CD4+ CD25+ Regulatory T Cells Impair HIV-1-Specific CD4 T Cell Responses by Upregulating Interleukin-10 Production in Monocytes
Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from...
Saved in:
Published in | Journal of Virology Vol. 86; no. 12; pp. 6586 - 6594 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
American Society for Microbiology
01.06.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley
Reddit
StumbleUpon
Twitter
current issue
Spotlights in the Current Issue
JVI
About
JVI
Subscribers
Authors
Reviewers
Advertisers
Inquiries from the Press
Permissions & Commercial Reprints
ASM Journals Public Access Policy
JVI
RSS Feeds
1752 N Street N.W. • Washington DC 20036
202.737.3600 • 202.942.9355 fax • journals@asmusa.org
Print ISSN:
0022-538X
Online ISSN:
1098-5514
Copyright © 2014
by the
American Society for Microbiology.
For an alternate route to
JVI
.asm.org, visit:
JVI
|
---|---|
AbstractList | T cell dysfunction in the presence of ongoing antigen exposure is a cardinal feature of chronic viral infections with persistent high viremia, including HIV-1. Although interleukin-10 (IL-10) has been implicated as an important mediator of this T cell dysfunction, the regulation of IL-10 production in chronic HIV-1 infection remains poorly understood. We demonstrated that IL-10 is elevated in the plasma of individuals with chronic HIV-1 infection and that blockade of IL-10 signaling results in a restoration of HIV-1-specific CD4 T cell proliferation, gamma interferon (IFN-γ) secretion, and, to a lesser extent, IL-2 production. Whereas IL-10 blockade leads to restoration of IFN-γ secretion by HIV-1-specific CD4 T cells in all categories of subjects investigated, significant enhancement of IL-2 production and improved proliferation of CD4 T helper cells are restricted to viremic individuals. In peripheral blood mononuclear cells (PBMCs), this IL-10 is produced primarily by CD14(+) monocytes, but its production is tightly controlled by regulatory T cells (Tregs), which produce little IL-10 directly. When Tregs are depleted from PBMCs of viremic individuals, the effect of the IL-10 signaling blockade is abolished and IL-10 production by monocytes decreases, while the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), increases. The regulation of IL-10 by Tregs appears to be mediated primarily by contact or paracrine-dependent mechanisms which involve IL-27. This work describes a novel mechanism by which regulatory T cells control IL-10 production and contribute to dysfunctional HIV-1-specific CD4 T cell help in chronic HIV-1 infection and provides a unique mechanistic insight into the role of regulatory T cells in immune exhaustion. T cell dysfunction in the presence of ongoing antigen exposure is a cardinal feature of chronic viral infections with persistent high viremia, including HIV-1. Although interleukin-10 (IL-10) has been implicated as an important mediator of this T cell dysfunction, the regulation of IL-10 production in chronic HIV-1 infection remains poorly understood. We demonstrated that IL-10 is elevated in the plasma of individuals with chronic HIV-1 infection and that blockade of IL-10 signaling results in a restoration of HIV-1-specific CD4 T cell proliferation, gamma interferon (IFN- gamma ) secretion, and, to a lesser extent, IL-2 production. Whereas IL-10 blockade leads to restoration of IFN- gamma secretion by HIV-1-specific CD4 T cells in all categories of subjects investigated, significant enhancement of IL-2 production and improved proliferation of CD4 T helper cells are restricted to viremic individuals. In peripheral blood mononuclear cells (PBMCs), this IL-10 is produced primarily by CD14+ monocytes, but its production is tightly controlled by regulatory T cells (Tregs), which produce little IL-10 directly. When Tregs are depleted from PBMCs of viremic individuals, the effect of the IL-10 signaling blockade is abolished and IL-10 production by monocytes decreases, while the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF- alpha ), increases. The regulation of IL-10 by Tregs appears to be mediated primarily by contact or paracrine-dependent mechanisms which involve IL-27. This work describes a novel mechanism by which regulatory T cells control IL-10 production and contribute to dysfunctional HIV-1-specific CD4 T cell help in chronic HIV-1 infection and provides a unique mechanistic insight into the role of regulatory T cells in immune exhaustion. T cell dysfunction in the presence of ongoing antigen exposure is a cardinal feature of chronic viral infections with persistent high viremia, including HIV-1. Although interleukin-10 (IL-10) has been implicated as an important mediator of this T cell dysfunction, the regulation of IL-10 production in chronic HIV-1 infection remains poorly understood. We demonstrated that IL-10 is elevated in the plasma of individuals with chronic HIV-1 infection and that blockade of IL-10 signaling results in a restoration of HIV-1-specific CD4 T cell proliferation, gamma interferon (IFN-γ) secretion, and, to a lesser extent, IL-2 production. Whereas IL-10 blockade leads to restoration of IFN-γ secretion by HIV-1-specific CD4 T cells in all categories of subjects investigated, significant enhancement of IL-2 production and improved proliferation of CD4 T helper cells are restricted to viremic individuals. In peripheral blood mononuclear cells (PBMCs), this IL-10 is produced primarily by CD14(+) monocytes, but its production is tightly controlled by regulatory T cells (Tregs), which produce little IL-10 directly. When Tregs are depleted from PBMCs of viremic individuals, the effect of the IL-10 signaling blockade is abolished and IL-10 production by monocytes decreases, while the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), increases. The regulation of IL-10 by Tregs appears to be mediated primarily by contact or paracrine-dependent mechanisms which involve IL-27. This work describes a novel mechanism by which regulatory T cells control IL-10 production and contribute to dysfunctional HIV-1-specific CD4 T cell help in chronic HIV-1 infection and provides a unique mechanistic insight into the role of regulatory T cells in immune exhaustion.T cell dysfunction in the presence of ongoing antigen exposure is a cardinal feature of chronic viral infections with persistent high viremia, including HIV-1. Although interleukin-10 (IL-10) has been implicated as an important mediator of this T cell dysfunction, the regulation of IL-10 production in chronic HIV-1 infection remains poorly understood. We demonstrated that IL-10 is elevated in the plasma of individuals with chronic HIV-1 infection and that blockade of IL-10 signaling results in a restoration of HIV-1-specific CD4 T cell proliferation, gamma interferon (IFN-γ) secretion, and, to a lesser extent, IL-2 production. Whereas IL-10 blockade leads to restoration of IFN-γ secretion by HIV-1-specific CD4 T cells in all categories of subjects investigated, significant enhancement of IL-2 production and improved proliferation of CD4 T helper cells are restricted to viremic individuals. In peripheral blood mononuclear cells (PBMCs), this IL-10 is produced primarily by CD14(+) monocytes, but its production is tightly controlled by regulatory T cells (Tregs), which produce little IL-10 directly. When Tregs are depleted from PBMCs of viremic individuals, the effect of the IL-10 signaling blockade is abolished and IL-10 production by monocytes decreases, while the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), increases. The regulation of IL-10 by Tregs appears to be mediated primarily by contact or paracrine-dependent mechanisms which involve IL-27. This work describes a novel mechanism by which regulatory T cells control IL-10 production and contribute to dysfunctional HIV-1-specific CD4 T cell help in chronic HIV-1 infection and provides a unique mechanistic insight into the role of regulatory T cells in immune exhaustion. T cell dysfunction in the presence of ongoing antigen exposure is a cardinal feature of chronic viral infections with persistent high viremia, including HIV-1. Although interleukin-10 (IL-10) has been implicated as an important mediator of this T cell dysfunction, the regulation of IL-10 production in chronic HIV-1 infection remains poorly understood. We demonstrated that IL-10 is elevated in the plasma of individuals with chronic HIV-1 infection and that blockade of IL-10 signaling results in a restoration of HIV-1-specific CD4 T cell proliferation, gamma interferon (IFN-γ) secretion, and, to a lesser extent, IL-2 production. Whereas IL-10 blockade leads to restoration of IFN-γ secretion by HIV-1-specific CD4 T cells in all categories of subjects investigated, significant enhancement of IL-2 production and improved proliferation of CD4 T helper cells are restricted to viremic individuals. In peripheral blood mononuclear cells (PBMCs), this IL-10 is produced primarily by CD14 + monocytes, but its production is tightly controlled by regulatory T cells (Tregs), which produce little IL-10 directly. When Tregs are depleted from PBMCs of viremic individuals, the effect of the IL-10 signaling blockade is abolished and IL-10 production by monocytes decreases, while the production of proinflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), increases. The regulation of IL-10 by Tregs appears to be mediated primarily by contact or paracrine-dependent mechanisms which involve IL-27. This work describes a novel mechanism by which regulatory T cells control IL-10 production and contribute to dysfunctional HIV-1-specific CD4 T cell help in chronic HIV-1 infection and provides a unique mechanistic insight into the role of regulatory T cells in immune exhaustion. Article Usage Stats Services JVI Citing Articles Google Scholar PubMed Related Content Social Bookmarking CiteULike Delicious Digg Facebook Google+ Mendeley Reddit StumbleUpon Twitter current issue Spotlights in the Current Issue JVI About JVI Subscribers Authors Reviewers Advertisers Inquiries from the Press Permissions & Commercial Reprints ASM Journals Public Access Policy JVI RSS Feeds 1752 N Street N.W. • Washington DC 20036 202.737.3600 • 202.942.9355 fax • journals@asmusa.org Print ISSN: 0022-538X Online ISSN: 1098-5514 Copyright © 2014 by the American Society for Microbiology. For an alternate route to JVI .asm.org, visit: JVI |
Author | Daniel G. Kavanagh Filippos Porichis Mathieu Angin Kenneth M. Law Daniel E. Kaufmann Daniel P. Tighe David F. Pavlik Marylyn M. Addo Jessica Johnson Meghan G. Hart Hendrik Streeck Tomoyuki Hongo Douglas S. Kwon |
Author_xml | – sequence: 1 givenname: Douglas S. surname: Kwon fullname: Kwon, Douglas S. organization: Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, USA, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA – sequence: 2 givenname: Mathieu surname: Angin fullname: Angin, Mathieu organization: Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, USA – sequence: 3 givenname: Tomoyuki surname: Hongo fullname: Hongo, Tomoyuki organization: Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, USA – sequence: 4 givenname: Kenneth M. surname: Law fullname: Law, Kenneth M. organization: Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, USA – sequence: 5 givenname: Jessica surname: Johnson fullname: Johnson, Jessica organization: Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, USA – sequence: 6 givenname: Filippos surname: Porichis fullname: Porichis, Filippos organization: Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, USA – sequence: 7 givenname: Meghan G. surname: Hart fullname: Hart, Meghan G. organization: Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, USA – sequence: 8 givenname: David F. surname: Pavlik fullname: Pavlik, David F. organization: Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, USA – sequence: 9 givenname: Daniel P. surname: Tighe fullname: Tighe, Daniel P. organization: Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, USA – sequence: 10 givenname: Daniel G. surname: Kavanagh fullname: Kavanagh, Daniel G. organization: Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, USA – sequence: 11 givenname: Hendrik surname: Streeck fullname: Streeck, Hendrik organization: Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, USA – sequence: 12 givenname: Marylyn M. surname: Addo fullname: Addo, Marylyn M. organization: Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, USA, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA – sequence: 13 givenname: Daniel E. surname: Kaufmann fullname: Kaufmann, Daniel E. organization: Ragon Institute of MGH, MIT and Harvard, Charlestown, Massachusetts, USA, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26020120$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22496237$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkttrFDEYxYNU7Lb65rMEQRDq1Hy5zcyLIFO1KxVF2-JbyGYzu2lnkzGZqeyT_7pZd-sNxKcQ8jsn3-UcoD0fvEXoIZBjAFo9f3s5PSaSCigA7qAJkLoqhAC-hyaEUFoIVn3eRwcpXRECnEt-D-1TymtJWTlB35oTfoSbEyqO8Ee7GDs9hLjG57ixXZfwdNVrF_Hp9LKA4lNvjWudyTjfEVmT-uCTTXi2xhd93Fo4v8BTP9jY2fHa-QII_hDDfDSDCx47j98FH8x6sOk-utvqLtkHu_MQXbx-dd6cFmfv30ybl2eF4SUfioqbqmZGz0sxg4oJCsSUesYs1USwWrStbOe2mpXEQO5aMEpqzURlxLwVtmzZIXqx9e3H2crOjfVD1J3qo1vpuFZBO_Xni3dLtQg3irGaCQ7Z4OnOIIYvo02DWrlk8gi0t2FMCgAYpcAp_T9KQMqSULlxffR7WT_ruV1QBp7sAJ2M7tqovXHpFycJJUBJ5uiWMzGkFG2rjBv0Zty5G9flP9UmLSqnRf1IS75m0bO_RLe-_8Afb_GlWyy_umiVTit1deNUJRVQJUUl2XfRy8jd |
CitedBy_id | crossref_primary_10_1016_j_cytogfr_2012_05_005 crossref_primary_10_1097_COH_0000000000000093 crossref_primary_10_3390_v6083311 crossref_primary_10_4236_wja_2012_23029 crossref_primary_10_1016_j_virol_2020_05_001 crossref_primary_10_1128_JVI_02034_13 crossref_primary_10_3923_rji_2018_1_6 crossref_primary_10_1172_JCI155251 crossref_primary_10_1016_j_cytogfr_2013_07_001 crossref_primary_10_1089_aid_2014_0356 crossref_primary_10_1186_s12929_019_0604_z crossref_primary_10_1128_JVI_01186_18 crossref_primary_10_1146_annurev_med_092112_152941 crossref_primary_10_1002_eji_201343646 crossref_primary_10_1186_1471_2334_14_125 crossref_primary_10_1093_infdis_jiw146 crossref_primary_10_1097_QAI_0000000000000095 crossref_primary_10_1038_srep31157 crossref_primary_10_1097_QAD_0000000000000437 crossref_primary_10_7759_cureus_66234 crossref_primary_10_1007_s00203_023_03623_8 crossref_primary_10_1038_s41541_017_0014_8 crossref_primary_10_1093_infdis_jit469 crossref_primary_10_3389_fimmu_2018_02862 crossref_primary_10_3389_fimmu_2019_02849 crossref_primary_10_1089_vim_2015_0066 crossref_primary_10_3389_fimmu_2024_1395921 crossref_primary_10_6061_clinics_2017_11_02 crossref_primary_10_1182_blood_2012_07_409755 crossref_primary_10_3389_fimmu_2014_00090 |
Cites_doi | 10.4049/jimmunol.1002041 10.1016/S0165-2478(01)00275-9 10.4049/jimmunol.158.5.2259 10.1016/S1074-7613(02)00324-2 10.4049/jimmunol.0804024 10.4049/jimmunol.180.5.2752 10.1038/nri2711 10.1073/pnas.97.26.14467 10.1074/jbc.M110.112599 10.1111/j.1572-0241.2002.05926.x 10.4049/jimmunol.180.9.5771 10.1084/jem.174.4.915 10.1016/j.coi.2007.06.004 10.1016/j.tim.2007.02.006 10.4049/jimmunol.178.5.3265 10.4049/jimmunol.166.6.4244 10.4049/jimmunol.153.7.3135 10.1371/journal.pone.0008194 10.1084/jem.187.3.439 10.1126/science.8023143 10.1038/nm.2106 10.1189/jlb.0610327 10.1007/s11904-008-0003-7 10.4049/jimmunol.176.2.1274 10.1016/j.cell.2009.06.036 10.1097/QAD.0b013e3282f153ed 10.1111/j.0105-2896.2006.00412.x 10.4049/jimmunol.165.1.292 10.4049/jimmunol.151.10.5425 10.1086/600072 10.1128/JVI.77.8.4911-4927.2003 10.1074/jbc.M709657200 10.1046/j.1365-2249.1999.00865.x 10.1182/blood-2008-12-191296 10.1371/journal.ppat.1000004 10.1182/blood-2004-01-0365 10.1038/nm1492 10.1196/annals.1313.011 10.1038/ni1515 10.1038/ni1540 10.4049/jimmunol.0803771 10.4049/jimmunol.162.5.2457 10.1084/jem.20061462 10.1007/s00251-003-0594-5 10.1182/blood-2002-10-3065 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright © 2012, American Society for Microbiology. All Rights Reserved. 2012 American Society for Microbiology |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright © 2012, American Society for Microbiology. All Rights Reserved. 2012 American Society for Microbiology |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 H94 5PM |
DOI | 10.1128/JVI.06251-11 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | MEDLINE AIDS and Cancer Research Abstracts MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1098-5514 |
EndPage | 6594 |
ExternalDocumentID | PMC3393541 22496237 26020120 10_1128_JVI_06251_11 jvi_86_12_6586 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: K08 AI074405 – fundername: NIAID NIH HHS grantid: NIH P30 AI060354 – fundername: NIAID NIH HHS grantid: 1K08 AI084546-01 – fundername: NIAID NIH HHS grantid: R56 AI095088 – fundername: NIAID NIH HHS grantid: P01AI-080192 – fundername: NIAID NIH HHS grantid: R21 AI083133 – fundername: NIAID NIH HHS grantid: P01 AI080192 – fundername: NIAID NIH HHS grantid: K08 AI084546 – fundername: NHLBI NIH HHS grantid: R01 HL092565 – fundername: NIAID NIH HHS grantid: P30 AI060354 |
GroupedDBID | --- -~X 0R~ 18M 29L 2WC 39C 4.4 53G 5GY 5RE 5VS 85S AAFWJ AAGFI AAYXX ABPPZ ACGFO ACNCT ADBBV AENEX AGVNZ ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ IH2 KQ8 N9A O9- OK1 P2P RHI RNS RPM RSF TR2 UPT W2D W8F WH7 WOQ YQT ~02 ~KM .55 .GJ 3O- 41~ 6TJ AAYJJ ADXHL AFFNX AI. C1A D0S IQODW MVM OHT VH1 X7M Y6R ZGI ZXP CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 H94 5PM |
ID | FETCH-LOGICAL-c474t-84c893cad75b1835210c7ab3e2a05395ff6fde8b70c100253209a358c5df5e7f3 |
ISSN | 0022-538X 1098-5514 |
IngestDate | Thu Aug 21 18:26:55 EDT 2025 Fri Jul 11 04:23:15 EDT 2025 Fri Jul 11 10:43:37 EDT 2025 Mon Jul 21 05:18:21 EDT 2025 Mon Jul 21 09:12:55 EDT 2025 Tue Jul 01 01:02:14 EDT 2025 Thu Apr 24 23:12:18 EDT 2025 Wed May 18 15:26:08 EDT 2016 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Virus CD4 T lymphocyte Monocyte HIV-1 virus Cytokine Interleukin 10 Retroviridae Cellular immunity Human immunodeficiency virus Lentivirus |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c474t-84c893cad75b1835210c7ab3e2a05395ff6fde8b70c100253209a358c5df5e7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://jvi.asm.org/content/jvi/86/12/6586.full.pdf |
PMID | 22496237 |
PQID | 1016670261 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3393541 crossref_citationtrail_10_1128_JVI_06251_11 pubmed_primary_22496237 crossref_primary_10_1128_JVI_06251_11 proquest_miscellaneous_1016670261 pascalfrancis_primary_26020120 highwire_asm_jvi_86_12_6586 proquest_miscellaneous_1113221422 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-06-01 |
PublicationDateYYYYMMDD | 2012-06-01 |
PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Journal of Virology |
PublicationTitleAlternate | J Virol |
PublicationYear | 2012 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | Kwon DS (e_1_3_3_29_2) 2010; 21 Kishore R (e_1_3_3_27_2) 1999; 162 Dai WJ (e_1_3_3_11_2) 1997; 158 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 Denis M (e_1_3_3_12_2) 1993; 151 Reed SG (e_1_3_3_34_2) 1994; 153 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 9036973 - J Immunol. 1997 Mar 1;158(5):2259-67 18424693 - J Immunol. 2008 May 1;180(9):5771-7 20732847 - Eur Cytokine Netw. 2010 Sep;21(3):208-14 12190181 - Am J Gastroenterol. 2002 Aug;97(8):2086-92 12942209 - Immunogenetics. 2003 Sep;55(6):362-9 8023143 - Science. 1994 Jul 8;265(5169):248-52 17906628 - Nat Immunol. 2007 Nov;8(11):1246-54 10209514 - Clin Exp Immunol. 1999 Apr;116(1):115-20 9449724 - J Exp Med. 1998 Feb 2;187(3):439-44 11121048 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14467-72 1655948 - J Exp Med. 1991 Oct 1;174(4):915-24 8089491 - J Immunol. 1994 Oct 1;153(7):3135-40 21041726 - J Immunol. 2010 Dec 1;185(11):6599-607 20519510 - J Biol Chem. 2010 Aug 6;285(32):24404-11 11595300 - Immunol Lett. 2001 Nov 1;79(1-2):131-40 16903920 - Immunol Rev. 2006 Aug;212:272-86 17030951 - J Exp Med. 2006 Oct 30;203(11):2461-72 11238678 - J Immunol. 2001 Mar 15;166(6):4244-53 18090276 - AIDS. 2007 Nov 12;21(17):2283-91 18292493 - J Immunol. 2008 Mar 1;180(5):2752-6 20154735 - Nat Rev Immunol. 2010 Mar;10(3):170-81 8228235 - J Immunol. 1993 Nov 15;151(10):5425-30 12663797 - J Virol. 2003 Apr;77(8):4911-27 19365081 - Blood. 2009 Jul 9;114(2):346-56 17656078 - Curr Opin Immunol. 2007 Aug;19(4):408-15 20208540 - Nat Med. 2010 Apr;16(4):452-9 19414738 - J Immunol. 2009 May 15;182(10):5891-7 19534595 - J Infect Dis. 2009 Aug 1;200(3):448-52 15271794 - Blood. 2004 Nov 15;104(10):3249-56 12468426 - Blood. 2003 Apr 1;101(7):2514-20 17041596 - Nat Med. 2006 Nov;12(11):1301-9 21097698 - J Leukoc Biol. 2011 Apr;89(4):507-15 17994023 - Nat Immunol. 2007 Dec;8(12):1372-9 10861064 - J Immunol. 2000 Jul 1;165(1):292-6 17312176 - J Immunol. 2007 Mar 1;178(5):3265-71 20016783 - PLoS One. 2009;4(12):e8194 16394019 - J Immunol. 2006 Jan 15;176(2):1274-80 16014524 - Ann N Y Acad Sci. 2005 Jun;1050:97-107 18417030 - Curr HIV/AIDS Rep. 2008 Feb;5(1):13-9 18256032 - J Biol Chem. 2008 Apr 25;283(17):11689-99 19748991 - J Immunol. 2009 Oct 1;183(7):4619-27 12121660 - Immunity. 2002 Jun;16(6):779-90 10072482 - J Immunol. 1999 Mar 1;162(5):2457-61 19596234 - Cell. 2009 Jul 10;138(1):30-50 18401464 - PLoS Pathog. 2008 Feb;4(2):e1000004 17336072 - Trends Microbiol. 2007 Apr;15(4):143-6 |
References_xml | – ident: e_1_3_3_23_2 doi: 10.4049/jimmunol.1002041 – ident: e_1_3_3_8_2 doi: 10.1016/S0165-2478(01)00275-9 – volume: 158 start-page: 2259 year: 1997 ident: e_1_3_3_11_2 article-title: Both innate and acquired immunity to Listeria monocytogenes infection are increased in IL-10-deficient mice publication-title: J. Immunol. doi: 10.4049/jimmunol.158.5.2259 – ident: e_1_3_3_32_2 doi: 10.1016/S1074-7613(02)00324-2 – ident: e_1_3_3_3_2 doi: 10.4049/jimmunol.0804024 – ident: e_1_3_3_4_2 doi: 10.4049/jimmunol.180.5.2752 – ident: e_1_3_3_38_2 doi: 10.1038/nri2711 – ident: e_1_3_3_40_2 doi: 10.1073/pnas.97.26.14467 – ident: e_1_3_3_22_2 doi: 10.1074/jbc.M110.112599 – ident: e_1_3_3_30_2 doi: 10.1111/j.1572-0241.2002.05926.x – ident: e_1_3_3_9_2 doi: 10.4049/jimmunol.180.9.5771 – ident: e_1_3_3_13_2 doi: 10.1084/jem.174.4.915 – ident: e_1_3_3_39_2 doi: 10.1016/j.coi.2007.06.004 – ident: e_1_3_3_5_2 doi: 10.1016/j.tim.2007.02.006 – ident: e_1_3_3_18_2 doi: 10.4049/jimmunol.178.5.3265 – ident: e_1_3_3_2_2 doi: 10.4049/jimmunol.166.6.4244 – volume: 21 start-page: 208 year: 2010 ident: e_1_3_3_29_2 article-title: Protective and detrimental roles of IL-10 in HIV pathogenesis publication-title: Eur. Cytokine Netw. – volume: 153 start-page: 3135 year: 1994 ident: e_1_3_3_34_2 article-title: IL-10 mediates susceptibility to Trypanosoma cruzi infection publication-title: J. Immunol. doi: 10.4049/jimmunol.153.7.3135 – ident: e_1_3_3_17_2 doi: 10.1371/journal.pone.0008194 – ident: e_1_3_3_41_2 doi: 10.1084/jem.187.3.439 – ident: e_1_3_3_21_2 doi: 10.1126/science.8023143 – ident: e_1_3_3_37_2 doi: 10.1038/nm.2106 – ident: e_1_3_3_35_2 doi: 10.1189/jlb.0610327 – ident: e_1_3_3_15_2 doi: 10.1007/s11904-008-0003-7 – ident: e_1_3_3_16_2 doi: 10.4049/jimmunol.176.2.1274 – ident: e_1_3_3_45_2 doi: 10.1016/j.cell.2009.06.036 – ident: e_1_3_3_19_2 doi: 10.1097/QAD.0b013e3282f153ed – ident: e_1_3_3_36_2 doi: 10.1111/j.0105-2896.2006.00412.x – ident: e_1_3_3_33_2 doi: 10.4049/jimmunol.165.1.292 – volume: 151 start-page: 5425 year: 1993 ident: e_1_3_3_12_2 article-title: IL-10 neutralization augments mouse resistance to systemic Mycobacterium avium infections publication-title: J. Immunol. doi: 10.4049/jimmunol.151.10.5425 – ident: e_1_3_3_31_2 doi: 10.1086/600072 – ident: e_1_3_3_47_2 doi: 10.1128/JVI.77.8.4911-4927.2003 – ident: e_1_3_3_42_2 doi: 10.1074/jbc.M709657200 – ident: e_1_3_3_43_2 doi: 10.1046/j.1365-2249.1999.00865.x – ident: e_1_3_3_6_2 doi: 10.1182/blood-2008-12-191296 – ident: e_1_3_3_10_2 doi: 10.1371/journal.ppat.1000004 – ident: e_1_3_3_46_2 doi: 10.1182/blood-2004-01-0365 – ident: e_1_3_3_7_2 doi: 10.1038/nm1492 – ident: e_1_3_3_24_2 doi: 10.1196/annals.1313.011 – ident: e_1_3_3_25_2 doi: 10.1038/ni1515 – ident: e_1_3_3_20_2 doi: 10.1038/ni1540 – ident: e_1_3_3_26_2 doi: 10.4049/jimmunol.0803771 – volume: 162 start-page: 2457 year: 1999 ident: e_1_3_3_27_2 article-title: Cutting edge: clustered AU-rich elements are the target of IL-10-mediated mRNA destabilization in mouse macrophages publication-title: J. Immunol. doi: 10.4049/jimmunol.162.5.2457 – ident: e_1_3_3_14_2 doi: 10.1084/jem.20061462 – ident: e_1_3_3_28_2 doi: 10.1007/s00251-003-0594-5 – ident: e_1_3_3_44_2 doi: 10.1182/blood-2002-10-3065 – reference: 18090276 - AIDS. 2007 Nov 12;21(17):2283-91 – reference: 1655948 - J Exp Med. 1991 Oct 1;174(4):915-24 – reference: 8089491 - J Immunol. 1994 Oct 1;153(7):3135-40 – reference: 20519510 - J Biol Chem. 2010 Aug 6;285(32):24404-11 – reference: 18417030 - Curr HIV/AIDS Rep. 2008 Feb;5(1):13-9 – reference: 12942209 - Immunogenetics. 2003 Sep;55(6):362-9 – reference: 12663797 - J Virol. 2003 Apr;77(8):4911-27 – reference: 17906628 - Nat Immunol. 2007 Nov;8(11):1246-54 – reference: 12190181 - Am J Gastroenterol. 2002 Aug;97(8):2086-92 – reference: 9449724 - J Exp Med. 1998 Feb 2;187(3):439-44 – reference: 17041596 - Nat Med. 2006 Nov;12(11):1301-9 – reference: 19365081 - Blood. 2009 Jul 9;114(2):346-56 – reference: 12121660 - Immunity. 2002 Jun;16(6):779-90 – reference: 8228235 - J Immunol. 1993 Nov 15;151(10):5425-30 – reference: 19414738 - J Immunol. 2009 May 15;182(10):5891-7 – reference: 10861064 - J Immunol. 2000 Jul 1;165(1):292-6 – reference: 20016783 - PLoS One. 2009;4(12):e8194 – reference: 9036973 - J Immunol. 1997 Mar 1;158(5):2259-67 – reference: 10209514 - Clin Exp Immunol. 1999 Apr;116(1):115-20 – reference: 17336072 - Trends Microbiol. 2007 Apr;15(4):143-6 – reference: 17994023 - Nat Immunol. 2007 Dec;8(12):1372-9 – reference: 20154735 - Nat Rev Immunol. 2010 Mar;10(3):170-81 – reference: 10072482 - J Immunol. 1999 Mar 1;162(5):2457-61 – reference: 19596234 - Cell. 2009 Jul 10;138(1):30-50 – reference: 18256032 - J Biol Chem. 2008 Apr 25;283(17):11689-99 – reference: 8023143 - Science. 1994 Jul 8;265(5169):248-52 – reference: 17030951 - J Exp Med. 2006 Oct 30;203(11):2461-72 – reference: 20732847 - Eur Cytokine Netw. 2010 Sep;21(3):208-14 – reference: 11595300 - Immunol Lett. 2001 Nov 1;79(1-2):131-40 – reference: 16903920 - Immunol Rev. 2006 Aug;212:272-86 – reference: 21097698 - J Leukoc Biol. 2011 Apr;89(4):507-15 – reference: 11238678 - J Immunol. 2001 Mar 15;166(6):4244-53 – reference: 18424693 - J Immunol. 2008 May 1;180(9):5771-7 – reference: 21041726 - J Immunol. 2010 Dec 1;185(11):6599-607 – reference: 18401464 - PLoS Pathog. 2008 Feb;4(2):e1000004 – reference: 19534595 - J Infect Dis. 2009 Aug 1;200(3):448-52 – reference: 16014524 - Ann N Y Acad Sci. 2005 Jun;1050:97-107 – reference: 20208540 - Nat Med. 2010 Apr;16(4):452-9 – reference: 19748991 - J Immunol. 2009 Oct 1;183(7):4619-27 – reference: 17312176 - J Immunol. 2007 Mar 1;178(5):3265-71 – reference: 15271794 - Blood. 2004 Nov 15;104(10):3249-56 – reference: 18292493 - J Immunol. 2008 Mar 1;180(5):2752-6 – reference: 11121048 - Proc Natl Acad Sci U S A. 2000 Dec 19;97(26):14467-72 – reference: 16394019 - J Immunol. 2006 Jan 15;176(2):1274-80 – reference: 17656078 - Curr Opin Immunol. 2007 Aug;19(4):408-15 – reference: 12468426 - Blood. 2003 Apr 1;101(7):2514-20 |
SSID | ssj0014464 |
Score | 2.2043552 |
Snippet | Article Usage Stats
Services
JVI
Citing Articles
Google Scholar
PubMed
Related Content
Social Bookmarking
CiteULike
Delicious
Digg
Facebook
Google+
Mendeley... T cell dysfunction in the presence of ongoing antigen exposure is a cardinal feature of chronic viral infections with persistent high viremia, including HIV-1.... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref highwire |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6586 |
SubjectTerms | Biological and medical sciences CD4-Positive T-Lymphocytes - immunology Fundamental and applied biological sciences. Psychology HIV Infections - immunology HIV Infections - virology HIV-1 - immunology HIV-1 - physiology Human immunodeficiency virus 1 Humans Interferon-gamma - immunology Interleukin-10 - blood Interleukin-10 - immunology Interleukin-2 Receptor alpha Subunit - immunology Leukocytes, Mononuclear - immunology Microbiology Miscellaneous Monocytes - immunology Pathogenesis and Immunity T-Lymphocytes, Regulatory - immunology Up-Regulation Virology |
Title | CD4+ CD25+ Regulatory T Cells Impair HIV-1-Specific CD4 T Cell Responses by Upregulating Interleukin-10 Production in Monocytes |
URI | http://jvi.asm.org/content/86/12/6586.abstract https://www.ncbi.nlm.nih.gov/pubmed/22496237 https://www.proquest.com/docview/1016670261 https://www.proquest.com/docview/1113221422 https://pubmed.ncbi.nlm.nih.gov/PMC3393541 |
Volume | 86 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELaqRUhcEG_CwspIcIpSEtfO4whdUHehHKBd9RYljrMEusmqD1blxj_iJzITJ2myW9DCJY0S20kzn8cz43kQ8kK4sfBUwi0R25EFXDKxogDmY6yY43opB50CY4fHH93RlB_PxKzX-9XyWlqv4r78sTOu5H-oCteArhgl-w-UbQaFC3AO9IUjUBiO16Lx8JAD6d6Yw0MmypNPurI87ptPzKGaz5eY_jfKFubo6ATUuLLafJpJE3vqFmjARy9ZtURJdHq-0ENoRwJ091Trb1kOfBRjChKdaxaNJMAMCrlZVS6IV8VbjJ9rW-zfX-j9_UpiNz_3txaIU53IYIyekGrdIK3IT0tD7qQ4KzbwFvWND9FFK6TIHPfbpgv0AaldrFqhBMBxZ3ox0hwYE5yiGNdm0VW27AqKrMVwQYByW4u3K3TJ5KsLA8Ngh-OTo74NGp9jVRy-k3_70rrYeCuWehLzQ-gdlr1DDCa_wUAxYbV9qNq3AuWa1_np8Y_VoRbMf9V-dlcIqhNTo19utISpmeqaKruUnsu-uy1haHKH3K7ITF9rSN4lPZXfIzd1XdPNffIT4EVNirCEny0o6YSWoKQalLQLSoq9dAvagJLGG9oGJe2Ckm5BSbOcNqB8QKbv3k6GI6uq9WFJ7vGV5XMJkrOMEk_EDmoFji29KB4oFsEyEYg0ddNE-bFnS0wajOVMgmggfCmSVCgvHTwke3mRq8eESjsdCA7HQAmeBCJwE1_GvgLVXWCxBIOY9ccPZZUIH-uxzMNdhDbIy6b1uU4A84d2-zUdw2h5Fn79noW-GzosRIga5KBD2mYo5to4M2yDPK9pHQKDx127KFfFeln6YLoemkr-0sZBoxKacw3ySONj-wTGA9BxPIN4HeQ0DTDBfPdOnn0pE80PMG6fO0-u-Qn2ya3tLH9K9laLtXoGIvsqPihnyW-IE-Wk |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CD4+%2B+CD25+%2B+Regulatory+T+Cells+Impair+HIV-1-Specific+CD4+T+Cell+Responses+by+Upregulating+Interleukin-10+Production+in+Monocytes&rft.jtitle=Journal+of+virology&rft.au=Kwon%2C+Douglas+S.&rft.au=Angin%2C+Mathieu&rft.au=Hongo%2C+Tomoyuki&rft.au=Law%2C+Kenneth+M.&rft.date=2012-06-01&rft.issn=0022-538X&rft.eissn=1098-5514&rft.volume=86&rft.issue=12&rft.spage=6586&rft.epage=6594&rft_id=info:doi/10.1128%2FJVI.06251-11&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_JVI_06251_11 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-538X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-538X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-538X&client=summon |