A Neurodegeneration-Specific Gene-Expression Signature of Acutely Isolated Microglia from an Amyotrophic Lateral Sclerosis Mouse Model

Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes t...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 4; no. 2; pp. 385 - 401
Main Authors Chiu, Isaac M., Morimoto, Emiko T.A., Goodarzi, Hani, Liao, Jennifer T., O’Keeffe, Sean, Phatnani, Hemali P., Muratet, Michael, Carroll, Michael C., Levy, Shawn, Tavazoie, Saeed, Myers, Richard M., Maniatis, Tom
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 25.07.2013
Elsevier
Subjects
Online AccessGet full text
ISSN2211-1247
2211-1247
DOI10.1016/j.celrep.2013.06.018

Cover

Loading…
Abstract Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1G93A microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer’s disease genes, are concurrently upregulated. Mutant microglia differed from SOD1WT, lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation. [Display omitted] •Identification of specific marker genes for acutely isolated microglia•Progressive resident microglia transcriptome changes reveal in vivo activation phenotype•Microglial ALS disease activation signature distinct from M1/M2 macrophages•Parallel transcriptome and FACS analyses reveal T cell/microglia crosstalk Microglia are resident immune cells of the brain that are activated by infection or tissue damage. In this study, Maniatis and colleagues report the acute isolation, transcriptional profiling, and immunological analysis of microglia during disease activation in an ALS mouse model. A neurodegeneration-specific gene-expression signature is identified that includes induction of both neuroprotective and toxic factors and is distinct from that associated with M1/M2 macrophages. The data also provide a resource for future studies of microglia activation in neurodegenerative diseases.
AbstractList Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1G93A microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer’s disease genes, are concurrently upregulated. Mutant microglia differed from SOD1WT, lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation.
Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1G93A microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer’s disease genes, are concurrently upregulated. Mutant microglia differed from SOD1WT, lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation. [Display omitted] •Identification of specific marker genes for acutely isolated microglia•Progressive resident microglia transcriptome changes reveal in vivo activation phenotype•Microglial ALS disease activation signature distinct from M1/M2 macrophages•Parallel transcriptome and FACS analyses reveal T cell/microglia crosstalk Microglia are resident immune cells of the brain that are activated by infection or tissue damage. In this study, Maniatis and colleagues report the acute isolation, transcriptional profiling, and immunological analysis of microglia during disease activation in an ALS mouse model. A neurodegeneration-specific gene-expression signature is identified that includes induction of both neuroprotective and toxic factors and is distinct from that associated with M1/M2 macrophages. The data also provide a resource for future studies of microglia activation in neurodegenerative diseases.
Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1(G93A) mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1(G93A) microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer's disease genes, are concurrently upregulated. Mutant microglia differed from SOD1(WT), lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation.
Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1(G93A) mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1(G93A) microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer's disease genes, are concurrently upregulated. Mutant microglia differed from SOD1(WT), lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation.Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1(G93A) mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1(G93A) microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer's disease genes, are concurrently upregulated. Mutant microglia differed from SOD1(WT), lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation.
Author Goodarzi, Hani
Myers, Richard M.
Levy, Shawn
Phatnani, Hemali P.
Carroll, Michael C.
Chiu, Isaac M.
Maniatis, Tom
O’Keeffe, Sean
Morimoto, Emiko T.A.
Muratet, Michael
Liao, Jennifer T.
Tavazoie, Saeed
Author_xml – sequence: 1
  givenname: Isaac M.
  surname: Chiu
  fullname: Chiu, Isaac M.
  organization: Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
– sequence: 2
  givenname: Emiko T.A.
  surname: Morimoto
  fullname: Morimoto, Emiko T.A.
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
– sequence: 3
  givenname: Hani
  surname: Goodarzi
  fullname: Goodarzi, Hani
  organization: Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
– sequence: 4
  givenname: Jennifer T.
  surname: Liao
  fullname: Liao, Jennifer T.
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
– sequence: 5
  givenname: Sean
  surname: O’Keeffe
  fullname: O’Keeffe, Sean
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
– sequence: 6
  givenname: Hemali P.
  surname: Phatnani
  fullname: Phatnani, Hemali P.
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
– sequence: 7
  givenname: Michael
  surname: Muratet
  fullname: Muratet, Michael
  organization: Hudson Alpha Institute for Biotechnology, Huntsville, AL 35806, USA
– sequence: 8
  givenname: Michael C.
  surname: Carroll
  fullname: Carroll, Michael C.
  organization: Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
– sequence: 9
  givenname: Shawn
  surname: Levy
  fullname: Levy, Shawn
  organization: Hudson Alpha Institute for Biotechnology, Huntsville, AL 35806, USA
– sequence: 10
  givenname: Saeed
  surname: Tavazoie
  fullname: Tavazoie, Saeed
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
– sequence: 11
  givenname: Richard M.
  surname: Myers
  fullname: Myers, Richard M.
  organization: Hudson Alpha Institute for Biotechnology, Huntsville, AL 35806, USA
– sequence: 12
  givenname: Tom
  surname: Maniatis
  fullname: Maniatis, Tom
  email: tm2472@cumc.columbia.edu
  organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23850290$$D View this record in MEDLINE/PubMed
BookMark eNqFUcuOFCEUJWaMM47zB8awdFMlUFAPFyadyTh20qOL1jWhqEtLhy5KoIz9A3639NQ4MS6UBY_LOefCOc_R2ehHQOglJSUltH6zLzW4AFPJCK1KUpeEtk_QBWOUFpTx5uyP_Tm6inFP8qgJpR1_hs5Z1QrCOnKBfq7wR5iDH2AHIwSVrB-L7QTaGqvxba4VNz-mADHmC7y1u1GlOQD2Bq_0nMAd8Tp6pxIM-M7q4HfOKmyCP2A14tXh6FPw09estcmYoBzeagfBRxvxnZ8j5HkA9wI9NcpFuHpYL9GX9zefrz8Um0-36-vVptC84aloSddSaHRPWGOA675lpgPBeN9pUmtBWc_7Wp1OTT8Iw5iAoWONqoEIU9HqEq0X3cGrvZyCPahwlF5ZeV_wYSdVSDY_UTYtEy1jtRK0540QnTCQW1RVIyhhtM9arxetKfhvM8QkDzbmWJwaIf9MUk5FTbLRbYa-eoDO_QGGx8a_c8gAvgCygzEGMI8QSuQpcbmXS-LylLgktcyJZ9rbv2japvsMU1DW_Y_8biFDNvy7hSCjtjBqGGwAnbIj9t8CvwAT9ckB
CitedBy_id crossref_primary_10_1002_glia_23678
crossref_primary_10_1186_s40478_018_0584_3
crossref_primary_10_5692_clinicalneurol_54_1128
crossref_primary_10_1038_s41467_025_56124_1
crossref_primary_10_3389_fnins_2020_00679
crossref_primary_10_1038_s42003_023_05124_2
crossref_primary_10_1186_s40478_015_0203_5
crossref_primary_10_1016_j_neuroscience_2014_05_061
crossref_primary_10_1016_j_neuint_2020_104924
crossref_primary_10_1016_j_pneurobio_2018_09_007
crossref_primary_10_1038_s41467_020_15644_8
crossref_primary_10_1523_JNEUROSCI_3644_14_2015
crossref_primary_10_1007_s12035_024_04281_7
crossref_primary_10_3389_fnins_2023_1277399
crossref_primary_10_1083_jcb_201709069
crossref_primary_10_1093_brain_awx113
crossref_primary_10_1038_nrn3722
crossref_primary_10_3390_nu12061824
crossref_primary_10_1002_glia_23787
crossref_primary_10_1038_nm_4397
crossref_primary_10_1016_j_semcdb_2020_08_001
crossref_primary_10_1007_s00401_014_1330_y
crossref_primary_10_1093_hmg_ddy112
crossref_primary_10_1002_jnr_23773
crossref_primary_10_1016_j_jneumeth_2016_07_018
crossref_primary_10_1007_s13311_014_0329_3
crossref_primary_10_1016_j_immuni_2017_08_008
crossref_primary_10_1016_j_celrep_2025_115402
crossref_primary_10_1089_ars_2017_7271
crossref_primary_10_1002_ana_24304
crossref_primary_10_1002_mus_26385
crossref_primary_10_3389_fncel_2018_00488
crossref_primary_10_1038_s41591_021_01295_9
crossref_primary_10_3390_biom10091228
crossref_primary_10_1002_glia_24622
crossref_primary_10_3390_ijms242115613
crossref_primary_10_1016_j_pneurobio_2020_101971
crossref_primary_10_1016_j_celrep_2017_12_066
crossref_primary_10_1186_s40364_024_00624_7
crossref_primary_10_1186_s12974_024_03042_6
crossref_primary_10_1038_nrd_2015_14
crossref_primary_10_3389_fnmol_2019_00258
crossref_primary_10_3390_ijms18102135
crossref_primary_10_1007_s12272_022_01406_1
crossref_primary_10_1134_S0026893319050054
crossref_primary_10_1007_s00018_016_2170_9
crossref_primary_10_1073_pnas_1704294114
crossref_primary_10_3389_fcell_2021_634355
crossref_primary_10_1016_j_jneuroim_2023_578019
crossref_primary_10_1371_journal_pone_0157727
crossref_primary_10_1016_j_mcn_2020_103524
crossref_primary_10_1038_s41590_018_0212_1
crossref_primary_10_3389_fnagi_2023_1047897
crossref_primary_10_1002_glia_23767
crossref_primary_10_1038_nri_2017_125
crossref_primary_10_4137_BBI_S33124
crossref_primary_10_1186_s12987_023_00490_9
crossref_primary_10_1371_journal_pone_0296959
crossref_primary_10_3389_fneur_2017_00075
crossref_primary_10_1007_s12035_018_0970_7
crossref_primary_10_1073_pnas_2116241119
crossref_primary_10_1111_cen3_12309
crossref_primary_10_1016_j_freeradbiomed_2014_07_033
crossref_primary_10_1038_s41467_023_39077_1
crossref_primary_10_1002_mus_26289
crossref_primary_10_1186_s13073_024_01321_8
crossref_primary_10_1093_brain_awv066
crossref_primary_10_1038_s41593_020_00718_z
crossref_primary_10_1007_s11357_019_00133_8
crossref_primary_10_1016_j_neuroscience_2018_12_021
crossref_primary_10_1111_cns_13637
crossref_primary_10_1016_j_neuron_2022_10_020
crossref_primary_10_1007_s12640_020_00191_3
crossref_primary_10_3390_biom11121774
crossref_primary_10_1002_glia_22780
crossref_primary_10_1002_glia_22782
crossref_primary_10_1186_s12974_019_1672_4
crossref_primary_10_1038_s41593_022_01205_3
crossref_primary_10_1073_pnas_1405839111
crossref_primary_10_1038_nrn3880
crossref_primary_10_1002_ana_24618
crossref_primary_10_1038_ncomms11295
crossref_primary_10_3390_ijms25020967
crossref_primary_10_1038_mi_2015_84
crossref_primary_10_3390_ijms18102072
crossref_primary_10_1097_j_pain_0000000000001394
crossref_primary_10_1186_s13024_022_00525_z
crossref_primary_10_1002_glia_22654
crossref_primary_10_1093_braincomms_fcaf087
crossref_primary_10_1016_j_molmed_2018_11_004
crossref_primary_10_1016_j_jneuroim_2017_11_002
crossref_primary_10_3389_fimmu_2020_00430
crossref_primary_10_1073_pnas_2308214120
crossref_primary_10_1186_s40168_022_01232_z
crossref_primary_10_1080_14728222_2021_1934447
crossref_primary_10_14336_AD_2023_0519
crossref_primary_10_3390_ijms252010951
crossref_primary_10_1073_pnas_1520639112
crossref_primary_10_1007_s10048_018_0553_9
crossref_primary_10_1016_j_omtm_2024_101312
crossref_primary_10_1038_srep25663
crossref_primary_10_1007_s12640_017_9790_1
crossref_primary_10_3389_fnins_2020_00575
crossref_primary_10_1186_s40478_019_0665_y
crossref_primary_10_3389_fncel_2021_659843
crossref_primary_10_1177_2472555218786210
crossref_primary_10_1038_s41598_021_88675_w
crossref_primary_10_3389_fnins_2019_00758
crossref_primary_10_3389_fncel_2018_00172
crossref_primary_10_1177_1073858418800996
crossref_primary_10_2174_1381612825666190722114248
crossref_primary_10_1084_jem_20142322
crossref_primary_10_1038_s41582_024_01046_7
crossref_primary_10_3389_fncel_2019_00181
crossref_primary_10_1159_000516926
crossref_primary_10_1002_glia_23962
crossref_primary_10_1016_j_neulet_2020_135164
crossref_primary_10_1002_glia_23966
crossref_primary_10_1016_j_molmet_2018_11_010
crossref_primary_10_1038_s41593_018_0083_7
crossref_primary_10_3389_fnins_2019_00532
crossref_primary_10_1016_j_pneurobio_2015_05_003
crossref_primary_10_3389_fneur_2023_1103416
crossref_primary_10_1186_s12974_024_03063_1
crossref_primary_10_1073_pnas_1318309110
crossref_primary_10_1016_j_neuint_2020_104714
crossref_primary_10_1016_j_immuni_2020_09_018
crossref_primary_10_1002_glia_23717
crossref_primary_10_1038_s41598_018_31132_y
crossref_primary_10_1038_s42003_021_02034_z
crossref_primary_10_3390_ijms21249441
crossref_primary_10_1038_ni_3325
crossref_primary_10_1038_s41537_021_00174_z
crossref_primary_10_22141_2224_0721_19_5_2023_1296
crossref_primary_10_1007_s11064_020_02999_z
crossref_primary_10_1016_j_neuroscience_2021_10_025
crossref_primary_10_1016_j_bbi_2017_10_003
crossref_primary_10_7554_eLife_57495
crossref_primary_10_1523_JNEUROSCI_1523_19_2019
crossref_primary_10_1177_2472555217691450
crossref_primary_10_1007_s12035_018_1156_z
crossref_primary_10_1016_j_neuron_2018_05_014
crossref_primary_10_1007_s12035_016_0245_0
crossref_primary_10_3389_fpsyt_2018_00726
crossref_primary_10_1186_s13024_022_00588_y
crossref_primary_10_1111_cen3_12479
crossref_primary_10_3389_fimmu_2024_1412699
crossref_primary_10_7554_eLife_12345
crossref_primary_10_1016_j_neuroscience_2017_12_010
crossref_primary_10_1038_s41467_018_05929_4
crossref_primary_10_1007_s00401_016_1548_y
crossref_primary_10_1073_pnas_2025102118
crossref_primary_10_1038_s41422_022_00673_3
crossref_primary_10_1038_s41598_018_26915_2
crossref_primary_10_3390_biomedicines10020237
crossref_primary_10_3389_fimmu_2020_00230
crossref_primary_10_3389_fncel_2016_00310
crossref_primary_10_3389_fnagi_2017_00230
crossref_primary_10_1016_j_bbi_2019_10_009
crossref_primary_10_3389_fnagi_2017_00227
crossref_primary_10_1016_j_fmre_2023_02_025
crossref_primary_10_1016_j_expneurol_2014_05_015
crossref_primary_10_3389_fncel_2020_00163
crossref_primary_10_3389_fncel_2020_00198
crossref_primary_10_1002_glia_23137
crossref_primary_10_1016_j_isci_2024_108872
crossref_primary_10_1038_s42003_022_03128_y
crossref_primary_10_1073_pnas_2306731120
crossref_primary_10_1007_s11481_019_09887_6
crossref_primary_10_1016_j_biomaterials_2021_121060
crossref_primary_10_1038_s41593_024_01847_5
crossref_primary_10_1016_j_celrep_2020_107699
crossref_primary_10_1007_s43440_022_00363_2
crossref_primary_10_1186_s12974_020_01849_7
crossref_primary_10_3390_brainsci13091318
crossref_primary_10_1016_j_neuron_2017_04_043
crossref_primary_10_1007_s11481_015_9639_4
crossref_primary_10_2139_ssrn_4065080
crossref_primary_10_1111_bpa_12583
crossref_primary_10_3389_fncel_2020_00066
crossref_primary_10_1016_j_conb_2016_04_003
crossref_primary_10_15252_embr_201846171
crossref_primary_10_3390_cells10030565
crossref_primary_10_1016_j_cell_2024_02_020
crossref_primary_10_1186_s12974_022_02421_1
crossref_primary_10_3390_ijms21186454
crossref_primary_10_1523_JNEUROSCI_1860_14_2014
crossref_primary_10_1002_glia_23484
crossref_primary_10_3389_fimmu_2020_614509
crossref_primary_10_1007_s11064_017_2307_8
crossref_primary_10_1186_s12974_017_0896_4
crossref_primary_10_1093_brain_awaa309
crossref_primary_10_1186_s13024_015_0023_x
crossref_primary_10_3389_fncel_2014_00117
crossref_primary_10_1007_s12035_017_0532_4
crossref_primary_10_1016_j_celrep_2025_115382
crossref_primary_10_1038_ni_3585
crossref_primary_10_1007_s00401_016_1534_4
crossref_primary_10_1002_acn3_375
crossref_primary_10_1371_journal_pone_0133704
crossref_primary_10_1002_glia_23477
crossref_primary_10_1172_JCI90609
crossref_primary_10_1111_bpa_12678
crossref_primary_10_1172_JCI90606
crossref_primary_10_3390_ijms241612825
crossref_primary_10_3390_cells11132091
crossref_primary_10_3389_fimmu_2015_00106
crossref_primary_10_1097_CM9_0000000000000309
crossref_primary_10_1186_s13024_022_00531_1
crossref_primary_10_1073_pnas_2119804119
crossref_primary_10_3389_fonc_2022_1006284
crossref_primary_10_3390_ijms22094402
crossref_primary_10_1038_s41467_021_23111_1
crossref_primary_10_1038_s41467_021_25157_7
crossref_primary_10_1016_j_molcel_2023_08_005
crossref_primary_10_3389_fnmol_2017_00421
crossref_primary_10_1080_19490976_2022_2096989
crossref_primary_10_3389_fncel_2020_581950
crossref_primary_10_1016_j_immuni_2019_12_003
crossref_primary_10_1523_JNEUROSCI_2226_22_2023
crossref_primary_10_1186_s13024_018_0296_y
crossref_primary_10_1126_sciadv_adi9885
crossref_primary_10_3389_fncel_2019_00109
crossref_primary_10_5812_ans_94205
crossref_primary_10_1002_jnr_23848
crossref_primary_10_1038_s41380_020_00896_z
crossref_primary_10_1002_alz_12389
crossref_primary_10_1038_s41467_018_07295_7
crossref_primary_10_1089_neu_2017_5044
crossref_primary_10_1007_s11481_015_9625_x
crossref_primary_10_3390_biology11081191
crossref_primary_10_3390_ijms21217923
crossref_primary_10_1038_nn_4030
crossref_primary_10_1084_jem_20132477
crossref_primary_10_1152_physiolgenomics_00075_2016
crossref_primary_10_3389_fimmu_2015_00249
crossref_primary_10_1073_pnas_2112561118
crossref_primary_10_1002_glia_23572
crossref_primary_10_26508_lsa_201900453
crossref_primary_10_1080_14728222_2020_1805734
crossref_primary_10_3389_fnagi_2017_00234
crossref_primary_10_1007_s00281_015_0519_z
crossref_primary_10_1016_j_gene_2020_145202
crossref_primary_10_3389_fpsyt_2020_00789
crossref_primary_10_1002_glia_23204
crossref_primary_10_3389_fncel_2018_00215
crossref_primary_10_1186_s13024_018_0271_7
crossref_primary_10_1007_s00018_024_05480_0
crossref_primary_10_1080_21678421_2019_1708949
crossref_primary_10_3390_jcm9010261
crossref_primary_10_1186_s12974_021_02191_2
crossref_primary_10_3390_biomedicines9101393
crossref_primary_10_1126_science_aal3222
crossref_primary_10_1002_glia_24531
crossref_primary_10_3389_fnagi_2017_00242
crossref_primary_10_3389_fncel_2015_00028
crossref_primary_10_1016_j_pneurobio_2020_101805
crossref_primary_10_3389_fncel_2020_00261
crossref_primary_10_1016_j_tins_2022_08_001
crossref_primary_10_1098_rsob_210280
crossref_primary_10_1016_j_molmed_2019_08_013
crossref_primary_10_3389_fneur_2016_00089
crossref_primary_10_1016_j_ajpath_2015_07_016
crossref_primary_10_1038_nn_4338
crossref_primary_10_1002_jcp_30829
crossref_primary_10_1111_bph_13364
crossref_primary_10_1016_j_molmed_2017_04_005
crossref_primary_10_3389_fnmol_2018_00158
crossref_primary_10_3389_fnut_2021_621273
crossref_primary_10_1016_j_stem_2023_07_006
crossref_primary_10_1097_WCO_0000000000001279
crossref_primary_10_1146_annurev_genet_112618_043515
crossref_primary_10_1186_s13024_024_00773_1
crossref_primary_10_1371_journal_ppat_1005551
crossref_primary_10_1371_journal_pone_0148001
crossref_primary_10_1038_s42003_025_07566_2
crossref_primary_10_1016_j_neubiorev_2024_105834
crossref_primary_10_3233_JHD_150163
crossref_primary_10_1007_s12975_020_00857_2
crossref_primary_10_3390_ijms241411251
crossref_primary_10_1111_ejn_13227
crossref_primary_10_3389_fimmu_2018_00405
crossref_primary_10_3389_fnagi_2017_00193
crossref_primary_10_3389_fncel_2019_00307
crossref_primary_10_3390_brainsci11060807
crossref_primary_10_1007_s00011_022_01550_w
crossref_primary_10_1042_BST20210203
crossref_primary_10_1002_mus_25733
crossref_primary_10_1113_EP085714
crossref_primary_10_1113_JP272134
crossref_primary_10_2478_ahem_2021_0014
crossref_primary_10_1093_brain_awab250
crossref_primary_10_1038_s41419_024_06903_3
crossref_primary_10_1186_s40478_022_01439_z
crossref_primary_10_1038_nn_4597
crossref_primary_10_1186_s12974_020_01822_4
crossref_primary_10_1093_hmg_ddaa209
crossref_primary_10_1016_j_jneuroim_2018_07_003
crossref_primary_10_1038_nature20587
crossref_primary_10_1093_braincomms_fcaa124
crossref_primary_10_3389_fimmu_2019_01170
crossref_primary_10_1523_JNEUROSCI_2567_14_2014
crossref_primary_10_1038_nn_4222
crossref_primary_10_1186_s12974_022_02637_1
crossref_primary_10_3389_fneur_2021_654850
crossref_primary_10_3390_ijms24065240
crossref_primary_10_1038_s41591_021_01311_y
crossref_primary_10_7554_eLife_42025
crossref_primary_10_3389_fimmu_2018_01753
crossref_primary_10_1038_s43587_021_00054_2
crossref_primary_10_1002_glia_23083
crossref_primary_10_1016_j_jphs_2020_07_004
crossref_primary_10_3389_fcell_2019_00024
crossref_primary_10_3389_fimmu_2021_675660
crossref_primary_10_3389_fnagi_2021_783431
crossref_primary_10_1111_bph_16408
crossref_primary_10_2174_1871527322666230502123255
crossref_primary_10_1016_j_bbi_2023_06_003
crossref_primary_10_1186_s12974_017_1028_x
crossref_primary_10_1016_j_coi_2021_11_006
crossref_primary_10_1186_s13024_018_0301_5
crossref_primary_10_1016_j_immuni_2019_02_007
crossref_primary_10_3389_fnins_2021_742065
crossref_primary_10_1007_s12031_022_02071_1
crossref_primary_10_1111_cen3_12162
crossref_primary_10_1002_glia_23077
crossref_primary_10_1007_s00109_020_01968_x
crossref_primary_10_1016_j_neuint_2018_11_006
crossref_primary_10_1186_s12974_024_03100_z
crossref_primary_10_1038_s41582_018_0072_1
crossref_primary_10_1084_jem_20180247
crossref_primary_10_1016_j_immuni_2016_02_013
crossref_primary_10_3389_fgeed_2021_644319
crossref_primary_10_1016_j_molmed_2017_03_008
crossref_primary_10_1002_acn3_52087
crossref_primary_10_1002_glia_24274
crossref_primary_10_3390_biom12050603
crossref_primary_10_1016_j_nbd_2019_104710
crossref_primary_10_1038_srep39258
crossref_primary_10_1186_s12864_024_10317_y
crossref_primary_10_1093_brain_awy077
crossref_primary_10_1007_s12035_017_0631_2
crossref_primary_10_1002_glia_23295
crossref_primary_10_1186_s13024_016_0133_0
crossref_primary_10_1007_s00702_017_1795_7
crossref_primary_10_1016_j_jneuroim_2018_06_003
crossref_primary_10_1016_j_neuint_2024_105872
crossref_primary_10_3389_fimmu_2018_01728
crossref_primary_10_3389_fimmu_2022_834649
crossref_primary_10_1016_j_neuropharm_2021_108555
crossref_primary_10_1186_s13041_018_0376_5
crossref_primary_10_3233_JAD_190805
crossref_primary_10_1093_braincomms_fcab011
crossref_primary_10_1155_2017_1879437
crossref_primary_10_1016_j_chembiol_2019_10_005
crossref_primary_10_4049_jimmunol_1302915
crossref_primary_10_3389_fphar_2021_671734
crossref_primary_10_1038_s41467_022_35494_w
crossref_primary_10_3390_ph11040129
crossref_primary_10_1002_glia_24377
crossref_primary_10_1016_j_pneurobio_2017_04_005
crossref_primary_10_1016_j_brainres_2014_10_031
crossref_primary_10_1038_s41598_020_65998_8
crossref_primary_10_1073_pnas_1615036114
crossref_primary_10_1186_s13041_021_00794_7
crossref_primary_10_3389_fimmu_2017_00198
crossref_primary_10_1002_dvdy_1
crossref_primary_10_1016_j_mcn_2018_01_009
crossref_primary_10_1038_s41593_023_01323_6
crossref_primary_10_1016_j_isci_2024_109145
crossref_primary_10_1016_j_celrep_2019_09_066
crossref_primary_10_1002_glia_22866
crossref_primary_10_1111_bpa_12910
crossref_primary_10_1038_s41418_018_0060_4
crossref_primary_10_1210_er_2016_1007
crossref_primary_10_1080_01677063_2016_1260128
crossref_primary_10_3389_fnagi_2022_1057214
crossref_primary_10_3389_fnmol_2022_1072046
crossref_primary_10_1177_1073858415610541
crossref_primary_10_1038_s41467_018_02926_5
crossref_primary_10_1523_JNEUROSCI_2510_14_2015
crossref_primary_10_3389_fncel_2020_577912
crossref_primary_10_1038_s41593_019_0566_1
crossref_primary_10_1016_j_nbd_2020_105087
crossref_primary_10_3389_fncel_2021_656426
crossref_primary_10_31083_j_jin2204106
crossref_primary_10_3389_fimmu_2018_00803
crossref_primary_10_1016_j_expneurol_2024_114824
crossref_primary_10_1002_glia_70004
crossref_primary_10_1038_s41598_024_51759_4
crossref_primary_10_1016_j_neuroscience_2018_06_046
crossref_primary_10_3389_fnmol_2021_582497
crossref_primary_10_1073_pnas_1525528113
crossref_primary_10_1016_j_nbd_2020_105172
crossref_primary_10_1016_j_resp_2016_02_007
crossref_primary_10_1016_j_neuron_2017_07_010
crossref_primary_10_1038_s41598_020_77564_3
crossref_primary_10_3390_biomedicines10040840
crossref_primary_10_1038_s41467_024_52301_w
crossref_primary_10_1080_21505594_2016_1261789
crossref_primary_10_3389_fncel_2022_1045647
crossref_primary_10_1016_j_cell_2018_05_003
crossref_primary_10_1002_glia_22831
crossref_primary_10_3390_ijms23179583
crossref_primary_10_1155_2023_7389508
crossref_primary_10_1186_s13059_016_1005_1
crossref_primary_10_3389_fnins_2023_1308345
crossref_primary_10_1186_s13024_018_0254_8
crossref_primary_10_1523_JNEUROSCI_2939_14_2015
crossref_primary_10_3390_cells10092282
crossref_primary_10_1038_s41598_019_48307_w
crossref_primary_10_1111_imr_13083
crossref_primary_10_1186_s12974_016_0602_y
crossref_primary_10_1007_s00401_020_02185_z
crossref_primary_10_1007_s00018_019_03078_5
crossref_primary_10_1016_j_jneuroim_2023_578033
crossref_primary_10_1146_annurev_immunol_051116_052358
crossref_primary_10_1038_s41593_017_0033_9
crossref_primary_10_1126_sciadv_1701211
crossref_primary_10_3389_fnmol_2022_1013706
crossref_primary_10_3389_fnmol_2023_1142852
crossref_primary_10_15252_embr_201743922
crossref_primary_10_1523_JNEUROSCI_0291_15_2015
crossref_primary_10_1016_j_isci_2021_102700
crossref_primary_10_1186_s12974_024_03043_5
crossref_primary_10_3390_ijms25115707
crossref_primary_10_3389_fphar_2021_654489
crossref_primary_10_1038_s41467_022_35753_w
crossref_primary_10_1073_pnas_1901787116
crossref_primary_10_1038_s41419_018_0288_4
crossref_primary_10_1093_cercor_bhae044
crossref_primary_10_3389_fimmu_2017_01905
crossref_primary_10_1002_glia_22810
crossref_primary_10_1111_neup_12235
crossref_primary_10_3389_fnmol_2019_00271
crossref_primary_10_3390_jpm12111817
crossref_primary_10_1186_s12974_020_1706_y
crossref_primary_10_1016_j_anl_2019_02_006
crossref_primary_10_1073_pnas_1714175114
crossref_primary_10_1084_jem_20172244
crossref_primary_10_1016_j_brainres_2015_04_047
crossref_primary_10_1038_s41582_021_00487_8
crossref_primary_10_1002_ddr_22254
crossref_primary_10_3389_fnmol_2017_00090
crossref_primary_10_1038_s41467_024_52875_5
crossref_primary_10_1016_j_semcdb_2019_04_014
crossref_primary_10_3390_cells11152364
crossref_primary_10_1093_brain_awu312
crossref_primary_10_1016_j_neuron_2017_06_020
crossref_primary_10_1016_j_bbi_2022_06_004
crossref_primary_10_1038_ni_3703
crossref_primary_10_1038_s41583_018_0057_5
crossref_primary_10_3390_ijms22031495
crossref_primary_10_1111_acel_14393
crossref_primary_10_1186_s40478_023_01561_6
crossref_primary_10_1186_s13024_020_00377_5
crossref_primary_10_1186_s40478_025_01941_0
crossref_primary_10_1016_j_neuropharm_2017_10_035
crossref_primary_10_1016_j_bbr_2019_111910
crossref_primary_10_1016_j_immuni_2017_06_007
crossref_primary_10_1186_s40478_020_01099_x
crossref_primary_10_3390_cells10092236
crossref_primary_10_1111_nan_12640
crossref_primary_10_3390_cells10040957
crossref_primary_10_1016_j_tins_2021_04_008
crossref_primary_10_1186_s12974_020_02024_8
crossref_primary_10_1016_j_neubiorev_2021_09_023
crossref_primary_10_1126_scitranslmed_3009351
crossref_primary_10_3389_fimmu_2023_1223096
crossref_primary_10_1016_j_neuron_2014_01_013
crossref_primary_10_1038_s41418_018_0098_3
crossref_primary_10_2174_0113894501316051240821060249
crossref_primary_10_3389_fimmu_2019_03033
crossref_primary_10_1242_dmm_049059
crossref_primary_10_3389_fimmu_2020_583647
crossref_primary_10_1097_j_pain_0000000000000470
crossref_primary_10_3389_fnins_2017_00273
crossref_primary_10_7554_eLife_14295
crossref_primary_10_1016_j_cell_2017_05_018
crossref_primary_10_1016_j_neuron_2014_02_040
crossref_primary_10_1016_j_jneuroim_2020_577318
Cites_doi 10.1038/nature08971
10.1126/science.1110647
10.1038/nn1885
10.1371/journal.pone.0013368
10.1038/ng.557
10.1016/j.jneuroim.2009.02.003
10.1038/nprot.2006.327
10.1007/s11064-008-9657-1
10.1523/JNEUROSCI.0616-08.2008
10.4049/jimmunol.1002695
10.1074/jbc.M110.204040
10.1186/1471-2202-12-91
10.1016/j.molcel.2007.09.027
10.1073/pnas.111152498
10.1038/nri978
10.1016/j.neuron.2012.03.026
10.1007/s00702-009-0271-4
10.1126/science.1062960
10.4049/jimmunol.1102307
10.1016/j.molcel.2009.11.016
10.1016/j.neulet.2011.10.040
10.1073/pnas.1222361110
10.1111/j.1468-1331.2010.03330.x
10.1172/JCI62636
10.1093/brain/awn230
10.1038/nn1715
10.1186/1756-6606-2-5
10.1038/nn1472
10.1126/science.8209258
10.1146/annurev.immunol.021908.132528
10.1073/pnas.0607423103
10.1056/NEJMoa1211851
10.1016/S0301-0082(98)00035-5
10.1038/ni1008-1091
10.1038/nature05894
10.1073/pnas.88.16.7438
10.1016/S1474-4422(07)70270-3
10.1186/1471-2202-10-130
10.1038/nn.3318
10.1523/JNEUROSCI.3494-08.2008
10.1371/journal.pone.0017910
10.1038/nn2015
10.1016/j.nbd.2005.01.012
10.1016/j.immuni.2010.11.009
10.1523/JNEUROSCI.4805-06.2007
10.1038/ni.2419
10.1042/AN20100010
10.1016/j.expneurol.2006.01.026
10.1016/j.neuron.2008.10.001
10.1016/j.brainres.2008.07.067
10.1371/journal.pone.0026921
10.1074/jbc.M508848200
10.1126/science.1086137
10.1001/jamaneurol.2013.579
10.1016/j.neuron.2011.07.021
10.1126/science.1219179
10.1073/pnas.0804610105
10.1186/1742-2094-7-8
10.1016/j.neuron.2004.06.016
10.1002/mus.10191
10.1038/nn2014
10.1186/1750-1326-4-47
10.1111/j.1471-4159.2007.04677.x
10.1002/jnr.20668
10.1007/s11481-009-9171-5
10.1073/pnas.0911405106
10.3233/JAD-2010-1309
10.1016/j.neuron.2011.07.022
10.1073/pnas.88.4.1541
10.1126/science.1123511
10.1093/brain/awr074
10.1126/science.1217697
10.1002/(SICI)1098-1136(199807)23:3<249::AID-GLIA7>3.0.CO;2-#
10.4049/jimmunol.1100421
10.1523/JNEUROSCI.5268-11.2012
10.1073/pnas.0807419105
10.1126/science.1194637
10.1016/j.neuron.2004.06.021
ContentType Journal Article
Copyright 2013 The Authors
Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2013 The Authors
– notice: Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.celrep.2013.06.018
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 401
ExternalDocumentID oai_doaj_org_article_78258226a51b475595fe6c533751021b
23850290
10_1016_j_celrep_2013_06_018
S2211124713002969
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: DP1 NS082099
– fundername: NHGRI NIH HHS
  grantid: R01 HG003219
– fundername: NCCDPHP CDC HHS
  grantid: 5DP10D003930
– fundername: NIH HHS
  grantid: DP1 OD003930
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXJY
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IPNFZ
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c474t-80981e7cb027fe4cb82f9e524b9c06c512b4b6ab9c07bd5f225ed927a6e05f313
IEDL.DBID DOA
ISSN 2211-1247
IngestDate Wed Aug 27 01:29:53 EDT 2025
Fri Jul 11 04:58:03 EDT 2025
Mon Jul 21 06:04:54 EDT 2025
Tue Jul 01 03:07:17 EDT 2025
Thu Apr 24 23:11:05 EDT 2025
Wed May 17 01:06:23 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-80981e7cb027fe4cb82f9e524b9c06c512b4b6ab9c07bd5f225ed927a6e05f313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/78258226a51b475595fe6c533751021b
PMID 23850290
PQID 1415608508
PQPubID 23479
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_78258226a51b475595fe6c533751021b
proquest_miscellaneous_1415608508
pubmed_primary_23850290
crossref_primary_10_1016_j_celrep_2013_06_018
crossref_citationtrail_10_1016_j_celrep_2013_06_018
elsevier_sciencedirect_doi_10_1016_j_celrep_2013_06_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-25
PublicationDateYYYYMMDD 2013-07-25
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-25
  day: 25
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2013
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Chiu, Chen, Zheng, Kosaras, Tsiftsoglou, Vartanian, Brown, Carroll (bib13) 2008; 105
Ransohoff, Perry (bib62) 2009; 27
Frank-Cannon, Alto, McAlpine, Tansey (bib25) 2009; 4
Ginhoux, Greter, Leboeuf, Nandi, See, Gokhan, Mehler, Conway, Ng, Stanley (bib27) 2010; 330
Beers, Henkel, Xiao, Zhao, Wang, Yen, Siklos, McKercher, Appel (bib4) 2006; 103
McGeer, McGeer (bib51) 2002; 26
Xiao, Zhao, Beers, Yen, Xie, Henkel, Appel (bib78) 2007; 102
Michelucci, Heurtaux, Grandbarbe, Morga, Heuschling (bib53) 2009; 210
Chiu, Phatnani, Kuligowski, Tapia, Carrasco, Zhang, Maniatis, Carroll (bib14) 2009; 106
Odegaard, Ricardo-Gonzalez, Goforth, Morel, Subramanian, Mukundan, Red Eagle, Vats, Brombacher, Ferrante, Chawla (bib58) 2007; 447
Sargsyan, Blackburn, Barber, Grosskreutz, De Vos, Monk, Shaw (bib67) 2011; 12
Cardona, Huang, Sasse, Ransohoff (bib10) 2006; 1
Rosen, Wexler, Versano, Coppola, Gao, Winden, Oldham, Martens, Zhou, Farese, Geschwind (bib63) 2011; 71
Vaknin, Kunis, Miller, Butovsky, Bukshpan, Beers, Henkel, Yoles, Appel, Schwartz (bib76) 2011; 6
Maruyama, Morino, Ito, Izumi, Kato, Watanabe, Kinoshita, Kamada, Nodera, Suzuki (bib50) 2010; 465
Hall, Oostveen, Gurney (bib36) 1998; 23
Laird, Van Hoecke, De Muynck, Timmers, Van den Bosch, Van Damme, Robberecht (bib44) 2010; 5
Elemento, Slonim, Tavazoie (bib23) 2007; 28
Kaspar, Lladó, Sherkat, Rothstein, Gage (bib42) 2003; 301
Hashimoto, Sun, Rittling, Denhardt, Young (bib38) 2007; 27
Henkel, Beers, Zhao, Appel (bib40) 2009; 4
Narai, Nagano, Ilieva, Shiote, Nagata, Hayashi, Shoji, Abe (bib56) 2005; 82
Gautier, Shay, Miller, Greter, Jakubzick, Ivanov, Helft, Chow, Elpek, Gordonov (bib26) 2012; 13
Beers, Henkel, Zhao, Wang, Huang, Wen, Liao, Appel (bib6) 2011; 134
Graber, Hickey, Harris (bib32) 2010; 7
Liu, Lillo, Jonsson, Vande Velde, Ward, Miller, Subramaniam, Rothstein, Marklund, Andersen (bib46) 2004; 4
Harraz, Marden, Zhou, Zhang, Williams, Sharov, Nelson, Luo, Paulson, Schöneich, Engelhardt (bib37) 2008; 118
Phatnani, Guarnieri, Friedman, Carrasco, Muratet, O'Keeffe, Nwakeze, Pauli-Behn, Newberry, Meadows (bib80) 2013; 110
Steinacker, Hendrich, Sperfeld, Jesse, Lehnert, Pabst, von Arnim, Mottaghy, Uttner, Tumani (bib72) 2009; 116
Schafer, Lehrman, Kautzman, Koyama, Mardinly, Yamasaki, Ransohoff, Greenberg, Barres, Stevens (bib68) 2012; 74
Cramer, Cirrito, Wesson, Lee, Karlo, Zinn, Casali, Restivo, Goebel, James (bib18) 2012; 335
Santambrogio, Belyanskaya, Fischer, Cipriani, Brosnan, Ricciardi-Castagnoli, Stern, Strominger, Riese (bib66) 2001; 98
Cho, Hong, Suh, Kim, Lee, Lee, Lee, Kim, Kim, Jo (bib15) 2008; 131
Gordon (bib29) 2003; 3
Davalos, Grutzendler, Yang, Kim, Zuo, Jung, Littman, Dustin, Gan (bib21) 2005; 8
Dibaj, Steffens, Zschüntzsch, Nadrigny, Schomburg, Kirchhoff, Neusch (bib22) 2011; 6
Appel, Zhao, Beers, Henkel (bib3) 2011; 30
Shell, Hesse, Morris, Milcarek (bib71) 2005; 280
Gurney, Pu, Chiu, Dal Canto, Polchow, Alexander, Caliendo, Hentati, Kwon, Deng (bib35) 1994; 264
Guerreiro, Wojtas, Bras, Carrasquillo, Rogaeva, Majounie, Cruchaga, Sassi, Kauwe, Younkin (bib33) 2013; 368
Praline, Blasco, Vourc’h, Garrigue, Gordon, Camu, Corcia, Andres (bib61) 2011; 18
Calingasan, Chen, Kiaei, Beal (bib9) 2005; 19
Butovsky, Siddiqui, Gabriely, Lanser, Dake, Murugaiyan, Doykan, Wu, Gali, Iyer (bib8) 2012; 122
Pasinelli, Belford, Lennon, Bacskai, Hyman, Trotti, Brown (bib60) 2004; 43
Szanto, Balint, Nagy, Barta, Dezso, Pap, Szeles, Poliska, Oros, Evans (bib74) 2010; 33
Nimmerjahn, Kirchhoff, Helmchen (bib57) 2005; 308
Chabas, Baranzini, Mitchell, Bernard, Rittling, Denhardt, Sobel, Lock, Karpuj, Pedotti (bib12) 2001; 294
Painter, Davis, Hardy, Mathis, Benoist (bib59) 2011; 186
Ryan, Baranowski, Chitramuthu, Malik, Li, Cao, Minotti, Durham, Kay, Shaw (bib64) 2009; 10
Hickman, Allison, El Khoury (bib41) 2008; 28
Cullen, Lindfors, Ng, Paetau, Swinton, Kolodziej, Boston, Saftig, Woulfe, Feany (bib20) 2009; 2
Schulz, Gomez Perdiguero, Chorro, Szabo-Rogers, Cagnard, Kierdorf, Prinz, Wu, Jacobsen, Pollard (bib69) 2012; 336
Alliot, Lecain, Grima, Pessac (bib2) 1991; 88
Wendt, Lübbert, Stichel (bib77) 2008; 1232
Boillée, Yamanaka, Lobsiger, Copeland, Jenkins, Kassiotis, Kollias, Cleveland (bib7) 2006; 312
Goodarzi, Elemento, Tavazoie (bib28) 2009; 36
Sun, Zhou, Halabisky, Lo, Cho, Mueller-Steiner, Devidze, Wang, Grubb, Gan (bib73) 2008; 60
Ajami, Bennett, Krieger, Tetzlaff, Rossi (bib1) 2007; 10
Sedgwick, Schwender, Imrich, Dörries, Butcher, ter Meulen (bib70) 1991; 88
Corcoran, Jabbour, Bhagwandin, Deymier, Theisen, Lybarger (bib17) 2011; 286
Kierdorf, Erny, Goldmann, Sander, Schulz, Perdiguero, Wieghofer, Heinrich, Riemke, Hölscher (bib43) 2013; 16
Heng, Painter (bib39) 2008; 9
Thrash, Torbett, Carson (bib75) 2009; 34
Melchior, Garcia, Hsiung, Lo, Doose, Thrash, Stalder, Staufenbiel, Neumann, Carson (bib52) 2010; 2
Mildner, Schmidt, Nitsche, Merkler, Hanisch, Mack, Heikenwalder, Brück, Priller, Prinz (bib54) 2007; 10
Mizutani, Pino, Saederup, Charo, Ransohoff, Cardona (bib55) 2012; 188
Guerreiro, Lohmann, Bras, Gibbs, Rohrer, Gurunlian, Dursun, Bilgic, Hanagasi, Gurvit (bib34) 2013; 70
Foo, Allen, Bushong, Ventura, Chung, Zhou, Cahoy, Daneman, Zong, Ellisman, Barres (bib24) 2011; 71
Cardona, Pioro, Sasse, Kostenko, Cardona, Dijkstra, Huang, Kidd, Dombrowski, Dutta (bib11) 2006; 9
Comi, Carecchio, Chiocchetti, Nicola, Galimberti, Fenoglio, Cappellano, Monaco, Scarpini, Dianzani (bib16) 2010; 19
Lorenzl, Narr, Angele, Krell, Gregorio, Kiaei, Pfister, Beal (bib47) 2006; 200
Beers, Henkel, Zhao, Wang, Appel (bib5) 2008; 105
Gowing, Philips, Van Wijmeersch, Audet, Dewil, Van Den Bosch, Billiau, Robberecht, Julien (bib31) 2008; 28
Loschko, Heink, Hackl, Dudziak, Reindl, Korn, Krug (bib48) 2011; 187
Mandrekar-Colucci, Karlo, Landreth (bib49) 2012; 32
Sakaguchi, Irie, Kawabata, Yoshida, Maruyama, Kawakami (bib65) 2011; 505
Lincecum, Vieira, Wang, Thompson, De Zutter, Kidd, Moreno, Sanchez, Carrion, Levine (bib45) 2010; 42
Gordon, Moore, Miller, Florence, Verheijde, Doorish, Hilton, Spitalny, MacArthur, Mitsumoto (bib30) 2007; 6
Cuadros, Navascués (bib19) 1998; 56
Guerreiro (10.1016/j.celrep.2013.06.018_bib33) 2013; 368
Alliot (10.1016/j.celrep.2013.06.018_bib2) 1991; 88
Davalos (10.1016/j.celrep.2013.06.018_bib21) 2005; 8
Dibaj (10.1016/j.celrep.2013.06.018_bib22) 2011; 6
Sun (10.1016/j.celrep.2013.06.018_bib73) 2008; 60
Melchior (10.1016/j.celrep.2013.06.018_bib52) 2010; 2
Comi (10.1016/j.celrep.2013.06.018_bib16) 2010; 19
Painter (10.1016/j.celrep.2013.06.018_bib59) 2011; 186
Loschko (10.1016/j.celrep.2013.06.018_bib48) 2011; 187
Elemento (10.1016/j.celrep.2013.06.018_bib23) 2007; 28
Gowing (10.1016/j.celrep.2013.06.018_bib31) 2008; 28
Rosen (10.1016/j.celrep.2013.06.018_bib63) 2011; 71
Phatnani (10.1016/j.celrep.2013.06.018_bib80) 2013; 110
Hall (10.1016/j.celrep.2013.06.018_bib36) 1998; 23
Hashimoto (10.1016/j.celrep.2013.06.018_bib38) 2007; 27
Beers (10.1016/j.celrep.2013.06.018_bib4) 2006; 103
Beers (10.1016/j.celrep.2013.06.018_bib6) 2011; 134
Ginhoux (10.1016/j.celrep.2013.06.018_bib27) 2010; 330
Sedgwick (10.1016/j.celrep.2013.06.018_bib70) 1991; 88
Ajami (10.1016/j.celrep.2013.06.018_bib1) 2007; 10
Graber (10.1016/j.celrep.2013.06.018_bib32) 2010; 7
Chabas (10.1016/j.celrep.2013.06.018_bib12) 2001; 294
Ransohoff (10.1016/j.celrep.2013.06.018_bib62) 2009; 27
Cardona (10.1016/j.celrep.2013.06.018_bib10) 2006; 1
Thrash (10.1016/j.celrep.2013.06.018_bib75) 2009; 34
Kierdorf (10.1016/j.celrep.2013.06.018_bib43) 2013; 16
Nimmerjahn (10.1016/j.celrep.2013.06.018_bib57) 2005; 308
Wendt (10.1016/j.celrep.2013.06.018_bib77) 2008; 1232
Narai (10.1016/j.celrep.2013.06.018_bib56) 2005; 82
Mandrekar-Colucci (10.1016/j.celrep.2013.06.018_bib49) 2012; 32
Odegaard (10.1016/j.celrep.2013.06.018_bib58) 2007; 447
Santambrogio (10.1016/j.celrep.2013.06.018_bib66) 2001; 98
Cardona (10.1016/j.celrep.2013.06.018_bib11) 2006; 9
Xiao (10.1016/j.celrep.2013.06.018_bib78) 2007; 102
Laird (10.1016/j.celrep.2013.06.018_bib44) 2010; 5
Lorenzl (10.1016/j.celrep.2013.06.018_bib47) 2006; 200
Henkel (10.1016/j.celrep.2013.06.018_bib40) 2009; 4
Frank-Cannon (10.1016/j.celrep.2013.06.018_bib25) 2009; 4
Lincecum (10.1016/j.celrep.2013.06.018_bib45) 2010; 42
Mildner (10.1016/j.celrep.2013.06.018_bib54) 2007; 10
Goodarzi (10.1016/j.celrep.2013.06.018_bib28) 2009; 36
Ryan (10.1016/j.celrep.2013.06.018_bib64) 2009; 10
Vaknin (10.1016/j.celrep.2013.06.018_bib76) 2011; 6
Appel (10.1016/j.celrep.2013.06.018_bib3) 2011; 30
Chiu (10.1016/j.celrep.2013.06.018_bib14) 2009; 106
Pasinelli (10.1016/j.celrep.2013.06.018_bib60) 2004; 43
Schulz (10.1016/j.celrep.2013.06.018_bib69) 2012; 336
Gautier (10.1016/j.celrep.2013.06.018_bib26) 2012; 13
Kaspar (10.1016/j.celrep.2013.06.018_bib42) 2003; 301
Steinacker (10.1016/j.celrep.2013.06.018_bib72) 2009; 116
Gurney (10.1016/j.celrep.2013.06.018_bib35) 1994; 264
Butovsky (10.1016/j.celrep.2013.06.018_bib8) 2012; 122
Foo (10.1016/j.celrep.2013.06.018_bib24) 2011; 71
Calingasan (10.1016/j.celrep.2013.06.018_bib9) 2005; 19
Cullen (10.1016/j.celrep.2013.06.018_bib20) 2009; 2
Michelucci (10.1016/j.celrep.2013.06.018_bib53) 2009; 210
Harraz (10.1016/j.celrep.2013.06.018_bib37) 2008; 118
Corcoran (10.1016/j.celrep.2013.06.018_bib17) 2011; 286
Praline (10.1016/j.celrep.2013.06.018_bib61) 2011; 18
Beers (10.1016/j.celrep.2013.06.018_bib5) 2008; 105
Mizutani (10.1016/j.celrep.2013.06.018_bib55) 2012; 188
Sargsyan (10.1016/j.celrep.2013.06.018_bib67) 2011; 12
Szanto (10.1016/j.celrep.2013.06.018_bib74) 2010; 33
Heng (10.1016/j.celrep.2013.06.018_bib39) 2008; 9
Cho (10.1016/j.celrep.2013.06.018_bib15) 2008; 131
McGeer (10.1016/j.celrep.2013.06.018_bib51) 2002; 26
Hickman (10.1016/j.celrep.2013.06.018_bib41) 2008; 28
Chiu (10.1016/j.celrep.2013.06.018_bib13) 2008; 105
Gordon (10.1016/j.celrep.2013.06.018_bib29) 2003; 3
Shell (10.1016/j.celrep.2013.06.018_bib71) 2005; 280
Di Giorgio (10.1016/j.celrep.2013.06.018_bib79) 2007; 10
Boillée (10.1016/j.celrep.2013.06.018_bib7) 2006; 312
Liu (10.1016/j.celrep.2013.06.018_bib46) 2004; 4
Maruyama (10.1016/j.celrep.2013.06.018_bib50) 2010; 465
Sakaguchi (10.1016/j.celrep.2013.06.018_bib65) 2011; 505
Gordon (10.1016/j.celrep.2013.06.018_bib30) 2007; 6
Cuadros (10.1016/j.celrep.2013.06.018_bib19) 1998; 56
Guerreiro (10.1016/j.celrep.2013.06.018_bib34) 2013; 70
Schafer (10.1016/j.celrep.2013.06.018_bib68) 2012; 74
Cramer (10.1016/j.celrep.2013.06.018_bib18) 2012; 335
18219391 - J Clin Invest. 2008 Feb;118(2):659-70
9760700 - Prog Neurobiol. 1998 Oct;56(2):173-89
23318515 - JAMA Neurol. 2013 Jan;70(1):78-84
19731042 - J Neuroimmune Pharmacol. 2009 Dec;4(4):389-98
22632727 - Neuron. 2012 May 24;74(4):691-705
18997009 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17913-8
17980667 - Lancet Neurol. 2007 Dec;6(12):1045-53
18701698 - J Neurosci. 2008 Aug 13;28(33):8354-60
16235250 - J Neurosci Res. 2005 Nov 15;82(4):452-7
15831717 - Science. 2005 May 27;308(5726):1314-8
11721059 - Science. 2001 Nov 23;294(5547):1731-5
16732273 - Nat Neurosci. 2006 Jul;9(7):917-24
21307297 - J Immunol. 2011 Mar 1;186(5):3047-57
21943601 - Neuron. 2011 Sep 22;71(6):1030-42
17964271 - Mol Cell. 2007 Oct 26;28(2):337-50
21596768 - Brain. 2011 May;134(Pt 5):1293-314
17555556 - J Neurochem. 2007 Sep;102(6):2008-19
18026096 - Nat Neurosci. 2007 Dec;10(12):1544-53
17392476 - J Neurosci. 2007 Mar 28;27(13):3603-11
17043238 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):16021-6
8209258 - Science. 1994 Jun 17;264(5166):1772-5
19203374 - Mol Brain. 2009;2:5
21093321 - Immunity. 2010 Nov 24;33(5):699-712
1996355 - Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1541-5
21943126 - BMC Neurosci. 2011;12:91
18819987 - Brain. 2008 Nov;131(Pt 11):3019-33
19860916 - BMC Neurosci. 2009;10:130
21896490 - J Biol Chem. 2011 Oct 28;286(43):37168-80
23150934 - N Engl J Med. 2013 Jan 10;368(2):117-27
18026097 - Nat Neurosci. 2007 Dec;10(12):1538-43
20966214 - Science. 2010 Nov 5;330(6005):841-5
22863620 - J Clin Invest. 2012 Sep;122(9):3063-87
22442384 - Science. 2012 Apr 6;336(6077):86-90
9633809 - Glia. 1998 Jul;23(3):249-56
1651506 - Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7438-42
12362410 - Muscle Nerve. 2002 Oct;26(4):459-70
20428114 - Nature. 2010 May 13;465(7295):223-6
20109233 - J Neuroinflammation. 2010;7:8
21903074 - Neuron. 2011 Sep 8;71(5):799-811
22079988 - J Immunol. 2011 Dec 15;187(12):6346-56
19933335 - Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20960-5
20967127 - PLoS One. 2010;5(10):e13368
18694734 - Brain Res. 2008 Sep 26;1232:7-20
22836247 - J Neurosci. 2012 Jul 25;32(30):10117-28
18800157 - Nat Immunol. 2008 Oct;9(10):1091-4
18957217 - Neuron. 2008 Oct 23;60(2):247-57
20308780 - J Alzheimers Dis. 2010;19(4):1143-8
16207706 - J Biol Chem. 2005 Dec 2;280(48):39950-61
18842883 - J Neurosci. 2008 Oct 8;28(41):10234-44
21251163 - Eur J Neurol. 2011 Aug;18(8):1046-52
17487181 - Nat Protoc. 2006;1(4):1947-51
23023392 - Nat Immunol. 2012 Nov;13(11):1118-28
12907804 - Science. 2003 Aug 8;301(5634):839-42
15837590 - Neurobiol Dis. 2005 Jun-Jul;19(1-2):340-7
16516196 - Exp Neurol. 2006 Jul;200(1):166-71
15895084 - Nat Neurosci. 2005 Jun;8(6):752-8
23334579 - Nat Neurosci. 2013 Mar;16(3):273-80
17515919 - Nature. 2007 Jun 28;447(7148):1116-20
19649690 - J Neural Transm (Vienna). 2009 Sep;116(9):1169-78
18809917 - Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15558-63
21437247 - PLoS One. 2011;6(3):e17910
18404378 - Neurochem Res. 2009 Jan;34(1):38-45
19302036 - Annu Rev Immunol. 2009;27:119-45
16741123 - Science. 2006 Jun 2;312(5778):1389-92
19917131 - Mol Neurodegener. 2009 Nov 16;4:47
20348957 - Nat Genet. 2010 May;42(5):392-9
19269040 - J Neuroimmunol. 2009 May 29;210(1-2):3-12
12511873 - Nat Rev Immunol. 2003 Jan;3(1):23-35
20640189 - ASN Neuro. 2010;2(3):e00037
22323736 - Science. 2012 Mar 23;335(6075):1503-6
22079990 - J Immunol. 2012 Jan 1;188(1):29-36
22073221 - PLoS One. 2011;6(11):e26921
22040667 - Neurosci Lett. 2011 Nov 21;505(3):279-81
21842586 - Acta Myol. 2011 Jun;30(1):4-8
20005852 - Mol Cell. 2009 Dec 11;36(5):900-11
11371643 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6295-300
References_xml – volume: 10
  start-page: 1538
  year: 2007
  end-page: 1543
  ident: bib1
  article-title: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life
  publication-title: Nat. Neurosci.
– volume: 210
  start-page: 3
  year: 2009
  end-page: 12
  ident: bib53
  article-title: Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta
  publication-title: J. Neuroimmunol.
– volume: 19
  start-page: 340
  year: 2005
  end-page: 347
  ident: bib9
  article-title: Beta-amyloid 42 accumulation in the lumbar spinal cord motor neurons of amyotrophic lateral sclerosis patients
  publication-title: Neurobiol. Dis.
– volume: 30
  start-page: 4
  year: 2011
  end-page: 8
  ident: bib3
  article-title: The microglial-motoneuron dialogue in ALS
  publication-title: Acta Myol.
– volume: 280
  start-page: 39950
  year: 2005
  end-page: 39961
  ident: bib71
  article-title: Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection
  publication-title: J. Biol. Chem.
– volume: 16
  start-page: 273
  year: 2013
  end-page: 280
  ident: bib43
  article-title: Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways
  publication-title: Nat. Neurosci.
– volume: 187
  start-page: 6346
  year: 2011
  end-page: 6356
  ident: bib48
  article-title: Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity
  publication-title: J. Immunol.
– volume: 18
  start-page: 1046
  year: 2011
  end-page: 1052
  ident: bib61
  article-title: APOE ε4 allele is associated with an increased risk of bulbar-onset amyotrophic lateral sclerosis in men
  publication-title: Eur. J. Neurol.
– volume: 60
  start-page: 247
  year: 2008
  end-page: 257
  ident: bib73
  article-title: Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer’s disease
  publication-title: Neuron
– volume: 2
  start-page: e00037
  year: 2010
  ident: bib52
  article-title: Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer’s disease
  publication-title: ASN Neuro
– volume: 264
  start-page: 1772
  year: 1994
  end-page: 1775
  ident: bib35
  article-title: Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation
  publication-title: Science
– volume: 36
  start-page: 900
  year: 2009
  end-page: 911
  ident: bib28
  article-title: Revealing global regulatory perturbations across human cancers
  publication-title: Mol. Cell
– volume: 9
  start-page: 1091
  year: 2008
  end-page: 1094
  ident: bib39
  article-title: The Immunological Genome Project: networks of gene expression in immune cells
  publication-title: Nat. Immunol.
– volume: 10
  start-page: 1544
  year: 2007
  end-page: 1553
  ident: bib54
  article-title: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions
  publication-title: Nat. Neurosci.
– volume: 105
  start-page: 15558
  year: 2008
  end-page: 15563
  ident: bib5
  article-title: CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 294
  start-page: 1731
  year: 2001
  end-page: 1735
  ident: bib12
  article-title: The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease
  publication-title: Science
– volume: 71
  start-page: 799
  year: 2011
  end-page: 811
  ident: bib24
  article-title: Development of a method for the purification and culture of rodent astrocytes
  publication-title: Neuron
– volume: 200
  start-page: 166
  year: 2006
  end-page: 171
  ident: bib47
  article-title: The matrix metalloproteinases inhibitor Ro 28-2653 [correction of Ro 26-2853] extends survival in transgenic ALS mice
  publication-title: Exp. Neurol.
– volume: 6
  start-page: e17910
  year: 2011
  ident: bib22
  article-title: In Vivo imaging reveals distinct inflammatory activity of CNS microglia versus PNS macrophages in a mouse model for ALS
  publication-title: PLoS ONE
– volume: 9
  start-page: 917
  year: 2006
  end-page: 924
  ident: bib11
  article-title: Control of microglial neurotoxicity by the fractalkine receptor
  publication-title: Nat. Neurosci.
– volume: 5
  start-page: e13368
  year: 2010
  ident: bib44
  article-title: Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy
  publication-title: PLoS ONE
– volume: 1
  start-page: 1947
  year: 2006
  end-page: 1951
  ident: bib10
  article-title: Isolation of murine microglial cells for RNA analysis or flow cytometry
  publication-title: Nat. Protoc.
– volume: 118
  start-page: 659
  year: 2008
  end-page: 670
  ident: bib37
  article-title: SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model
  publication-title: J. Clin. Invest.
– volume: 26
  start-page: 459
  year: 2002
  end-page: 470
  ident: bib51
  article-title: Inflammatory processes in amyotrophic lateral sclerosis
  publication-title: Muscle Nerve
– volume: 110
  start-page: E756
  year: 2013
  end-page: E765
  ident: bib80
  article-title: Intricate interplay between astrocytes and motor neurons in ALS
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 98
  start-page: 6295
  year: 2001
  end-page: 6300
  ident: bib66
  article-title: Developmental plasticity of CNS microglia
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 74
  start-page: 691
  year: 2012
  end-page: 705
  ident: bib68
  article-title: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner
  publication-title: Neuron
– volume: 28
  start-page: 337
  year: 2007
  end-page: 350
  ident: bib23
  article-title: A universal framework for regulatory element discovery across all genomes and data types
  publication-title: Mol. Cell
– volume: 301
  start-page: 839
  year: 2003
  end-page: 842
  ident: bib42
  article-title: Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model
  publication-title: Science
– volume: 447
  start-page: 1116
  year: 2007
  end-page: 1120
  ident: bib58
  article-title: Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance
  publication-title: Nature
– volume: 134
  start-page: 1293
  year: 2011
  end-page: 1314
  ident: bib6
  article-title: Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis
  publication-title: Brain
– volume: 131
  start-page: 3019
  year: 2008
  end-page: 3033
  ident: bib15
  article-title: Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death
  publication-title: Brain
– volume: 28
  start-page: 10234
  year: 2008
  end-page: 10244
  ident: bib31
  article-title: Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase
  publication-title: J. Neurosci.
– volume: 335
  start-page: 1503
  year: 2012
  end-page: 1506
  ident: bib18
  article-title: ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models
  publication-title: Science
– volume: 308
  start-page: 1314
  year: 2005
  end-page: 1318
  ident: bib57
  article-title: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo
  publication-title: Science
– volume: 43
  start-page: 19
  year: 2004
  end-page: 30
  ident: bib60
  article-title: Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria
  publication-title: Neuron
– volume: 27
  start-page: 3603
  year: 2007
  end-page: 3611
  ident: bib38
  article-title: Osteopontin-deficient mice exhibit less inflammation, greater tissue damage, and impaired locomotor recovery from spinal cord injury compared with wild-type controls
  publication-title: J. Neurosci.
– volume: 42
  start-page: 392
  year: 2010
  end-page: 399
  ident: bib45
  article-title: From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis
  publication-title: Nat. Genet.
– volume: 88
  start-page: 1541
  year: 1991
  end-page: 1545
  ident: bib2
  article-title: Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 102
  start-page: 2008
  year: 2007
  end-page: 2019
  ident: bib78
  article-title: Mutant SOD1(G93A) microglia are more neurotoxic relative to wild-type microglia
  publication-title: J. Neurochem.
– volume: 70
  start-page: 78
  year: 2013
  end-page: 84
  ident: bib34
  article-title: Using exome sequencing to reveal mutations in
  publication-title: JAMA Neurol.
– volume: 4
  start-page: 389
  year: 2009
  end-page: 398
  ident: bib40
  article-title: Microglia in ALS: the good, the bad, and the resting
  publication-title: J. Neuroimmune Pharmacol.
– volume: 186
  start-page: 3047
  year: 2011
  end-page: 3057
  ident: bib59
  article-title: Transcriptomes of the B and T lineages compared by multiplatform microarray profiling
  publication-title: J. Immunol.
– volume: 368
  start-page: 117
  year: 2013
  end-page: 127
  ident: bib33
  article-title: TREM2 variants in Alzheimer’s disease
  publication-title: N. Engl. J. Med.
– volume: 105
  start-page: 17913
  year: 2008
  end-page: 17918
  ident: bib13
  article-title: T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 13
  start-page: 1118
  year: 2012
  end-page: 1128
  ident: bib26
  article-title: Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
  publication-title: Nat. Immunol.
– volume: 330
  start-page: 841
  year: 2010
  end-page: 845
  ident: bib27
  article-title: Fate mapping analysis reveals that adult microglia derive from primitive macrophages
  publication-title: Science
– volume: 23
  start-page: 249
  year: 1998
  end-page: 256
  ident: bib36
  article-title: Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS
  publication-title: Glia
– volume: 505
  start-page: 279
  year: 2011
  end-page: 281
  ident: bib65
  article-title: Optineurin with amyotrophic lateral sclerosis-related mutations abrogates inhibition of interferon regulatory factor-3 activation
  publication-title: Neurosci. Lett.
– volume: 116
  start-page: 1169
  year: 2009
  end-page: 1178
  ident: bib72
  article-title: Concentrations of beta-amyloid precursor protein processing products in cerebrospinal fluid of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration
  publication-title: J. Neural Transm.
– volume: 10
  start-page: 130
  year: 2009
  ident: bib64
  article-title: Progranulin is expressed within motor neurons and promotes neuronal cell survival
  publication-title: BMC Neurosci.
– volume: 465
  start-page: 223
  year: 2010
  end-page: 226
  ident: bib50
  article-title: Mutations of optineurin in amyotrophic lateral sclerosis
  publication-title: Nature
– volume: 27
  start-page: 119
  year: 2009
  end-page: 145
  ident: bib62
  article-title: Microglial physiology: unique stimuli, specialized responses
  publication-title: Annu. Rev. Immunol.
– volume: 312
  start-page: 1389
  year: 2006
  end-page: 1392
  ident: bib7
  article-title: Onset and progression in inherited ALS determined by motor neurons and microglia
  publication-title: Science
– volume: 2
  start-page: 5
  year: 2009
  ident: bib20
  article-title: Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo
  publication-title: Mol. Brain
– volume: 33
  start-page: 699
  year: 2010
  end-page: 712
  ident: bib74
  article-title: STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells
  publication-title: Immunity
– volume: 19
  start-page: 1143
  year: 2010
  end-page: 1148
  ident: bib16
  article-title: Osteopontin is increased in the cerebrospinal fluid of patients with Alzheimer’s disease and its levels correlate with cognitive decline
  publication-title: J. Alzheimers Dis.
– volume: 188
  start-page: 29
  year: 2012
  end-page: 36
  ident: bib55
  article-title: The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood
  publication-title: J. Immunol.
– volume: 8
  start-page: 752
  year: 2005
  end-page: 758
  ident: bib21
  article-title: ATP mediates rapid microglial response to local brain injury in vivo
  publication-title: Nat. Neurosci.
– volume: 82
  start-page: 452
  year: 2005
  end-page: 457
  ident: bib56
  article-title: Prevention of spinal motor neuron death by insulin-like growth factor-1 associating with the signal transduction systems in SODG93A transgenic mice
  publication-title: J. Neurosci. Res.
– volume: 88
  start-page: 7438
  year: 1991
  end-page: 7442
  ident: bib70
  article-title: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 34
  start-page: 38
  year: 2009
  end-page: 45
  ident: bib75
  article-title: Developmental regulation of TREM2 and DAP12 expression in the murine CNS: implications for Nasu-Hakola disease
  publication-title: Neurochem. Res.
– volume: 1232
  start-page: 7
  year: 2008
  end-page: 20
  ident: bib77
  article-title: Upregulation of cathepsin S in the aging and pathological nervous system of mice
  publication-title: Brain Res.
– volume: 7
  start-page: 8
  year: 2010
  ident: bib32
  article-title: Progressive changes in microglia and macrophages in spinal cord and peripheral nerve in the transgenic rat model of amyotrophic lateral sclerosis
  publication-title: J. Neuroinflammation
– volume: 4
  start-page: 5
  year: 2004
  end-page: 17
  ident: bib46
  article-title: Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria
  publication-title: Neuron
– volume: 336
  start-page: 86
  year: 2012
  end-page: 90
  ident: bib69
  article-title: A lineage of myeloid cells independent of Myb and hematopoietic stem cells
  publication-title: Science
– volume: 4
  start-page: 47
  year: 2009
  ident: bib25
  article-title: Does neuroinflammation fan the flame in neurodegenerative diseases?
  publication-title: Mol. Neurodegener.
– volume: 6
  start-page: 1045
  year: 2007
  end-page: 1053
  ident: bib30
  article-title: Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial
  publication-title: Lancet Neurol.
– volume: 12
  start-page: 91
  year: 2011
  ident: bib67
  article-title: A comparison of in vitro properties of resting SOD1 transgenic microglia reveals evidence of reduced neuroprotective function
  publication-title: BMC Neurosci.
– volume: 6
  start-page: e26921
  year: 2011
  ident: bib76
  article-title: Excess circulating alternatively activated myeloid (M2) cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis
  publication-title: PLoS ONE
– volume: 122
  start-page: 3063
  year: 2012
  end-page: 3087
  ident: bib8
  article-title: Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS
  publication-title: J. Clin. Invest.
– volume: 3
  start-page: 23
  year: 2003
  end-page: 35
  ident: bib29
  article-title: Alternative activation of macrophages
  publication-title: Nat. Rev. Immunol.
– volume: 106
  start-page: 20960
  year: 2009
  end-page: 20965
  ident: bib14
  article-title: Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 71
  start-page: 1030
  year: 2011
  end-page: 1042
  ident: bib63
  article-title: Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling
  publication-title: Neuron
– volume: 103
  start-page: 16021
  year: 2006
  end-page: 16026
  ident: bib4
  article-title: Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 32
  start-page: 10117
  year: 2012
  end-page: 10128
  ident: bib49
  article-title: Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease
  publication-title: J. Neurosci.
– volume: 56
  start-page: 173
  year: 1998
  end-page: 189
  ident: bib19
  article-title: The origin and differentiation of microglial cells during development
  publication-title: Prog. Neurobiol.
– volume: 286
  start-page: 37168
  year: 2011
  end-page: 37180
  ident: bib17
  article-title: Ubiquitin-mediated regulation of CD86 protein expression by the ubiquitin ligase membrane-associated RING-CH-1 (MARCH1)
  publication-title: J. Biol. Chem.
– volume: 28
  start-page: 8354
  year: 2008
  end-page: 8360
  ident: bib41
  article-title: Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice
  publication-title: J. Neurosci.
– volume: 465
  start-page: 223
  year: 2010
  ident: 10.1016/j.celrep.2013.06.018_bib50
  article-title: Mutations of optineurin in amyotrophic lateral sclerosis
  publication-title: Nature
  doi: 10.1038/nature08971
– volume: 308
  start-page: 1314
  year: 2005
  ident: 10.1016/j.celrep.2013.06.018_bib57
  article-title: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo
  publication-title: Science
  doi: 10.1126/science.1110647
– volume: 10
  start-page: 608
  year: 2007
  ident: 10.1016/j.celrep.2013.06.018_bib79
  article-title: Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1885
– volume: 5
  start-page: e13368
  year: 2010
  ident: 10.1016/j.celrep.2013.06.018_bib44
  article-title: Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0013368
– volume: 118
  start-page: 659
  year: 2008
  ident: 10.1016/j.celrep.2013.06.018_bib37
  article-title: SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model
  publication-title: J. Clin. Invest.
– volume: 42
  start-page: 392
  year: 2010
  ident: 10.1016/j.celrep.2013.06.018_bib45
  article-title: From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis
  publication-title: Nat. Genet.
  doi: 10.1038/ng.557
– volume: 210
  start-page: 3
  year: 2009
  ident: 10.1016/j.celrep.2013.06.018_bib53
  article-title: Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta
  publication-title: J. Neuroimmunol.
  doi: 10.1016/j.jneuroim.2009.02.003
– volume: 1
  start-page: 1947
  year: 2006
  ident: 10.1016/j.celrep.2013.06.018_bib10
  article-title: Isolation of murine microglial cells for RNA analysis or flow cytometry
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.327
– volume: 34
  start-page: 38
  year: 2009
  ident: 10.1016/j.celrep.2013.06.018_bib75
  article-title: Developmental regulation of TREM2 and DAP12 expression in the murine CNS: implications for Nasu-Hakola disease
  publication-title: Neurochem. Res.
  doi: 10.1007/s11064-008-9657-1
– volume: 28
  start-page: 8354
  year: 2008
  ident: 10.1016/j.celrep.2013.06.018_bib41
  article-title: Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0616-08.2008
– volume: 186
  start-page: 3047
  year: 2011
  ident: 10.1016/j.celrep.2013.06.018_bib59
  article-title: Transcriptomes of the B and T lineages compared by multiplatform microarray profiling
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1002695
– volume: 286
  start-page: 37168
  year: 2011
  ident: 10.1016/j.celrep.2013.06.018_bib17
  article-title: Ubiquitin-mediated regulation of CD86 protein expression by the ubiquitin ligase membrane-associated RING-CH-1 (MARCH1)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.204040
– volume: 12
  start-page: 91
  year: 2011
  ident: 10.1016/j.celrep.2013.06.018_bib67
  article-title: A comparison of in vitro properties of resting SOD1 transgenic microglia reveals evidence of reduced neuroprotective function
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-12-91
– volume: 28
  start-page: 337
  year: 2007
  ident: 10.1016/j.celrep.2013.06.018_bib23
  article-title: A universal framework for regulatory element discovery across all genomes and data types
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2007.09.027
– volume: 98
  start-page: 6295
  year: 2001
  ident: 10.1016/j.celrep.2013.06.018_bib66
  article-title: Developmental plasticity of CNS microglia
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.111152498
– volume: 3
  start-page: 23
  year: 2003
  ident: 10.1016/j.celrep.2013.06.018_bib29
  article-title: Alternative activation of macrophages
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri978
– volume: 74
  start-page: 691
  year: 2012
  ident: 10.1016/j.celrep.2013.06.018_bib68
  article-title: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.026
– volume: 116
  start-page: 1169
  year: 2009
  ident: 10.1016/j.celrep.2013.06.018_bib72
  article-title: Concentrations of beta-amyloid precursor protein processing products in cerebrospinal fluid of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration
  publication-title: J. Neural Transm.
  doi: 10.1007/s00702-009-0271-4
– volume: 294
  start-page: 1731
  year: 2001
  ident: 10.1016/j.celrep.2013.06.018_bib12
  article-title: The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease
  publication-title: Science
  doi: 10.1126/science.1062960
– volume: 187
  start-page: 6346
  year: 2011
  ident: 10.1016/j.celrep.2013.06.018_bib48
  article-title: Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1102307
– volume: 36
  start-page: 900
  year: 2009
  ident: 10.1016/j.celrep.2013.06.018_bib28
  article-title: Revealing global regulatory perturbations across human cancers
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.11.016
– volume: 505
  start-page: 279
  year: 2011
  ident: 10.1016/j.celrep.2013.06.018_bib65
  article-title: Optineurin with amyotrophic lateral sclerosis-related mutations abrogates inhibition of interferon regulatory factor-3 activation
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2011.10.040
– volume: 110
  start-page: E756
  year: 2013
  ident: 10.1016/j.celrep.2013.06.018_bib80
  article-title: Intricate interplay between astrocytes and motor neurons in ALS
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1222361110
– volume: 18
  start-page: 1046
  year: 2011
  ident: 10.1016/j.celrep.2013.06.018_bib61
  article-title: APOE ε4 allele is associated with an increased risk of bulbar-onset amyotrophic lateral sclerosis in men
  publication-title: Eur. J. Neurol.
  doi: 10.1111/j.1468-1331.2010.03330.x
– volume: 122
  start-page: 3063
  year: 2012
  ident: 10.1016/j.celrep.2013.06.018_bib8
  article-title: Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI62636
– volume: 131
  start-page: 3019
  year: 2008
  ident: 10.1016/j.celrep.2013.06.018_bib15
  article-title: Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death
  publication-title: Brain
  doi: 10.1093/brain/awn230
– volume: 9
  start-page: 917
  year: 2006
  ident: 10.1016/j.celrep.2013.06.018_bib11
  article-title: Control of microglial neurotoxicity by the fractalkine receptor
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1715
– volume: 2
  start-page: 5
  year: 2009
  ident: 10.1016/j.celrep.2013.06.018_bib20
  article-title: Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo
  publication-title: Mol. Brain
  doi: 10.1186/1756-6606-2-5
– volume: 8
  start-page: 752
  year: 2005
  ident: 10.1016/j.celrep.2013.06.018_bib21
  article-title: ATP mediates rapid microglial response to local brain injury in vivo
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1472
– volume: 264
  start-page: 1772
  year: 1994
  ident: 10.1016/j.celrep.2013.06.018_bib35
  article-title: Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation
  publication-title: Science
  doi: 10.1126/science.8209258
– volume: 27
  start-page: 119
  year: 2009
  ident: 10.1016/j.celrep.2013.06.018_bib62
  article-title: Microglial physiology: unique stimuli, specialized responses
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.021908.132528
– volume: 103
  start-page: 16021
  year: 2006
  ident: 10.1016/j.celrep.2013.06.018_bib4
  article-title: Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0607423103
– volume: 368
  start-page: 117
  year: 2013
  ident: 10.1016/j.celrep.2013.06.018_bib33
  article-title: TREM2 variants in Alzheimer’s disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1211851
– volume: 56
  start-page: 173
  year: 1998
  ident: 10.1016/j.celrep.2013.06.018_bib19
  article-title: The origin and differentiation of microglial cells during development
  publication-title: Prog. Neurobiol.
  doi: 10.1016/S0301-0082(98)00035-5
– volume: 9
  start-page: 1091
  year: 2008
  ident: 10.1016/j.celrep.2013.06.018_bib39
  article-title: The Immunological Genome Project: networks of gene expression in immune cells
  publication-title: Nat. Immunol.
  doi: 10.1038/ni1008-1091
– volume: 447
  start-page: 1116
  year: 2007
  ident: 10.1016/j.celrep.2013.06.018_bib58
  article-title: Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance
  publication-title: Nature
  doi: 10.1038/nature05894
– volume: 88
  start-page: 7438
  year: 1991
  ident: 10.1016/j.celrep.2013.06.018_bib70
  article-title: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.88.16.7438
– volume: 6
  start-page: 1045
  year: 2007
  ident: 10.1016/j.celrep.2013.06.018_bib30
  article-title: Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial
  publication-title: Lancet Neurol.
  doi: 10.1016/S1474-4422(07)70270-3
– volume: 10
  start-page: 130
  year: 2009
  ident: 10.1016/j.celrep.2013.06.018_bib64
  article-title: Progranulin is expressed within motor neurons and promotes neuronal cell survival
  publication-title: BMC Neurosci.
  doi: 10.1186/1471-2202-10-130
– volume: 16
  start-page: 273
  year: 2013
  ident: 10.1016/j.celrep.2013.06.018_bib43
  article-title: Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3318
– volume: 28
  start-page: 10234
  year: 2008
  ident: 10.1016/j.celrep.2013.06.018_bib31
  article-title: Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3494-08.2008
– volume: 6
  start-page: e17910
  year: 2011
  ident: 10.1016/j.celrep.2013.06.018_bib22
  article-title: In Vivo imaging reveals distinct inflammatory activity of CNS microglia versus PNS macrophages in a mouse model for ALS
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0017910
– volume: 30
  start-page: 4
  year: 2011
  ident: 10.1016/j.celrep.2013.06.018_bib3
  article-title: The microglial-motoneuron dialogue in ALS
  publication-title: Acta Myol.
– volume: 10
  start-page: 1544
  year: 2007
  ident: 10.1016/j.celrep.2013.06.018_bib54
  article-title: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn2015
– volume: 19
  start-page: 340
  year: 2005
  ident: 10.1016/j.celrep.2013.06.018_bib9
  article-title: Beta-amyloid 42 accumulation in the lumbar spinal cord motor neurons of amyotrophic lateral sclerosis patients
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2005.01.012
– volume: 33
  start-page: 699
  year: 2010
  ident: 10.1016/j.celrep.2013.06.018_bib74
  article-title: STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells
  publication-title: Immunity
  doi: 10.1016/j.immuni.2010.11.009
– volume: 27
  start-page: 3603
  year: 2007
  ident: 10.1016/j.celrep.2013.06.018_bib38
  article-title: Osteopontin-deficient mice exhibit less inflammation, greater tissue damage, and impaired locomotor recovery from spinal cord injury compared with wild-type controls
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4805-06.2007
– volume: 13
  start-page: 1118
  year: 2012
  ident: 10.1016/j.celrep.2013.06.018_bib26
  article-title: Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2419
– volume: 2
  start-page: e00037
  year: 2010
  ident: 10.1016/j.celrep.2013.06.018_bib52
  article-title: Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer’s disease
  publication-title: ASN Neuro
  doi: 10.1042/AN20100010
– volume: 200
  start-page: 166
  year: 2006
  ident: 10.1016/j.celrep.2013.06.018_bib47
  article-title: The matrix metalloproteinases inhibitor Ro 28-2653 [correction of Ro 26-2853] extends survival in transgenic ALS mice
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2006.01.026
– volume: 60
  start-page: 247
  year: 2008
  ident: 10.1016/j.celrep.2013.06.018_bib73
  article-title: Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer’s disease
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.10.001
– volume: 1232
  start-page: 7
  year: 2008
  ident: 10.1016/j.celrep.2013.06.018_bib77
  article-title: Upregulation of cathepsin S in the aging and pathological nervous system of mice
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2008.07.067
– volume: 6
  start-page: e26921
  year: 2011
  ident: 10.1016/j.celrep.2013.06.018_bib76
  article-title: Excess circulating alternatively activated myeloid (M2) cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0026921
– volume: 280
  start-page: 39950
  year: 2005
  ident: 10.1016/j.celrep.2013.06.018_bib71
  article-title: Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M508848200
– volume: 301
  start-page: 839
  year: 2003
  ident: 10.1016/j.celrep.2013.06.018_bib42
  article-title: Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model
  publication-title: Science
  doi: 10.1126/science.1086137
– volume: 70
  start-page: 78
  year: 2013
  ident: 10.1016/j.celrep.2013.06.018_bib34
  article-title: Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement
  publication-title: JAMA Neurol.
  doi: 10.1001/jamaneurol.2013.579
– volume: 71
  start-page: 1030
  year: 2011
  ident: 10.1016/j.celrep.2013.06.018_bib63
  article-title: Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.07.021
– volume: 336
  start-page: 86
  year: 2012
  ident: 10.1016/j.celrep.2013.06.018_bib69
  article-title: A lineage of myeloid cells independent of Myb and hematopoietic stem cells
  publication-title: Science
  doi: 10.1126/science.1219179
– volume: 105
  start-page: 17913
  year: 2008
  ident: 10.1016/j.celrep.2013.06.018_bib13
  article-title: T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0804610105
– volume: 7
  start-page: 8
  year: 2010
  ident: 10.1016/j.celrep.2013.06.018_bib32
  article-title: Progressive changes in microglia and macrophages in spinal cord and peripheral nerve in the transgenic rat model of amyotrophic lateral sclerosis
  publication-title: J. Neuroinflammation
  doi: 10.1186/1742-2094-7-8
– volume: 4
  start-page: 5
  year: 2004
  ident: 10.1016/j.celrep.2013.06.018_bib46
  article-title: Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.06.016
– volume: 26
  start-page: 459
  year: 2002
  ident: 10.1016/j.celrep.2013.06.018_bib51
  article-title: Inflammatory processes in amyotrophic lateral sclerosis
  publication-title: Muscle Nerve
  doi: 10.1002/mus.10191
– volume: 10
  start-page: 1538
  year: 2007
  ident: 10.1016/j.celrep.2013.06.018_bib1
  article-title: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn2014
– volume: 4
  start-page: 47
  year: 2009
  ident: 10.1016/j.celrep.2013.06.018_bib25
  article-title: Does neuroinflammation fan the flame in neurodegenerative diseases?
  publication-title: Mol. Neurodegener.
  doi: 10.1186/1750-1326-4-47
– volume: 102
  start-page: 2008
  year: 2007
  ident: 10.1016/j.celrep.2013.06.018_bib78
  article-title: Mutant SOD1(G93A) microglia are more neurotoxic relative to wild-type microglia
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2007.04677.x
– volume: 82
  start-page: 452
  year: 2005
  ident: 10.1016/j.celrep.2013.06.018_bib56
  article-title: Prevention of spinal motor neuron death by insulin-like growth factor-1 associating with the signal transduction systems in SODG93A transgenic mice
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.20668
– volume: 4
  start-page: 389
  year: 2009
  ident: 10.1016/j.celrep.2013.06.018_bib40
  article-title: Microglia in ALS: the good, the bad, and the resting
  publication-title: J. Neuroimmune Pharmacol.
  doi: 10.1007/s11481-009-9171-5
– volume: 106
  start-page: 20960
  year: 2009
  ident: 10.1016/j.celrep.2013.06.018_bib14
  article-title: Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0911405106
– volume: 19
  start-page: 1143
  year: 2010
  ident: 10.1016/j.celrep.2013.06.018_bib16
  article-title: Osteopontin is increased in the cerebrospinal fluid of patients with Alzheimer’s disease and its levels correlate with cognitive decline
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2010-1309
– volume: 71
  start-page: 799
  year: 2011
  ident: 10.1016/j.celrep.2013.06.018_bib24
  article-title: Development of a method for the purification and culture of rodent astrocytes
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.07.022
– volume: 88
  start-page: 1541
  year: 1991
  ident: 10.1016/j.celrep.2013.06.018_bib2
  article-title: Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.88.4.1541
– volume: 312
  start-page: 1389
  year: 2006
  ident: 10.1016/j.celrep.2013.06.018_bib7
  article-title: Onset and progression in inherited ALS determined by motor neurons and microglia
  publication-title: Science
  doi: 10.1126/science.1123511
– volume: 134
  start-page: 1293
  year: 2011
  ident: 10.1016/j.celrep.2013.06.018_bib6
  article-title: Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis
  publication-title: Brain
  doi: 10.1093/brain/awr074
– volume: 335
  start-page: 1503
  year: 2012
  ident: 10.1016/j.celrep.2013.06.018_bib18
  article-title: ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models
  publication-title: Science
  doi: 10.1126/science.1217697
– volume: 23
  start-page: 249
  year: 1998
  ident: 10.1016/j.celrep.2013.06.018_bib36
  article-title: Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS
  publication-title: Glia
  doi: 10.1002/(SICI)1098-1136(199807)23:3<249::AID-GLIA7>3.0.CO;2-#
– volume: 188
  start-page: 29
  year: 2012
  ident: 10.1016/j.celrep.2013.06.018_bib55
  article-title: The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1100421
– volume: 32
  start-page: 10117
  year: 2012
  ident: 10.1016/j.celrep.2013.06.018_bib49
  article-title: Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5268-11.2012
– volume: 105
  start-page: 15558
  year: 2008
  ident: 10.1016/j.celrep.2013.06.018_bib5
  article-title: CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0807419105
– volume: 330
  start-page: 841
  year: 2010
  ident: 10.1016/j.celrep.2013.06.018_bib27
  article-title: Fate mapping analysis reveals that adult microglia derive from primitive macrophages
  publication-title: Science
  doi: 10.1126/science.1194637
– volume: 43
  start-page: 19
  year: 2004
  ident: 10.1016/j.celrep.2013.06.018_bib60
  article-title: Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria
  publication-title: Neuron
  doi: 10.1016/j.neuron.2004.06.021
– reference: 23150934 - N Engl J Med. 2013 Jan 10;368(2):117-27
– reference: 18809917 - Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15558-63
– reference: 22040667 - Neurosci Lett. 2011 Nov 21;505(3):279-81
– reference: 20428114 - Nature. 2010 May 13;465(7295):223-6
– reference: 19203374 - Mol Brain. 2009;2:5
– reference: 21943601 - Neuron. 2011 Sep 22;71(6):1030-42
– reference: 18694734 - Brain Res. 2008 Sep 26;1232:7-20
– reference: 18842883 - J Neurosci. 2008 Oct 8;28(41):10234-44
– reference: 23318515 - JAMA Neurol. 2013 Jan;70(1):78-84
– reference: 18404378 - Neurochem Res. 2009 Jan;34(1):38-45
– reference: 17043238 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):16021-6
– reference: 22863620 - J Clin Invest. 2012 Sep;122(9):3063-87
– reference: 18819987 - Brain. 2008 Nov;131(Pt 11):3019-33
– reference: 20348957 - Nat Genet. 2010 May;42(5):392-9
– reference: 19917131 - Mol Neurodegener. 2009 Nov 16;4:47
– reference: 18800157 - Nat Immunol. 2008 Oct;9(10):1091-4
– reference: 22079990 - J Immunol. 2012 Jan 1;188(1):29-36
– reference: 1651506 - Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7438-42
– reference: 17487181 - Nat Protoc. 2006;1(4):1947-51
– reference: 22079988 - J Immunol. 2011 Dec 15;187(12):6346-56
– reference: 21437247 - PLoS One. 2011;6(3):e17910
– reference: 18701698 - J Neurosci. 2008 Aug 13;28(33):8354-60
– reference: 15895084 - Nat Neurosci. 2005 Jun;8(6):752-8
– reference: 16741123 - Science. 2006 Jun 2;312(5778):1389-92
– reference: 16235250 - J Neurosci Res. 2005 Nov 15;82(4):452-7
– reference: 23023392 - Nat Immunol. 2012 Nov;13(11):1118-28
– reference: 19860916 - BMC Neurosci. 2009;10:130
– reference: 12511873 - Nat Rev Immunol. 2003 Jan;3(1):23-35
– reference: 19933335 - Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20960-5
– reference: 23334579 - Nat Neurosci. 2013 Mar;16(3):273-80
– reference: 16732273 - Nat Neurosci. 2006 Jul;9(7):917-24
– reference: 20308780 - J Alzheimers Dis. 2010;19(4):1143-8
– reference: 17392476 - J Neurosci. 2007 Mar 28;27(13):3603-11
– reference: 19302036 - Annu Rev Immunol. 2009;27:119-45
– reference: 22073221 - PLoS One. 2011;6(11):e26921
– reference: 17980667 - Lancet Neurol. 2007 Dec;6(12):1045-53
– reference: 12362410 - Muscle Nerve. 2002 Oct;26(4):459-70
– reference: 20109233 - J Neuroinflammation. 2010;7:8
– reference: 20967127 - PLoS One. 2010;5(10):e13368
– reference: 20966214 - Science. 2010 Nov 5;330(6005):841-5
– reference: 16516196 - Exp Neurol. 2006 Jul;200(1):166-71
– reference: 1996355 - Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1541-5
– reference: 20640189 - ASN Neuro. 2010;2(3):e00037
– reference: 22632727 - Neuron. 2012 May 24;74(4):691-705
– reference: 19269040 - J Neuroimmunol. 2009 May 29;210(1-2):3-12
– reference: 21093321 - Immunity. 2010 Nov 24;33(5):699-712
– reference: 21896490 - J Biol Chem. 2011 Oct 28;286(43):37168-80
– reference: 22836247 - J Neurosci. 2012 Jul 25;32(30):10117-28
– reference: 21307297 - J Immunol. 2011 Mar 1;186(5):3047-57
– reference: 12907804 - Science. 2003 Aug 8;301(5634):839-42
– reference: 18026096 - Nat Neurosci. 2007 Dec;10(12):1544-53
– reference: 22442384 - Science. 2012 Apr 6;336(6077):86-90
– reference: 21903074 - Neuron. 2011 Sep 8;71(5):799-811
– reference: 19649690 - J Neural Transm (Vienna). 2009 Sep;116(9):1169-78
– reference: 18026097 - Nat Neurosci. 2007 Dec;10(12):1538-43
– reference: 18957217 - Neuron. 2008 Oct 23;60(2):247-57
– reference: 8209258 - Science. 1994 Jun 17;264(5166):1772-5
– reference: 9633809 - Glia. 1998 Jul;23(3):249-56
– reference: 21596768 - Brain. 2011 May;134(Pt 5):1293-314
– reference: 15837590 - Neurobiol Dis. 2005 Jun-Jul;19(1-2):340-7
– reference: 18219391 - J Clin Invest. 2008 Feb;118(2):659-70
– reference: 17555556 - J Neurochem. 2007 Sep;102(6):2008-19
– reference: 21251163 - Eur J Neurol. 2011 Aug;18(8):1046-52
– reference: 16207706 - J Biol Chem. 2005 Dec 2;280(48):39950-61
– reference: 22323736 - Science. 2012 Mar 23;335(6075):1503-6
– reference: 15831717 - Science. 2005 May 27;308(5726):1314-8
– reference: 21943126 - BMC Neurosci. 2011;12:91
– reference: 17515919 - Nature. 2007 Jun 28;447(7148):1116-20
– reference: 19731042 - J Neuroimmune Pharmacol. 2009 Dec;4(4):389-98
– reference: 21842586 - Acta Myol. 2011 Jun;30(1):4-8
– reference: 18997009 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17913-8
– reference: 9760700 - Prog Neurobiol. 1998 Oct;56(2):173-89
– reference: 17964271 - Mol Cell. 2007 Oct 26;28(2):337-50
– reference: 20005852 - Mol Cell. 2009 Dec 11;36(5):900-11
– reference: 11371643 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6295-300
– reference: 11721059 - Science. 2001 Nov 23;294(5547):1731-5
SSID ssj0000601194
Score 2.5599384
Snippet Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 385
SubjectTerms Amyotrophic Lateral Sclerosis - genetics
Amyotrophic Lateral Sclerosis - immunology
Amyotrophic Lateral Sclerosis - metabolism
Amyotrophic Lateral Sclerosis - pathology
Animals
Disease Models, Animal
Female
Humans
Male
Mice
Mice, Inbred C57BL
Mice, Transgenic
Microglia - immunology
Microglia - metabolism
Microglia - physiology
Transcriptome
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEF1CoNBLafrppg1b6FXY0n5JRyckpKXuxQ34tuyudl0VVTKODPUfyO_OzEoyyaEEik8WK2mlGe28kWbeI-RLqpQqCuUTmRcKExSR5DaYJHcsLZXljjnsd178kNc3_NtKrI7IxdgLg2WVw9rfr-lxtR62TIe7Od1U1XSZQe4C0UnhB5mskNjEx3gem_hW54f3LMg3kkY9RByf4A5jB10s83K-3nokrkxZJPJE9Y8HESoS-T8KVP8CojEgXb0kLwYkSef9ZE_IkW9ekWe9tuT-Nbmb00i8Ufp1ZJZGAyRRbT5UjiLbdHL5d6iCbeiyWvcUn7QNdO52na_39Cv4JUDRki6wam9dV4ZiNwo1DZ3_2bfdtt38gmN9N9jFXNMlTAOuqLqli3Z36ynKrNVvyM3V5c-L62QQXUgcV7yDiFXkqVfOQr4aPHc2z0LhRcZt4WbSAT6w3EqD_5QtRYD1wJdFpoz0MxFYyt6S46Zt_HtChS1KCymwlNZxJ0weFAuzEKRx8CvFhLDxRms3MJKjMEatx9Kz37o3j0bzaKzAS_MJSQ57bXpGjifGn6MND2ORTztuaLdrPTiUBpwkACpJI1LLFWRZIni4WMaUQO1zOyFq9AD9yD3hUNUTp_88OoyGJxc_x5jGgxkg6cIu9hwQ8oS86z3pMEkAUgKcevbhv897Sp5nUbkDiTg-kuNuu_OfAD919iw-IPebFBiL
  priority: 102
  providerName: Elsevier
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKERIXVL4XCjIS16AktuPkgNC2alUQy6Ws1JtlO_aSKiQlm5W6f4DfzYyTLKpE1Qva064Sr5OZybxRZt4j5H0ipSwK6aIsLyQWKCLKjddRbllSSsMtszjvvPiWnS35lwtxsUcmzdbxBq7_WdqhntSyqz9c_9p-goD_-LdXy7q6c8g-mbDAxpnk98h9yE0SQ3UxAv7h2YwcZ_iqOU2xlyvlcpqnu2WhG_kq0PrfSFu3wdKQnk4PyKMRV9L54AiPyZ5rnpAHg9Lk9in5PaeBhqN0q8AzjeaIgva8ryxF7uno5HrsiW3oebUaCD9p6-ncbnpXb-ln8FIApiVdYA_fqq40xdkUqhs6_7lt-669-gFrfdU401zTc9gGXFG1pot2s3YURdfqZ2R5evL9-CwaJRgiyyXvIX8VeeKkNVC9esetyVNfOJFyU9g4s4AWDDeZxm_SlMLD08GVRSp15mLhWcKek_2mbdxLQoUpSgMFcZYZy63QuZfMx95n2sKnFDPCphut7MhPjjIZtZoa0S7VYB6F5lHYj5fkMxLtzroa-DnuOP4Ibbg7Ftm1ww9tt1JjsCpATQKAU6ZFYriEmkt4BxfLmBSohG5mRE4eoEagMgAQWKq64-_fTQ6jII7x5YxuHJgBSjCcac8BL8_Ii8GTdpsEWCXitIhf_Y_NvyYP0yDpgQwdh2S_7zbuDQCr3rwNsfIHI1YfiQ
  priority: 102
  providerName: Scholars Portal
Title A Neurodegeneration-Specific Gene-Expression Signature of Acutely Isolated Microglia from an Amyotrophic Lateral Sclerosis Mouse Model
URI https://dx.doi.org/10.1016/j.celrep.2013.06.018
https://www.ncbi.nlm.nih.gov/pubmed/23850290
https://www.proquest.com/docview/1415608508
https://doaj.org/article/78258226a51b475595fe6c533751021b
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl0GNp09c2TVChV1E_JMs6bkpCUrq9pIG9GUmWti6uHTZe6P6B_O7OSPayOYS9FIPBxo-xNNZ8I818Q8jnVEqplHSsKJVEB0Ww0njNSpuntTTc5hbznRc_iqtb_m0plnulvjAmLNIDx4b7AhZMgBErtEgNl4B_hXeFBZAiBValNjj6gs3bc6biGIxcZriknGUYs5VxOeXNheAu69q1Q7rKNA_0nVjzY88uBfr-R-bpKfgZzNDlS_JixI90HuV-RZ657pg8jxUlt6_Jw5wGuo3arQKfNDY7CzXmfWMpckyzi79j7GtHb5pVJPakvadzuxlcu6XXoI0AQGu6wFi9VdtoijkoVHd0_mfbD-v-7hc867vG3OWW3oAY8EXNPV30m3tHsbha-4bcXl78_HrFxlILzHLJB7BTqkydtAa8VO-4NWXmlRMZN8om0NxpZrgpNB5JUwsPo4CrVSZ14RLh8zR_S466vnPvCRVG1QYc36IwlluhSy9zn3hfaAtbLWYknxq6siMPOZbDaKsp4Ox3Fbunwu6pMO4uLWeE7e66izwcB64_xz7cXYss2uEE6FY16lZ1SLdmRE4aUI2AJAINeFRz4PWfJoWp4H_FRRjdOegGcLUwd70EXDwj76Im7YQE-CSSTCUf_ofwJzgFEeaKWCY-kqNhvXGnAKAGcxb-FdhfL89hv-DlP6ttFwo
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXSFEVzKbrXXVmgV8HWQlI8OkECu7VzcQL4RpAU6ahQJcOxgfgH-t2doSSjORQBCp8siBKlGXHeSDPvEfItFkJIKVzEcykwQWFRbryOcpvGhTCZTS32O88v-eQ6-75kyyNy1vfCYFllt_a3a3pYrbstw-5uDtdlOVwkkLtAdBL4QSaRXD4ijwENCNRvmC5PDy9akHAkDoKIOCDCEX0LXajzsq7aOGSujNPA5InyH3-FqMDkfy9S_QuJhoh08Zw866AkHbezfUGOXP2SPGnFJfevyO8xDcwbhVsFamm0QBTk5n1pKdJNR-d3XRlsTRflquX4pI2nY7vbumpPp-CYgEULOseyvVVVaortKFTXdPxr32w3zfoGjjXT2MZc0QVMA66ovKXzZnfrKOqsVa_J9cX51dkk6lQXIpuJbAshS-axE9ZAwupdZk2eeOlYkhlpR9wCQDCZ4Rr_CVMwDwuCK2QiNHcj5tM4fUOO66Z27whlRhYGcmDOjc0s07kXqR95z7WFX8EGJO1vtLIdJTkqY1Sqrz37qVrzKDSPwhK8OB-Q6DBq3VJyPLD_KdrwsC8SaocNzWalOo9SAJQYYCWuWWwyAWkW8w4uNk0FQ_FzMyCi9wB1zz_hUOUDp__aO4yCRxe_x-jagRkg68I29hwg8oC8bT3pMElAUgy8evT-v8_7hTydXM1naja9_PGBnCRBxgNZOT6S4-1m5z4BmNqaz-Fh-QOvgxuq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Neurodegeneration-Specific+Gene-Expression+Signature+of+Acutely+Isolated+Microglia+from+an+Amyotrophic+Lateral+Sclerosis+Mouse+Model&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Isaac%C2%A0M.+Chiu&rft.au=Emiko%C2%A0T.A.+Morimoto&rft.au=Hani+Goodarzi&rft.au=Jennifer%C2%A0T.+Liao&rft.date=2013-07-25&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=4&rft.issue=2&rft.spage=385&rft.epage=401&rft_id=info:doi/10.1016%2Fj.celrep.2013.06.018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_78258226a51b475595fe6c533751021b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon