 2019 ident: 2503_CR14 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.02.036 – volume: 32 start-page: 354 issue: 2 year: 2011 ident: 2503_CR47 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2009.02.008 – volume: 98 start-page: 160 year: 2021 ident: 2503_CR21 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2020.10.006 – year: 2021 ident: 2503_CR40 publication-title: bioRxiv doi: 10.1101/2021.03.17.435872 – volume: 80 start-page: 113 issue: 1 year: 2021 ident: 2503_CR25 publication-title: J Alzheimers Dis doi: 10.3233/JAD-200840 – volume: 36 start-page: 1123 issue: 4 year: 2007 ident: 2503_CR27 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.02.056 – volume: 49 start-page: 1750 issue: 2 year: 2010 ident: 2503_CR4 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.09.051 – year: 2019 ident: 2503_CR45 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2019.01.077 – volume: 183 start-page: 239 year: 2018 ident: 2503_CR52 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.07.070 – start-page: 767 volume-title: Diffusion MRI: theory, methods, and application year: 2010 ident: 2503_CR23 – volume: 224 start-page: 117441 year: 2021 ident: 2503_CR3 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2020.117441 – volume: 16 start-page: 1078 issue: 6 year: 1992 ident: 2503_CR35 publication-title: Alcohol Clin Exp Res doi: 10.1111/j.1530-0277.1992.tb00702.x – volume: 144 start-page: 262 issue: Pt B year: 2017 ident: 2503_CR46 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2015.09.018 – year: 2020 ident: 2503_CR58 publication-title: bioRxiv doi: 10.1101/2020.04.19.049544 – volume: 251 start-page: 15 year: 2016 ident: 2503_CR26 publication-title: Psychiatry Res Neuroimaging doi: 10.1016/j.pscychresns.2016.04.005 – volume: 29 start-page: 1626 issue: 9 year: 2010 ident: 2503_CR59 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2010.2045126 – volume: 16 start-page: 52 issue: 1 year: 2019 ident: 2503_CR62 publication-title: Neurotherapeutics doi: 10.1007/s13311-018-0663-y – volume: 8 start-page: 08725 issue: 1 year: 2022 ident: 2503_CR5 publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e08725 – volume: 61 start-page: 1083 issue: 4 year: 2012 ident: 2503_CR19 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.071 |
SSID | ssj0059819 ssj0012825 |
Score | 2.514285 |
SecondaryResourceType | review_article |
Snippet | Quantifying the microstructural and macrostructural geometrical features of the human brain’s connections is necessary for understanding normal aging and... Quantifying the microstructural and macrostructural geometrical features of the human brain's connections is necessary for understanding normal aging and... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2111 |
SubjectTerms | Age Aging Biomedical and Life Sciences Biomedicine Brain - diagnostic imaging Cell Biology Cross-Sectional Studies Diffusion Magnetic Resonance Imaging - methods Diffusion Tensor Imaging - methods Humans Longitudinal Studies Magnetic resonance imaging Nervous system Neuroimaging Neurology Neurosciences Original Article Substantia alba Thalamus White Matter - diagnostic imaging |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEB_0RPFFdM-P6ikRxBcNtmnaJr7IIh6nsD6IB4svJWlSFG7b9XaXw8M_3sxs2nM9vL61SenHTCYzmcnvB_AiR8wuLz1PlfVclqnmxpSG02TlKtVai5uTZ5_Lo2P5aV7M44LbKpZVDjaRDLXrG1wjfyNKhbnHTKTvlj85skZhdjVSaFyHGwhdhsFXNR8Drgz3ZQ4nhVbE8pGpMucivGDcQUP76MgscyxsR5cg5-e7s9Ql1_NyBeU_aVSanQ7vwp3oVrLpVg_uwTXfTWB_2oWQevGLvWRU6Ekr6BO4NYv59Anc_NbTxX34PUW2ImY6x84ws8AWBLzJFliwtwWZ3Zx6al-Yvy-9ZYad9Mh6tHHIsMWoRJHjb2PIvrLB5Tg2-_KREZIt61uWhQmfLU0s6O7Wq_twfPjh6_sjHpkZeCMrueaqcDJzvsoKp5o2bfPgFBkrjEF3U6vgBniRa5vZEH3ZENC0qTIIROZtUBmhTf4A9rq-84-AVT41ToewptRONrYwyssmt21rfamNFglkgyTqJsKWI3vGST0CLpP06iC9mqRXnyfwarxnuQXtuLL3wSDgOg7gVX2hbgk8H5vD0MN8iul8v8E-pRJo0EKfh1t9GB-XB09ShiOBakdTxg4I673b0v34TvDeupQqmMYEXg86dfFa__-Kx1d_xRO4LUi_sdD4APaCkvinwZ1a22c0Zv4ALsYb3g priority: 102 providerName: ProQuest |
Title | Aging and white matter microstructure and macrostructure: a longitudinal multi-site diffusion MRI study of 1218 participants |
URI | https://link.springer.com/article/10.1007/s00429-022-02503-z https://www.ncbi.nlm.nih.gov/pubmed/35604444 https://www.proquest.com/docview/2680446120 https://www.proquest.com/docview/2668217940 https://pubmed.ncbi.nlm.nih.gov/PMC9648053 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFD5im5B44bJxKYzKSIgX8JSLk9i8tahlgFahiUqFl8hOHIFYk4k2QlT8eM5xLtANkNaXVvVpG7vHx59zPn8H4GlIml1WWO5JY7mIPcW1jjV3i1WeyMIYOpx8MouP5-LtIlq0h8JWHdu9S0m6SN0fdnOxkxP7nNbtkG92YA_xh4fevTd6_fHdpIvAkZKuoIcv45AHeC3tYZm_f8v2gnQJZV4mS17ImLqFaHoL5l0XGv7J16N6bY6yzQV1x6v28TbcbJEpGzWudAeu2XIfDkYl7sqXP9gz5rii7ib8Plz_VLlXB_BzRFWOmC5z9p0yEmzpBDvZkoh-jTht_c269qX-862XTLOziqol1TlV5mKO2sgpmc2oaktNt_HYyekb5hRwWVUwH4ECO9ctEbxcr-7CfDr58OqYtxUdeCYSseYyyoWf28SPcpkVXhEimNIm0JpgqpIIH2wQKuMb3LUZ3AgVntQkYGYNulqgdHgPdsuqtA-AJdbTucLtUKxykZlISyuy0BSFsbHSKhiA3_2tadbKnVPVjbO0F2p2g53iYKdusNPNAJ73nzlvxD7-a33YeUvaTvxVGsSSUuR-4A3gSd-MU5byMLq0VU02sQwoEKLN_ca5-p8LEYEKfAwg2XK73oDkwLdbyi-fnSy4ioXEkDqAF51v_b6sf_fi4dXMH8GNwLknEZYPYRedxj5GWLY2Q9hJFskQ5-J0PJ4N2zmJz-PJ7P3pL4UKNIE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIRgvCDoYgQFGAl7AInHSxEZCqAKmlq17QJtU7SXYiSOQ1qTQVtMm_ib-Ru6cj1Em9ra-JXaaune-D9_d7wCeh4TZZSPLfWksj2Jfca1jzZ2yyhNZGEPFyeP9eHgYfZ70J2vwu62FobTKViY6QZ1XGZ2RvxGxpNhjIPz3sx-cukZRdLVtoVGzxa49PUGXbf5u9BHp-0KInU8HH4a86SrAsyiJFlz28yjIbRL0c5kVfhGiQtdGaE2mkpKowqwIlQkMeg4GjfHCl5pAtKzB5QqlQ_zea3Ad1-JTCmEy6Ry8gOpA24u-kq6rSCDjkAv8Q5qKHVe359QAp0R6MkFCfraqFS-YuhczNv8J2zptuHMHbjdmLBvUfHcX1mzZg81BiS789JS9ZC6x1J3Y9-DmuInf9-DGUeVubsKvAXVHYrrM2QlFMtjUAX2yKSUI1qC2y5_WjU_137feMs2OK-qytMypoxdzKZGcyMSo28uSjv_Y-MuIOeRcVhUsQAODzXSTQF4u5vfg8Epodh_Wy6q0D4Al1te5QjcqVnmUmb6WNspCUxTGxkor4UHQUiLNGph06tZxnHYAz456KVIvddRLzzx41T0zq0FCLp293RI4bQTGPD1nbw-edcO41Sl-o0tbLWlOLAUJUJyzVfND97oQLdcIPx4kK5zSTSAY8dWR8vs3Byeu4kiiKPbgdctT5z_r_6t4ePkqnsLG8GC8l-6N9ncfwS3heJ2SnLdhHRnGPkZTbmGeuP3D4OtVb9g_qRVYRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NISZe0Oj4CAwwEvAC1hLHTRwkhCpGtTI6IcSkipdgJ45AWpNCW02b9pfx13HnfIwysbf1LbHT1L07353v7ncAz0LC7LLScl8Zy2XkJ1zrSHOnrPJYFcZQcfL4INo7lB8m_cka_G5rYSitst0T3UadVxmdke-ISFHsMRD-TtGkRXzaHb6d_eTUQYoirW07jZpF9u3JMbpv8zejXaT1cyGG77-82-NNhwGeyVguuOrnMshtHPRzlRV-EaJy10ZoTWZTolCdWREmJjDoRRg0zAtfaQLUsgaXLhId4vdeg-txiGoTZSmedM5eQDWh7UU_Ua7DSKCikAv8c5rqHVfD51QCp6R6MkdCfrqqIS-YvRezN_8J4TrNONyEW41JywY1D96GNVv2YGtQojs_PWEvmEsydaf3PdgYN7H8Htz4WrmbW3A2oE5JTJc5O6aoBps60E82pWTBGuB2-cu68an--9ZrptlRRR2Xljl192IuPZITmRh1flnSUSAbfx4xh6LLqoIFaGywmW6SycvF_A4cXgnN7sJ6WZX2PrDY-jpP0KWKklxmpq-VlVloisLYKNGJ8CBoKZFmDWQ6de44SjuwZ0e9FKmXOuqlpx687J6Z1YAhl87ebgmcNpvHPD1ndQ-edsMo9hTL0aWtljQnUoI2U5xzr-aH7nUhWrESPx7EK5zSTSBI8dWR8sd3By2eRFLhtuzBq5anzn_W_1fx4PJVPIENFNX04-hg_yHcFI7VKd95G9aRX-wjtOoW5rETHwbfrlpe_wDeuFx9 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aging+and+white+matter+microstructure+and+macrostructure%3A+a+longitudinal+multi-site+diffusion+MRI+study+of+1218+participants&rft.jtitle=Brain+structure+%26+function&rft.au=Schilling%2C+Kurt+G&rft.au=Archer%2C+Derek&rft.au=Yeh%2C+Fang-Cheng&rft.au=Rheault%2C+Francois&rft.date=2022-07-01&rft.issn=1863-2661&rft.eissn=1863-2661&rft.volume=227&rft.issue=6&rft.spage=2111&rft_id=info:doi/10.1007%2Fs00429-022-02503-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-2653&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-2653&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-2653&client=summon |