A Neurodegeneration-Specific Gene-Expression Signature of Acutely Isolated Microglia from an Amyotrophic Lateral Sclerosis Mouse Model
Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes t...
Saved in:
Published in | Cell reports (Cambridge) Vol. 4; no. 2; pp. 385 - 401 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
25.07.2013
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2211-1247 2211-1247 |
DOI | 10.1016/j.celrep.2013.06.018 |
Cover
Loading…
Abstract | Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1G93A microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer’s disease genes, are concurrently upregulated. Mutant microglia differed from SOD1WT, lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation.
[Display omitted]
•Identification of specific marker genes for acutely isolated microglia•Progressive resident microglia transcriptome changes reveal in vivo activation phenotype•Microglial ALS disease activation signature distinct from M1/M2 macrophages•Parallel transcriptome and FACS analyses reveal T cell/microglia crosstalk
Microglia are resident immune cells of the brain that are activated by infection or tissue damage. In this study, Maniatis and colleagues report the acute isolation, transcriptional profiling, and immunological analysis of microglia during disease activation in an ALS mouse model. A neurodegeneration-specific gene-expression signature is identified that includes induction of both neuroprotective and toxic factors and is distinct from that associated with M1/M2 macrophages. The data also provide a resource for future studies of microglia activation in neurodegenerative diseases. |
---|---|
AbstractList | Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1G93A microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer’s disease genes, are concurrently upregulated. Mutant microglia differed from SOD1WT, lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation. Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1G93A mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1G93A microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer’s disease genes, are concurrently upregulated. Mutant microglia differed from SOD1WT, lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation. [Display omitted] •Identification of specific marker genes for acutely isolated microglia•Progressive resident microglia transcriptome changes reveal in vivo activation phenotype•Microglial ALS disease activation signature distinct from M1/M2 macrophages•Parallel transcriptome and FACS analyses reveal T cell/microglia crosstalk Microglia are resident immune cells of the brain that are activated by infection or tissue damage. In this study, Maniatis and colleagues report the acute isolation, transcriptional profiling, and immunological analysis of microglia during disease activation in an ALS mouse model. A neurodegeneration-specific gene-expression signature is identified that includes induction of both neuroprotective and toxic factors and is distinct from that associated with M1/M2 macrophages. The data also provide a resource for future studies of microglia activation in neurodegenerative diseases. Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1(G93A) mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1(G93A) microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer's disease genes, are concurrently upregulated. Mutant microglia differed from SOD1(WT), lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation. Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1(G93A) mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1(G93A) microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer's disease genes, are concurrently upregulated. Mutant microglia differed from SOD1(WT), lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation.Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA sequencing of acutely isolated spinal cord microglia to define their activation in vivo. Analysis of resting microglia identified 29 genes that distinguish microglia from other CNS cells and peripheral macrophages/monocytes. We then analyzed molecular changes in microglia during neurodegenerative disease activation using the SOD1(G93A) mouse model of amyotrophic lateral sclerosis (ALS). We found that SOD1(G93A) microglia are not derived from infiltrating monocytes, and that both potentially neuroprotective and toxic factors, including Alzheimer's disease genes, are concurrently upregulated. Mutant microglia differed from SOD1(WT), lipopolysaccharide-activated microglia, and M1/M2 macrophages, defining an ALS-specific phenotype. Concurrent messenger RNA/fluorescence-activated cell sorting analysis revealed posttranscriptional regulation of microglia surface receptors and T cell-associated changes in the transcriptome. These results provide insights into microglia biology and establish a resource for future studies of neuroinflammation. |
Author | Goodarzi, Hani Myers, Richard M. Levy, Shawn Phatnani, Hemali P. Carroll, Michael C. Chiu, Isaac M. Maniatis, Tom O’Keeffe, Sean Morimoto, Emiko T.A. Muratet, Michael Liao, Jennifer T. Tavazoie, Saeed |
Author_xml | – sequence: 1 givenname: Isaac M. surname: Chiu fullname: Chiu, Isaac M. organization: Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA – sequence: 2 givenname: Emiko T.A. surname: Morimoto fullname: Morimoto, Emiko T.A. organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA – sequence: 3 givenname: Hani surname: Goodarzi fullname: Goodarzi, Hani organization: Laboratory of Systems Cancer Biology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA – sequence: 4 givenname: Jennifer T. surname: Liao fullname: Liao, Jennifer T. organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA – sequence: 5 givenname: Sean surname: O’Keeffe fullname: O’Keeffe, Sean organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA – sequence: 6 givenname: Hemali P. surname: Phatnani fullname: Phatnani, Hemali P. organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA – sequence: 7 givenname: Michael surname: Muratet fullname: Muratet, Michael organization: Hudson Alpha Institute for Biotechnology, Huntsville, AL 35806, USA – sequence: 8 givenname: Michael C. surname: Carroll fullname: Carroll, Michael C. organization: Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA – sequence: 9 givenname: Shawn surname: Levy fullname: Levy, Shawn organization: Hudson Alpha Institute for Biotechnology, Huntsville, AL 35806, USA – sequence: 10 givenname: Saeed surname: Tavazoie fullname: Tavazoie, Saeed organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA – sequence: 11 givenname: Richard M. surname: Myers fullname: Myers, Richard M. organization: Hudson Alpha Institute for Biotechnology, Huntsville, AL 35806, USA – sequence: 12 givenname: Tom surname: Maniatis fullname: Maniatis, Tom email: tm2472@cumc.columbia.edu organization: Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23850290$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUcuOFCEUJWaMM47zB8awdFMlUFAPFyadyTh20qOL1jWhqEtLhy5KoIz9A3639NQ4MS6UBY_LOefCOc_R2ehHQOglJSUltH6zLzW4AFPJCK1KUpeEtk_QBWOUFpTx5uyP_Tm6inFP8qgJpR1_hs5Z1QrCOnKBfq7wR5iDH2AHIwSVrB-L7QTaGqvxba4VNz-mADHmC7y1u1GlOQD2Bq_0nMAd8Tp6pxIM-M7q4HfOKmyCP2A14tXh6FPw09estcmYoBzeagfBRxvxnZ8j5HkA9wI9NcpFuHpYL9GX9zefrz8Um0-36-vVptC84aloSddSaHRPWGOA675lpgPBeN9pUmtBWc_7Wp1OTT8Iw5iAoWONqoEIU9HqEq0X3cGrvZyCPahwlF5ZeV_wYSdVSDY_UTYtEy1jtRK0540QnTCQW1RVIyhhtM9arxetKfhvM8QkDzbmWJwaIf9MUk5FTbLRbYa-eoDO_QGGx8a_c8gAvgCygzEGMI8QSuQpcbmXS-LylLgktcyJZ9rbv2japvsMU1DW_Y_8biFDNvy7hSCjtjBqGGwAnbIj9t8CvwAT9ckB |
CitedBy_id | crossref_primary_10_1002_glia_23678 crossref_primary_10_1186_s40478_018_0584_3 crossref_primary_10_5692_clinicalneurol_54_1128 crossref_primary_10_1038_s41467_025_56124_1 crossref_primary_10_3389_fnins_2020_00679 crossref_primary_10_1038_s42003_023_05124_2 crossref_primary_10_1186_s40478_015_0203_5 crossref_primary_10_1016_j_neuroscience_2014_05_061 crossref_primary_10_1016_j_neuint_2020_104924 crossref_primary_10_1016_j_pneurobio_2018_09_007 crossref_primary_10_1038_s41467_020_15644_8 crossref_primary_10_1523_JNEUROSCI_3644_14_2015 crossref_primary_10_1007_s12035_024_04281_7 crossref_primary_10_3389_fnins_2023_1277399 crossref_primary_10_1083_jcb_201709069 crossref_primary_10_1093_brain_awx113 crossref_primary_10_1038_nrn3722 crossref_primary_10_3390_nu12061824 crossref_primary_10_1002_glia_23787 crossref_primary_10_1038_nm_4397 crossref_primary_10_1016_j_semcdb_2020_08_001 crossref_primary_10_1007_s00401_014_1330_y crossref_primary_10_1093_hmg_ddy112 crossref_primary_10_1002_jnr_23773 crossref_primary_10_1016_j_jneumeth_2016_07_018 crossref_primary_10_1007_s13311_014_0329_3 crossref_primary_10_1016_j_immuni_2017_08_008 crossref_primary_10_1016_j_celrep_2025_115402 crossref_primary_10_1089_ars_2017_7271 crossref_primary_10_1002_ana_24304 crossref_primary_10_1002_mus_26385 crossref_primary_10_3389_fncel_2018_00488 crossref_primary_10_1038_s41591_021_01295_9 crossref_primary_10_3390_biom10091228 crossref_primary_10_1002_glia_24622 crossref_primary_10_3390_ijms242115613 crossref_primary_10_1016_j_pneurobio_2020_101971 crossref_primary_10_1016_j_celrep_2017_12_066 crossref_primary_10_1186_s40364_024_00624_7 crossref_primary_10_1186_s12974_024_03042_6 crossref_primary_10_1038_nrd_2015_14 crossref_primary_10_3389_fnmol_2019_00258 crossref_primary_10_3390_ijms18102135 crossref_primary_10_1007_s12272_022_01406_1 crossref_primary_10_1134_S0026893319050054 crossref_primary_10_1007_s00018_016_2170_9 crossref_primary_10_1073_pnas_1704294114 crossref_primary_10_3389_fcell_2021_634355 crossref_primary_10_1016_j_jneuroim_2023_578019 crossref_primary_10_1371_journal_pone_0157727 crossref_primary_10_1016_j_mcn_2020_103524 crossref_primary_10_1038_s41590_018_0212_1 crossref_primary_10_3389_fnagi_2023_1047897 crossref_primary_10_1002_glia_23767 crossref_primary_10_1038_nri_2017_125 crossref_primary_10_4137_BBI_S33124 crossref_primary_10_1186_s12987_023_00490_9 crossref_primary_10_1371_journal_pone_0296959 crossref_primary_10_3389_fneur_2017_00075 crossref_primary_10_1007_s12035_018_0970_7 crossref_primary_10_1073_pnas_2116241119 crossref_primary_10_1111_cen3_12309 crossref_primary_10_1016_j_freeradbiomed_2014_07_033 crossref_primary_10_1038_s41467_023_39077_1 crossref_primary_10_1002_mus_26289 crossref_primary_10_1186_s13073_024_01321_8 crossref_primary_10_1093_brain_awv066 crossref_primary_10_1038_s41593_020_00718_z crossref_primary_10_1007_s11357_019_00133_8 crossref_primary_10_1016_j_neuroscience_2018_12_021 crossref_primary_10_1111_cns_13637 crossref_primary_10_1016_j_neuron_2022_10_020 crossref_primary_10_1007_s12640_020_00191_3 crossref_primary_10_3390_biom11121774 crossref_primary_10_1002_glia_22780 crossref_primary_10_1002_glia_22782 crossref_primary_10_1186_s12974_019_1672_4 crossref_primary_10_1038_s41593_022_01205_3 crossref_primary_10_1073_pnas_1405839111 crossref_primary_10_1038_nrn3880 crossref_primary_10_1002_ana_24618 crossref_primary_10_1038_ncomms11295 crossref_primary_10_3390_ijms25020967 crossref_primary_10_1038_mi_2015_84 crossref_primary_10_3390_ijms18102072 crossref_primary_10_1097_j_pain_0000000000001394 crossref_primary_10_1186_s13024_022_00525_z crossref_primary_10_1002_glia_22654 crossref_primary_10_1093_braincomms_fcaf087 crossref_primary_10_1016_j_molmed_2018_11_004 crossref_primary_10_1016_j_jneuroim_2017_11_002 crossref_primary_10_3389_fimmu_2020_00430 crossref_primary_10_1073_pnas_2308214120 crossref_primary_10_1186_s40168_022_01232_z crossref_primary_10_1080_14728222_2021_1934447 crossref_primary_10_14336_AD_2023_0519 crossref_primary_10_3390_ijms252010951 crossref_primary_10_1073_pnas_1520639112 crossref_primary_10_1007_s10048_018_0553_9 crossref_primary_10_1016_j_omtm_2024_101312 crossref_primary_10_1038_srep25663 crossref_primary_10_1007_s12640_017_9790_1 crossref_primary_10_3389_fnins_2020_00575 crossref_primary_10_1186_s40478_019_0665_y crossref_primary_10_3389_fncel_2021_659843 crossref_primary_10_1177_2472555218786210 crossref_primary_10_1038_s41598_021_88675_w crossref_primary_10_3389_fnins_2019_00758 crossref_primary_10_3389_fncel_2018_00172 crossref_primary_10_1177_1073858418800996 crossref_primary_10_2174_1381612825666190722114248 crossref_primary_10_1084_jem_20142322 crossref_primary_10_1038_s41582_024_01046_7 crossref_primary_10_3389_fncel_2019_00181 crossref_primary_10_1159_000516926 crossref_primary_10_1002_glia_23962 crossref_primary_10_1016_j_neulet_2020_135164 crossref_primary_10_1002_glia_23966 crossref_primary_10_1016_j_molmet_2018_11_010 crossref_primary_10_1038_s41593_018_0083_7 crossref_primary_10_3389_fnins_2019_00532 crossref_primary_10_1016_j_pneurobio_2015_05_003 crossref_primary_10_3389_fneur_2023_1103416 crossref_primary_10_1186_s12974_024_03063_1 crossref_primary_10_1073_pnas_1318309110 crossref_primary_10_1016_j_neuint_2020_104714 crossref_primary_10_1016_j_immuni_2020_09_018 crossref_primary_10_1002_glia_23717 crossref_primary_10_1038_s41598_018_31132_y crossref_primary_10_1038_s42003_021_02034_z crossref_primary_10_3390_ijms21249441 crossref_primary_10_1038_ni_3325 crossref_primary_10_1038_s41537_021_00174_z crossref_primary_10_22141_2224_0721_19_5_2023_1296 crossref_primary_10_1007_s11064_020_02999_z crossref_primary_10_1016_j_neuroscience_2021_10_025 crossref_primary_10_1016_j_bbi_2017_10_003 crossref_primary_10_7554_eLife_57495 crossref_primary_10_1523_JNEUROSCI_1523_19_2019 crossref_primary_10_1177_2472555217691450 crossref_primary_10_1007_s12035_018_1156_z crossref_primary_10_1016_j_neuron_2018_05_014 crossref_primary_10_1007_s12035_016_0245_0 crossref_primary_10_3389_fpsyt_2018_00726 crossref_primary_10_1186_s13024_022_00588_y crossref_primary_10_1111_cen3_12479 crossref_primary_10_3389_fimmu_2024_1412699 crossref_primary_10_7554_eLife_12345 crossref_primary_10_1016_j_neuroscience_2017_12_010 crossref_primary_10_1038_s41467_018_05929_4 crossref_primary_10_1007_s00401_016_1548_y crossref_primary_10_1073_pnas_2025102118 crossref_primary_10_1038_s41422_022_00673_3 crossref_primary_10_1038_s41598_018_26915_2 crossref_primary_10_3390_biomedicines10020237 crossref_primary_10_3389_fimmu_2020_00230 crossref_primary_10_3389_fncel_2016_00310 crossref_primary_10_3389_fnagi_2017_00230 crossref_primary_10_1016_j_bbi_2019_10_009 crossref_primary_10_3389_fnagi_2017_00227 crossref_primary_10_1016_j_fmre_2023_02_025 crossref_primary_10_1016_j_expneurol_2014_05_015 crossref_primary_10_3389_fncel_2020_00163 crossref_primary_10_3389_fncel_2020_00198 crossref_primary_10_1002_glia_23137 crossref_primary_10_1016_j_isci_2024_108872 crossref_primary_10_1038_s42003_022_03128_y crossref_primary_10_1073_pnas_2306731120 crossref_primary_10_1007_s11481_019_09887_6 crossref_primary_10_1016_j_biomaterials_2021_121060 crossref_primary_10_1038_s41593_024_01847_5 crossref_primary_10_1016_j_celrep_2020_107699 crossref_primary_10_1007_s43440_022_00363_2 crossref_primary_10_1186_s12974_020_01849_7 crossref_primary_10_3390_brainsci13091318 crossref_primary_10_1016_j_neuron_2017_04_043 crossref_primary_10_1007_s11481_015_9639_4 crossref_primary_10_2139_ssrn_4065080 crossref_primary_10_1111_bpa_12583 crossref_primary_10_3389_fncel_2020_00066 crossref_primary_10_1016_j_conb_2016_04_003 crossref_primary_10_15252_embr_201846171 crossref_primary_10_3390_cells10030565 crossref_primary_10_1016_j_cell_2024_02_020 crossref_primary_10_1186_s12974_022_02421_1 crossref_primary_10_3390_ijms21186454 crossref_primary_10_1523_JNEUROSCI_1860_14_2014 crossref_primary_10_1002_glia_23484 crossref_primary_10_3389_fimmu_2020_614509 crossref_primary_10_1007_s11064_017_2307_8 crossref_primary_10_1186_s12974_017_0896_4 crossref_primary_10_1093_brain_awaa309 crossref_primary_10_1186_s13024_015_0023_x crossref_primary_10_3389_fncel_2014_00117 crossref_primary_10_1007_s12035_017_0532_4 crossref_primary_10_1016_j_celrep_2025_115382 crossref_primary_10_1038_ni_3585 crossref_primary_10_1007_s00401_016_1534_4 crossref_primary_10_1002_acn3_375 crossref_primary_10_1371_journal_pone_0133704 crossref_primary_10_1002_glia_23477 crossref_primary_10_1172_JCI90609 crossref_primary_10_1111_bpa_12678 crossref_primary_10_1172_JCI90606 crossref_primary_10_3390_ijms241612825 crossref_primary_10_3390_cells11132091 crossref_primary_10_3389_fimmu_2015_00106 crossref_primary_10_1097_CM9_0000000000000309 crossref_primary_10_1186_s13024_022_00531_1 crossref_primary_10_1073_pnas_2119804119 crossref_primary_10_3389_fonc_2022_1006284 crossref_primary_10_3390_ijms22094402 crossref_primary_10_1038_s41467_021_23111_1 crossref_primary_10_1038_s41467_021_25157_7 crossref_primary_10_1016_j_molcel_2023_08_005 crossref_primary_10_3389_fnmol_2017_00421 crossref_primary_10_1080_19490976_2022_2096989 crossref_primary_10_3389_fncel_2020_581950 crossref_primary_10_1016_j_immuni_2019_12_003 crossref_primary_10_1523_JNEUROSCI_2226_22_2023 crossref_primary_10_1186_s13024_018_0296_y crossref_primary_10_1126_sciadv_adi9885 crossref_primary_10_3389_fncel_2019_00109 crossref_primary_10_5812_ans_94205 crossref_primary_10_1002_jnr_23848 crossref_primary_10_1038_s41380_020_00896_z crossref_primary_10_1002_alz_12389 crossref_primary_10_1038_s41467_018_07295_7 crossref_primary_10_1089_neu_2017_5044 crossref_primary_10_1007_s11481_015_9625_x crossref_primary_10_3390_biology11081191 crossref_primary_10_3390_ijms21217923 crossref_primary_10_1038_nn_4030 crossref_primary_10_1084_jem_20132477 crossref_primary_10_1152_physiolgenomics_00075_2016 crossref_primary_10_3389_fimmu_2015_00249 crossref_primary_10_1073_pnas_2112561118 crossref_primary_10_1002_glia_23572 crossref_primary_10_26508_lsa_201900453 crossref_primary_10_1080_14728222_2020_1805734 crossref_primary_10_3389_fnagi_2017_00234 crossref_primary_10_1007_s00281_015_0519_z crossref_primary_10_1016_j_gene_2020_145202 crossref_primary_10_3389_fpsyt_2020_00789 crossref_primary_10_1002_glia_23204 crossref_primary_10_3389_fncel_2018_00215 crossref_primary_10_1186_s13024_018_0271_7 crossref_primary_10_1007_s00018_024_05480_0 crossref_primary_10_1080_21678421_2019_1708949 crossref_primary_10_3390_jcm9010261 crossref_primary_10_1186_s12974_021_02191_2 crossref_primary_10_3390_biomedicines9101393 crossref_primary_10_1126_science_aal3222 crossref_primary_10_1002_glia_24531 crossref_primary_10_3389_fnagi_2017_00242 crossref_primary_10_3389_fncel_2015_00028 crossref_primary_10_1016_j_pneurobio_2020_101805 crossref_primary_10_3389_fncel_2020_00261 crossref_primary_10_1016_j_tins_2022_08_001 crossref_primary_10_1098_rsob_210280 crossref_primary_10_1016_j_molmed_2019_08_013 crossref_primary_10_3389_fneur_2016_00089 crossref_primary_10_1016_j_ajpath_2015_07_016 crossref_primary_10_1038_nn_4338 crossref_primary_10_1002_jcp_30829 crossref_primary_10_1111_bph_13364 crossref_primary_10_1016_j_molmed_2017_04_005 crossref_primary_10_3389_fnmol_2018_00158 crossref_primary_10_3389_fnut_2021_621273 crossref_primary_10_1016_j_stem_2023_07_006 crossref_primary_10_1097_WCO_0000000000001279 crossref_primary_10_1146_annurev_genet_112618_043515 crossref_primary_10_1186_s13024_024_00773_1 crossref_primary_10_1371_journal_ppat_1005551 crossref_primary_10_1371_journal_pone_0148001 crossref_primary_10_1038_s42003_025_07566_2 crossref_primary_10_1016_j_neubiorev_2024_105834 crossref_primary_10_3233_JHD_150163 crossref_primary_10_1007_s12975_020_00857_2 crossref_primary_10_3390_ijms241411251 crossref_primary_10_1111_ejn_13227 crossref_primary_10_3389_fimmu_2018_00405 crossref_primary_10_3389_fnagi_2017_00193 crossref_primary_10_3389_fncel_2019_00307 crossref_primary_10_3390_brainsci11060807 crossref_primary_10_1007_s00011_022_01550_w crossref_primary_10_1042_BST20210203 crossref_primary_10_1002_mus_25733 crossref_primary_10_1113_EP085714 crossref_primary_10_1113_JP272134 crossref_primary_10_2478_ahem_2021_0014 crossref_primary_10_1093_brain_awab250 crossref_primary_10_1038_s41419_024_06903_3 crossref_primary_10_1186_s40478_022_01439_z crossref_primary_10_1038_nn_4597 crossref_primary_10_1186_s12974_020_01822_4 crossref_primary_10_1093_hmg_ddaa209 crossref_primary_10_1016_j_jneuroim_2018_07_003 crossref_primary_10_1038_nature20587 crossref_primary_10_1093_braincomms_fcaa124 crossref_primary_10_3389_fimmu_2019_01170 crossref_primary_10_1523_JNEUROSCI_2567_14_2014 crossref_primary_10_1038_nn_4222 crossref_primary_10_1186_s12974_022_02637_1 crossref_primary_10_3389_fneur_2021_654850 crossref_primary_10_3390_ijms24065240 crossref_primary_10_1038_s41591_021_01311_y crossref_primary_10_7554_eLife_42025 crossref_primary_10_3389_fimmu_2018_01753 crossref_primary_10_1038_s43587_021_00054_2 crossref_primary_10_1002_glia_23083 crossref_primary_10_1016_j_jphs_2020_07_004 crossref_primary_10_3389_fcell_2019_00024 crossref_primary_10_3389_fimmu_2021_675660 crossref_primary_10_3389_fnagi_2021_783431 crossref_primary_10_1111_bph_16408 crossref_primary_10_2174_1871527322666230502123255 crossref_primary_10_1016_j_bbi_2023_06_003 crossref_primary_10_1186_s12974_017_1028_x crossref_primary_10_1016_j_coi_2021_11_006 crossref_primary_10_1186_s13024_018_0301_5 crossref_primary_10_1016_j_immuni_2019_02_007 crossref_primary_10_3389_fnins_2021_742065 crossref_primary_10_1007_s12031_022_02071_1 crossref_primary_10_1111_cen3_12162 crossref_primary_10_1002_glia_23077 crossref_primary_10_1007_s00109_020_01968_x crossref_primary_10_1016_j_neuint_2018_11_006 crossref_primary_10_1186_s12974_024_03100_z crossref_primary_10_1038_s41582_018_0072_1 crossref_primary_10_1084_jem_20180247 crossref_primary_10_1016_j_immuni_2016_02_013 crossref_primary_10_3389_fgeed_2021_644319 crossref_primary_10_1016_j_molmed_2017_03_008 crossref_primary_10_1002_acn3_52087 crossref_primary_10_1002_glia_24274 crossref_primary_10_3390_biom12050603 crossref_primary_10_1016_j_nbd_2019_104710 crossref_primary_10_1038_srep39258 crossref_primary_10_1186_s12864_024_10317_y crossref_primary_10_1093_brain_awy077 crossref_primary_10_1007_s12035_017_0631_2 crossref_primary_10_1002_glia_23295 crossref_primary_10_1186_s13024_016_0133_0 crossref_primary_10_1007_s00702_017_1795_7 crossref_primary_10_1016_j_jneuroim_2018_06_003 crossref_primary_10_1016_j_neuint_2024_105872 crossref_primary_10_3389_fimmu_2018_01728 crossref_primary_10_3389_fimmu_2022_834649 crossref_primary_10_1016_j_neuropharm_2021_108555 crossref_primary_10_1186_s13041_018_0376_5 crossref_primary_10_3233_JAD_190805 crossref_primary_10_1093_braincomms_fcab011 crossref_primary_10_1155_2017_1879437 crossref_primary_10_1016_j_chembiol_2019_10_005 crossref_primary_10_4049_jimmunol_1302915 crossref_primary_10_3389_fphar_2021_671734 crossref_primary_10_1038_s41467_022_35494_w crossref_primary_10_3390_ph11040129 crossref_primary_10_1002_glia_24377 crossref_primary_10_1016_j_pneurobio_2017_04_005 crossref_primary_10_1016_j_brainres_2014_10_031 crossref_primary_10_1038_s41598_020_65998_8 crossref_primary_10_1073_pnas_1615036114 crossref_primary_10_1186_s13041_021_00794_7 crossref_primary_10_3389_fimmu_2017_00198 crossref_primary_10_1002_dvdy_1 crossref_primary_10_1016_j_mcn_2018_01_009 crossref_primary_10_1038_s41593_023_01323_6 crossref_primary_10_1016_j_isci_2024_109145 crossref_primary_10_1016_j_celrep_2019_09_066 crossref_primary_10_1002_glia_22866 crossref_primary_10_1111_bpa_12910 crossref_primary_10_1038_s41418_018_0060_4 crossref_primary_10_1210_er_2016_1007 crossref_primary_10_1080_01677063_2016_1260128 crossref_primary_10_3389_fnagi_2022_1057214 crossref_primary_10_3389_fnmol_2022_1072046 crossref_primary_10_1177_1073858415610541 crossref_primary_10_1038_s41467_018_02926_5 crossref_primary_10_1523_JNEUROSCI_2510_14_2015 crossref_primary_10_3389_fncel_2020_577912 crossref_primary_10_1038_s41593_019_0566_1 crossref_primary_10_1016_j_nbd_2020_105087 crossref_primary_10_3389_fncel_2021_656426 crossref_primary_10_31083_j_jin2204106 crossref_primary_10_3389_fimmu_2018_00803 crossref_primary_10_1016_j_expneurol_2024_114824 crossref_primary_10_1002_glia_70004 crossref_primary_10_1038_s41598_024_51759_4 crossref_primary_10_1016_j_neuroscience_2018_06_046 crossref_primary_10_3389_fnmol_2021_582497 crossref_primary_10_1073_pnas_1525528113 crossref_primary_10_1016_j_nbd_2020_105172 crossref_primary_10_1016_j_resp_2016_02_007 crossref_primary_10_1016_j_neuron_2017_07_010 crossref_primary_10_1038_s41598_020_77564_3 crossref_primary_10_3390_biomedicines10040840 crossref_primary_10_1038_s41467_024_52301_w crossref_primary_10_1080_21505594_2016_1261789 crossref_primary_10_3389_fncel_2022_1045647 crossref_primary_10_1016_j_cell_2018_05_003 crossref_primary_10_1002_glia_22831 crossref_primary_10_3390_ijms23179583 crossref_primary_10_1155_2023_7389508 crossref_primary_10_1186_s13059_016_1005_1 crossref_primary_10_3389_fnins_2023_1308345 crossref_primary_10_1186_s13024_018_0254_8 crossref_primary_10_1523_JNEUROSCI_2939_14_2015 crossref_primary_10_3390_cells10092282 crossref_primary_10_1038_s41598_019_48307_w crossref_primary_10_1111_imr_13083 crossref_primary_10_1186_s12974_016_0602_y crossref_primary_10_1007_s00401_020_02185_z crossref_primary_10_1007_s00018_019_03078_5 crossref_primary_10_1016_j_jneuroim_2023_578033 crossref_primary_10_1146_annurev_immunol_051116_052358 crossref_primary_10_1038_s41593_017_0033_9 crossref_primary_10_1126_sciadv_1701211 crossref_primary_10_3389_fnmol_2022_1013706 crossref_primary_10_3389_fnmol_2023_1142852 crossref_primary_10_15252_embr_201743922 crossref_primary_10_1523_JNEUROSCI_0291_15_2015 crossref_primary_10_1016_j_isci_2021_102700 crossref_primary_10_1186_s12974_024_03043_5 crossref_primary_10_3390_ijms25115707 crossref_primary_10_3389_fphar_2021_654489 crossref_primary_10_1038_s41467_022_35753_w crossref_primary_10_1073_pnas_1901787116 crossref_primary_10_1038_s41419_018_0288_4 crossref_primary_10_1093_cercor_bhae044 crossref_primary_10_3389_fimmu_2017_01905 crossref_primary_10_1002_glia_22810 crossref_primary_10_1111_neup_12235 crossref_primary_10_3389_fnmol_2019_00271 crossref_primary_10_3390_jpm12111817 crossref_primary_10_1186_s12974_020_1706_y crossref_primary_10_1016_j_anl_2019_02_006 crossref_primary_10_1073_pnas_1714175114 crossref_primary_10_1084_jem_20172244 crossref_primary_10_1016_j_brainres_2015_04_047 crossref_primary_10_1038_s41582_021_00487_8 crossref_primary_10_1002_ddr_22254 crossref_primary_10_3389_fnmol_2017_00090 crossref_primary_10_1038_s41467_024_52875_5 crossref_primary_10_1016_j_semcdb_2019_04_014 crossref_primary_10_3390_cells11152364 crossref_primary_10_1093_brain_awu312 crossref_primary_10_1016_j_neuron_2017_06_020 crossref_primary_10_1016_j_bbi_2022_06_004 crossref_primary_10_1038_ni_3703 crossref_primary_10_1038_s41583_018_0057_5 crossref_primary_10_3390_ijms22031495 crossref_primary_10_1111_acel_14393 crossref_primary_10_1186_s40478_023_01561_6 crossref_primary_10_1186_s13024_020_00377_5 crossref_primary_10_1186_s40478_025_01941_0 crossref_primary_10_1016_j_neuropharm_2017_10_035 crossref_primary_10_1016_j_bbr_2019_111910 crossref_primary_10_1016_j_immuni_2017_06_007 crossref_primary_10_1186_s40478_020_01099_x crossref_primary_10_3390_cells10092236 crossref_primary_10_1111_nan_12640 crossref_primary_10_3390_cells10040957 crossref_primary_10_1016_j_tins_2021_04_008 crossref_primary_10_1186_s12974_020_02024_8 crossref_primary_10_1016_j_neubiorev_2021_09_023 crossref_primary_10_1126_scitranslmed_3009351 crossref_primary_10_3389_fimmu_2023_1223096 crossref_primary_10_1016_j_neuron_2014_01_013 crossref_primary_10_1038_s41418_018_0098_3 crossref_primary_10_2174_0113894501316051240821060249 crossref_primary_10_3389_fimmu_2019_03033 crossref_primary_10_1242_dmm_049059 crossref_primary_10_3389_fimmu_2020_583647 crossref_primary_10_1097_j_pain_0000000000000470 crossref_primary_10_3389_fnins_2017_00273 crossref_primary_10_7554_eLife_14295 crossref_primary_10_1016_j_cell_2017_05_018 crossref_primary_10_1016_j_neuron_2014_02_040 crossref_primary_10_1016_j_jneuroim_2020_577318 |
Cites_doi | 10.1038/nature08971 10.1126/science.1110647 10.1038/nn1885 10.1371/journal.pone.0013368 10.1038/ng.557 10.1016/j.jneuroim.2009.02.003 10.1038/nprot.2006.327 10.1007/s11064-008-9657-1 10.1523/JNEUROSCI.0616-08.2008 10.4049/jimmunol.1002695 10.1074/jbc.M110.204040 10.1186/1471-2202-12-91 10.1016/j.molcel.2007.09.027 10.1073/pnas.111152498 10.1038/nri978 10.1016/j.neuron.2012.03.026 10.1007/s00702-009-0271-4 10.1126/science.1062960 10.4049/jimmunol.1102307 10.1016/j.molcel.2009.11.016 10.1016/j.neulet.2011.10.040 10.1073/pnas.1222361110 10.1111/j.1468-1331.2010.03330.x 10.1172/JCI62636 10.1093/brain/awn230 10.1038/nn1715 10.1186/1756-6606-2-5 10.1038/nn1472 10.1126/science.8209258 10.1146/annurev.immunol.021908.132528 10.1073/pnas.0607423103 10.1056/NEJMoa1211851 10.1016/S0301-0082(98)00035-5 10.1038/ni1008-1091 10.1038/nature05894 10.1073/pnas.88.16.7438 10.1016/S1474-4422(07)70270-3 10.1186/1471-2202-10-130 10.1038/nn.3318 10.1523/JNEUROSCI.3494-08.2008 10.1371/journal.pone.0017910 10.1038/nn2015 10.1016/j.nbd.2005.01.012 10.1016/j.immuni.2010.11.009 10.1523/JNEUROSCI.4805-06.2007 10.1038/ni.2419 10.1042/AN20100010 10.1016/j.expneurol.2006.01.026 10.1016/j.neuron.2008.10.001 10.1016/j.brainres.2008.07.067 10.1371/journal.pone.0026921 10.1074/jbc.M508848200 10.1126/science.1086137 10.1001/jamaneurol.2013.579 10.1016/j.neuron.2011.07.021 10.1126/science.1219179 10.1073/pnas.0804610105 10.1186/1742-2094-7-8 10.1016/j.neuron.2004.06.016 10.1002/mus.10191 10.1038/nn2014 10.1186/1750-1326-4-47 10.1111/j.1471-4159.2007.04677.x 10.1002/jnr.20668 10.1007/s11481-009-9171-5 10.1073/pnas.0911405106 10.3233/JAD-2010-1309 10.1016/j.neuron.2011.07.022 10.1073/pnas.88.4.1541 10.1126/science.1123511 10.1093/brain/awr074 10.1126/science.1217697 10.1002/(SICI)1098-1136(199807)23:3<249::AID-GLIA7>3.0.CO;2-# 10.4049/jimmunol.1100421 10.1523/JNEUROSCI.5268-11.2012 10.1073/pnas.0807419105 10.1126/science.1194637 10.1016/j.neuron.2004.06.021 |
ContentType | Journal Article |
Copyright | 2013 The Authors Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2013 The Authors – notice: Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.celrep.2013.06.018 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 401 |
ExternalDocumentID | oai_doaj_org_article_78258226a51b475595fe6c533751021b 23850290 10_1016_j_celrep_2013_06_018 S2211124713002969 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: DP1 NS082099 – fundername: NHGRI NIH HHS grantid: R01 HG003219 – fundername: NCCDPHP CDC HHS grantid: 5DP10D003930 – fundername: NIH HHS grantid: DP1 OD003930 |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXJY AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IPNFZ IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c474t-80981e7cb027fe4cb82f9e524b9c06c512b4b6ab9c07bd5f225ed927a6e05f313 |
IEDL.DBID | DOA |
ISSN | 2211-1247 |
IngestDate | Wed Aug 27 01:29:53 EDT 2025 Fri Jul 11 04:58:03 EDT 2025 Mon Jul 21 06:04:54 EDT 2025 Tue Jul 01 03:07:17 EDT 2025 Thu Apr 24 23:11:05 EDT 2025 Wed May 17 01:06:23 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-80981e7cb027fe4cb82f9e524b9c06c512b4b6ab9c07bd5f225ed927a6e05f313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/78258226a51b475595fe6c533751021b |
PMID | 23850290 |
PQID | 1415608508 |
PQPubID | 23479 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_78258226a51b475595fe6c533751021b proquest_miscellaneous_1415608508 pubmed_primary_23850290 crossref_primary_10_1016_j_celrep_2013_06_018 crossref_citationtrail_10_1016_j_celrep_2013_06_018 elsevier_sciencedirect_doi_10_1016_j_celrep_2013_06_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-07-25 |
PublicationDateYYYYMMDD | 2013-07-25 |
PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-25 day: 25 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2013 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Chiu, Chen, Zheng, Kosaras, Tsiftsoglou, Vartanian, Brown, Carroll (bib13) 2008; 105 Ransohoff, Perry (bib62) 2009; 27 Frank-Cannon, Alto, McAlpine, Tansey (bib25) 2009; 4 Ginhoux, Greter, Leboeuf, Nandi, See, Gokhan, Mehler, Conway, Ng, Stanley (bib27) 2010; 330 Beers, Henkel, Xiao, Zhao, Wang, Yen, Siklos, McKercher, Appel (bib4) 2006; 103 McGeer, McGeer (bib51) 2002; 26 Xiao, Zhao, Beers, Yen, Xie, Henkel, Appel (bib78) 2007; 102 Michelucci, Heurtaux, Grandbarbe, Morga, Heuschling (bib53) 2009; 210 Chiu, Phatnani, Kuligowski, Tapia, Carrasco, Zhang, Maniatis, Carroll (bib14) 2009; 106 Odegaard, Ricardo-Gonzalez, Goforth, Morel, Subramanian, Mukundan, Red Eagle, Vats, Brombacher, Ferrante, Chawla (bib58) 2007; 447 Sargsyan, Blackburn, Barber, Grosskreutz, De Vos, Monk, Shaw (bib67) 2011; 12 Cardona, Huang, Sasse, Ransohoff (bib10) 2006; 1 Rosen, Wexler, Versano, Coppola, Gao, Winden, Oldham, Martens, Zhou, Farese, Geschwind (bib63) 2011; 71 Vaknin, Kunis, Miller, Butovsky, Bukshpan, Beers, Henkel, Yoles, Appel, Schwartz (bib76) 2011; 6 Maruyama, Morino, Ito, Izumi, Kato, Watanabe, Kinoshita, Kamada, Nodera, Suzuki (bib50) 2010; 465 Hall, Oostveen, Gurney (bib36) 1998; 23 Laird, Van Hoecke, De Muynck, Timmers, Van den Bosch, Van Damme, Robberecht (bib44) 2010; 5 Elemento, Slonim, Tavazoie (bib23) 2007; 28 Kaspar, Lladó, Sherkat, Rothstein, Gage (bib42) 2003; 301 Hashimoto, Sun, Rittling, Denhardt, Young (bib38) 2007; 27 Henkel, Beers, Zhao, Appel (bib40) 2009; 4 Narai, Nagano, Ilieva, Shiote, Nagata, Hayashi, Shoji, Abe (bib56) 2005; 82 Gautier, Shay, Miller, Greter, Jakubzick, Ivanov, Helft, Chow, Elpek, Gordonov (bib26) 2012; 13 Beers, Henkel, Zhao, Wang, Huang, Wen, Liao, Appel (bib6) 2011; 134 Graber, Hickey, Harris (bib32) 2010; 7 Liu, Lillo, Jonsson, Vande Velde, Ward, Miller, Subramaniam, Rothstein, Marklund, Andersen (bib46) 2004; 4 Harraz, Marden, Zhou, Zhang, Williams, Sharov, Nelson, Luo, Paulson, Schöneich, Engelhardt (bib37) 2008; 118 Phatnani, Guarnieri, Friedman, Carrasco, Muratet, O'Keeffe, Nwakeze, Pauli-Behn, Newberry, Meadows (bib80) 2013; 110 Steinacker, Hendrich, Sperfeld, Jesse, Lehnert, Pabst, von Arnim, Mottaghy, Uttner, Tumani (bib72) 2009; 116 Schafer, Lehrman, Kautzman, Koyama, Mardinly, Yamasaki, Ransohoff, Greenberg, Barres, Stevens (bib68) 2012; 74 Cramer, Cirrito, Wesson, Lee, Karlo, Zinn, Casali, Restivo, Goebel, James (bib18) 2012; 335 Santambrogio, Belyanskaya, Fischer, Cipriani, Brosnan, Ricciardi-Castagnoli, Stern, Strominger, Riese (bib66) 2001; 98 Cho, Hong, Suh, Kim, Lee, Lee, Lee, Kim, Kim, Jo (bib15) 2008; 131 Gordon (bib29) 2003; 3 Davalos, Grutzendler, Yang, Kim, Zuo, Jung, Littman, Dustin, Gan (bib21) 2005; 8 Dibaj, Steffens, Zschüntzsch, Nadrigny, Schomburg, Kirchhoff, Neusch (bib22) 2011; 6 Appel, Zhao, Beers, Henkel (bib3) 2011; 30 Shell, Hesse, Morris, Milcarek (bib71) 2005; 280 Gurney, Pu, Chiu, Dal Canto, Polchow, Alexander, Caliendo, Hentati, Kwon, Deng (bib35) 1994; 264 Guerreiro, Wojtas, Bras, Carrasquillo, Rogaeva, Majounie, Cruchaga, Sassi, Kauwe, Younkin (bib33) 2013; 368 Praline, Blasco, Vourc’h, Garrigue, Gordon, Camu, Corcia, Andres (bib61) 2011; 18 Calingasan, Chen, Kiaei, Beal (bib9) 2005; 19 Butovsky, Siddiqui, Gabriely, Lanser, Dake, Murugaiyan, Doykan, Wu, Gali, Iyer (bib8) 2012; 122 Pasinelli, Belford, Lennon, Bacskai, Hyman, Trotti, Brown (bib60) 2004; 43 Szanto, Balint, Nagy, Barta, Dezso, Pap, Szeles, Poliska, Oros, Evans (bib74) 2010; 33 Nimmerjahn, Kirchhoff, Helmchen (bib57) 2005; 308 Chabas, Baranzini, Mitchell, Bernard, Rittling, Denhardt, Sobel, Lock, Karpuj, Pedotti (bib12) 2001; 294 Painter, Davis, Hardy, Mathis, Benoist (bib59) 2011; 186 Ryan, Baranowski, Chitramuthu, Malik, Li, Cao, Minotti, Durham, Kay, Shaw (bib64) 2009; 10 Hickman, Allison, El Khoury (bib41) 2008; 28 Cullen, Lindfors, Ng, Paetau, Swinton, Kolodziej, Boston, Saftig, Woulfe, Feany (bib20) 2009; 2 Schulz, Gomez Perdiguero, Chorro, Szabo-Rogers, Cagnard, Kierdorf, Prinz, Wu, Jacobsen, Pollard (bib69) 2012; 336 Alliot, Lecain, Grima, Pessac (bib2) 1991; 88 Wendt, Lübbert, Stichel (bib77) 2008; 1232 Boillée, Yamanaka, Lobsiger, Copeland, Jenkins, Kassiotis, Kollias, Cleveland (bib7) 2006; 312 Goodarzi, Elemento, Tavazoie (bib28) 2009; 36 Sun, Zhou, Halabisky, Lo, Cho, Mueller-Steiner, Devidze, Wang, Grubb, Gan (bib73) 2008; 60 Ajami, Bennett, Krieger, Tetzlaff, Rossi (bib1) 2007; 10 Sedgwick, Schwender, Imrich, Dörries, Butcher, ter Meulen (bib70) 1991; 88 Corcoran, Jabbour, Bhagwandin, Deymier, Theisen, Lybarger (bib17) 2011; 286 Kierdorf, Erny, Goldmann, Sander, Schulz, Perdiguero, Wieghofer, Heinrich, Riemke, Hölscher (bib43) 2013; 16 Heng, Painter (bib39) 2008; 9 Thrash, Torbett, Carson (bib75) 2009; 34 Melchior, Garcia, Hsiung, Lo, Doose, Thrash, Stalder, Staufenbiel, Neumann, Carson (bib52) 2010; 2 Mildner, Schmidt, Nitsche, Merkler, Hanisch, Mack, Heikenwalder, Brück, Priller, Prinz (bib54) 2007; 10 Mizutani, Pino, Saederup, Charo, Ransohoff, Cardona (bib55) 2012; 188 Guerreiro, Lohmann, Bras, Gibbs, Rohrer, Gurunlian, Dursun, Bilgic, Hanagasi, Gurvit (bib34) 2013; 70 Foo, Allen, Bushong, Ventura, Chung, Zhou, Cahoy, Daneman, Zong, Ellisman, Barres (bib24) 2011; 71 Cardona, Pioro, Sasse, Kostenko, Cardona, Dijkstra, Huang, Kidd, Dombrowski, Dutta (bib11) 2006; 9 Comi, Carecchio, Chiocchetti, Nicola, Galimberti, Fenoglio, Cappellano, Monaco, Scarpini, Dianzani (bib16) 2010; 19 Lorenzl, Narr, Angele, Krell, Gregorio, Kiaei, Pfister, Beal (bib47) 2006; 200 Beers, Henkel, Zhao, Wang, Appel (bib5) 2008; 105 Gowing, Philips, Van Wijmeersch, Audet, Dewil, Van Den Bosch, Billiau, Robberecht, Julien (bib31) 2008; 28 Loschko, Heink, Hackl, Dudziak, Reindl, Korn, Krug (bib48) 2011; 187 Mandrekar-Colucci, Karlo, Landreth (bib49) 2012; 32 Sakaguchi, Irie, Kawabata, Yoshida, Maruyama, Kawakami (bib65) 2011; 505 Lincecum, Vieira, Wang, Thompson, De Zutter, Kidd, Moreno, Sanchez, Carrion, Levine (bib45) 2010; 42 Gordon, Moore, Miller, Florence, Verheijde, Doorish, Hilton, Spitalny, MacArthur, Mitsumoto (bib30) 2007; 6 Cuadros, Navascués (bib19) 1998; 56 Guerreiro (10.1016/j.celrep.2013.06.018_bib33) 2013; 368 Alliot (10.1016/j.celrep.2013.06.018_bib2) 1991; 88 Davalos (10.1016/j.celrep.2013.06.018_bib21) 2005; 8 Dibaj (10.1016/j.celrep.2013.06.018_bib22) 2011; 6 Sun (10.1016/j.celrep.2013.06.018_bib73) 2008; 60 Melchior (10.1016/j.celrep.2013.06.018_bib52) 2010; 2 Comi (10.1016/j.celrep.2013.06.018_bib16) 2010; 19 Painter (10.1016/j.celrep.2013.06.018_bib59) 2011; 186 Loschko (10.1016/j.celrep.2013.06.018_bib48) 2011; 187 Elemento (10.1016/j.celrep.2013.06.018_bib23) 2007; 28 Gowing (10.1016/j.celrep.2013.06.018_bib31) 2008; 28 Rosen (10.1016/j.celrep.2013.06.018_bib63) 2011; 71 Phatnani (10.1016/j.celrep.2013.06.018_bib80) 2013; 110 Hall (10.1016/j.celrep.2013.06.018_bib36) 1998; 23 Hashimoto (10.1016/j.celrep.2013.06.018_bib38) 2007; 27 Beers (10.1016/j.celrep.2013.06.018_bib4) 2006; 103 Beers (10.1016/j.celrep.2013.06.018_bib6) 2011; 134 Ginhoux (10.1016/j.celrep.2013.06.018_bib27) 2010; 330 Sedgwick (10.1016/j.celrep.2013.06.018_bib70) 1991; 88 Ajami (10.1016/j.celrep.2013.06.018_bib1) 2007; 10 Graber (10.1016/j.celrep.2013.06.018_bib32) 2010; 7 Chabas (10.1016/j.celrep.2013.06.018_bib12) 2001; 294 Ransohoff (10.1016/j.celrep.2013.06.018_bib62) 2009; 27 Cardona (10.1016/j.celrep.2013.06.018_bib10) 2006; 1 Thrash (10.1016/j.celrep.2013.06.018_bib75) 2009; 34 Kierdorf (10.1016/j.celrep.2013.06.018_bib43) 2013; 16 Nimmerjahn (10.1016/j.celrep.2013.06.018_bib57) 2005; 308 Wendt (10.1016/j.celrep.2013.06.018_bib77) 2008; 1232 Narai (10.1016/j.celrep.2013.06.018_bib56) 2005; 82 Mandrekar-Colucci (10.1016/j.celrep.2013.06.018_bib49) 2012; 32 Odegaard (10.1016/j.celrep.2013.06.018_bib58) 2007; 447 Santambrogio (10.1016/j.celrep.2013.06.018_bib66) 2001; 98 Cardona (10.1016/j.celrep.2013.06.018_bib11) 2006; 9 Xiao (10.1016/j.celrep.2013.06.018_bib78) 2007; 102 Laird (10.1016/j.celrep.2013.06.018_bib44) 2010; 5 Lorenzl (10.1016/j.celrep.2013.06.018_bib47) 2006; 200 Henkel (10.1016/j.celrep.2013.06.018_bib40) 2009; 4 Frank-Cannon (10.1016/j.celrep.2013.06.018_bib25) 2009; 4 Lincecum (10.1016/j.celrep.2013.06.018_bib45) 2010; 42 Mildner (10.1016/j.celrep.2013.06.018_bib54) 2007; 10 Goodarzi (10.1016/j.celrep.2013.06.018_bib28) 2009; 36 Ryan (10.1016/j.celrep.2013.06.018_bib64) 2009; 10 Vaknin (10.1016/j.celrep.2013.06.018_bib76) 2011; 6 Appel (10.1016/j.celrep.2013.06.018_bib3) 2011; 30 Chiu (10.1016/j.celrep.2013.06.018_bib14) 2009; 106 Pasinelli (10.1016/j.celrep.2013.06.018_bib60) 2004; 43 Schulz (10.1016/j.celrep.2013.06.018_bib69) 2012; 336 Gautier (10.1016/j.celrep.2013.06.018_bib26) 2012; 13 Kaspar (10.1016/j.celrep.2013.06.018_bib42) 2003; 301 Steinacker (10.1016/j.celrep.2013.06.018_bib72) 2009; 116 Gurney (10.1016/j.celrep.2013.06.018_bib35) 1994; 264 Butovsky (10.1016/j.celrep.2013.06.018_bib8) 2012; 122 Foo (10.1016/j.celrep.2013.06.018_bib24) 2011; 71 Calingasan (10.1016/j.celrep.2013.06.018_bib9) 2005; 19 Cullen (10.1016/j.celrep.2013.06.018_bib20) 2009; 2 Michelucci (10.1016/j.celrep.2013.06.018_bib53) 2009; 210 Harraz (10.1016/j.celrep.2013.06.018_bib37) 2008; 118 Corcoran (10.1016/j.celrep.2013.06.018_bib17) 2011; 286 Praline (10.1016/j.celrep.2013.06.018_bib61) 2011; 18 Beers (10.1016/j.celrep.2013.06.018_bib5) 2008; 105 Mizutani (10.1016/j.celrep.2013.06.018_bib55) 2012; 188 Sargsyan (10.1016/j.celrep.2013.06.018_bib67) 2011; 12 Szanto (10.1016/j.celrep.2013.06.018_bib74) 2010; 33 Heng (10.1016/j.celrep.2013.06.018_bib39) 2008; 9 Cho (10.1016/j.celrep.2013.06.018_bib15) 2008; 131 McGeer (10.1016/j.celrep.2013.06.018_bib51) 2002; 26 Hickman (10.1016/j.celrep.2013.06.018_bib41) 2008; 28 Chiu (10.1016/j.celrep.2013.06.018_bib13) 2008; 105 Gordon (10.1016/j.celrep.2013.06.018_bib29) 2003; 3 Shell (10.1016/j.celrep.2013.06.018_bib71) 2005; 280 Di Giorgio (10.1016/j.celrep.2013.06.018_bib79) 2007; 10 Boillée (10.1016/j.celrep.2013.06.018_bib7) 2006; 312 Liu (10.1016/j.celrep.2013.06.018_bib46) 2004; 4 Maruyama (10.1016/j.celrep.2013.06.018_bib50) 2010; 465 Sakaguchi (10.1016/j.celrep.2013.06.018_bib65) 2011; 505 Gordon (10.1016/j.celrep.2013.06.018_bib30) 2007; 6 Cuadros (10.1016/j.celrep.2013.06.018_bib19) 1998; 56 Guerreiro (10.1016/j.celrep.2013.06.018_bib34) 2013; 70 Schafer (10.1016/j.celrep.2013.06.018_bib68) 2012; 74 Cramer (10.1016/j.celrep.2013.06.018_bib18) 2012; 335 18219391 - J Clin Invest. 2008 Feb;118(2):659-70 9760700 - Prog Neurobiol. 1998 Oct;56(2):173-89 23318515 - JAMA Neurol. 2013 Jan;70(1):78-84 19731042 - J Neuroimmune Pharmacol. 2009 Dec;4(4):389-98 22632727 - Neuron. 2012 May 24;74(4):691-705 18997009 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17913-8 17980667 - Lancet Neurol. 2007 Dec;6(12):1045-53 18701698 - J Neurosci. 2008 Aug 13;28(33):8354-60 16235250 - J Neurosci Res. 2005 Nov 15;82(4):452-7 15831717 - Science. 2005 May 27;308(5726):1314-8 11721059 - Science. 2001 Nov 23;294(5547):1731-5 16732273 - Nat Neurosci. 2006 Jul;9(7):917-24 21307297 - J Immunol. 2011 Mar 1;186(5):3047-57 21943601 - Neuron. 2011 Sep 22;71(6):1030-42 17964271 - Mol Cell. 2007 Oct 26;28(2):337-50 21596768 - Brain. 2011 May;134(Pt 5):1293-314 17555556 - J Neurochem. 2007 Sep;102(6):2008-19 18026096 - Nat Neurosci. 2007 Dec;10(12):1544-53 17392476 - J Neurosci. 2007 Mar 28;27(13):3603-11 17043238 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):16021-6 8209258 - Science. 1994 Jun 17;264(5166):1772-5 19203374 - Mol Brain. 2009;2:5 21093321 - Immunity. 2010 Nov 24;33(5):699-712 1996355 - Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1541-5 21943126 - BMC Neurosci. 2011;12:91 18819987 - Brain. 2008 Nov;131(Pt 11):3019-33 19860916 - BMC Neurosci. 2009;10:130 21896490 - J Biol Chem. 2011 Oct 28;286(43):37168-80 23150934 - N Engl J Med. 2013 Jan 10;368(2):117-27 18026097 - Nat Neurosci. 2007 Dec;10(12):1538-43 20966214 - Science. 2010 Nov 5;330(6005):841-5 22863620 - J Clin Invest. 2012 Sep;122(9):3063-87 22442384 - Science. 2012 Apr 6;336(6077):86-90 9633809 - Glia. 1998 Jul;23(3):249-56 1651506 - Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7438-42 12362410 - Muscle Nerve. 2002 Oct;26(4):459-70 20428114 - Nature. 2010 May 13;465(7295):223-6 20109233 - J Neuroinflammation. 2010;7:8 21903074 - Neuron. 2011 Sep 8;71(5):799-811 22079988 - J Immunol. 2011 Dec 15;187(12):6346-56 19933335 - Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20960-5 20967127 - PLoS One. 2010;5(10):e13368 18694734 - Brain Res. 2008 Sep 26;1232:7-20 22836247 - J Neurosci. 2012 Jul 25;32(30):10117-28 18800157 - Nat Immunol. 2008 Oct;9(10):1091-4 18957217 - Neuron. 2008 Oct 23;60(2):247-57 20308780 - J Alzheimers Dis. 2010;19(4):1143-8 16207706 - J Biol Chem. 2005 Dec 2;280(48):39950-61 18842883 - J Neurosci. 2008 Oct 8;28(41):10234-44 21251163 - Eur J Neurol. 2011 Aug;18(8):1046-52 17487181 - Nat Protoc. 2006;1(4):1947-51 23023392 - Nat Immunol. 2012 Nov;13(11):1118-28 12907804 - Science. 2003 Aug 8;301(5634):839-42 15837590 - Neurobiol Dis. 2005 Jun-Jul;19(1-2):340-7 16516196 - Exp Neurol. 2006 Jul;200(1):166-71 15895084 - Nat Neurosci. 2005 Jun;8(6):752-8 23334579 - Nat Neurosci. 2013 Mar;16(3):273-80 17515919 - Nature. 2007 Jun 28;447(7148):1116-20 19649690 - J Neural Transm (Vienna). 2009 Sep;116(9):1169-78 18809917 - Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15558-63 21437247 - PLoS One. 2011;6(3):e17910 18404378 - Neurochem Res. 2009 Jan;34(1):38-45 19302036 - Annu Rev Immunol. 2009;27:119-45 16741123 - Science. 2006 Jun 2;312(5778):1389-92 19917131 - Mol Neurodegener. 2009 Nov 16;4:47 20348957 - Nat Genet. 2010 May;42(5):392-9 19269040 - J Neuroimmunol. 2009 May 29;210(1-2):3-12 12511873 - Nat Rev Immunol. 2003 Jan;3(1):23-35 20640189 - ASN Neuro. 2010;2(3):e00037 22323736 - Science. 2012 Mar 23;335(6075):1503-6 22079990 - J Immunol. 2012 Jan 1;188(1):29-36 22073221 - PLoS One. 2011;6(11):e26921 22040667 - Neurosci Lett. 2011 Nov 21;505(3):279-81 21842586 - Acta Myol. 2011 Jun;30(1):4-8 20005852 - Mol Cell. 2009 Dec 11;36(5):900-11 11371643 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6295-300 |
References_xml | – volume: 10 start-page: 1538 year: 2007 end-page: 1543 ident: bib1 article-title: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life publication-title: Nat. Neurosci. – volume: 210 start-page: 3 year: 2009 end-page: 12 ident: bib53 article-title: Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta publication-title: J. Neuroimmunol. – volume: 19 start-page: 340 year: 2005 end-page: 347 ident: bib9 article-title: Beta-amyloid 42 accumulation in the lumbar spinal cord motor neurons of amyotrophic lateral sclerosis patients publication-title: Neurobiol. Dis. – volume: 30 start-page: 4 year: 2011 end-page: 8 ident: bib3 article-title: The microglial-motoneuron dialogue in ALS publication-title: Acta Myol. – volume: 280 start-page: 39950 year: 2005 end-page: 39961 ident: bib71 article-title: Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection publication-title: J. Biol. Chem. – volume: 16 start-page: 273 year: 2013 end-page: 280 ident: bib43 article-title: Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways publication-title: Nat. Neurosci. – volume: 187 start-page: 6346 year: 2011 end-page: 6356 ident: bib48 article-title: Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity publication-title: J. Immunol. – volume: 18 start-page: 1046 year: 2011 end-page: 1052 ident: bib61 article-title: APOE ε4 allele is associated with an increased risk of bulbar-onset amyotrophic lateral sclerosis in men publication-title: Eur. J. Neurol. – volume: 60 start-page: 247 year: 2008 end-page: 257 ident: bib73 article-title: Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer’s disease publication-title: Neuron – volume: 2 start-page: e00037 year: 2010 ident: bib52 article-title: Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer’s disease publication-title: ASN Neuro – volume: 264 start-page: 1772 year: 1994 end-page: 1775 ident: bib35 article-title: Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation publication-title: Science – volume: 36 start-page: 900 year: 2009 end-page: 911 ident: bib28 article-title: Revealing global regulatory perturbations across human cancers publication-title: Mol. Cell – volume: 9 start-page: 1091 year: 2008 end-page: 1094 ident: bib39 article-title: The Immunological Genome Project: networks of gene expression in immune cells publication-title: Nat. Immunol. – volume: 10 start-page: 1544 year: 2007 end-page: 1553 ident: bib54 article-title: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions publication-title: Nat. Neurosci. – volume: 105 start-page: 15558 year: 2008 end-page: 15563 ident: bib5 article-title: CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS publication-title: Proc. Natl. Acad. Sci. USA – volume: 294 start-page: 1731 year: 2001 end-page: 1735 ident: bib12 article-title: The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease publication-title: Science – volume: 71 start-page: 799 year: 2011 end-page: 811 ident: bib24 article-title: Development of a method for the purification and culture of rodent astrocytes publication-title: Neuron – volume: 200 start-page: 166 year: 2006 end-page: 171 ident: bib47 article-title: The matrix metalloproteinases inhibitor Ro 28-2653 [correction of Ro 26-2853] extends survival in transgenic ALS mice publication-title: Exp. Neurol. – volume: 6 start-page: e17910 year: 2011 ident: bib22 article-title: In Vivo imaging reveals distinct inflammatory activity of CNS microglia versus PNS macrophages in a mouse model for ALS publication-title: PLoS ONE – volume: 9 start-page: 917 year: 2006 end-page: 924 ident: bib11 article-title: Control of microglial neurotoxicity by the fractalkine receptor publication-title: Nat. Neurosci. – volume: 5 start-page: e13368 year: 2010 ident: bib44 article-title: Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy publication-title: PLoS ONE – volume: 1 start-page: 1947 year: 2006 end-page: 1951 ident: bib10 article-title: Isolation of murine microglial cells for RNA analysis or flow cytometry publication-title: Nat. Protoc. – volume: 118 start-page: 659 year: 2008 end-page: 670 ident: bib37 article-title: SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model publication-title: J. Clin. Invest. – volume: 26 start-page: 459 year: 2002 end-page: 470 ident: bib51 article-title: Inflammatory processes in amyotrophic lateral sclerosis publication-title: Muscle Nerve – volume: 110 start-page: E756 year: 2013 end-page: E765 ident: bib80 article-title: Intricate interplay between astrocytes and motor neurons in ALS publication-title: Proc. Natl. Acad. Sci. U S A – volume: 98 start-page: 6295 year: 2001 end-page: 6300 ident: bib66 article-title: Developmental plasticity of CNS microglia publication-title: Proc. Natl. Acad. Sci. USA – volume: 74 start-page: 691 year: 2012 end-page: 705 ident: bib68 article-title: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner publication-title: Neuron – volume: 28 start-page: 337 year: 2007 end-page: 350 ident: bib23 article-title: A universal framework for regulatory element discovery across all genomes and data types publication-title: Mol. Cell – volume: 301 start-page: 839 year: 2003 end-page: 842 ident: bib42 article-title: Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model publication-title: Science – volume: 447 start-page: 1116 year: 2007 end-page: 1120 ident: bib58 article-title: Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance publication-title: Nature – volume: 134 start-page: 1293 year: 2011 end-page: 1314 ident: bib6 article-title: Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis publication-title: Brain – volume: 131 start-page: 3019 year: 2008 end-page: 3033 ident: bib15 article-title: Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death publication-title: Brain – volume: 28 start-page: 10234 year: 2008 end-page: 10244 ident: bib31 article-title: Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase publication-title: J. Neurosci. – volume: 335 start-page: 1503 year: 2012 end-page: 1506 ident: bib18 article-title: ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models publication-title: Science – volume: 308 start-page: 1314 year: 2005 end-page: 1318 ident: bib57 article-title: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo publication-title: Science – volume: 43 start-page: 19 year: 2004 end-page: 30 ident: bib60 article-title: Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria publication-title: Neuron – volume: 27 start-page: 3603 year: 2007 end-page: 3611 ident: bib38 article-title: Osteopontin-deficient mice exhibit less inflammation, greater tissue damage, and impaired locomotor recovery from spinal cord injury compared with wild-type controls publication-title: J. Neurosci. – volume: 42 start-page: 392 year: 2010 end-page: 399 ident: bib45 article-title: From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis publication-title: Nat. Genet. – volume: 88 start-page: 1541 year: 1991 end-page: 1545 ident: bib2 article-title: Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain publication-title: Proc. Natl. Acad. Sci. USA – volume: 102 start-page: 2008 year: 2007 end-page: 2019 ident: bib78 article-title: Mutant SOD1(G93A) microglia are more neurotoxic relative to wild-type microglia publication-title: J. Neurochem. – volume: 70 start-page: 78 year: 2013 end-page: 84 ident: bib34 article-title: Using exome sequencing to reveal mutations in publication-title: JAMA Neurol. – volume: 4 start-page: 389 year: 2009 end-page: 398 ident: bib40 article-title: Microglia in ALS: the good, the bad, and the resting publication-title: J. Neuroimmune Pharmacol. – volume: 186 start-page: 3047 year: 2011 end-page: 3057 ident: bib59 article-title: Transcriptomes of the B and T lineages compared by multiplatform microarray profiling publication-title: J. Immunol. – volume: 368 start-page: 117 year: 2013 end-page: 127 ident: bib33 article-title: TREM2 variants in Alzheimer’s disease publication-title: N. Engl. J. Med. – volume: 105 start-page: 17913 year: 2008 end-page: 17918 ident: bib13 article-title: T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS publication-title: Proc. Natl. Acad. Sci. USA – volume: 13 start-page: 1118 year: 2012 end-page: 1128 ident: bib26 article-title: Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages publication-title: Nat. Immunol. – volume: 330 start-page: 841 year: 2010 end-page: 845 ident: bib27 article-title: Fate mapping analysis reveals that adult microglia derive from primitive macrophages publication-title: Science – volume: 23 start-page: 249 year: 1998 end-page: 256 ident: bib36 article-title: Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS publication-title: Glia – volume: 505 start-page: 279 year: 2011 end-page: 281 ident: bib65 article-title: Optineurin with amyotrophic lateral sclerosis-related mutations abrogates inhibition of interferon regulatory factor-3 activation publication-title: Neurosci. Lett. – volume: 116 start-page: 1169 year: 2009 end-page: 1178 ident: bib72 article-title: Concentrations of beta-amyloid precursor protein processing products in cerebrospinal fluid of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration publication-title: J. Neural Transm. – volume: 10 start-page: 130 year: 2009 ident: bib64 article-title: Progranulin is expressed within motor neurons and promotes neuronal cell survival publication-title: BMC Neurosci. – volume: 465 start-page: 223 year: 2010 end-page: 226 ident: bib50 article-title: Mutations of optineurin in amyotrophic lateral sclerosis publication-title: Nature – volume: 27 start-page: 119 year: 2009 end-page: 145 ident: bib62 article-title: Microglial physiology: unique stimuli, specialized responses publication-title: Annu. Rev. Immunol. – volume: 312 start-page: 1389 year: 2006 end-page: 1392 ident: bib7 article-title: Onset and progression in inherited ALS determined by motor neurons and microglia publication-title: Science – volume: 2 start-page: 5 year: 2009 ident: bib20 article-title: Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo publication-title: Mol. Brain – volume: 33 start-page: 699 year: 2010 end-page: 712 ident: bib74 article-title: STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells publication-title: Immunity – volume: 19 start-page: 1143 year: 2010 end-page: 1148 ident: bib16 article-title: Osteopontin is increased in the cerebrospinal fluid of patients with Alzheimer’s disease and its levels correlate with cognitive decline publication-title: J. Alzheimers Dis. – volume: 188 start-page: 29 year: 2012 end-page: 36 ident: bib55 article-title: The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood publication-title: J. Immunol. – volume: 8 start-page: 752 year: 2005 end-page: 758 ident: bib21 article-title: ATP mediates rapid microglial response to local brain injury in vivo publication-title: Nat. Neurosci. – volume: 82 start-page: 452 year: 2005 end-page: 457 ident: bib56 article-title: Prevention of spinal motor neuron death by insulin-like growth factor-1 associating with the signal transduction systems in SODG93A transgenic mice publication-title: J. Neurosci. Res. – volume: 88 start-page: 7438 year: 1991 end-page: 7442 ident: bib70 article-title: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system publication-title: Proc. Natl. Acad. Sci. USA – volume: 34 start-page: 38 year: 2009 end-page: 45 ident: bib75 article-title: Developmental regulation of TREM2 and DAP12 expression in the murine CNS: implications for Nasu-Hakola disease publication-title: Neurochem. Res. – volume: 1232 start-page: 7 year: 2008 end-page: 20 ident: bib77 article-title: Upregulation of cathepsin S in the aging and pathological nervous system of mice publication-title: Brain Res. – volume: 7 start-page: 8 year: 2010 ident: bib32 article-title: Progressive changes in microglia and macrophages in spinal cord and peripheral nerve in the transgenic rat model of amyotrophic lateral sclerosis publication-title: J. Neuroinflammation – volume: 4 start-page: 5 year: 2004 end-page: 17 ident: bib46 article-title: Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria publication-title: Neuron – volume: 336 start-page: 86 year: 2012 end-page: 90 ident: bib69 article-title: A lineage of myeloid cells independent of Myb and hematopoietic stem cells publication-title: Science – volume: 4 start-page: 47 year: 2009 ident: bib25 article-title: Does neuroinflammation fan the flame in neurodegenerative diseases? publication-title: Mol. Neurodegener. – volume: 6 start-page: 1045 year: 2007 end-page: 1053 ident: bib30 article-title: Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial publication-title: Lancet Neurol. – volume: 12 start-page: 91 year: 2011 ident: bib67 article-title: A comparison of in vitro properties of resting SOD1 transgenic microglia reveals evidence of reduced neuroprotective function publication-title: BMC Neurosci. – volume: 6 start-page: e26921 year: 2011 ident: bib76 article-title: Excess circulating alternatively activated myeloid (M2) cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis publication-title: PLoS ONE – volume: 122 start-page: 3063 year: 2012 end-page: 3087 ident: bib8 article-title: Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS publication-title: J. Clin. Invest. – volume: 3 start-page: 23 year: 2003 end-page: 35 ident: bib29 article-title: Alternative activation of macrophages publication-title: Nat. Rev. Immunol. – volume: 106 start-page: 20960 year: 2009 end-page: 20965 ident: bib14 article-title: Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 71 start-page: 1030 year: 2011 end-page: 1042 ident: bib63 article-title: Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling publication-title: Neuron – volume: 103 start-page: 16021 year: 2006 end-page: 16026 ident: bib4 article-title: Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis publication-title: Proc. Natl. Acad. Sci. USA – volume: 32 start-page: 10117 year: 2012 end-page: 10128 ident: bib49 article-title: Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease publication-title: J. Neurosci. – volume: 56 start-page: 173 year: 1998 end-page: 189 ident: bib19 article-title: The origin and differentiation of microglial cells during development publication-title: Prog. Neurobiol. – volume: 286 start-page: 37168 year: 2011 end-page: 37180 ident: bib17 article-title: Ubiquitin-mediated regulation of CD86 protein expression by the ubiquitin ligase membrane-associated RING-CH-1 (MARCH1) publication-title: J. Biol. Chem. – volume: 28 start-page: 8354 year: 2008 end-page: 8360 ident: bib41 article-title: Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice publication-title: J. Neurosci. – volume: 465 start-page: 223 year: 2010 ident: 10.1016/j.celrep.2013.06.018_bib50 article-title: Mutations of optineurin in amyotrophic lateral sclerosis publication-title: Nature doi: 10.1038/nature08971 – volume: 308 start-page: 1314 year: 2005 ident: 10.1016/j.celrep.2013.06.018_bib57 article-title: Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo publication-title: Science doi: 10.1126/science.1110647 – volume: 10 start-page: 608 year: 2007 ident: 10.1016/j.celrep.2013.06.018_bib79 article-title: Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model publication-title: Nat. Neurosci. doi: 10.1038/nn1885 – volume: 5 start-page: e13368 year: 2010 ident: 10.1016/j.celrep.2013.06.018_bib44 article-title: Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy publication-title: PLoS ONE doi: 10.1371/journal.pone.0013368 – volume: 118 start-page: 659 year: 2008 ident: 10.1016/j.celrep.2013.06.018_bib37 article-title: SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model publication-title: J. Clin. Invest. – volume: 42 start-page: 392 year: 2010 ident: 10.1016/j.celrep.2013.06.018_bib45 article-title: From transcriptome analysis to therapeutic anti-CD40L treatment in the SOD1 model of amyotrophic lateral sclerosis publication-title: Nat. Genet. doi: 10.1038/ng.557 – volume: 210 start-page: 3 year: 2009 ident: 10.1016/j.celrep.2013.06.018_bib53 article-title: Characterization of the microglial phenotype under specific pro-inflammatory and anti-inflammatory conditions: Effects of oligomeric and fibrillar amyloid-beta publication-title: J. Neuroimmunol. doi: 10.1016/j.jneuroim.2009.02.003 – volume: 1 start-page: 1947 year: 2006 ident: 10.1016/j.celrep.2013.06.018_bib10 article-title: Isolation of murine microglial cells for RNA analysis or flow cytometry publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.327 – volume: 34 start-page: 38 year: 2009 ident: 10.1016/j.celrep.2013.06.018_bib75 article-title: Developmental regulation of TREM2 and DAP12 expression in the murine CNS: implications for Nasu-Hakola disease publication-title: Neurochem. Res. doi: 10.1007/s11064-008-9657-1 – volume: 28 start-page: 8354 year: 2008 ident: 10.1016/j.celrep.2013.06.018_bib41 article-title: Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0616-08.2008 – volume: 186 start-page: 3047 year: 2011 ident: 10.1016/j.celrep.2013.06.018_bib59 article-title: Transcriptomes of the B and T lineages compared by multiplatform microarray profiling publication-title: J. Immunol. doi: 10.4049/jimmunol.1002695 – volume: 286 start-page: 37168 year: 2011 ident: 10.1016/j.celrep.2013.06.018_bib17 article-title: Ubiquitin-mediated regulation of CD86 protein expression by the ubiquitin ligase membrane-associated RING-CH-1 (MARCH1) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.204040 – volume: 12 start-page: 91 year: 2011 ident: 10.1016/j.celrep.2013.06.018_bib67 article-title: A comparison of in vitro properties of resting SOD1 transgenic microglia reveals evidence of reduced neuroprotective function publication-title: BMC Neurosci. doi: 10.1186/1471-2202-12-91 – volume: 28 start-page: 337 year: 2007 ident: 10.1016/j.celrep.2013.06.018_bib23 article-title: A universal framework for regulatory element discovery across all genomes and data types publication-title: Mol. Cell doi: 10.1016/j.molcel.2007.09.027 – volume: 98 start-page: 6295 year: 2001 ident: 10.1016/j.celrep.2013.06.018_bib66 article-title: Developmental plasticity of CNS microglia publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.111152498 – volume: 3 start-page: 23 year: 2003 ident: 10.1016/j.celrep.2013.06.018_bib29 article-title: Alternative activation of macrophages publication-title: Nat. Rev. Immunol. doi: 10.1038/nri978 – volume: 74 start-page: 691 year: 2012 ident: 10.1016/j.celrep.2013.06.018_bib68 article-title: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner publication-title: Neuron doi: 10.1016/j.neuron.2012.03.026 – volume: 116 start-page: 1169 year: 2009 ident: 10.1016/j.celrep.2013.06.018_bib72 article-title: Concentrations of beta-amyloid precursor protein processing products in cerebrospinal fluid of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration publication-title: J. Neural Transm. doi: 10.1007/s00702-009-0271-4 – volume: 294 start-page: 1731 year: 2001 ident: 10.1016/j.celrep.2013.06.018_bib12 article-title: The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease publication-title: Science doi: 10.1126/science.1062960 – volume: 187 start-page: 6346 year: 2011 ident: 10.1016/j.celrep.2013.06.018_bib48 article-title: Antigen targeting to plasmacytoid dendritic cells via Siglec-H inhibits Th cell-dependent autoimmunity publication-title: J. Immunol. doi: 10.4049/jimmunol.1102307 – volume: 36 start-page: 900 year: 2009 ident: 10.1016/j.celrep.2013.06.018_bib28 article-title: Revealing global regulatory perturbations across human cancers publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.11.016 – volume: 505 start-page: 279 year: 2011 ident: 10.1016/j.celrep.2013.06.018_bib65 article-title: Optineurin with amyotrophic lateral sclerosis-related mutations abrogates inhibition of interferon regulatory factor-3 activation publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2011.10.040 – volume: 110 start-page: E756 year: 2013 ident: 10.1016/j.celrep.2013.06.018_bib80 article-title: Intricate interplay between astrocytes and motor neurons in ALS publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1222361110 – volume: 18 start-page: 1046 year: 2011 ident: 10.1016/j.celrep.2013.06.018_bib61 article-title: APOE ε4 allele is associated with an increased risk of bulbar-onset amyotrophic lateral sclerosis in men publication-title: Eur. J. Neurol. doi: 10.1111/j.1468-1331.2010.03330.x – volume: 122 start-page: 3063 year: 2012 ident: 10.1016/j.celrep.2013.06.018_bib8 article-title: Modulating inflammatory monocytes with a unique microRNA gene signature ameliorates murine ALS publication-title: J. Clin. Invest. doi: 10.1172/JCI62636 – volume: 131 start-page: 3019 year: 2008 ident: 10.1016/j.celrep.2013.06.018_bib15 article-title: Role of microglial IKKbeta in kainic acid-induced hippocampal neuronal cell death publication-title: Brain doi: 10.1093/brain/awn230 – volume: 9 start-page: 917 year: 2006 ident: 10.1016/j.celrep.2013.06.018_bib11 article-title: Control of microglial neurotoxicity by the fractalkine receptor publication-title: Nat. Neurosci. doi: 10.1038/nn1715 – volume: 2 start-page: 5 year: 2009 ident: 10.1016/j.celrep.2013.06.018_bib20 article-title: Cathepsin D expression level affects alpha-synuclein processing, aggregation, and toxicity in vivo publication-title: Mol. Brain doi: 10.1186/1756-6606-2-5 – volume: 8 start-page: 752 year: 2005 ident: 10.1016/j.celrep.2013.06.018_bib21 article-title: ATP mediates rapid microglial response to local brain injury in vivo publication-title: Nat. Neurosci. doi: 10.1038/nn1472 – volume: 264 start-page: 1772 year: 1994 ident: 10.1016/j.celrep.2013.06.018_bib35 article-title: Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation publication-title: Science doi: 10.1126/science.8209258 – volume: 27 start-page: 119 year: 2009 ident: 10.1016/j.celrep.2013.06.018_bib62 article-title: Microglial physiology: unique stimuli, specialized responses publication-title: Annu. Rev. Immunol. doi: 10.1146/annurev.immunol.021908.132528 – volume: 103 start-page: 16021 year: 2006 ident: 10.1016/j.celrep.2013.06.018_bib4 article-title: Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0607423103 – volume: 368 start-page: 117 year: 2013 ident: 10.1016/j.celrep.2013.06.018_bib33 article-title: TREM2 variants in Alzheimer’s disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1211851 – volume: 56 start-page: 173 year: 1998 ident: 10.1016/j.celrep.2013.06.018_bib19 article-title: The origin and differentiation of microglial cells during development publication-title: Prog. Neurobiol. doi: 10.1016/S0301-0082(98)00035-5 – volume: 9 start-page: 1091 year: 2008 ident: 10.1016/j.celrep.2013.06.018_bib39 article-title: The Immunological Genome Project: networks of gene expression in immune cells publication-title: Nat. Immunol. doi: 10.1038/ni1008-1091 – volume: 447 start-page: 1116 year: 2007 ident: 10.1016/j.celrep.2013.06.018_bib58 article-title: Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance publication-title: Nature doi: 10.1038/nature05894 – volume: 88 start-page: 7438 year: 1991 ident: 10.1016/j.celrep.2013.06.018_bib70 article-title: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.88.16.7438 – volume: 6 start-page: 1045 year: 2007 ident: 10.1016/j.celrep.2013.06.018_bib30 article-title: Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial publication-title: Lancet Neurol. doi: 10.1016/S1474-4422(07)70270-3 – volume: 10 start-page: 130 year: 2009 ident: 10.1016/j.celrep.2013.06.018_bib64 article-title: Progranulin is expressed within motor neurons and promotes neuronal cell survival publication-title: BMC Neurosci. doi: 10.1186/1471-2202-10-130 – volume: 16 start-page: 273 year: 2013 ident: 10.1016/j.celrep.2013.06.018_bib43 article-title: Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways publication-title: Nat. Neurosci. doi: 10.1038/nn.3318 – volume: 28 start-page: 10234 year: 2008 ident: 10.1016/j.celrep.2013.06.018_bib31 article-title: Ablation of proliferating microglia does not affect motor neuron degeneration in amyotrophic lateral sclerosis caused by mutant superoxide dismutase publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3494-08.2008 – volume: 6 start-page: e17910 year: 2011 ident: 10.1016/j.celrep.2013.06.018_bib22 article-title: In Vivo imaging reveals distinct inflammatory activity of CNS microglia versus PNS macrophages in a mouse model for ALS publication-title: PLoS ONE doi: 10.1371/journal.pone.0017910 – volume: 30 start-page: 4 year: 2011 ident: 10.1016/j.celrep.2013.06.018_bib3 article-title: The microglial-motoneuron dialogue in ALS publication-title: Acta Myol. – volume: 10 start-page: 1544 year: 2007 ident: 10.1016/j.celrep.2013.06.018_bib54 article-title: Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions publication-title: Nat. Neurosci. doi: 10.1038/nn2015 – volume: 19 start-page: 340 year: 2005 ident: 10.1016/j.celrep.2013.06.018_bib9 article-title: Beta-amyloid 42 accumulation in the lumbar spinal cord motor neurons of amyotrophic lateral sclerosis patients publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2005.01.012 – volume: 33 start-page: 699 year: 2010 ident: 10.1016/j.celrep.2013.06.018_bib74 article-title: STAT6 transcription factor is a facilitator of the nuclear receptor PPARγ-regulated gene expression in macrophages and dendritic cells publication-title: Immunity doi: 10.1016/j.immuni.2010.11.009 – volume: 27 start-page: 3603 year: 2007 ident: 10.1016/j.celrep.2013.06.018_bib38 article-title: Osteopontin-deficient mice exhibit less inflammation, greater tissue damage, and impaired locomotor recovery from spinal cord injury compared with wild-type controls publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4805-06.2007 – volume: 13 start-page: 1118 year: 2012 ident: 10.1016/j.celrep.2013.06.018_bib26 article-title: Gene-expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages publication-title: Nat. Immunol. doi: 10.1038/ni.2419 – volume: 2 start-page: e00037 year: 2010 ident: 10.1016/j.celrep.2013.06.018_bib52 article-title: Dual induction of TREM2 and tolerance-related transcript, Tmem176b, in amyloid transgenic mice: implications for vaccine-based therapies for Alzheimer’s disease publication-title: ASN Neuro doi: 10.1042/AN20100010 – volume: 200 start-page: 166 year: 2006 ident: 10.1016/j.celrep.2013.06.018_bib47 article-title: The matrix metalloproteinases inhibitor Ro 28-2653 [correction of Ro 26-2853] extends survival in transgenic ALS mice publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2006.01.026 – volume: 60 start-page: 247 year: 2008 ident: 10.1016/j.celrep.2013.06.018_bib73 article-title: Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer’s disease publication-title: Neuron doi: 10.1016/j.neuron.2008.10.001 – volume: 1232 start-page: 7 year: 2008 ident: 10.1016/j.celrep.2013.06.018_bib77 article-title: Upregulation of cathepsin S in the aging and pathological nervous system of mice publication-title: Brain Res. doi: 10.1016/j.brainres.2008.07.067 – volume: 6 start-page: e26921 year: 2011 ident: 10.1016/j.celrep.2013.06.018_bib76 article-title: Excess circulating alternatively activated myeloid (M2) cells accelerate ALS progression while inhibiting experimental autoimmune encephalomyelitis publication-title: PLoS ONE doi: 10.1371/journal.pone.0026921 – volume: 280 start-page: 39950 year: 2005 ident: 10.1016/j.celrep.2013.06.018_bib71 article-title: Elevated levels of the 64-kDa cleavage stimulatory factor (CstF-64) in lipopolysaccharide-stimulated macrophages influence gene expression and induce alternative poly(A) site selection publication-title: J. Biol. Chem. doi: 10.1074/jbc.M508848200 – volume: 301 start-page: 839 year: 2003 ident: 10.1016/j.celrep.2013.06.018_bib42 article-title: Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model publication-title: Science doi: 10.1126/science.1086137 – volume: 70 start-page: 78 year: 2013 ident: 10.1016/j.celrep.2013.06.018_bib34 article-title: Using exome sequencing to reveal mutations in TREM2 presenting as a frontotemporal dementia-like syndrome without bone involvement publication-title: JAMA Neurol. doi: 10.1001/jamaneurol.2013.579 – volume: 71 start-page: 1030 year: 2011 ident: 10.1016/j.celrep.2013.06.018_bib63 article-title: Functional genomic analyses identify pathways dysregulated by progranulin deficiency, implicating Wnt signaling publication-title: Neuron doi: 10.1016/j.neuron.2011.07.021 – volume: 336 start-page: 86 year: 2012 ident: 10.1016/j.celrep.2013.06.018_bib69 article-title: A lineage of myeloid cells independent of Myb and hematopoietic stem cells publication-title: Science doi: 10.1126/science.1219179 – volume: 105 start-page: 17913 year: 2008 ident: 10.1016/j.celrep.2013.06.018_bib13 article-title: T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0804610105 – volume: 7 start-page: 8 year: 2010 ident: 10.1016/j.celrep.2013.06.018_bib32 article-title: Progressive changes in microglia and macrophages in spinal cord and peripheral nerve in the transgenic rat model of amyotrophic lateral sclerosis publication-title: J. Neuroinflammation doi: 10.1186/1742-2094-7-8 – volume: 4 start-page: 5 year: 2004 ident: 10.1016/j.celrep.2013.06.018_bib46 article-title: Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria publication-title: Neuron doi: 10.1016/j.neuron.2004.06.016 – volume: 26 start-page: 459 year: 2002 ident: 10.1016/j.celrep.2013.06.018_bib51 article-title: Inflammatory processes in amyotrophic lateral sclerosis publication-title: Muscle Nerve doi: 10.1002/mus.10191 – volume: 10 start-page: 1538 year: 2007 ident: 10.1016/j.celrep.2013.06.018_bib1 article-title: Local self-renewal can sustain CNS microglia maintenance and function throughout adult life publication-title: Nat. Neurosci. doi: 10.1038/nn2014 – volume: 4 start-page: 47 year: 2009 ident: 10.1016/j.celrep.2013.06.018_bib25 article-title: Does neuroinflammation fan the flame in neurodegenerative diseases? publication-title: Mol. Neurodegener. doi: 10.1186/1750-1326-4-47 – volume: 102 start-page: 2008 year: 2007 ident: 10.1016/j.celrep.2013.06.018_bib78 article-title: Mutant SOD1(G93A) microglia are more neurotoxic relative to wild-type microglia publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2007.04677.x – volume: 82 start-page: 452 year: 2005 ident: 10.1016/j.celrep.2013.06.018_bib56 article-title: Prevention of spinal motor neuron death by insulin-like growth factor-1 associating with the signal transduction systems in SODG93A transgenic mice publication-title: J. Neurosci. Res. doi: 10.1002/jnr.20668 – volume: 4 start-page: 389 year: 2009 ident: 10.1016/j.celrep.2013.06.018_bib40 article-title: Microglia in ALS: the good, the bad, and the resting publication-title: J. Neuroimmune Pharmacol. doi: 10.1007/s11481-009-9171-5 – volume: 106 start-page: 20960 year: 2009 ident: 10.1016/j.celrep.2013.06.018_bib14 article-title: Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0911405106 – volume: 19 start-page: 1143 year: 2010 ident: 10.1016/j.celrep.2013.06.018_bib16 article-title: Osteopontin is increased in the cerebrospinal fluid of patients with Alzheimer’s disease and its levels correlate with cognitive decline publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2010-1309 – volume: 71 start-page: 799 year: 2011 ident: 10.1016/j.celrep.2013.06.018_bib24 article-title: Development of a method for the purification and culture of rodent astrocytes publication-title: Neuron doi: 10.1016/j.neuron.2011.07.022 – volume: 88 start-page: 1541 year: 1991 ident: 10.1016/j.celrep.2013.06.018_bib2 article-title: Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.88.4.1541 – volume: 312 start-page: 1389 year: 2006 ident: 10.1016/j.celrep.2013.06.018_bib7 article-title: Onset and progression in inherited ALS determined by motor neurons and microglia publication-title: Science doi: 10.1126/science.1123511 – volume: 134 start-page: 1293 year: 2011 ident: 10.1016/j.celrep.2013.06.018_bib6 article-title: Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis publication-title: Brain doi: 10.1093/brain/awr074 – volume: 335 start-page: 1503 year: 2012 ident: 10.1016/j.celrep.2013.06.018_bib18 article-title: ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models publication-title: Science doi: 10.1126/science.1217697 – volume: 23 start-page: 249 year: 1998 ident: 10.1016/j.celrep.2013.06.018_bib36 article-title: Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS publication-title: Glia doi: 10.1002/(SICI)1098-1136(199807)23:3<249::AID-GLIA7>3.0.CO;2-# – volume: 188 start-page: 29 year: 2012 ident: 10.1016/j.celrep.2013.06.018_bib55 article-title: The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood publication-title: J. Immunol. doi: 10.4049/jimmunol.1100421 – volume: 32 start-page: 10117 year: 2012 ident: 10.1016/j.celrep.2013.06.018_bib49 article-title: Mechanisms underlying the rapid peroxisome proliferator-activated receptor-gamma-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5268-11.2012 – volume: 105 start-page: 15558 year: 2008 ident: 10.1016/j.celrep.2013.06.018_bib5 article-title: CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0807419105 – volume: 330 start-page: 841 year: 2010 ident: 10.1016/j.celrep.2013.06.018_bib27 article-title: Fate mapping analysis reveals that adult microglia derive from primitive macrophages publication-title: Science doi: 10.1126/science.1194637 – volume: 43 start-page: 19 year: 2004 ident: 10.1016/j.celrep.2013.06.018_bib60 article-title: Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria publication-title: Neuron doi: 10.1016/j.neuron.2004.06.021 – reference: 23150934 - N Engl J Med. 2013 Jan 10;368(2):117-27 – reference: 18809917 - Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15558-63 – reference: 22040667 - Neurosci Lett. 2011 Nov 21;505(3):279-81 – reference: 20428114 - Nature. 2010 May 13;465(7295):223-6 – reference: 19203374 - Mol Brain. 2009;2:5 – reference: 21943601 - Neuron. 2011 Sep 22;71(6):1030-42 – reference: 18694734 - Brain Res. 2008 Sep 26;1232:7-20 – reference: 18842883 - J Neurosci. 2008 Oct 8;28(41):10234-44 – reference: 23318515 - JAMA Neurol. 2013 Jan;70(1):78-84 – reference: 18404378 - Neurochem Res. 2009 Jan;34(1):38-45 – reference: 17043238 - Proc Natl Acad Sci U S A. 2006 Oct 24;103(43):16021-6 – reference: 22863620 - J Clin Invest. 2012 Sep;122(9):3063-87 – reference: 18819987 - Brain. 2008 Nov;131(Pt 11):3019-33 – reference: 20348957 - Nat Genet. 2010 May;42(5):392-9 – reference: 19917131 - Mol Neurodegener. 2009 Nov 16;4:47 – reference: 18800157 - Nat Immunol. 2008 Oct;9(10):1091-4 – reference: 22079990 - J Immunol. 2012 Jan 1;188(1):29-36 – reference: 1651506 - Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7438-42 – reference: 17487181 - Nat Protoc. 2006;1(4):1947-51 – reference: 22079988 - J Immunol. 2011 Dec 15;187(12):6346-56 – reference: 21437247 - PLoS One. 2011;6(3):e17910 – reference: 18701698 - J Neurosci. 2008 Aug 13;28(33):8354-60 – reference: 15895084 - Nat Neurosci. 2005 Jun;8(6):752-8 – reference: 16741123 - Science. 2006 Jun 2;312(5778):1389-92 – reference: 16235250 - J Neurosci Res. 2005 Nov 15;82(4):452-7 – reference: 23023392 - Nat Immunol. 2012 Nov;13(11):1118-28 – reference: 19860916 - BMC Neurosci. 2009;10:130 – reference: 12511873 - Nat Rev Immunol. 2003 Jan;3(1):23-35 – reference: 19933335 - Proc Natl Acad Sci U S A. 2009 Dec 8;106(49):20960-5 – reference: 23334579 - Nat Neurosci. 2013 Mar;16(3):273-80 – reference: 16732273 - Nat Neurosci. 2006 Jul;9(7):917-24 – reference: 20308780 - J Alzheimers Dis. 2010;19(4):1143-8 – reference: 17392476 - J Neurosci. 2007 Mar 28;27(13):3603-11 – reference: 19302036 - Annu Rev Immunol. 2009;27:119-45 – reference: 22073221 - PLoS One. 2011;6(11):e26921 – reference: 17980667 - Lancet Neurol. 2007 Dec;6(12):1045-53 – reference: 12362410 - Muscle Nerve. 2002 Oct;26(4):459-70 – reference: 20109233 - J Neuroinflammation. 2010;7:8 – reference: 20967127 - PLoS One. 2010;5(10):e13368 – reference: 20966214 - Science. 2010 Nov 5;330(6005):841-5 – reference: 16516196 - Exp Neurol. 2006 Jul;200(1):166-71 – reference: 1996355 - Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1541-5 – reference: 20640189 - ASN Neuro. 2010;2(3):e00037 – reference: 22632727 - Neuron. 2012 May 24;74(4):691-705 – reference: 19269040 - J Neuroimmunol. 2009 May 29;210(1-2):3-12 – reference: 21093321 - Immunity. 2010 Nov 24;33(5):699-712 – reference: 21896490 - J Biol Chem. 2011 Oct 28;286(43):37168-80 – reference: 22836247 - J Neurosci. 2012 Jul 25;32(30):10117-28 – reference: 21307297 - J Immunol. 2011 Mar 1;186(5):3047-57 – reference: 12907804 - Science. 2003 Aug 8;301(5634):839-42 – reference: 18026096 - Nat Neurosci. 2007 Dec;10(12):1544-53 – reference: 22442384 - Science. 2012 Apr 6;336(6077):86-90 – reference: 21903074 - Neuron. 2011 Sep 8;71(5):799-811 – reference: 19649690 - J Neural Transm (Vienna). 2009 Sep;116(9):1169-78 – reference: 18026097 - Nat Neurosci. 2007 Dec;10(12):1538-43 – reference: 18957217 - Neuron. 2008 Oct 23;60(2):247-57 – reference: 8209258 - Science. 1994 Jun 17;264(5166):1772-5 – reference: 9633809 - Glia. 1998 Jul;23(3):249-56 – reference: 21596768 - Brain. 2011 May;134(Pt 5):1293-314 – reference: 15837590 - Neurobiol Dis. 2005 Jun-Jul;19(1-2):340-7 – reference: 18219391 - J Clin Invest. 2008 Feb;118(2):659-70 – reference: 17555556 - J Neurochem. 2007 Sep;102(6):2008-19 – reference: 21251163 - Eur J Neurol. 2011 Aug;18(8):1046-52 – reference: 16207706 - J Biol Chem. 2005 Dec 2;280(48):39950-61 – reference: 22323736 - Science. 2012 Mar 23;335(6075):1503-6 – reference: 15831717 - Science. 2005 May 27;308(5726):1314-8 – reference: 21943126 - BMC Neurosci. 2011;12:91 – reference: 17515919 - Nature. 2007 Jun 28;447(7148):1116-20 – reference: 19731042 - J Neuroimmune Pharmacol. 2009 Dec;4(4):389-98 – reference: 21842586 - Acta Myol. 2011 Jun;30(1):4-8 – reference: 18997009 - Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17913-8 – reference: 9760700 - Prog Neurobiol. 1998 Oct;56(2):173-89 – reference: 17964271 - Mol Cell. 2007 Oct 26;28(2):337-50 – reference: 20005852 - Mol Cell. 2009 Dec 11;36(5):900-11 – reference: 11371643 - Proc Natl Acad Sci U S A. 2001 May 22;98(11):6295-300 – reference: 11721059 - Science. 2001 Nov 23;294(5547):1731-5 |
SSID | ssj0000601194 |
Score | 2.5599384 |
Snippet | Microglia are resident immune cells of the CNS that are activated by infection, neuronal injury, and inflammation. Here, we utilize flow cytometry and deep RNA... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 385 |
SubjectTerms | Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - immunology Amyotrophic Lateral Sclerosis - metabolism Amyotrophic Lateral Sclerosis - pathology Animals Disease Models, Animal Female Humans Male Mice Mice, Inbred C57BL Mice, Transgenic Microglia - immunology Microglia - metabolism Microglia - physiology Transcriptome |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEF1CoNBLafrppg1b6FXY0n5JRyckpKXuxQ34tuyudl0VVTKODPUfyO_OzEoyyaEEik8WK2mlGe28kWbeI-RLqpQqCuUTmRcKExSR5DaYJHcsLZXljjnsd178kNc3_NtKrI7IxdgLg2WVw9rfr-lxtR62TIe7Od1U1XSZQe4C0UnhB5mskNjEx3gem_hW54f3LMg3kkY9RByf4A5jB10s83K-3nokrkxZJPJE9Y8HESoS-T8KVP8CojEgXb0kLwYkSef9ZE_IkW9ekWe9tuT-Nbmb00i8Ufp1ZJZGAyRRbT5UjiLbdHL5d6iCbeiyWvcUn7QNdO52na_39Cv4JUDRki6wam9dV4ZiNwo1DZ3_2bfdtt38gmN9N9jFXNMlTAOuqLqli3Z36ynKrNVvyM3V5c-L62QQXUgcV7yDiFXkqVfOQr4aPHc2z0LhRcZt4WbSAT6w3EqD_5QtRYD1wJdFpoz0MxFYyt6S46Zt_HtChS1KCymwlNZxJ0weFAuzEKRx8CvFhLDxRms3MJKjMEatx9Kz37o3j0bzaKzAS_MJSQ57bXpGjifGn6MND2ORTztuaLdrPTiUBpwkACpJI1LLFWRZIni4WMaUQO1zOyFq9AD9yD3hUNUTp_88OoyGJxc_x5jGgxkg6cIu9hwQ8oS86z3pMEkAUgKcevbhv897Sp5nUbkDiTg-kuNuu_OfAD919iw-IPebFBiL priority: 102 providerName: Elsevier – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKERIXVL4XCjIS16AktuPkgNC2alUQy6Ws1JtlO_aSKiQlm5W6f4DfzYyTLKpE1Qva064Sr5OZybxRZt4j5H0ipSwK6aIsLyQWKCLKjddRbllSSsMtszjvvPiWnS35lwtxsUcmzdbxBq7_WdqhntSyqz9c_9p-goD_-LdXy7q6c8g-mbDAxpnk98h9yE0SQ3UxAv7h2YwcZ_iqOU2xlyvlcpqnu2WhG_kq0PrfSFu3wdKQnk4PyKMRV9L54AiPyZ5rnpAHg9Lk9in5PaeBhqN0q8AzjeaIgva8ryxF7uno5HrsiW3oebUaCD9p6-ncbnpXb-ln8FIApiVdYA_fqq40xdkUqhs6_7lt-669-gFrfdU401zTc9gGXFG1pot2s3YURdfqZ2R5evL9-CwaJRgiyyXvIX8VeeKkNVC9esetyVNfOJFyU9g4s4AWDDeZxm_SlMLD08GVRSp15mLhWcKek_2mbdxLQoUpSgMFcZYZy63QuZfMx95n2sKnFDPCphut7MhPjjIZtZoa0S7VYB6F5lHYj5fkMxLtzroa-DnuOP4Ibbg7Ftm1ww9tt1JjsCpATQKAU6ZFYriEmkt4BxfLmBSohG5mRE4eoEagMgAQWKq64-_fTQ6jII7x5YxuHJgBSjCcac8BL8_Ii8GTdpsEWCXitIhf_Y_NvyYP0yDpgQwdh2S_7zbuDQCr3rwNsfIHI1YfiQ priority: 102 providerName: Scholars Portal |
Title | A Neurodegeneration-Specific Gene-Expression Signature of Acutely Isolated Microglia from an Amyotrophic Lateral Sclerosis Mouse Model |
URI | https://dx.doi.org/10.1016/j.celrep.2013.06.018 https://www.ncbi.nlm.nih.gov/pubmed/23850290 https://www.proquest.com/docview/1415608508 https://doaj.org/article/78258226a51b475595fe6c533751021b |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYl0GNp09c2TVChV1E_JMs6bkpCUrq9pIG9GUmWti6uHTZe6P6B_O7OSPayOYS9FIPBxo-xNNZ8I818Q8jnVEqplHSsKJVEB0Ww0njNSpuntTTc5hbznRc_iqtb_m0plnulvjAmLNIDx4b7AhZMgBErtEgNl4B_hXeFBZAiBValNjj6gs3bc6biGIxcZriknGUYs5VxOeXNheAu69q1Q7rKNA_0nVjzY88uBfr-R-bpKfgZzNDlS_JixI90HuV-RZ657pg8jxUlt6_Jw5wGuo3arQKfNDY7CzXmfWMpckyzi79j7GtHb5pVJPakvadzuxlcu6XXoI0AQGu6wFi9VdtoijkoVHd0_mfbD-v-7hc867vG3OWW3oAY8EXNPV30m3tHsbha-4bcXl78_HrFxlILzHLJB7BTqkydtAa8VO-4NWXmlRMZN8om0NxpZrgpNB5JUwsPo4CrVSZ14RLh8zR_S466vnPvCRVG1QYc36IwlluhSy9zn3hfaAtbLWYknxq6siMPOZbDaKsp4Ox3Fbunwu6pMO4uLWeE7e66izwcB64_xz7cXYss2uEE6FY16lZ1SLdmRE4aUI2AJAINeFRz4PWfJoWp4H_FRRjdOegGcLUwd70EXDwj76Im7YQE-CSSTCUf_ofwJzgFEeaKWCY-kqNhvXGnAKAGcxb-FdhfL89hv-DlP6ttFwo |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXSFEVzKbrXXVmgV8HWQlI8OkECu7VzcQL4RpAU6ahQJcOxgfgH-t2doSSjORQBCp8siBKlGXHeSDPvEfItFkJIKVzEcykwQWFRbryOcpvGhTCZTS32O88v-eQ6-75kyyNy1vfCYFllt_a3a3pYrbstw-5uDtdlOVwkkLtAdBL4QSaRXD4ijwENCNRvmC5PDy9akHAkDoKIOCDCEX0LXajzsq7aOGSujNPA5InyH3-FqMDkfy9S_QuJhoh08Zw866AkHbezfUGOXP2SPGnFJfevyO8xDcwbhVsFamm0QBTk5n1pKdJNR-d3XRlsTRflquX4pI2nY7vbumpPp-CYgEULOseyvVVVaortKFTXdPxr32w3zfoGjjXT2MZc0QVMA66ovKXzZnfrKOqsVa_J9cX51dkk6lQXIpuJbAshS-axE9ZAwupdZk2eeOlYkhlpR9wCQDCZ4Rr_CVMwDwuCK2QiNHcj5tM4fUOO66Z27whlRhYGcmDOjc0s07kXqR95z7WFX8EGJO1vtLIdJTkqY1Sqrz37qVrzKDSPwhK8OB-Q6DBq3VJyPLD_KdrwsC8SaocNzWalOo9SAJQYYCWuWWwyAWkW8w4uNk0FQ_FzMyCi9wB1zz_hUOUDp__aO4yCRxe_x-jagRkg68I29hwg8oC8bT3pMElAUgy8evT-v8_7hTydXM1naja9_PGBnCRBxgNZOT6S4-1m5z4BmNqaz-Fh-QOvgxuq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Neurodegeneration-Specific+Gene-Expression+Signature+of+Acutely+Isolated+Microglia+from+an+Amyotrophic+Lateral+Sclerosis+Mouse+Model&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Isaac%C2%A0M.+Chiu&rft.au=Emiko%C2%A0T.A.+Morimoto&rft.au=Hani+Goodarzi&rft.au=Jennifer%C2%A0T.+Liao&rft.date=2013-07-25&rft.pub=Elsevier&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=4&rft.issue=2&rft.spage=385&rft.epage=401&rft_id=info:doi/10.1016%2Fj.celrep.2013.06.018&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_78258226a51b475595fe6c533751021b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |