Regulatory gene function handoff allows essential gene loss in mosquitoes
Regulatory genes are often multifunctional and constrained, which results in evolutionary conservation. It is difficult to understand how a regulatory gene could be lost from one species’ genome when it is essential for viability in closely related species. The gene paired is a classic Drosophila pa...
Saved in:
Published in | Communications biology Vol. 3; no. 1; p. 540 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
30.09.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Regulatory genes are often multifunctional and constrained, which results in evolutionary conservation. It is difficult to understand how a regulatory gene could be lost from one species’ genome when it is essential for viability in closely related species. The gene
paired
is a classic
Drosophila
pair-rule gene, required for formation of alternate body segments in diverse insect species. Surprisingly,
paired
was lost in mosquitoes without disrupting body patterning. Here, we demonstrate that a
paired
family member,
gooseberry
, has acquired
paired
-like expression in the malaria mosquito
Anopheles stephensi
.
Anopheles-gooseberry
CRISPR-Cas9 knock-out mutants display pair-rule phenotypes and alteration of target gene expression similar to what is seen in
Drosophila
and beetle
paired
mutants. Thus,
paired
was functionally replaced by the related gene,
gooseberry
, in mosquitoes. Our findings document a rare example of a functional replacement of an essential regulatory gene and provide a mechanistic explanation of how such loss can occur.
Cheatle Jarvela et al. demonstrate in the mosquito
Anopheles stephensi
that the
paired
gene was functionally replaced by the gene
gooseberry
, even though
paired
is essential in other insects such as fruit flies and beetles. This study contributes to the understanding of how essential genes are lost despite their importance during development. |
---|---|
AbstractList | Abstract
Regulatory genes are often multifunctional and constrained, which results in evolutionary conservation. It is difficult to understand how a regulatory gene could be lost from one species’ genome when it is essential for viability in closely related species. The gene
paired
is a classic
Drosophila
pair-rule gene, required for formation of alternate body segments in diverse insect species. Surprisingly,
paired
was lost in mosquitoes without disrupting body patterning. Here, we demonstrate that a
paired
family member,
gooseberry
, has acquired
paired
-like expression in the malaria mosquito
Anopheles stephensi
.
Anopheles-gooseberry
CRISPR-Cas9 knock-out mutants display pair-rule phenotypes and alteration of target gene expression similar to what is seen in
Drosophila
and beetle
paired
mutants. Thus,
paired
was functionally replaced by the related gene,
gooseberry
, in mosquitoes. Our findings document a rare example of a functional replacement of an essential regulatory gene and provide a mechanistic explanation of how such loss can occur. Regulatory genes are often multifunctional and constrained, which results in evolutionary conservation. It is difficult to understand how a regulatory gene could be lost from one species’ genome when it is essential for viability in closely related species. The gene paired is a classic Drosophila pair-rule gene, required for formation of alternate body segments in diverse insect species. Surprisingly, paired was lost in mosquitoes without disrupting body patterning. Here, we demonstrate that a paired family member, gooseberry, has acquired paired-like expression in the malaria mosquito Anopheles stephensi. Anopheles-gooseberry CRISPR-Cas9 knock-out mutants display pair-rule phenotypes and alteration of target gene expression similar to what is seen in Drosophila and beetle paired mutants. Thus, paired was functionally replaced by the related gene, gooseberry, in mosquitoes. Our findings document a rare example of a functional replacement of an essential regulatory gene and provide a mechanistic explanation of how such loss can occur.Cheatle Jarvela et al. demonstrate in the mosquito Anopheles stephensi that the paired gene was functionally replaced by the gene gooseberry, even though paired is essential in other insects such as fruit flies and beetles. This study contributes to the understanding of how essential genes are lost despite their importance during development. Regulatory genes are often multifunctional and constrained, which results in evolutionary conservation. It is difficult to understand how a regulatory gene could be lost from one species’ genome when it is essential for viability in closely related species. The gene paired is a classic Drosophila pair-rule gene, required for formation of alternate body segments in diverse insect species. Surprisingly, paired was lost in mosquitoes without disrupting body patterning. Here, we demonstrate that a paired family member, gooseberry , has acquired paired -like expression in the malaria mosquito Anopheles stephensi . Anopheles-gooseberry CRISPR-Cas9 knock-out mutants display pair-rule phenotypes and alteration of target gene expression similar to what is seen in Drosophila and beetle paired mutants. Thus, paired was functionally replaced by the related gene, gooseberry , in mosquitoes. Our findings document a rare example of a functional replacement of an essential regulatory gene and provide a mechanistic explanation of how such loss can occur. Cheatle Jarvela et al. demonstrate in the mosquito Anopheles stephensi that the paired gene was functionally replaced by the gene gooseberry , even though paired is essential in other insects such as fruit flies and beetles. This study contributes to the understanding of how essential genes are lost despite their importance during development. Regulatory genes are often multifunctional and constrained, which results in evolutionary conservation. It is difficult to understand how a regulatory gene could be lost from one species' genome when it is essential for viability in closely related species. The gene paired is a classic Drosophila pair-rule gene, required for formation of alternate body segments in diverse insect species. Surprisingly, paired was lost in mosquitoes without disrupting body patterning. Here, we demonstrate that a paired family member, gooseberry, has acquired paired-like expression in the malaria mosquito Anopheles stephensi. Anopheles-gooseberry CRISPR-Cas9 knock-out mutants display pair-rule phenotypes and alteration of target gene expression similar to what is seen in Drosophila and beetle paired mutants. Thus, paired was functionally replaced by the related gene, gooseberry, in mosquitoes. Our findings document a rare example of a functional replacement of an essential regulatory gene and provide a mechanistic explanation of how such loss can occur. |
ArticleNumber | 540 |
Author | Cheatle Jarvela, Alys M. Pick, Leslie Trelstad, Catherine S. |
Author_xml | – sequence: 1 givenname: Alys M. surname: Cheatle Jarvela fullname: Cheatle Jarvela, Alys M. organization: Department of Entomology, University of Maryland – sequence: 2 givenname: Catherine S. surname: Trelstad fullname: Trelstad, Catherine S. organization: Department of Entomology, University of Maryland – sequence: 3 givenname: Leslie orcidid: 0000-0002-4505-5107 surname: Pick fullname: Pick, Leslie email: lpick@umd.edu organization: Department of Entomology, University of Maryland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32999445$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1LxDAQhoMofv8BD1Lw4qWaZLKb5CKI-AWCIHoO2Xa6VrKJJq2L_95odV09eMoL88ybmXm3yKoPHgnZY_SIUVDHSXBKoaSclpTxrOYrZJOD1iWMBV9d0htkN6UnSinTWo9BrJMN4FkKMdok13c47Z3tQnwrpuixaHpfdW3wxaP1dWiawjoX5qnAlNB3rXUD5kJKReuLWUgvfdsFTDtkrbEu4e7Xu00eLs7vz67Km9vL67PTm7ISUnSloqpCypgdKwG8BjXRHHldU5DIQMmxZYJzxlUDE1XpyQgEKom1aJgdaVCwTU4G3-d-MsO6ylNF68xzbGc2vplgW_O74ttHMw2vRo64ohKyweGXQQwvPabOzNpUoXPWY-iT4UJIBUpLmtGDP-hT6KPP631Q-YJKgcwUH6gq5qtEbBbDMGo-wjJDWCaHZT7DMvPctL-8xqLlO5oMwACkXPJTjD9__2P7Duf_oc8 |
CitedBy_id | crossref_primary_10_1016_j_jinsphys_2022_104429 crossref_primary_10_1007_s00427_023_00712_y crossref_primary_10_1016_j_ydbio_2024_01_008 crossref_primary_10_1111_imb_12942 crossref_primary_10_1002_jez_b_23102 crossref_primary_10_1101_pdb_prot108203 crossref_primary_10_1093_g3journal_jkab022 crossref_primary_10_1126_sciadv_add9389 |
Cites_doi | 10.1126/science.1257570 10.1111/ede.12110 10.1002/j.1460-2075.1996.tb00742.x 10.1186/1471-213X-12-15 10.1126/science.1099247 10.1371/journal.pone.0021504 10.1002/j.1460-2075.1993.tb06139.x 10.1186/s13227-015-0028-0 10.1016/j.ydbio.2004.08.021 10.1093/molbev/msm120 10.1038/367083a0 10.1093/nar/gkw1129 10.1126/science.287.5461.2222 10.1007/BF00291041 10.1016/0925-4773(94)90021-3 10.1016/j.ydbio.2013.07.010 10.1073/pnas.1012675108 10.1038/287795a0 10.1016/j.ydbio.2009.06.038 10.1093/bioinformatics/btl446 10.1016/j.ydbio.2006.09.037 10.1038/s41598-019-40055-1 10.1242/dev.055160 10.1006/dbio.2000.9702 10.7554/eLife.01440 10.1126/science.1258522 10.1007/978-3-642-86659-3 10.3791/3709 10.1093/nar/gky1003 10.1101/721217 10.1016/0092-8674(89)90947-1 10.1016/j.ydbio.2013.06.017 10.1371/journal.pone.0028150 10.1073/pnas.0510440103 10.1534/g3.112.003582 10.1007/s00427-005-0008-9 10.1186/s13059-018-1468-3 10.1007/s004270050215 10.1079/9780851993744.0000 10.1093/nar/gky448 10.1007/s00427-008-0240-1 10.3389/fpls.2018.00161 10.1016/0092-8674(86)90818-4 10.1038/nrg.2016.39 10.1093/nar/gkh340 10.1093/nar/gkw398 10.1101/gad.1.10.1212 10.1016/j.celrep.2015.03.009 10.1111/j.1525-142X.2006.00095.x 10.1038/321493a0 10.1016/S0022-2836(05)80360-2 10.1038/ncomms8822 10.1101/gad.1.10.1247 10.1093/bioinformatics/bth155 10.1093/nar/gks1156 10.1111/j.1365-2583.2009.00921.x 10.1093/nar/gkz890 10.1093/bioinformatics/btg180 10.1038/46463 10.1080/10635150600755453 10.1038/nbt.3439 10.1038/nmeth.2089 10.1093/nar/gku1117 10.1093/genetics/151.4.1531 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C NPM AAYXX CITATION 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s42003-020-01203-w |
DatabaseName | SpringerOpen PubMed CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) Biological Sciences ProQuest Science Journals Biological Science Database Access via ProQuest (Open Access) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest Biological Science Collection ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2399-3642 |
EndPage | 540 |
ExternalDocumentID | 10_1038_s42003_020_01203_w 32999445 |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute of General Medical Sciences (NIGMS) grantid: R01GM113230 funderid: https://doi.org/10.13039/100000057 – fundername: NIGMS NIH HHS grantid: R01GM113230 – fundername: NIGMS NIH HHS grantid: R01 GM113230 – fundername: ; grantid: R01GM113230 |
GroupedDBID | 0R~ 53G 88I AAJSJ ABDBF ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ HCIFZ HYE M2P M7P M~E NAO O9- OK1 PGMZT PIMPY RNT RPM SNYQT NPM AAYXX CITATION 3V. 7XB 8FE 8FH 8FK LK8 PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c474t-808ce011a68432d38b92e2dd037e13876a1422128f3b8c9b534e87ed4f1a59383 |
IEDL.DBID | RPM |
ISSN | 2399-3642 |
IngestDate | Tue Sep 17 20:37:10 EDT 2024 Fri Oct 25 01:08:35 EDT 2024 Sat Oct 19 15:59:19 EDT 2024 Fri Aug 23 00:56:05 EDT 2024 Sat Sep 28 08:37:39 EDT 2024 Fri Oct 11 20:48:36 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-808ce011a68432d38b92e2dd037e13876a1422128f3b8c9b534e87ed4f1a59383 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-4505-5107 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7528073/ |
PMID | 32999445 |
PQID | 2449448837 |
PQPubID | 4669726 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7528073 proquest_miscellaneous_2447838970 proquest_journals_2449448837 crossref_primary_10_1038_s42003_020_01203_w pubmed_primary_32999445 springer_journals_10_1038_s42003_020_01203_w |
PublicationCentury | 2000 |
PublicationDate | 2020-09-30 |
PublicationDateYYYYMMDD | 2020-09-30 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-30 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Communications biology |
PublicationTitleAbbrev | Commun Biol |
PublicationTitleAlternate | Commun Biol |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | FrankeFASchumannIHeringLMayerGPhylogenetic analysis and expression patterns of Pax genes in the onychophoran Euperipatoides rowelli reveal a novel bilaterian Pax subfamilyEvol. Dev.2015173201:CAS:528:DC%2BC2MXhvV2gurY%3D2562771010.1111/ede.12110 PatelNHExpression of engrailed proteins in arthropods, annelids, and chordatesCell1989589559681:CAS:528:DyaL1MXlvVylsbg%3D257063710.1016/0092-8674(89)90947-1 StamatakisARAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed modelsBioinformatics200622268826901:CAS:528:DC%2BD28XhtFKlsbfI1692873310.1093/bioinformatics/btl446 TautzDPfeifleCA non-radioactive in situ hybridization method for the localization of specific RNAs in Drosophila embryos reveals translational control of the segmentation gene hunchbackChromosoma19899881851:CAS:528:DyaL1MXlvVyktL8%3D247628110.1007/BF00291041 ArandaMMarques-SouzaHBayerTTautzDThe role of the segmentation gene hairy in TriboliumDev. Genes Evol.200821846547718679713252229110.1007/s00427-008-0240-1 AnisimovaMGascuelOApproximate likelihood-ratio test for branches: a fast, accurate, and powerful alternativeSyst. Biol.2006555395521678521210.1080/10635150600755453 Lawrence, P. A. The Making of a Fly: The Genetics of Animal Design (Wiley, 1992). AltschulSFGishWMillerWMyersEWLipmanDJBasic local alignment search toolJ. Mol. Biol.19902154034101:CAS:528:DyaK3MXitVGmsA%3D%3D223171210.1016/S0022-2836(05)80360-2 ForceAPreservation of duplicate genes by complementary, degenerative mutationsGenetics1999151153115451:CAS:528:DyaK1MXisV2rs7o%3D101011751460548 ChoeCPMillerSCBrownSJA pair-rule gene circuit defines segments sequentially in the short-germ insect Tribolium castaneumProc. Natl. Acad. Sci. USA2006103656065641:CAS:528:DC%2BD28XksVKrtrk%3D1661173210.1073/pnas.05104401031564201 RosenbergMIBrentAEPayreFDesplanCDual mode of embryonic development is highlighted by expression and function of Nasonia pair-rule geneseLife20143e0144024599282394102610.7554/eLife.014401:CAS:528:DC%2BC2cXhsValsr7K MisofBPhylogenomics resolves the timing and pattern of insect evolutionScience20143467637671:CAS:528:DC%2BC2cXhvVGls7jK2537862710.1126/science.1257570 GoltsevYHsiongWLanzaroGLevineMDifferent combinations of gap repressors for common stripes in Anopheles and Drosophila embryosDev. Biol.20042754354461:CAS:528:DC%2BD2cXovVKltbY%3D1550122910.1016/j.ydbio.2004.08.021 LiXNollMRole of the gooseberry gene in Drosophila embryos: maintenance of wingless expression by a wingless–gooseberry autoregulatory loopEMBO J.199312449945091:CAS:528:DyaK2cXislyjtw%3D%3D822346041387510.1002/j.1460-2075.1993.tb06139.x RonquistFHuelsenbeckJPMrBayes 3: Bayesian phylogenetic inference under mixed modelsBioinformatics200319157215741:CAS:528:DC%2BD3sXntlKms7k%3D1291283910.1093/bioinformatics/btg180 KilchherrFBaumgartnerSBoppDFreiENollMIsolation of the paired gene of Drosophila melanogaster and its spatial expression during early embryogenesisNature19863214934991:CAS:528:DyaL28XktlKksrc%3D10.1038/321493a0 O’BrochtaDAPilittKLHarrellRAAluvihareCAlfordRTGal4-based enhancer-trapping in the malaria mosquito Anopheles stephensiGenes Genomes Genet.2012213051315 BehuraSKComparative genomic analysis of Drosophila melanogaster and vector mosquito developmental genesPLoS ONE20116e215041:CAS:528:DC%2BC3MXpsVams7o%3D21754989313074910.1371/journal.pone.0021504 BaumgartnerSBoppDBurriMNollMStructure of two genes at the gooseberry locus related to the paired gene and their spatial expression during Drosophila embryogenesisGenes Dev.19871124712671:CAS:528:DyaL1cXkvVOhs70%3D312331910.1101/gad.1.10.1247 KosmanDMultiplex detection of RNA expression in Drosophila embryosScience20043058468461:CAS:528:DC%2BD2cXmsVelsr8%3D1529766910.1126/science.1099247 ChoeCPBrownSJEvolutionary flexibility of pair-rule patterning revealed by functional analysis of secondary pair-rule genes, paired and sloppy-paired in the short-germ insect, Tribolium castaneumDev. Biol.20073022812941:CAS:528:DC%2BD2sXntlOltQ%3D%3D1705493510.1016/j.ydbio.2006.09.037 SomorjaiIMLWnt evolution and function shuffling in liberal and conservative chordate genomesGenome Biol.20181930045756606054710.1186/s13059-018-1468-31:CAS:528:DC%2BC1cXisVOksLbL FeinerNMotoneFMeyerAKurakuSAsymmetric paralog evolution between the “cryptic” gene Bmp16 and its well-studied sister genes Bmp2 and Bmp4Sci. Rep.201991131:CAS:528:DC%2BC1MXnvVyrsbc%3D10.1038/s41598-019-40055-1 PotterSCHMMER web server: 2018 updateNucleic Acids Res.201846W200W2041:CAS:528:DC%2BC1MXosVyrsrc%3D29905871603096210.1093/nar/gky448 JanssenRBuddGEDeciphering the onychophoran ‘segmentation gene cascade’: Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene networkDev. Biol.20133822242341:CAS:528:DC%2BC3sXht1yhsL%2FK2388043010.1016/j.ydbio.2013.07.010 DeardenPKDonlyCGrbićMExpression of pair-rule gene homologues in a chelicerate: early patterning of the two-spotted spider mite Tetranychus urticaeDev. Camb. Engl.2002129546154721:CAS:528:DC%2BD3sXjsFem HammondAA CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiaeNat. Biotechnol.20163478831:CAS:528:DC%2BC2MXhvFKktbnK2664153110.1038/nbt.3439 MaderspacherFBucherGKlinglerMPair-rule and gap gene mutants in the flour beetle Tribolium castaneumDev. Genes Evol.19982085585681:CAS:528:DyaK1cXntFyrur8%3D981197410.1007/s004270050215 SchneiderCARasbandWSEliceiriKWNIH Image to ImageJ: 25 years of image analysisNat. Methods201296716751:CAS:528:DC%2BC38XhtVKntb7P22930834555454210.1038/nmeth.2089 XueLNollMThe functional conservation of proteins in evolutionary alleles and the dominant role of enhancers in evolutionEMBO J.199615372237311:CAS:528:DyaK28Xksl2murk%3D867087645203410.1002/j.1460-2075.1996.tb00742.x NeafseyDEMosquito genomics. Highly evolvable malaria vectors: the genomes of 16 Anopheles mosquitoesScience201534712585222555479210.1126/science.12585221:CAS:528:DC%2BC2MXhsFyrtQ%3D%3D MilneITOPALi: software for automatic identification of recombinant sequences within DNA multiple alignmentsBioinforma. Oxf. Engl.200420180618071:CAS:528:DC%2BD2cXmtF2nurg%3D10.1093/bioinformatics/bth155 Ohno, S. Evolution by gene duplication (Springer-Verlag, 1970). BoppDBurriMBaumgartnerSFrigerioGNollMConservation of a large protein domain in the segmentation gene paired and in functionally related genes of DrosophilaCell198647103310401:CAS:528:DyaL2sXnvFGluw%3D%3D287774710.1016/0092-8674(86)90818-4 Vargas-VilaMAHannibalRLParchemRJLiuPZPatelNHA prominent requirement for single-minded and the ventral midline in patterning the dorsoventral axis of the crustacean Parhyale hawaiensisDevelopment2010137346934761:CAS:528:DC%2BC3cXhsFSntLvP20843860294775910.1242/dev.055160 Juhn, J. & James, A. A. Hybridization in situ of salivary glands, ovaries, and embryos of vector mosquitoes. J. Vis. Exp. JoVEhttps://doi.org/10.3791/3709 (2012). Nüsslein-VolhardCWieschausEMutations affecting segment number and polarity in DrosophilaNature1980287795801677641310.1038/287795a0 Marchler-BauerACDD/SPARCLE: functional classification of proteins via subfamily domain architecturesNucleic Acids Res.201745D200D2031:CAS:528:DC%2BC1cXhslWhtr4%3D2789967410.1093/nar/gkw1129 LabunKMontagueTGGagnonJAThymeSBValenECHOPCHOP v2: a web tool for the next generation of CRISPR genome engineeringNucleic Acids Res.201644W272W2761:CAS:528:DC%2BC2sXhtV2itrnI27185894498793710.1093/nar/gkw398 GitelmanIEvolution of the vertebrate twist family and synfunctionalization: a mechanism for differential gene loss through merging of expression domainsMol. Biol. Evol.200724191219251:CAS:528:DC%2BD2sXhtFSjsLbM1756759410.1093/molbev/msm120 RubinGMA Drosophila complementary DNA resourceScience2000287222222241:CAS:528:DC%2BD3cXitlSns78%3D1073113810.1126/science.287.5461.2222 Qiao, X. et al. Different modes of gene duplication show divergent evolutionary patterns and contribute differently to the expansion of gene families involved in important fruit traits in pear (Pyrus bretschneideri). Front. Plant Sci. 9, 161 (2018). Reding, K., Chen, M., Lu, Y., Cheatle Jarvela, A. M. & Pick, L. Shifting roles of Drosophila pair-rule gene orthologs: segmental expression and function in the milkweed bug Oncopeltus fasciatus. Dev. Camb. Engl. 146, dev181453 (2019). Burkett-Cadena, N. D. Mosquitoes of the Southeastern United States (University of Alabama Press, 2013). GreenJAkamMEvolution of the pair rule gene network: Insights from a centipedeDev. Biol.20133822352451:CAS:528:DC%2BC3sXhtFCgsL3F23810931380778910.1016/j.ydbio.2013.06.017 BouchardMSt-AmandJCôtéSCombinatorial activity of pair-rule proteins on the Drosophila gooseberry early enhancerDev. Biol.20002221351461:CAS:528:DC%2BD3cXksFWmsbw%3D1088575210.1006/dbio.2000.9702 BerghammerAJKlinglerMWimmerEAA universal marker for transgenic insectsNature19994023703711:CAS:528:DyaK1MXnvVyktro%3D1058687210.1038/46463 LouisAMuffatoMRoest CrolliusHGenomicus: five genome browsers for comparative genomics in eukaryotaNucleic Acids Res.201341D700D7051:CAS:528:DC%2BC38XhvV2ktrnE2319326210.1093/nar/gks1156 AlbalatRCañestroCEvolution by gene lossNat. Rev. Genet.2016173793911:CAS:528:DC%2BC28XmtFegtrs%3D2708750010.1038/nrg.2016.39 Wang, Y. et al. Modes of gene duplication contribute differently to genetic novelty and redundancy, but show parallels across divergent angiosperms. PLoS ONE6, e28150 (2011). EdgarRCMUSCLE: multiple sequence alignment with high accuracy and high throughputNucleic Acids Res.200432179217971:CAS:528:DC%2BD2cXisF2ks7w%3D1503414739033710.1093/nar/gkh340 KellerRGDesplanCRosenbergMIIdentification and characterization of Nasonia Pax genesInsect Mol. Biol.2010191091201:CAS:528:DC%2BC3cXhtlKntLs%3D20167022285225910.1111/j.1365-2583.2009.00921.x Giraldo-CalderónGIVectorBase: an updated bioinformatics resource for invertebrate vectors and other organisms related with human diseasesNucleic Acids Res.201543D707D7132551049910.1093/nar/gku11171:CAS:528:DC%2BC2sXhtV2itr7O DiNardoSO’FarrellPHEstablishme RC Edgar (1203_CR44) 2004; 32 CP Choe (1203_CR9) 2006; 103 SC Potter (1203_CR48) 2018; 46 X Li (1203_CR3) 1994; 367 A Force (1203_CR2) 1999; 151 DA O’Brochta (1203_CR60) 2012; 2 SK Behura (1203_CR16) 2011; 6 GI Giraldo-Calderón (1203_CR43) 2015; 43 D Kosman (1203_CR62) 2004; 305 F Kilchherr (1203_CR4) 1986; 321 PK Dearden (1203_CR36) 2002; 129 R Janssen (1203_CR34) 2012; 12 KL Howe (1203_CR53) 2020; 48 T Gutjahr (1203_CR65) 1994; 48 M Aranda (1203_CR15) 2008; 218 K Labun (1203_CR59) 2016; 44 Y Goltsev (1203_CR23) 2004; 275 S DiNardo (1203_CR11) 1987; 1 R Janssen (1203_CR33) 2013; 382 FA Franke (1203_CR32) 2015; 17 A Marchler-Bauer (1203_CR49) 2017; 45 C Nüsslein-Volhard (1203_CR12) 1980; 287 KE Kistler (1203_CR57) 2015; 11 SF Altschul (1203_CR54) 1990; 215 GM Rubin (1203_CR64) 2000; 287 1203_CR1 PW Osborne (1203_CR13) 2005; 215 R Albalat (1203_CR42) 2016; 17 A Louis (1203_CR52) 2013; 41 M Anisimova (1203_CR47) 2006; 55 1203_CR63 1203_CR20 I Gitelman (1203_CR30) 2007; 24 D Tautz (1203_CR61) 1989; 98 1203_CR22 RG Keller (1203_CR39) 2010; 19 CA Schneider (1203_CR67) 2012; 9 J Xiang (1203_CR8) 2015; 6 1203_CR27 1203_CR28 F Ronquist (1203_CR46) 2003; 19 N Feiner (1203_CR41) 2019; 9 X Li (1203_CR29) 1993; 12 MA Vargas-Vila (1203_CR37) 2010; 137 A Stamatakis (1203_CR50) 2006; 22 DE Neafsey (1203_CR56) 2015; 347 S Baumgartner (1203_CR5) 1987; 1 BM Wiegmann (1203_CR51) 2011; 108 NH Patel (1203_CR24) 1989; 58 B Misof (1203_CR18) 2014; 346 MI Rosenberg (1203_CR25) 2014; 3 A Hammond (1203_CR58) 2016; 34 J Thurmond (1203_CR55) 2019; 47 AJ Berghammer (1203_CR26) 1999; 402 I Milne (1203_CR45) 2004; 20 1203_CR10 1203_CR14 F Maderspacher (1203_CR7) 1998; 208 1203_CR19 L Xue (1203_CR21) 1996; 15 J Green (1203_CR35) 2013; 382 IML Somorjai (1203_CR40) 2018; 19 D Bopp (1203_CR17) 1986; 47 JH Yoder (1203_CR66) 2006; 8 CP Choe (1203_CR6) 2007; 302 DF Erezyilmaz (1203_CR31) 2009; 334 M Bouchard (1203_CR38) 2000; 222 |
References_xml | – volume: 346 start-page: 763 year: 2014 ident: 1203_CR18 publication-title: Science doi: 10.1126/science.1257570 contributor: fullname: B Misof – volume: 17 start-page: 3 year: 2015 ident: 1203_CR32 publication-title: Evol. Dev. doi: 10.1111/ede.12110 contributor: fullname: FA Franke – volume: 15 start-page: 3722 year: 1996 ident: 1203_CR21 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1996.tb00742.x contributor: fullname: L Xue – volume: 12 start-page: 15 year: 2012 ident: 1203_CR34 publication-title: BMC Dev. Biol. doi: 10.1186/1471-213X-12-15 contributor: fullname: R Janssen – volume: 305 start-page: 846 year: 2004 ident: 1203_CR62 publication-title: Science doi: 10.1126/science.1099247 contributor: fullname: D Kosman – volume: 6 start-page: e21504 year: 2011 ident: 1203_CR16 publication-title: PLoS ONE doi: 10.1371/journal.pone.0021504 contributor: fullname: SK Behura – volume: 12 start-page: 4499 year: 1993 ident: 1203_CR29 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1993.tb06139.x contributor: fullname: X Li – volume: 6 year: 2015 ident: 1203_CR8 publication-title: EvoDevo doi: 10.1186/s13227-015-0028-0 contributor: fullname: J Xiang – volume: 275 start-page: 435 year: 2004 ident: 1203_CR23 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2004.08.021 contributor: fullname: Y Goltsev – volume: 24 start-page: 1912 year: 2007 ident: 1203_CR30 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msm120 contributor: fullname: I Gitelman – volume: 367 start-page: 83 year: 1994 ident: 1203_CR3 publication-title: Nature doi: 10.1038/367083a0 contributor: fullname: X Li – volume: 45 start-page: D200 year: 2017 ident: 1203_CR49 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw1129 contributor: fullname: A Marchler-Bauer – volume: 287 start-page: 2222 year: 2000 ident: 1203_CR64 publication-title: Science doi: 10.1126/science.287.5461.2222 contributor: fullname: GM Rubin – volume: 98 start-page: 81 year: 1989 ident: 1203_CR61 publication-title: Chromosoma doi: 10.1007/BF00291041 contributor: fullname: D Tautz – volume: 48 start-page: 119 year: 1994 ident: 1203_CR65 publication-title: Mech. Dev. doi: 10.1016/0925-4773(94)90021-3 contributor: fullname: T Gutjahr – volume: 382 start-page: 224 year: 2013 ident: 1203_CR33 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2013.07.010 contributor: fullname: R Janssen – volume: 108 start-page: 5690 year: 2011 ident: 1203_CR51 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1012675108 contributor: fullname: BM Wiegmann – volume: 287 start-page: 795 year: 1980 ident: 1203_CR12 publication-title: Nature doi: 10.1038/287795a0 contributor: fullname: C Nüsslein-Volhard – volume: 334 start-page: 300 year: 2009 ident: 1203_CR31 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2009.06.038 contributor: fullname: DF Erezyilmaz – volume: 22 start-page: 2688 year: 2006 ident: 1203_CR50 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl446 contributor: fullname: A Stamatakis – volume: 302 start-page: 281 year: 2007 ident: 1203_CR6 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2006.09.037 contributor: fullname: CP Choe – volume: 9 start-page: 1 year: 2019 ident: 1203_CR41 publication-title: Sci. Rep. doi: 10.1038/s41598-019-40055-1 contributor: fullname: N Feiner – volume: 137 start-page: 3469 year: 2010 ident: 1203_CR37 publication-title: Development doi: 10.1242/dev.055160 contributor: fullname: MA Vargas-Vila – volume: 222 start-page: 135 year: 2000 ident: 1203_CR38 publication-title: Dev. Biol. doi: 10.1006/dbio.2000.9702 contributor: fullname: M Bouchard – volume: 3 start-page: e01440 year: 2014 ident: 1203_CR25 publication-title: eLife doi: 10.7554/eLife.01440 contributor: fullname: MI Rosenberg – volume: 347 start-page: 1258522 year: 2015 ident: 1203_CR56 publication-title: Science doi: 10.1126/science.1258522 contributor: fullname: DE Neafsey – ident: 1203_CR1 doi: 10.1007/978-3-642-86659-3 – ident: 1203_CR28 – volume: 129 start-page: 5461 year: 2002 ident: 1203_CR36 publication-title: Dev. Camb. Engl. contributor: fullname: PK Dearden – ident: 1203_CR63 doi: 10.3791/3709 – volume: 47 start-page: D759 year: 2019 ident: 1203_CR55 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1003 contributor: fullname: J Thurmond – ident: 1203_CR14 doi: 10.1101/721217 – volume: 58 start-page: 955 year: 1989 ident: 1203_CR24 publication-title: Cell doi: 10.1016/0092-8674(89)90947-1 contributor: fullname: NH Patel – volume: 382 start-page: 235 year: 2013 ident: 1203_CR35 publication-title: Dev. Biol. doi: 10.1016/j.ydbio.2013.06.017 contributor: fullname: J Green – ident: 1203_CR20 doi: 10.1371/journal.pone.0028150 – volume: 103 start-page: 6560 year: 2006 ident: 1203_CR9 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0510440103 contributor: fullname: CP Choe – volume: 2 start-page: 1305 year: 2012 ident: 1203_CR60 publication-title: Genes Genomes Genet. doi: 10.1534/g3.112.003582 contributor: fullname: DA O’Brochta – volume: 215 start-page: 499 year: 2005 ident: 1203_CR13 publication-title: Dev. Genes Evol. doi: 10.1007/s00427-005-0008-9 contributor: fullname: PW Osborne – volume: 19 year: 2018 ident: 1203_CR40 publication-title: Genome Biol. doi: 10.1186/s13059-018-1468-3 contributor: fullname: IML Somorjai – volume: 208 start-page: 558 year: 1998 ident: 1203_CR7 publication-title: Dev. Genes Evol. doi: 10.1007/s004270050215 contributor: fullname: F Maderspacher – ident: 1203_CR27 doi: 10.1079/9780851993744.0000 – volume: 46 start-page: W200 year: 2018 ident: 1203_CR48 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky448 contributor: fullname: SC Potter – volume: 218 start-page: 465 year: 2008 ident: 1203_CR15 publication-title: Dev. Genes Evol. doi: 10.1007/s00427-008-0240-1 contributor: fullname: M Aranda – ident: 1203_CR19 doi: 10.3389/fpls.2018.00161 – volume: 47 start-page: 1033 year: 1986 ident: 1203_CR17 publication-title: Cell doi: 10.1016/0092-8674(86)90818-4 contributor: fullname: D Bopp – volume: 17 start-page: 379 year: 2016 ident: 1203_CR42 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg.2016.39 contributor: fullname: R Albalat – volume: 32 start-page: 1792 year: 2004 ident: 1203_CR44 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh340 contributor: fullname: RC Edgar – volume: 44 start-page: W272 year: 2016 ident: 1203_CR59 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw398 contributor: fullname: K Labun – volume: 1 start-page: 1212 year: 1987 ident: 1203_CR11 publication-title: Genes Dev. doi: 10.1101/gad.1.10.1212 contributor: fullname: S DiNardo – volume: 11 start-page: 51 year: 2015 ident: 1203_CR57 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.03.009 contributor: fullname: KE Kistler – volume: 8 start-page: 241 year: 2006 ident: 1203_CR66 publication-title: Evol. Dev. doi: 10.1111/j.1525-142X.2006.00095.x contributor: fullname: JH Yoder – volume: 321 start-page: 493 year: 1986 ident: 1203_CR4 publication-title: Nature doi: 10.1038/321493a0 contributor: fullname: F Kilchherr – volume: 215 start-page: 403 year: 1990 ident: 1203_CR54 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(05)80360-2 contributor: fullname: SF Altschul – ident: 1203_CR10 doi: 10.1038/ncomms8822 – volume: 1 start-page: 1247 year: 1987 ident: 1203_CR5 publication-title: Genes Dev. doi: 10.1101/gad.1.10.1247 contributor: fullname: S Baumgartner – ident: 1203_CR22 – volume: 20 start-page: 1806 year: 2004 ident: 1203_CR45 publication-title: Bioinforma. Oxf. Engl. doi: 10.1093/bioinformatics/bth155 contributor: fullname: I Milne – volume: 41 start-page: D700 year: 2013 ident: 1203_CR52 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks1156 contributor: fullname: A Louis – volume: 19 start-page: 109 year: 2010 ident: 1203_CR39 publication-title: Insect Mol. Biol. doi: 10.1111/j.1365-2583.2009.00921.x contributor: fullname: RG Keller – volume: 48 start-page: D689 year: 2020 ident: 1203_CR53 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz890 contributor: fullname: KL Howe – volume: 19 start-page: 1572 year: 2003 ident: 1203_CR46 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg180 contributor: fullname: F Ronquist – volume: 402 start-page: 370 year: 1999 ident: 1203_CR26 publication-title: Nature doi: 10.1038/46463 contributor: fullname: AJ Berghammer – volume: 55 start-page: 539 year: 2006 ident: 1203_CR47 publication-title: Syst. Biol. doi: 10.1080/10635150600755453 contributor: fullname: M Anisimova – volume: 34 start-page: 78 year: 2016 ident: 1203_CR58 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.3439 contributor: fullname: A Hammond – volume: 9 start-page: 671 year: 2012 ident: 1203_CR67 publication-title: Nat. Methods doi: 10.1038/nmeth.2089 contributor: fullname: CA Schneider – volume: 43 start-page: D707 year: 2015 ident: 1203_CR43 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gku1117 contributor: fullname: GI Giraldo-Calderón – volume: 151 start-page: 1531 year: 1999 ident: 1203_CR2 publication-title: Genetics doi: 10.1093/genetics/151.4.1531 contributor: fullname: A Force |
SSID | ssj0001999634 |
Score | 2.2233043 |
Snippet | Regulatory genes are often multifunctional and constrained, which results in evolutionary conservation. It is difficult to understand how a regulatory gene... Abstract Regulatory genes are often multifunctional and constrained, which results in evolutionary conservation. It is difficult to understand how a regulatory... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 540 |
SubjectTerms | 14/32 45/70 631/136/756 631/181/2806 64/24 Anopheles stephensi Biology Biomedical and Life Sciences CRISPR Culicidae Drosophila Evolutionary conservation Gene expression Genomes Insects Life Sciences Malaria Mosquitoes Mutants Paired gene Phenotypes Species |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dS8Mw8NCJ4Iv4bXVKBN-02Dbpmj6JiqI-iIiCbyVpExS0Vbsx9u-9S7uNKfqc0Cb3kfu-AzjU2qoiUKlvcirJCXXPl7HivkqsQnNEKpu7bIu73vWTuH2On1uHW92mVY7fRPdQF1VOPvITFEMpmhJoT51-fPo0NYqiq-0IjXlYiNBSCDqwcH55d_8w9bKQPs9FWy0TcHlSC5eORVYT1Y1yfzgrkX6pmb-zJX-ETJ0kulqB5VaFZGcNzldhzpRrsNgMlRytw81DM16--hoxpA7DSHQR-Bk5yStrGcXahzWjruElMvhbs-0ND8deS_Ze1Z8D5HNTb8DT1eXjxbXfDkzwc5GIPkobmRtkWNWTgkcFlzqNTFQUAU9MyPHdU-TxQYlkuZZ5qmMujExMIWyo4hRt1U3olFVptoEhb6LiWMSRkVJIHWobhFZGJtRogUXaeHA0Blr20fTFyFw8m8usAXGGIM4ciLOhB90xXLOWR-psilEPDibLSN0UslClqQZuTyJRp0oCD7YaNEx-x1GS4gdiD5IZBE02UOfs2ZXy9cV10E5iagLEPTgeo3J6rL9vsfP_LXZhKXJkRckkXej0vwZmDzWWvt5vyfIbyWfqfw priority: 102 providerName: ProQuest – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ5ojYkX41u0mjXxpsTCLrAcTWNTPXgwNumN7MJubFJBS5um_97ZhbbBx8EzAyzzYL7ZeSzAtZRaZB0Ruyo1LTmeDF0eCOqKSAsMR7jQqa22eA77A_Y0DIb1mBzTC9PI31N-VzJbPWWCHNPmSd35JmyhD-amfKsbdtf7KQa5U1b3xfx-a9P3_ACUP-sivyVHrc_p7cFuDRbJfSXdfdhQ-QFsV8dHLg7h8aU6SL6YLAjqgSLGSRlGE7MdXmhNTFZ9XhIzHzxHUx5XZGNcHBnl5L0oP2do0ao8gkHv4bXbd-ujEdyURWyKfoWnCk1ThJxRP6Ncxr7ys6xDI-VR_MMJs7eDvkdTydNYBpQpHqmMaU8EMUalx9DKi1ydAkErRIiYBb7inHHpSd3xNPeVJzHW8qVy4GbJtOSjmoCR2Mw15UnF4gRZnFgWJ3MH2ku-JrU1lAlCiBjDQIyFHbhaXUY9NskJkatiZmkijugp6jhwUolh9TqKPhMfEDgQNQS0IjAzsptX8tGbnZUdBWbcD3XgdinK9bL-_oqz_5Gfw45v1cyUkbShNZ3M1AVilam8tEr6BeUy4kE priority: 102 providerName: Springer Nature |
Title | Regulatory gene function handoff allows essential gene loss in mosquitoes |
URI | https://link.springer.com/article/10.1038/s42003-020-01203-w https://www.ncbi.nlm.nih.gov/pubmed/32999445 https://www.proquest.com/docview/2449448837 https://search.proquest.com/docview/2447838970 https://pubmed.ncbi.nlm.nih.gov/PMC7528073 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NT9sw9Il2YuKCtsG2AKs8iRuEJrHTOMeuKmKVViE-JG6RndiiUpsAaVXx73l2ktKu2mWnHGzJzvvw-34P4FRKLTJPxK5KTUmOL3suDwV1RaQFmiNc6NRmW4x7V_ds9BA-7EDY1MLYpP1UTi7y6ewinzza3MqnWdpt8sS6138GUWh6uNBuC1pIoGsmunWsGBWesrpAxqO8WzKbgWUMJVMqSt3lHnyk-A7HzFQxrcujLSVzO1fyr4CplUOXn2C_ViBJv7roZ9hR-RfYrUZKvh7A75tquHzx8kqQNhQxgssAnxgXeaE1MZH2ZUlMz_Ac2XtabZvi5cgkJ7OifF4gl6vyEO4vh3eDK7cel-CmLGJzlDU8VciuoscZDTLKZRyoIMs8Gimf4qsnjL8H5ZGmkqexDClTPFIZ074IY7RUv0I7L3L1HQhyJqqNWRgozhmXvtSer3mgfIn2VyCVA2cN0JKnqitGYqPZlCcVtBOEdmKhnSwdOGngmtQcUiaoViD4OdrHDvxcLSNtm4CFyFWxsHsijhpV5DnwrULD6rgGfw5EGwhabTB9szdXkJxs_-yafBw4b1D5fq1__8XRfx90DHuBJT6TZXIC7fnLQv1AVWYuO_Ch3x_djvD7azi-vulAa9AbdKxjoGPJ-g0q4PcH |
link.rule.ids | 230,315,730,783,787,867,888,21400,27936,27937,33756,33757,41132,42201,43817,51588,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT9sw8LSB0PYysQ1YBmyetDeISGKncZ4QIFD5WDUhkHiz7MQWSJAAaVXx77lz0lYFwbOtxL4P3_cdwF9jnC4jnYe2oJKc2PRCmWoe6sxpNEekdoXPthj0-pfi5Cq96hxuTZdWOXkT_UNd1gX5yHdQDOVoSqA9tXv_ENLUKIqudiM0PsIitapC42tx_3Dw_3zmZSF9nouuWibicqcRPh2LrCaqG-XheF4ivVIzX2dLvgiZekl0tAxfOhWS7bU4_wofbPUNltqhkk_f4fi8HS9fPz4xpA7LSHQR-Bk5yWvnGMXaxw2jruEVMvhtu-0WD8duKnZXNw8j5HPbrMDl0eHFQT_sBiaEhcjEEKWNLCwyrO5JwZOSS5MnNinLiGc25vjuafL4oERy3MgiNykXVma2FC7WaY626iosVHVlfwBD3kTFsUwTK6WQJjYuip1MbGzQAkuMDWBrAjR13_bFUD6ezaVqQawQxMqDWI0D2JjAVXU80qgZRgP4M11G6qaQha5sPfJ7Mok6VRYFsNaiYfo7jpIUP5AGkM0haLqBOmfPr1Q3176DdpZSEyAewPYElbNjvX2Ln-_f4jd86l_8O1Nnx4PTdficeBKjxJINWBg-juwmai9D86sj0WcSMO15 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1dT9sw8DSYhnhBjPERYMOTeBsRTew0ziNiq2CgakJU6ptlJ7ZAggRIq4p_z52TFrqyhz374jj3kbvzfQEcGuN00dFZaHMqyYlMN5SJ5qFOnUZ3RGqX-2yLfvdsIH4Pk-GbKn6f7T4NSTY1DdSlqRwdPxSuLRKXx7XwOVXk-lDxJw8nS_BR0NB0Ctd2T19vWcie56Ktlnn_0XmNtGBmLmZL_hUy9Zqotw5rrQnJThqaf4YPttyAT81QyecvcH7VjJevnp4ZcodlpLoI_YwuySvnGMXaJzWjruElCvhdA3aHh2O3Jbuv6scxyrmtN2HQ-3V9eha2AxPCXKRihNpG5hYFVnel4HHBpcliGxdFh6c24vjf03TjgxrJcSPzzCRcWJnaQrhIJxn6qluwXFal3QGGsomGY5HEVkohTWRcJ3IytpFBDyw2NoAfU6Sph6YvhvLxbC5Vg2KFKFYexWoSwP4Ur6qVkVqhYZGhc4gecgDfZ8vI3RSy0KWtxh4mlWhTpZ0AthsyzF7HUZPiBkkA6RyBZgDUOXt-pby98R2004SaAPEAjqakfD3Wv79i9__AD2Dlz8-eujzvX-zBauw5jvJM9mF59DS2X9GYGZlvnl9fAECh7Wk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulatory+gene+function+handoff+allows+essential+gene+loss+in+mosquitoes&rft.jtitle=Communications+biology&rft.au=Cheatle+Jarvela%2C+Alys+M.&rft.au=Trelstad%2C+Catherine+S.&rft.au=Pick%2C+Leslie&rft.date=2020-09-30&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2399-3642&rft.volume=3&rft.issue=1&rft_id=info:doi/10.1038%2Fs42003-020-01203-w&rft.externalDocID=10_1038_s42003_020_01203_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon |