MICAR: multi-inhabitant context-aware activity recognition in home environments

The sensor-based recognition of Activities of Daily Living (ADLs) in smart-home environments enables several important applications, including the continuous monitoring of fragile subjects in their homes for healthcare systems. The majority of the approaches in the literature assume that only one re...

Full description

Saved in:
Bibliographic Details
Published inDistributed and parallel databases : an international journal Vol. 41; no. 4; pp. 571 - 602
Main Authors Arrotta, Luca, Bettini, Claudio, Civitarese, Gabriele
Format Journal Article
LanguageEnglish
Published New York Springer US 01.12.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0926-8782
1573-7578
1573-7578
DOI10.1007/s10619-022-07403-z

Cover

Loading…
Abstract The sensor-based recognition of Activities of Daily Living (ADLs) in smart-home environments enables several important applications, including the continuous monitoring of fragile subjects in their homes for healthcare systems. The majority of the approaches in the literature assume that only one resident is living in the home. Multi-inhabitant ADLs recognition is significantly more challenging, and only a limited effort has been devoted to address this setting by the research community. One of the major open problems is called data association , which is correctly associating each environmental sensor event (e.g., the opening of a fridge door) with the inhabitant that actually triggered it. Moreover, existing multi-inhabitant approaches rely on supervised learning, assuming a high availability of labeled data. However, collecting a comprehensive training set of ADLs (especially in multiple-residents settings) is prohibitive. In this work, we propose MICAR: a novel multi-inhabitant ADLs recognition approach that combines semi-supervised learning and knowledge-based reasoning. Data association is performed by semantic reasoning, combining high-level context information (e.g., residents’ postures and semantic locations) with triggered sensor events. The personalized stream of sensor events is processed by an incremental classifier, that is initialized with a limited amount of labeled ADLs. A novel cache-based active learning strategy is adopted to continuously improve the classifier. Our results on a dataset where up to 4 subjects perform ADLs at the same time show that MICAR reliably recognizes individual and joint activities while triggering a significantly low number of active learning queries.
AbstractList The sensor-based recognition of Activities of Daily Living (ADLs) in smart-home environments enables several important applications, including the continuous monitoring of fragile subjects in their homes for healthcare systems. The majority of the approaches in the literature assume that only one resident is living in the home. Multi-inhabitant ADLs recognition is significantly more challenging, and only a limited effort has been devoted to address this setting by the research community. One of the major open problems is called data association, which is correctly associating each environmental sensor event (e.g., the opening of a fridge door) with the inhabitant that actually triggered it. Moreover, existing multi-inhabitant approaches rely on supervised learning, assuming a high availability of labeled data. However, collecting a comprehensive training set of ADLs (especially in multiple-residents settings) is prohibitive. In this work, we propose MICAR: a novel multi-inhabitant ADLs recognition approach that combines semi-supervised learning and knowledge-based reasoning. Data association is performed by semantic reasoning, combining high-level context information (e.g., residents' postures and semantic locations) with triggered sensor events. The personalized stream of sensor events is processed by an incremental classifier, that is initialized with a limited amount of labeled ADLs. A novel cache-based active learning strategy is adopted to continuously improve the classifier. Our results on a dataset where up to 4 subjects perform ADLs at the same time show that MICAR reliably recognizes individual and joint activities while triggering a significantly low number of active learning queries.The sensor-based recognition of Activities of Daily Living (ADLs) in smart-home environments enables several important applications, including the continuous monitoring of fragile subjects in their homes for healthcare systems. The majority of the approaches in the literature assume that only one resident is living in the home. Multi-inhabitant ADLs recognition is significantly more challenging, and only a limited effort has been devoted to address this setting by the research community. One of the major open problems is called data association, which is correctly associating each environmental sensor event (e.g., the opening of a fridge door) with the inhabitant that actually triggered it. Moreover, existing multi-inhabitant approaches rely on supervised learning, assuming a high availability of labeled data. However, collecting a comprehensive training set of ADLs (especially in multiple-residents settings) is prohibitive. In this work, we propose MICAR: a novel multi-inhabitant ADLs recognition approach that combines semi-supervised learning and knowledge-based reasoning. Data association is performed by semantic reasoning, combining high-level context information (e.g., residents' postures and semantic locations) with triggered sensor events. The personalized stream of sensor events is processed by an incremental classifier, that is initialized with a limited amount of labeled ADLs. A novel cache-based active learning strategy is adopted to continuously improve the classifier. Our results on a dataset where up to 4 subjects perform ADLs at the same time show that MICAR reliably recognizes individual and joint activities while triggering a significantly low number of active learning queries.
The sensor-based recognition of Activities of Daily Living (ADLs) in smart-home environments enables several important applications, including the continuous monitoring of fragile subjects in their homes for healthcare systems. The majority of the approaches in the literature assume that only one resident is living in the home. Multi-inhabitant ADLs recognition is significantly more challenging, and only a limited effort has been devoted to address this setting by the research community. One of the major open problems is called , which is correctly associating each environmental sensor event (e.g., the opening of a fridge door) with the inhabitant that actually triggered it. Moreover, existing multi-inhabitant approaches rely on supervised learning, assuming a high availability of labeled data. However, collecting a comprehensive training set of ADLs (especially in multiple-residents settings) is prohibitive. In this work, we propose MICAR: a novel multi-inhabitant ADLs recognition approach that combines semi-supervised learning and knowledge-based reasoning. Data association is performed by semantic reasoning, combining high-level context information (e.g., residents' postures and semantic locations) with triggered sensor events. The personalized stream of sensor events is processed by an incremental classifier, that is initialized with a limited amount of labeled ADLs. A novel cache-based active learning strategy is adopted to continuously improve the classifier. Our results on a dataset where up to 4 subjects perform ADLs at the same time show that MICAR reliably recognizes individual and joint activities while triggering a significantly low number of active learning queries.
The sensor-based recognition of Activities of Daily Living (ADLs) in smart-home environments enables several important applications, including the continuous monitoring of fragile subjects in their homes for healthcare systems. The majority of the approaches in the literature assume that only one resident is living in the home. Multi-inhabitant ADLs recognition is significantly more challenging, and only a limited effort has been devoted to address this setting by the research community. One of the major open problems is called data association , which is correctly associating each environmental sensor event (e.g., the opening of a fridge door) with the inhabitant that actually triggered it. Moreover, existing multi-inhabitant approaches rely on supervised learning, assuming a high availability of labeled data. However, collecting a comprehensive training set of ADLs (especially in multiple-residents settings) is prohibitive. In this work, we propose MICAR: a novel multi-inhabitant ADLs recognition approach that combines semi-supervised learning and knowledge-based reasoning. Data association is performed by semantic reasoning, combining high-level context information (e.g., residents’ postures and semantic locations) with triggered sensor events. The personalized stream of sensor events is processed by an incremental classifier, that is initialized with a limited amount of labeled ADLs. A novel cache-based active learning strategy is adopted to continuously improve the classifier. Our results on a dataset where up to 4 subjects perform ADLs at the same time show that MICAR reliably recognizes individual and joint activities while triggering a significantly low number of active learning queries.
The sensor-based recognition of Activities of Daily Living (ADLs) in smart-home environments enables several important applications, including the continuous monitoring of fragile subjects in their homes for healthcare systems. The majority of the approaches in the literature assume that only one resident is living in the home. Multi-inhabitant ADLs recognition is significantly more challenging, and only a limited effort has been devoted to address this setting by the research community. One of the major open problems is called data association, which is correctly associating each environmental sensor event (e.g., the opening of a fridge door) with the inhabitant that actually triggered it. Moreover, existing multi-inhabitant approaches rely on supervised learning, assuming a high availability of labeled data. However, collecting a comprehensive training set of ADLs (especially in multiple-residents settings) is prohibitive. In this work, we propose MICAR: a novel multi-inhabitant ADLs recognition approach that combines semi-supervised learning and knowledge-based reasoning. Data association is performed by semantic reasoning, combining high-level context information (e.g., residents’ postures and semantic locations) with triggered sensor events. The personalized stream of sensor events is processed by an incremental classifier, that is initialized with a limited amount of labeled ADLs. A novel cache-based active learning strategy is adopted to continuously improve the classifier. Our results on a dataset where up to 4 subjects perform ADLs at the same time show that MICAR reliably recognizes individual and joint activities while triggering a significantly low number of active learning queries.
Author Arrotta, Luca
Bettini, Claudio
Civitarese, Gabriele
Author_xml – sequence: 1
  givenname: Luca
  surname: Arrotta
  fullname: Arrotta, Luca
  organization: EveryWare Lab, Department of Computer Science, University of Milan
– sequence: 2
  givenname: Claudio
  surname: Bettini
  fullname: Bettini, Claudio
  organization: EveryWare Lab, Department of Computer Science, University of Milan
– sequence: 3
  givenname: Gabriele
  orcidid: 0000-0002-8247-2524
  surname: Civitarese
  fullname: Civitarese, Gabriele
  email: gabriele.civitarese@unimi.it
  organization: EveryWare Lab, Department of Computer Science, University of Milan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35400846$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1PVDEUxRuDkQH9B1yYl7hhU739em1dmBjiVwIhIbpuOp2-mZL3Wmz7RuCvtziIyoJVF_2dc-695wDtxRQ9Qi8JvCEA8m0h0BONgVIMkgPDN0_QggjJsBRS7aEFaNpjJRXdRwelXACAlkQ-Q_tMcADF-wU6O_16_OH8XTfNYw04xI1dhmpj7VyK1V9VbH_a7DvratiGet1l79I6hhpS7ELsNmnynY_bkFOcfKzlOXo62LH4F3fvIfr-6eO34y_45OxzSzrBjktesRK903TQAFbqJZWCeb-0nnOtFBm8FFYMUmkGnDSQq5Wy0jKyEtz2TFDGDtH7ne_lvJz8yrXsbEdzmcNk87VJNpj_f2LYmHXaGqUVUALN4OjOIKcfsy_VTKE4P442-jQXQ3uuqWCMyYa-foBepDnHtp6hSgoutGakUa_-neh-lD-3bgDdAS6nUrIf7hEC5rZQsyvUtELN70LNTROpByLX-rk9f9sqjI9L2U5aWk5c-_x37EdUvwCRYLVv
CitedBy_id crossref_primary_10_1007_s42979_024_03563_0
crossref_primary_10_3390_s23115281
Cites_doi 10.1109/TSMCC.2012.2198883
10.1109/TKDE.2011.51
10.1016/j.inffus.2020.06.004
10.1016/j.neucom.2016.05.110
10.1016/j.gerinurse.2015.02.019
10.1007/s10115-013-0665-3
10.1016/j.pmcj.2019.04.006
10.1007/s12652-016-0440-x
10.1007/s10994-012-5320-9
10.1016/j.procs.2020.03.082
10.3923/jai.2018.71.78
10.1109/ACCESS.2020.2973425
10.1109/SURV.2012.110112.00192
10.1109/TMC.2018.2793913
10.1016/j.pmcj.2012.07.003
10.3390/s16010115
10.1016/j.pmcj.2010.11.008
10.1016/j.knosys.2020.105816
10.1109/COMST.2019.2911558
10.1109/TKDE.2019.2930050
10.1109/JBHI.2012.2234129
10.1016/0169-7439(89)80095-4
10.1145/2835372
10.1109/ACCESS.2020.3036226
10.1016/j.buildenv.2019.05.016
10.1007/978-3-319-21671-3_9
10.1007/s10462-019-09783-8
10.1109/TSC.2017.2762296
10.1016/j.artmed.2015.12.001
10.1016/j.pmcj.2016.08.017
10.3390/s20051457
10.1007/978-3-030-94822-1_25
10.1109/CVPR.2016.217
10.1145/2638728.2641674
10.1007/978-3-319-98204-5_1
10.1109/EFTF.2012.6502421
10.1109/ISWC.2009.24
10.1049/cp:20081164
10.4108/icst.pervasivehealth.2012.248600
10.1109/MDM48529.2020.00034
10.1109/ISWC.2008.4911590
10.1145/2030045.2030065
10.1109/SMC.2019.8914279
10.1109/GreenCom-iThings-CPSCom.2013.94
10.1109/PerComWorkshops48775.2020.9156075
10.1145/2991561.2991563
10.1109/ICHI.2015.50
ContentType Journal Article
Copyright The Author(s) 2022. corrected publication 2022
The Author(s) 2022.
The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2022, corrected publication 2022
Copyright_xml – notice: The Author(s) 2022. corrected publication 2022
– notice: The Author(s) 2022.
– notice: The Author(s) 2022. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2022, corrected publication 2022
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s10619-022-07403-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed



CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7578
EndPage 602
ExternalDocumentID PMC8980210
35400846
10_1007_s10619_022_07403_z
Genre Journal Article
GrantInformation_xml – fundername: telecom italia
  funderid: http://dx.doi.org/10.13039/100007396
– fundername: ;
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P0-
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
ABRTQ
7X8
5PM
ID FETCH-LOGICAL-c474t-856c92f900a79b2753eebae449881fe75a5f78930416c948d8a7a31d54a635233
IEDL.DBID U2A
ISSN 0926-8782
1573-7578
IngestDate Thu Aug 21 17:45:59 EDT 2025
Fri Jul 11 15:45:47 EDT 2025
Fri Jul 25 03:56:59 EDT 2025
Thu Apr 03 07:10:50 EDT 2025
Tue Jul 01 03:48:36 EDT 2025
Thu Apr 24 23:09:33 EDT 2025
Fri Feb 21 02:42:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Activity recognition
Multi-inhabitant
Smart-home
Semi-supervised learning
Language English
License The Author(s) 2022.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-856c92f900a79b2753eebae449881fe75a5f78930416c948d8a7a31d54a635233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8247-2524
OpenAccessLink https://link.springer.com/10.1007/s10619-022-07403-z
PMID 35400846
PQID 2875459931
PQPubID 2043733
PageCount 32
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8980210
proquest_miscellaneous_2649253337
proquest_journals_2875459931
pubmed_primary_35400846
crossref_primary_10_1007_s10619_022_07403_z
crossref_citationtrail_10_1007_s10619_022_07403_z
springer_journals_10_1007_s10619_022_07403_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An International Journal of Data Science, Engineering, and Management
PublicationTitle Distributed and parallel databases : an international journal
PublicationTitleAbbrev Distrib Parallel Databases
PublicationTitleAlternate Distrib Parallel Databases
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Civitarese, Bettini, Sztyler, Riboni, Stuckenschmidt (CR14) 2019; 56
Gama, Sebastião, Rodrigues (CR19) 2013; 90
CR36
CR34
CR32
Mohamed, Perumal, Sulaiman, Mustapha, Manaf (CR35) 2017; 9
Tran, Nguyen, Ngo, Vu, Hoang, Zhang, Karunanithi (CR47) 2020; 53
Benmansour, Bouchachia, Feham (CR8) 2017; 230
Zhang, Xue, Liu (CR52) 2017; 11
CR2
Ferrari, Micucci, Mobilio, Napoletano (CR18) 2020; 8
Alemdar, Ersoy (CR1) 2017; 8
CR4
CR3
CR5
CR9
Guo, Li, Hou, Han, Ren (CR21) 2020; 20
CR46
Lapointe, Chapron, Bouchard (CR29) 2020; 170
CR45
Ordóñez, Roggen (CR38) 2016; 16
CR43
Benmansour, Bouchachia, Feham (CR7) 2016; 48
Li, Gravina, Li, Alsamhi, Sun, Fortino (CR31) 2020; 63
Bakar, Ghayvat, Hasanm, Mukhopadhyay (CR6) 2016; 16
Civitarese, Sztyler, Riboni, Bettini, Stuckenschmidt (CR15) 2019; 33
Chen, Nugent, Wang (CR12) 2012; 24
O’brien, Troutman-Jordan, Hathaway, Armstrong, Moore (CR37) 2015; 36
Chen, Hoey, Nugent, Cook, Yu (CR11) 2012; 42
CR17
Cook, Feuz, Krishnan (CR16) 2013; 36
Lara, Labrador (CR30) 2013; 15
Bettini, Civitarese, Presotto (CR10) 2020; 196
Riboni, Bettini, Civitarese, Janjua, Helaoui (CR42) 2016; 67
Chen, Cha, Kim (CR13) 2019; 158
Riboni, Murru (CR41) 2020; 8
Rashidi, Mihailidis (CR40) 2012; 17
CR50
Wang, Cook (CR48) 2020; 43
Oukrich, Cherraqi, Elghanami (CR39) 2018; 11
CR27
Zafari, Gkelias, Leung (CR51) 2019; 21
CR25
CR24
Wang, Gu, Tao, Chen, Lu (CR49) 2011; 7
CR23
CR22
St, Wold (CR44) 1989; 6
CR20
Lv, Chen, Chen, Chen (CR33) 2018; 17
Hossain, Khan, Roy (CR26) 2017; 38
Krishnan, Cook (CR28) 2014; 10
7403_CR9
U Bakar (7403_CR6) 2016; 16
7403_CR2
7403_CR3
7403_CR46
7403_CR4
7403_CR5
C Bettini (7403_CR10) 2020; 196
7403_CR43
7403_CR45
F Ordóñez (7403_CR38) 2016; 16
L St (7403_CR44) 1989; 6
H Alemdar (7403_CR1) 2017; 8
NC Krishnan (7403_CR28) 2014; 10
J Guo (7403_CR21) 2020; 20
L Chen (7403_CR12) 2012; 24
P Lapointe (7403_CR29) 2020; 170
A Benmansour (7403_CR8) 2017; 230
D Riboni (7403_CR42) 2016; 67
N Oukrich (7403_CR39) 2018; 11
7403_CR36
R Mohamed (7403_CR35) 2017; 9
7403_CR32
OD Lara (7403_CR30) 2013; 15
7403_CR34
H Chen (7403_CR13) 2019; 158
J Gama (7403_CR19) 2013; 90
SN Tran (7403_CR47) 2020; 53
L Chen (7403_CR11) 2012; 42
D Cook (7403_CR16) 2013; 36
7403_CR25
7403_CR24
7403_CR27
7403_CR20
7403_CR23
7403_CR22
A Benmansour (7403_CR7) 2016; 48
G Civitarese (7403_CR15) 2019; 33
R Zhang (7403_CR52) 2017; 11
L Wang (7403_CR49) 2011; 7
D Riboni (7403_CR41) 2020; 8
F Zafari (7403_CR51) 2019; 21
G Civitarese (7403_CR14) 2019; 56
7403_CR17
P Rashidi (7403_CR40) 2012; 17
A Ferrari (7403_CR18) 2020; 8
Q Li (7403_CR31) 2020; 63
T Wang (7403_CR48) 2020; 43
7403_CR50
HS Hossain (7403_CR26) 2017; 38
T O’brien (7403_CR37) 2015; 36
M Lv (7403_CR33) 2018; 17
References_xml – ident: CR45
– ident: CR22
– volume: 42
  start-page: 790
  issue: 6
  year: 2012
  end-page: 808
  ident: CR11
  article-title: Sensor-based activity recognition
  publication-title: IEEE Trans. Syst. Man Cybern. C (Applications and Reviews)
  doi: 10.1109/TSMCC.2012.2198883
– ident: CR4
– volume: 24
  start-page: 961
  issue: 6
  year: 2012
  end-page: 974
  ident: CR12
  article-title: A knowledge-driven approach to activity recognition in smart homes
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.51
– volume: 63
  start-page: 121
  year: 2020
  end-page: 135
  ident: CR31
  article-title: Multi-user activity recognition: Challenges and opportunities
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.06.004
– volume: 230
  start-page: 133
  year: 2017
  end-page: 142
  ident: CR8
  article-title: Modeling interaction in multi-resident activities
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.05.110
– ident: CR25
– volume: 36
  start-page: S21
  issue: 2
  year: 2015
  end-page: S25
  ident: CR37
  article-title: Acceptability of wristband activity trackers among community dwelling older adults
  publication-title: Geriatr. Nurs.
  doi: 10.1016/j.gerinurse.2015.02.019
– volume: 36
  start-page: 537
  issue: 3
  year: 2013
  end-page: 556
  ident: CR16
  article-title: Transfer learning for activity recognition: A survey
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0665-3
– ident: CR46
– volume: 56
  start-page: 88
  year: 2019
  end-page: 105
  ident: CR14
  article-title: newnectar: Collaborative active learning for knowledge-based probabilistic activity recognition
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2019.04.006
– volume: 8
  start-page: 513
  issue: 4
  year: 2017
  end-page: 529
  ident: CR1
  article-title: Multi-resident activity tracking and recognition in smart environments
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-016-0440-x
– volume: 90
  start-page: 317
  issue: 3
  year: 2013
  end-page: 346
  ident: CR19
  article-title: On evaluating stream learning algorithms
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-012-5320-9
– ident: CR50
– volume: 170
  start-page: 403
  year: 2020
  end-page: 410
  ident: CR29
  article-title: A new device to track and identify people in a multi-residents context
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.082
– ident: CR9
– ident: CR32
– volume: 11
  start-page: 71
  year: 2018
  end-page: 78
  ident: CR39
  article-title: Multi-resident activity recognition method based in deep belief network
  publication-title: J. Artif. Intell.
  doi: 10.3923/jai.2018.71.78
– volume: 8
  start-page: 32066
  year: 2020
  end-page: 32079
  ident: CR18
  article-title: On the personalization of classification models for human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2973425
– ident: CR36
– ident: CR5
– volume: 15
  start-page: 1192
  issue: 3
  year: 2013
  end-page: 1209
  ident: CR30
  article-title: A survey on human activity recognition using wearable sensors
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2012.110112.00192
– volume: 17
  start-page: 1991
  issue: 9
  year: 2018
  end-page: 2001
  ident: CR33
  article-title: Bi-view semi-supervised learning based semantic human activity recognition using accelerometers
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2018.2793913
– volume: 10
  start-page: 138
  year: 2014
  end-page: 154
  ident: CR28
  article-title: Activity recognition on streaming sensor data
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2012.07.003
– ident: CR43
– volume: 16
  start-page: 115
  issue: 1
  year: 2016
  ident: CR38
  article-title: Deep convolutional and lSTM recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
  doi: 10.3390/s16010115
– volume: 7
  start-page: 287
  issue: 3
  year: 2011
  end-page: 298
  ident: CR49
  article-title: Recognizing multi-user activities using wearable sensors in a smart home
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2010.11.008
– ident: CR2
– volume: 196
  start-page: 105816
  year: 2020
  ident: CR10
  article-title: Caviar: Context-driven active and incremental activity recognition
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105816
– volume: 21
  start-page: 2568
  issue: 3
  year: 2019
  end-page: 2599
  ident: CR51
  article-title: A survey of indoor localization systems and technologies
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2019.2911558
– volume: 33
  start-page: 209
  issue: 1
  year: 2019
  end-page: 23
  ident: CR15
  article-title: Polaris: Probabilistic and ontological activity recognition in smart-homes
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2930050
– ident: CR27
– volume: 17
  start-page: 579
  issue: 3
  year: 2012
  end-page: 590
  ident: CR40
  article-title: A survey on ambient-assisted living tools for older adults
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2012.2234129
– ident: CR23
– volume: 6
  start-page: 259
  issue: 4
  year: 1989
  end-page: 272
  ident: CR44
  article-title: Analysis of variance (ANOVA)
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(89)80095-4
– volume: 48
  start-page: 34
  issue: 3
  year: 2016
  ident: CR7
  article-title: Multioccupant activity recognition in pervasive smart home environments
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/2835372
– ident: CR3
– volume: 8
  start-page: 201985
  year: 2020
  end-page: 201994
  ident: CR41
  article-title: Unsupervised recognition of multi-resident activities in smart-homes
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3036226
– volume: 43
  start-page: 2809
  issue: 8
  year: 2020
  end-page: 21
  ident: CR48
  article-title: smrt: Multi-resident tracking in smart homes with sensor vectorization
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: CR17
– volume: 158
  start-page: 205
  year: 2019
  end-page: 216
  ident: CR13
  article-title: A framework for group activity detection and recognition using smartphone sensors and beacons
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.05.016
– volume: 16
  start-page: 191
  year: 2016
  end-page: 220
  ident: CR6
  article-title: Activity and anomaly detection in smart home: A survey
  publication-title: Next Gener. Sens. Syst.
  doi: 10.1007/978-3-319-21671-3_9
– ident: CR34
– volume: 53
  start-page: 3929
  issue: 6
  year: 2020
  end-page: 3945
  ident: CR47
  article-title: On multi-resident activity recognition in ambient smart-homes
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09783-8
– volume: 11
  start-page: 978
  issue: 6
  year: 2017
  end-page: 996
  ident: CR52
  article-title: Searchable encryption for healthcare clouds: A survey
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2017.2762296
– volume: 67
  start-page: 57
  year: 2016
  end-page: 74
  ident: CR42
  article-title: SmartFABER: Recognizing fine-grained abnormal behaviors for early detection of mild cognitive impairment
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2015.12.001
– volume: 9
  start-page: 39
  issue: 2–11
  year: 2017
  end-page: 43
  ident: CR35
  article-title: Tracking and recognizing the activity of multi resident in smart home environments
  publication-title: J. Telecommun. Electron. Comput. Eng. (JTEC)
– ident: CR24
– ident: CR20
– volume: 38
  start-page: 312
  year: 2017
  end-page: 330
  ident: CR26
  article-title: Active learning enabled activity recognition
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2016.08.017
– volume: 20
  start-page: 1457
  issue: 5
  year: 2020
  ident: CR21
  article-title: Recognition of daily activities of two residents in a smart home based on time clustering
  publication-title: Sensors
  doi: 10.3390/s20051457
– volume: 8
  start-page: 32066
  year: 2020
  ident: 7403_CR18
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2973425
– volume: 15
  start-page: 1192
  issue: 3
  year: 2013
  ident: 7403_CR30
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2012.110112.00192
– volume: 6
  start-page: 259
  issue: 4
  year: 1989
  ident: 7403_CR44
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/0169-7439(89)80095-4
– ident: 7403_CR4
  doi: 10.1007/978-3-030-94822-1_25
– volume: 17
  start-page: 579
  issue: 3
  year: 2012
  ident: 7403_CR40
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2012.2234129
– ident: 7403_CR27
  doi: 10.1109/CVPR.2016.217
– volume: 20
  start-page: 1457
  issue: 5
  year: 2020
  ident: 7403_CR21
  publication-title: Sensors
  doi: 10.3390/s20051457
– volume: 10
  start-page: 138
  year: 2014
  ident: 7403_CR28
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2012.07.003
– volume: 36
  start-page: 537
  issue: 3
  year: 2013
  ident: 7403_CR16
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-013-0665-3
– ident: 7403_CR5
  doi: 10.1145/2638728.2641674
– volume: 53
  start-page: 3929
  issue: 6
  year: 2020
  ident: 7403_CR47
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09783-8
– volume: 21
  start-page: 2568
  issue: 3
  year: 2019
  ident: 7403_CR51
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2019.2911558
– volume: 9
  start-page: 39
  issue: 2–11
  year: 2017
  ident: 7403_CR35
  publication-title: J. Telecommun. Electron. Comput. Eng. (JTEC)
– volume: 33
  start-page: 209
  issue: 1
  year: 2019
  ident: 7403_CR15
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2019.2930050
– volume: 48
  start-page: 34
  issue: 3
  year: 2016
  ident: 7403_CR7
  publication-title: ACM Comput. Surv. (CSUR)
  doi: 10.1145/2835372
– volume: 17
  start-page: 1991
  issue: 9
  year: 2018
  ident: 7403_CR33
  publication-title: IEEE Trans. Mob. Comput.
  doi: 10.1109/TMC.2018.2793913
– volume: 38
  start-page: 312
  year: 2017
  ident: 7403_CR26
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2016.08.017
– volume: 42
  start-page: 790
  issue: 6
  year: 2012
  ident: 7403_CR11
  publication-title: IEEE Trans. Syst. Man Cybern. C (Applications and Reviews)
  doi: 10.1109/TSMCC.2012.2198883
– volume: 56
  start-page: 88
  year: 2019
  ident: 7403_CR14
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2019.04.006
– ident: 7403_CR22
  doi: 10.1007/978-3-319-98204-5_1
– volume: 63
  start-page: 121
  year: 2020
  ident: 7403_CR31
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2020.06.004
– volume: 7
  start-page: 287
  issue: 3
  year: 2011
  ident: 7403_CR49
  publication-title: Pervasive Mob. Comput.
  doi: 10.1016/j.pmcj.2010.11.008
– ident: 7403_CR24
  doi: 10.1109/EFTF.2012.6502421
– ident: 7403_CR36
– volume: 43
  start-page: 2809
  issue: 8
  year: 2020
  ident: 7403_CR48
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: 7403_CR45
  doi: 10.1109/ISWC.2009.24
– volume: 36
  start-page: S21
  issue: 2
  year: 2015
  ident: 7403_CR37
  publication-title: Geriatr. Nurs.
  doi: 10.1016/j.gerinurse.2015.02.019
– volume: 24
  start-page: 961
  issue: 6
  year: 2012
  ident: 7403_CR12
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2011.51
– ident: 7403_CR23
– volume: 16
  start-page: 115
  issue: 1
  year: 2016
  ident: 7403_CR38
  publication-title: Sensors
  doi: 10.3390/s16010115
– volume: 16
  start-page: 191
  year: 2016
  ident: 7403_CR6
  publication-title: Next Gener. Sens. Syst.
  doi: 10.1007/978-3-319-21671-3_9
– volume: 230
  start-page: 133
  year: 2017
  ident: 7403_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.05.110
– volume: 90
  start-page: 317
  issue: 3
  year: 2013
  ident: 7403_CR19
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-012-5320-9
– volume: 67
  start-page: 57
  year: 2016
  ident: 7403_CR42
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2015.12.001
– ident: 7403_CR17
  doi: 10.1049/cp:20081164
– ident: 7403_CR25
  doi: 10.4108/icst.pervasivehealth.2012.248600
– volume: 11
  start-page: 978
  issue: 6
  year: 2017
  ident: 7403_CR52
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2017.2762296
– ident: 7403_CR43
– volume: 8
  start-page: 201985
  year: 2020
  ident: 7403_CR41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3036226
– ident: 7403_CR3
  doi: 10.1109/MDM48529.2020.00034
– volume: 170
  start-page: 403
  year: 2020
  ident: 7403_CR29
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.03.082
– ident: 7403_CR46
  doi: 10.1109/ISWC.2008.4911590
– ident: 7403_CR20
  doi: 10.1145/2030045.2030065
– volume: 11
  start-page: 71
  year: 2018
  ident: 7403_CR39
  publication-title: J. Artif. Intell.
  doi: 10.3923/jai.2018.71.78
– ident: 7403_CR34
  doi: 10.1109/SMC.2019.8914279
– volume: 8
  start-page: 513
  issue: 4
  year: 2017
  ident: 7403_CR1
  publication-title: J. Ambient. Intell. Humaniz. Comput.
  doi: 10.1007/s12652-016-0440-x
– ident: 7403_CR50
  doi: 10.1109/GreenCom-iThings-CPSCom.2013.94
– ident: 7403_CR9
  doi: 10.1109/PerComWorkshops48775.2020.9156075
– volume: 158
  start-page: 205
  year: 2019
  ident: 7403_CR13
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2019.05.016
– ident: 7403_CR2
  doi: 10.1145/2991561.2991563
– volume: 196
  start-page: 105816
  year: 2020
  ident: 7403_CR10
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.105816
– ident: 7403_CR32
  doi: 10.1109/ICHI.2015.50
SSID ssj0009717
Score 2.3604732
Snippet The sensor-based recognition of Activities of Daily Living (ADLs) in smart-home environments enables several important applications, including the continuous...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 571
SubjectTerms Active learning
Activity recognition
Classifiers
Computer Science
Context
Data Structures
Database Management
Information Systems Applications (incl.Internet)
Machine learning
Memory Structures
Operating Systems
Reasoning
Semantics
Semi-supervised learning
Sensors
Smart buildings
Special Issue on Best of MDM 2020
Title MICAR: multi-inhabitant context-aware activity recognition in home environments
URI https://link.springer.com/article/10.1007/s10619-022-07403-z
https://www.ncbi.nlm.nih.gov/pubmed/35400846
https://www.proquest.com/docview/2875459931
https://www.proquest.com/docview/2649253337
https://pubmed.ncbi.nlm.nih.gov/PMC8980210
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VuPRSoC_CY-VKvbWWEj9iu7dlxRZRlUPVlegpchJHrARZBIuQ-PWdySZZFmglTjnYSZwZT_yNPTMfwGdcYytXCc0R-kuujC64r1zCS20ozTEXeU4b-j9P0-OJOjnTZ21S2E0X7d4dSTZ_6gfJbikl3AiKllSx5PdrsKHRd6d5PRHDZald0_Dsxk6kaOtWtKkyzz9jdTl6gjGfhko-Oi9tlqHxFrxp8SMbLhS-Da9C_RY2O24G1prqOyBywuGvb6wJGOTTmupxE2Ewo9h08nb9nb8OjNIaiD2C9YFEs5pNa3Y-uwzsYRLce5iMj36PjnlLnsALZdScW50WTlQujr1xuUCvJITcB6WctUkVjPa6MghWYkRkhVO2tN54mZRaecQgQsoPsF7P6rADrERQ5JIyFKKyKili7wuPhhvrXJZemCSCpJNhVrSVxYng4iJb1kQmuWco96yRe3YfwZf-nqtFXY3_9t7vVJO1NnaToa-H8A_xFQ7gU9-M1kFHHr4Os1vsk1LxRSmlieDjQpP962jHK0b4FYFZ0XHfgSpvr7bU0_OmArd1lnzlCL52s2E5rH9_xe7Luu_Ba-K2X8TO7MP6_Po2HCACmucD2BiODw9P6fr9z4-jAayN0tGgMYO_6pQAzg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB5RONALlELb8DQSt2Ip8SO2uaEVaHkeKpC4RU7iaFei2QoWVeLXdyabzXahVOLsSeLMeORv7JlvAA5wj61cJTRH6C-5MrrgvnIJL7WhMsdc5Dkd6F9dp_1bdX6n71qaHKqFeXF_TyVuKZXZCMqRVLHkzx9gSWGkTDz5vbQ3I9g1TXfd2IkUPdyKtkDm3--Y34ReIcvXCZIvbkmbzef0E6y0qJEdT8y8Bguh_gyr044MrHXQdaCWhMc_jliTJsiHNbFwU5tgRhnpFOP63_4hMCpmoJ4RrEsfGtVsWLPB6Gdgf5e-bcDt6clNr8_blgm8UEaNudVp4UTl4tgblwuMRULIfVDKWZtUwWivK4MQJUYcVjhlS-uNl0mplUfkIaT8Aov1qA7fgJUIhVxShkJUViVF7H3h0V1jncvSC5NEkEx1mBUtnzi1tbjPZkzIpPcM9Z41es-eI_jePfNrwqbxX-ntqWmy1rMeM4zwEPQhqsIJ7HfD6BN00eHrMHpCmZQoF6WUJoKvE0t2n6NzrhhBVwRmzsadAPFtz4_Uw0HDu22dpQg5gsPpaphN6-2_2Hyf-B4s92-uLrPLs-uLLfhI3e0n2TPbsDh-eAo7iIHG-W6z-P8Ad0f7pA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRCX8qahBYzEDawmfsR2bytgVV4VQqzUW-QkjroS9VbtVkj99czktbsUkDh7ktgznvizPfMNwCtcYxvXCM0R-kuujK64b1zGa20ozbEUZUkH-l-O8sOZ-nisj9ey-Nto9-FKsstpIJamuNw_q5v9tcS3nJJvBEVOqlTyq5twC3_HGQV1zcRkRbtr2pq7qRM5-r0VfdrMn9-xuTRdw5vXwyZ_uzttl6TpPdjusSSbdMa_DzdCfAB3hzoNrHfbh0CFCiffDlgbPMjnkbi5qXgwaweNO1__058HRikOVEmCjUFFi8jmkZ0sTgNbT4h7BLPp--9vD3lfSIFXyqgltzqvnGhcmnrjSoE7lBBKH5Ry1mZNMNrrxiBwSRGdVU7Z2nrjZVZr5RGPCCkfw1ZcxLADrEaA5LI6VKKxKqtS7yuPTpzqUtZemCyBbNBhUfUs41Ts4kex4kcmvReo96LVe3GVwOvxmbOOY-Of0nuDaYre3y4K3PchFESshR14OTajp9D1h49hcYkyORExSilNAk86S46fo9OvFKFYAmbDxqMAsXBvtsT5ScvGbZ2lfXMCb4bZsOrW30fx9P_EX8Dtr--mxecPR5924Q6VvO9CavZga3l-GZ4hMFqWz9u5_wupQgQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MICAR%3A+multi-inhabitant+context-aware+activity+recognition+in+home+environments&rft.jtitle=Distributed+and+parallel+databases+%3A+an+international+journal&rft.au=Arrotta%2C+Luca&rft.au=Bettini%2C+Claudio&rft.au=Civitarese%2C+Gabriele&rft.date=2023-12-01&rft.pub=Springer+US&rft.issn=0926-8782&rft.eissn=1573-7578&rft.volume=41&rft.issue=4&rft.spage=571&rft.epage=602&rft_id=info:doi/10.1007%2Fs10619-022-07403-z&rft.externalDocID=10_1007_s10619_022_07403_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-8782&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-8782&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-8782&client=summon