From systems to structure — using genetic data to model protein structures

Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physica...

Full description

Saved in:
Bibliographic Details
Published inNature reviews. Genetics Vol. 23; no. 6; pp. 342 - 354
Main Authors Braberg, Hannes, Echeverria, Ignacia, Kaake, Robyn M., Sali, Andrej, Krogan, Nevan J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.06.2022
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1471-0056
1471-0064
1471-0064
DOI10.1038/s41576-021-00441-w

Cover

Loading…
Abstract Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical–genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources. Large-scale genetic datasets and deep learning approaches are being used to model the structures of proteins or protein complexes. This Review describes approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical–genetic interaction mapping and their application and integration to inform structural modelling.
AbstractList Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical–genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources. Large-scale genetic datasets and deep learning approaches are being used to model the structures of proteins or protein complexes. This Review describes approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical–genetic interaction mapping and their application and integration to inform structural modelling.
Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical-genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources.
Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical–genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources.Large-scale genetic datasets and deep learning approaches are being used to model the structures of proteins or protein complexes. This Review describes approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical–genetic interaction mapping and their application and integration to inform structural modelling.
Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical-genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources.Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical-genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources.
Author Echeverria, Ignacia
Kaake, Robyn M.
Braberg, Hannes
Krogan, Nevan J.
Sali, Andrej
Author_xml – sequence: 1
  givenname: Hannes
  orcidid: 0000-0002-7070-2257
  surname: Braberg
  fullname: Braberg, Hannes
  organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Quantitative Biosciences Institute, University of California, San Francisco
– sequence: 2
  givenname: Ignacia
  orcidid: 0000-0003-4717-1467
  surname: Echeverria
  fullname: Echeverria, Ignacia
  organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Quantitative Biosciences Institute, University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco
– sequence: 3
  givenname: Robyn M.
  orcidid: 0000-0002-8341-3067
  surname: Kaake
  fullname: Kaake, Robyn M.
  organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Quantitative Biosciences Institute, University of California, San Francisco, Gladstone Institutes
– sequence: 4
  givenname: Andrej
  orcidid: 0000-0003-0435-6197
  surname: Sali
  fullname: Sali, Andrej
  organization: Quantitative Biosciences Institute, University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Department of Pharmaceutical Chemistry, University of California, San Francisco
– sequence: 5
  givenname: Nevan J.
  orcidid: 0000-0003-4902-337X
  surname: Krogan
  fullname: Krogan, Nevan J.
  email: nevan.krogan@ucsf.edu
  organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Quantitative Biosciences Institute, University of California, San Francisco, Gladstone Institutes, Department of Microbiology, Icahn School of Medicine at Mount Sinai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35013567$$D View this record in MEDLINE/PubMed
BookMark eNp9kb1uFDEUhS2UKP8vQIFGoqEZYo__GyQUEUBaKQ3UltdzZ3E0Yy-2hyhdHoIn5EnwssmGpEhlW_7O8bk-x2gvxAAIvSb4PcFUnWdGuBQt7kiLMWOkvXmFjgiTm6Nge7s9F4foOOdrjIkgkh6gQ8oxoVzII7S4THFq8m0uMOWmxCaXNLsyJ2j-3P1u5uzDqllBgOJd09tiN8wUexibdYoFfHhU5FO0P9gxw9n9eoK-X376dvGlXVx9_nrxcdE6JllpZU8GLLHtnNCaDh3XzOolFUxZxZS2HemEwlpbKVyvHV7SQepOSxDMCguYnqAPW9_1vJygdxBKsqNZJz_ZdGui9ebpTfA_zCr-MkoyhrmuBu_uDVL8OUMuZvLZwTjaAHHOphNEacwV4xV9-wy9jnMKdbxKCSGJ4pJU6s3_iXZRHj66At0WcCnmnGDYIQSbTZtm26apbZp_bZqbKlLPRM4XW3zcTOXHl6V0K831nbCC9Bj7BdVfoF21Iw
CitedBy_id crossref_primary_10_1038_s41592_024_02341_3
crossref_primary_10_3389_fgene_2022_951939
crossref_primary_10_1002_mgg3_2354
crossref_primary_10_1007_s11274_023_03518_2
crossref_primary_10_1016_j_fochms_2023_100168
crossref_primary_10_1016_j_biosystems_2024_105272
crossref_primary_10_1016_j_canlet_2024_216991
crossref_primary_10_1093_bioadv_vbad191
crossref_primary_10_1021_acs_jcim_2c00026
crossref_primary_10_1007_s42250_022_00414_4
crossref_primary_10_1016_j_ijbiomac_2025_141233
crossref_primary_10_1016_j_sbi_2022_102517
crossref_primary_10_1021_acs_iecr_1c04943
crossref_primary_10_1038_s41587_024_02428_4
crossref_primary_10_1016_j_sbi_2023_102608
Cites_doi 10.1126/science.aal3321
10.1038/s41576-020-0212-5
10.7554/eLife.03430
10.7554/eLife.00631
10.1016/j.cell.2012.08.011
10.1016/j.cell.2014.10.051
10.1126/science.1158684
10.1038/35041601
10.1016/j.cell.2018.03.014
10.1038/nbt.4137
10.1038/nmeth.1239
10.1371/journal.pcbi.1000694
10.1073/pnas.1207864109
10.1093/bioinformatics/bty341
10.1038/nrg3574
10.1016/j.cell.2006.10.030
10.1038/s41587-020-0561-9
10.1038/nature26003
10.1126/science.abf3066
10.1126/science.1150021
10.1038/ng1844
10.1016/j.cell.2013.01.030
10.1073/pnas.1814649116
10.1186/gb-2006-7-7-r63
10.1038/nature04532
10.1093/bioinformatics/btr638
10.1016/j.cell.2012.04.012
10.1074/mcp.M600381-MCP200
10.1126/science.1180823
10.1073/pnas.0805923106
10.1016/j.ymeth.2006.07.034
10.1101/gad.1477507
10.1371/journal.pcbi.1000633
10.1038/nrg2085
10.1002/pro.3995
10.1016/j.cell.2010.05.019
10.1038/nmeth.4286
10.1038/s41594-020-0463-z
10.1073/pnas.91.1.98
10.1002/prot.22934
10.1038/nbt.2419
10.1093/nar/gkaa1100
10.1038/s41586-021-03819-2
10.1371/journal.pone.0028766
10.1073/pnas.262669299
10.1002/bies.201400044
10.1073/pnas.1120559109
10.1101/2021.09.26.461876
10.1093/protein/7.3.341
10.1101/2021.10.04.463034
10.1016/j.molcel.2021.04.027
10.1016/j.cell.2013.07.033
10.1038/s41589-020-0480-6
10.1073/pnas.1708268114
10.1126/science.1162609
10.1101/2021.05.11.443710
10.1016/j.molcel.2014.12.028
10.1016/j.chom.2020.11.007
10.1016/j.cels.2019.11.008
10.1073/pnas.1606762113
10.1126/science.aaf1420
10.1016/j.sbi.2018.01.009
10.1101/2021.09.07.459290
10.1016/j.molcel.2004.09.035
10.1016/j.cub.2014.09.072
10.1016/j.cell.2020.08.012
10.1146/annurev-biochem-013118-111947
10.1126/science.abf3067
10.1038/s41588-019-0432-9
10.1016/j.cell.2010.11.052
10.1016/j.cell.2019.05.016
10.1002/prot.340180402
10.1017/S0033583504003920
10.1006/jmbi.1997.1198
10.1038/nmeth.2398
10.1016/j.bbagen.2017.07.020
10.1038/s41586-021-03828-1
10.1126/science.abf2911
10.1101/2021.09.15.460468
10.1038/s41586-019-1711-4
10.1038/msb.2010.107
10.1093/molbev/msaa204
10.1038/nmeth.3027
10.1261/rna.040709.113
10.7554/eLife.59988
10.1093/protein/9.11.941
10.1371/journal.pone.0092721
10.1038/nmeth.1581
10.1016/0022-2836(87)90352-4
10.7554/eLife.32472
10.1038/s41588-019-0431-x
10.1002/prot.25407
10.1371/journal.pbio.1001244
10.1103/PhysRevE.87.012707
10.1073/pnas.1120036109
10.1093/bioinformatics/btm604
10.1093/bioinformatics/btu739
10.1038/nmeth.4225
10.1038/nature04670
10.1101/2021.05.10.443524
10.1038/s41467-017-01706-x
10.1002/prot.20098
10.1038/nature10719
10.1126/science.1252884
10.1038/nmeth.2436
10.1073/pnas.2010057118
10.1038/msb4100129
10.1016/j.molcel.2020.02.004
10.1126/science.1065810
10.1038/nsb1101-923
10.1126/science.aah4043
10.7554/eLife.02030
10.1038/s41586-020-2286-9
10.1038/nrg2452
10.1073/pnas.1209751109
10.1016/j.cell.2008.12.039
10.1073/pnas.1915542117
10.1073/pnas.1314045110
10.1016/j.molcel.2015.07.016
10.1002/anie.201605470
10.1126/science.abj8754
10.1126/science.aaz4910
10.7554/eLife.09532
10.1016/j.jbc.2021.100743
10.1126/science.1225829
10.1016/j.bpj.2017.10.005
10.1093/nar/gkaa1038
10.7717/peerj.7280
10.1093/protein/7.3.349
10.1109/TCBB.2007.70225
10.1038/s41467-019-12101-z
10.1126/science.abm4805
10.1093/nar/gky420
10.1126/science.aaw6718
10.1038/s41586-018-0461-z
10.1038/nmeth.1240
10.1126/science.1173299
10.1371/journal.pcbi.1005324
10.1093/nar/gkw306
10.1146/annurev-biophys-070816-033701
10.1038/s41586-021-03982-6
10.1038/nature05649
10.1126/science.abe9403
ContentType Journal Article
Copyright Springer Nature Limited 2022
2022. Springer Nature Limited.
Copyright Nature Publishing Group Jun 2022
Copyright_xml – notice: Springer Nature Limited 2022
– notice: 2022. Springer Nature Limited.
– notice: Copyright Nature Publishing Group Jun 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QP
7QR
7RV
7TK
7TM
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
7X8
5PM
DOI 10.1038/s41576-021-00441-w
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Nursing & Allied Health Database
Neurosciences Abstracts
Nucleic Acids Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

ProQuest Central Student
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1471-0064
EndPage 354
ExternalDocumentID PMC8744059
35013567
10_1038_s41576_021_00441_w
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P41 GM109824
– fundername: NIMH NIH HHS
  grantid: U01 MH115747
– fundername: NIAID NIH HHS
  grantid: U19 AI135990
– fundername: NINDS NIH HHS
  grantid: U54 NS100717
– fundername: NCI NIH HHS
  grantid: U54 CA209891
– fundername: NIGMS NIH HHS
  grantid: R01 GM083960
– fundername: NIAID NIH HHS
  grantid: P50 AI150476
– fundername: NIAID NIH HHS
  grantid: U19 AI135972
GroupedDBID ---
-DZ
.55
0R~
123
29M
36B
39C
3V.
4.4
53G
70F
7RV
7X7
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAWYQ
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ACGFS
ACIWK
ACPRK
ACUHS
ADBBV
AENEX
AFBBN
AFFNX
AFKRA
AFSHS
AGAYW
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
EAD
EAP
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IGS
IHR
IHW
INH
INR
ISR
ITC
LK8
M0L
M1P
M7P
N9A
NAPCQ
NNMJJ
O9-
ODYON
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNR
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
WOW
X7M
~8M
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
PJZUB
PPXIY
PQGLB
7QP
7QR
7TK
7TM
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
7X8
5PM
ID FETCH-LOGICAL-c474t-7d1f070a2c6993f2594a9b3648a8489a21268099a76cd9c0b3f79297e64a6ae03
IEDL.DBID 7X7
ISSN 1471-0056
1471-0064
IngestDate Thu Aug 21 13:19:35 EDT 2025
Fri Jul 11 11:24:03 EDT 2025
Tue Aug 12 07:26:26 EDT 2025
Sun Aug 17 02:24:12 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
Tue Jul 01 01:19:57 EDT 2025
Fri Feb 21 02:36:21 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License 2022. Springer Nature Limited.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-7d1f070a2c6993f2594a9b3648a8489a21268099a76cd9c0b3f79297e64a6ae03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-7070-2257
0000-0003-4717-1467
0000-0002-8341-3067
0000-0003-0435-6197
0000-0003-4902-337X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8744059
PMID 35013567
PQID 2666718571
PQPubID 44267
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8744059
proquest_miscellaneous_2618905845
proquest_journals_2666718571
pubmed_primary_35013567
crossref_primary_10_1038_s41576_021_00441_w
crossref_citationtrail_10_1038_s41576_021_00441_w
springer_journals_10_1038_s41576_021_00441_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature reviews. Genetics
PublicationTitleAbbrev Nat Rev Genet
PublicationTitleAlternate Nat Rev Genet
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References MA Stiffler (441_CR46) 2020; 10
G Butland (441_CR75) 2008; 5
NJ Rollins (441_CR96) 2019; 51
AC Gavin (441_CR7) 2006; 440
DL Swaney (441_CR3) 2021; 374
T Perica (441_CR95) 2021; 599
L Ma (441_CR111) 2017; 114
S Jager (441_CR124) 2011; 481
M Gupta (441_CR62) 2021
RC Eccleston (441_CR98) 2021; 118
M Costanzo (441_CR69) 2010; 327
AL Barabasi (441_CR2) 2009; 325
M Weigt (441_CR32) 2009; 106
S Wang (441_CR49) 2017; 13
Q Cong (441_CR45) 2019; 365
T Nugent (441_CR38) 2012; 109
J Singla (441_CR116) 2018; 173
C Gutierrez (441_CR134) 2020; 117
MP Rout (441_CR105) 2019; 177
D Fiedler (441_CR70) 2009; 136
CM Dobson (441_CR16) 2019; 88
DT Jones (441_CR51) 2018; 34
K Lasker (441_CR133) 2012; 109
U Ghani (441_CR58) 2021
ME Wall (441_CR19) 2018; 50
AA Fodor (441_CR27) 2004; 56
C UniProt (441_CR34) 2021; 49
M Kim (441_CR4) 2021; 374
A Roguev (441_CR78) 2008; 322
TN Starr (441_CR127) 2020; 182
DS Marks (441_CR35) 2011; 6
M Akdel (441_CR56) 2021
P Beltrao (441_CR63) 2010; 141
AHM Wong (441_CR130) 2017; 8
H Braberg (441_CR104) 2020; 370
DJ Saltzberg (441_CR141) 2021; 30
TA Hopf (441_CR36) 2012; 149
C Baldassi (441_CR44) 2014; 9
C Laufer (441_CR84) 2013; 10
A Sali (441_CR131) 2021; 296
DJ Thomas (441_CR25) 1996; 9
S Erwood (441_CR114) 2021
S Viswanath (441_CR140) 2019; 116
B Haarer (441_CR86) 2007; 21
PJ Thul (441_CR118) 2017; 356
JM Schmiedel (441_CR97) 2019; 51
X Pan (441_CR65) 2004; 16
M Chang (441_CR73) 2002; 99
AV Anzalone (441_CR110) 2019; 576
A Typas (441_CR76) 2008; 5
KR Roy (441_CR108) 2018; 36
BG Wilhelm (441_CR119) 2014; 344
HR Ramage (441_CR123) 2015; 57
L Burger (441_CR31) 2010; 6
Z Zhang (441_CR88) 2000; 408
D Altschuh (441_CR20) 1987; 193
RW Newberry (441_CR102) 2020; 16
DE Gordon (441_CR121) 2020; 370
AL Shiver (441_CR106) 2021; 81
S Ovchinnikov (441_CR41) 2014; 3
SR Collins (441_CR109) 2007; 6
SD Dunn (441_CR26) 2008; 24
C Boone (441_CR64) 2007; 8
R Henderson (441_CR11) 2004; 37
J Thomas (441_CR29) 2008; 5
LI Gong (441_CR129) 2013; 2
M Ekeberg (441_CR47) 2013; 87
DS Marks (441_CR28) 2012; 30
AJ Greaney (441_CR128) 2021; 29
AH Tong (441_CR15) 2001; 294
M Eckhardt (441_CR120) 2020; 21
SK Burley (441_CR53) 2021; 49
L Kapitzky (441_CR71) 2010; 6
S Ovchinnikov (441_CR48) 2017; 355
S Wang (441_CR137) 2016; 44
BE Suzek (441_CR54) 2015; 31
M Jinek (441_CR80) 2012; 337
K Murata (441_CR17) 2018; 1862
C Huang (441_CR18) 2017; 46
SJ Kim (441_CR132) 2018; 555
D Du (441_CR81) 2017; 14
PC Havugimana (441_CR9) 2012; 150
J Schaarschmidt (441_CR139) 2018; 86
SR Collins (441_CR14) 2007; 446
AV Anzalone (441_CR112) 2020; 38
J Fernandez-de-Cossio-Diaz (441_CR138) 2021; 38
IN Shindyalov (441_CR24) 1994; 7
AF Bitbol (441_CR42) 2016; 113
JL Tenthorey (441_CR126) 2020; 9
PC Phillips (441_CR13) 2008; 9
P Bryant (441_CR57) 2021
H Yu (441_CR8) 2008; 322
DT Jones (441_CR33) 2012; 28
M Schuldiner (441_CR67) 2006; 40
H Kamisetty (441_CR39) 2013; 110
S Balakrishnan (441_CR30) 2011; 79
SR Collins (441_CR66) 2006; 7
G Diss (441_CR100) 2018; 7
D Russel (441_CR143) 2012; 10
CJ Ryan (441_CR87) 2013; 14
H Zeng (441_CR50) 2018; 46
T Horn (441_CR79) 2011; 8
S Takamori (441_CR117) 2006; 127
R Sharan (441_CR1) 2007; 3
JI Sulkowska (441_CR37) 2012; 109
H Braberg (441_CR89) 2013; 154
E Neher (441_CR22) 1994; 91
A Roguev (441_CR83) 2013; 10
D Melamed (441_CR92) 2013; 19
M Costanzo (441_CR68) 2016; 353
JP Shen (441_CR82) 2017; 14
WR Taylor (441_CR23) 1994; 7
J Luo (441_CR136) 2015; 59
DM Fowler (441_CR91) 2014; 11
ME Hillenmeyer (441_CR74) 2008; 320
DE Gordon (441_CR125) 2020; 78
F Zheng (441_CR5) 2021; 374
B Lehner (441_CR77) 2006; 38
CA Olson (441_CR93) 2014; 24
TA Hopf (441_CR40) 2014; 3
DE Gordon (441_CR122) 2020; 583
A Sahoo (441_CR94) 2015; 4
Y Shi (441_CR10) 2014; 159
S Viswanath (441_CR142) 2017; 113
K Tunyasuvunakool (441_CR55) 2021; 596
MC Bassik (441_CR85) 2013; 152
SR McGuffee (441_CR115) 2010; 6
K Wuthrich (441_CR12) 2001; 8
GM Findlay (441_CR113) 2018; 562
S Kobori (441_CR101) 2016; 55
H Braberg (441_CR90) 2014; 36
CL Araya (441_CR99) 2012; 109
U Gobel (441_CR21) 1994; 18
AJ Hockenberry (441_CR107) 2019; 7
IR Humphreys (441_CR61) 2021
J Jumper (441_CR52) 2021; 596
RJ Nichols (441_CR72) 2011; 144
M Baek (441_CR60) 2021; 373
Y Kwon (441_CR135) 2020; 27
B Bolognesi (441_CR103) 2019; 10
R Evans (441_CR59) 2021
F Pazos (441_CR43) 1997; 271
NJ Krogan (441_CR6) 2006; 440
References_xml – volume: 356
  year: 2017
  ident: 441_CR118
  publication-title: Science
  doi: 10.1126/science.aal3321
– volume: 21
  start-page: 339
  year: 2020
  ident: 441_CR120
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/s41576-020-0212-5
– volume: 3
  year: 2014
  ident: 441_CR40
  publication-title: eLife
  doi: 10.7554/eLife.03430
– volume: 2
  year: 2013
  ident: 441_CR129
  publication-title: eLife
  doi: 10.7554/eLife.00631
– volume: 150
  start-page: 1068
  year: 2012
  ident: 441_CR9
  publication-title: Cell
  doi: 10.1016/j.cell.2012.08.011
– volume: 159
  start-page: 995
  year: 2014
  ident: 441_CR10
  publication-title: Cell
  doi: 10.1016/j.cell.2014.10.051
– volume: 322
  start-page: 104
  year: 2008
  ident: 441_CR8
  publication-title: Science
  doi: 10.1126/science.1158684
– volume: 408
  start-page: 221
  year: 2000
  ident: 441_CR88
  publication-title: Nature
  doi: 10.1038/35041601
– volume: 173
  start-page: 11
  year: 2018
  ident: 441_CR116
  publication-title: Cell
  doi: 10.1016/j.cell.2018.03.014
– volume: 36
  start-page: 512
  year: 2018
  ident: 441_CR108
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4137
– volume: 5
  start-page: 789
  year: 2008
  ident: 441_CR75
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1239
– volume: 6
  year: 2010
  ident: 441_CR115
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000694
– volume: 109
  start-page: 10340
  year: 2012
  ident: 441_CR37
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1207864109
– volume: 34
  start-page: 3308
  year: 2018
  ident: 441_CR51
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty341
– volume: 14
  start-page: 865
  year: 2013
  ident: 441_CR87
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3574
– volume: 127
  start-page: 831
  year: 2006
  ident: 441_CR117
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.030
– volume: 38
  start-page: 824
  year: 2020
  ident: 441_CR112
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0561-9
– volume: 555
  start-page: 475
  year: 2018
  ident: 441_CR132
  publication-title: Nature
  doi: 10.1038/nature26003
– volume: 374
  year: 2021
  ident: 441_CR4
  publication-title: Science
  doi: 10.1126/science.abf3066
– volume: 320
  start-page: 362
  year: 2008
  ident: 441_CR74
  publication-title: Science
  doi: 10.1126/science.1150021
– volume: 38
  start-page: 896
  year: 2006
  ident: 441_CR77
  publication-title: Nat. Genet.
  doi: 10.1038/ng1844
– volume: 152
  start-page: 909
  year: 2013
  ident: 441_CR85
  publication-title: Cell
  doi: 10.1016/j.cell.2013.01.030
– volume: 116
  start-page: 540
  year: 2019
  ident: 441_CR140
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1814649116
– volume: 7
  year: 2006
  ident: 441_CR66
  publication-title: Genome Biol.
  doi: 10.1186/gb-2006-7-7-r63
– volume: 440
  start-page: 631
  year: 2006
  ident: 441_CR7
  publication-title: Nature
  doi: 10.1038/nature04532
– volume: 28
  start-page: 184
  year: 2012
  ident: 441_CR33
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr638
– volume: 149
  start-page: 1607
  year: 2012
  ident: 441_CR36
  publication-title: Cell
  doi: 10.1016/j.cell.2012.04.012
– volume: 6
  start-page: 439
  year: 2007
  ident: 441_CR109
  publication-title: Mol. Cell Proteom.
  doi: 10.1074/mcp.M600381-MCP200
– volume: 327
  start-page: 425
  year: 2010
  ident: 441_CR69
  publication-title: Science
  doi: 10.1126/science.1180823
– volume: 106
  start-page: 67
  year: 2009
  ident: 441_CR32
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0805923106
– volume: 40
  start-page: 344
  year: 2006
  ident: 441_CR67
  publication-title: Methods
  doi: 10.1016/j.ymeth.2006.07.034
– volume: 21
  start-page: 148
  year: 2007
  ident: 441_CR86
  publication-title: Genes Dev.
  doi: 10.1101/gad.1477507
– volume: 6
  year: 2010
  ident: 441_CR31
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000633
– volume: 8
  start-page: 437
  year: 2007
  ident: 441_CR64
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2085
– volume: 30
  start-page: 250
  year: 2021
  ident: 441_CR141
  publication-title: Protein Sci.
  doi: 10.1002/pro.3995
– volume: 141
  start-page: 739
  year: 2010
  ident: 441_CR63
  publication-title: Cell
  doi: 10.1016/j.cell.2010.05.019
– volume: 14
  start-page: 577
  year: 2017
  ident: 441_CR81
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4286
– volume: 27
  start-page: 822
  year: 2020
  ident: 441_CR135
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-0463-z
– volume: 91
  start-page: 98
  year: 1994
  ident: 441_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.91.1.98
– volume: 79
  start-page: 1061
  year: 2011
  ident: 441_CR30
  publication-title: Proteins
  doi: 10.1002/prot.22934
– volume: 30
  start-page: 1072
  year: 2012
  ident: 441_CR28
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2419
– volume: 49
  start-page: D480
  year: 2021
  ident: 441_CR34
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1100
– volume: 596
  start-page: 583
  year: 2021
  ident: 441_CR52
  publication-title: Nature
  doi: 10.1038/s41586-021-03819-2
– volume: 6
  year: 2011
  ident: 441_CR35
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0028766
– volume: 99
  start-page: 16934
  year: 2002
  ident: 441_CR73
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.262669299
– volume: 36
  start-page: 706
  year: 2014
  ident: 441_CR90
  publication-title: Bioessays
  doi: 10.1002/bies.201400044
– volume: 109
  start-page: 1380
  year: 2012
  ident: 441_CR133
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1120559109
– year: 2021
  ident: 441_CR56
  publication-title: bioRxiv
  doi: 10.1101/2021.09.26.461876
– volume: 7
  start-page: 341
  year: 1994
  ident: 441_CR23
  publication-title: Protein Eng.
  doi: 10.1093/protein/7.3.341
– year: 2021
  ident: 441_CR59
  publication-title: bioRxiv
  doi: 10.1101/2021.10.04.463034
– volume: 81
  start-page: 2201
  year: 2021
  ident: 441_CR106
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2021.04.027
– volume: 154
  start-page: 775
  year: 2013
  ident: 441_CR89
  publication-title: Cell
  doi: 10.1016/j.cell.2013.07.033
– volume: 16
  start-page: 653
  year: 2020
  ident: 441_CR102
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-020-0480-6
– volume: 114
  start-page: 11751
  year: 2017
  ident: 441_CR111
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1708268114
– volume: 322
  start-page: 405
  year: 2008
  ident: 441_CR78
  publication-title: Science
  doi: 10.1126/science.1162609
– year: 2021
  ident: 441_CR114
  publication-title: bioRxiv
  doi: 10.1101/2021.05.11.443710
– volume: 57
  start-page: 329
  year: 2015
  ident: 441_CR123
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.12.028
– volume: 29
  start-page: 44
  year: 2021
  ident: 441_CR128
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.11.007
– volume: 10
  start-page: 15
  year: 2020
  ident: 441_CR46
  publication-title: Cell Syst.
  doi: 10.1016/j.cels.2019.11.008
– volume: 113
  start-page: 12180
  year: 2016
  ident: 441_CR42
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1606762113
– volume: 353
  start-page: aaf1420
  year: 2016
  ident: 441_CR68
  publication-title: Science
  doi: 10.1126/science.aaf1420
– volume: 50
  start-page: 109
  year: 2018
  ident: 441_CR19
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2018.01.009
– year: 2021
  ident: 441_CR58
  publication-title: bioRxiv
  doi: 10.1101/2021.09.07.459290
– volume: 16
  start-page: 487
  year: 2004
  ident: 441_CR65
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.09.035
– volume: 24
  start-page: 2643
  year: 2014
  ident: 441_CR93
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2014.09.072
– volume: 182
  start-page: 1295
  year: 2020
  ident: 441_CR127
  publication-title: Cell
  doi: 10.1016/j.cell.2020.08.012
– volume: 88
  start-page: 25
  year: 2019
  ident: 441_CR16
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-013118-111947
– volume: 374
  year: 2021
  ident: 441_CR5
  publication-title: Science
  doi: 10.1126/science.abf3067
– volume: 51
  start-page: 1170
  year: 2019
  ident: 441_CR96
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0432-9
– volume: 144
  start-page: 143
  year: 2011
  ident: 441_CR72
  publication-title: Cell
  doi: 10.1016/j.cell.2010.11.052
– volume: 177
  start-page: 1384
  year: 2019
  ident: 441_CR105
  publication-title: Cell
  doi: 10.1016/j.cell.2019.05.016
– volume: 18
  start-page: 309
  year: 1994
  ident: 441_CR21
  publication-title: Proteins
  doi: 10.1002/prot.340180402
– volume: 37
  start-page: 3
  year: 2004
  ident: 441_CR11
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583504003920
– volume: 271
  start-page: 511
  year: 1997
  ident: 441_CR43
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.1997.1198
– volume: 10
  start-page: 432
  year: 2013
  ident: 441_CR83
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2398
– volume: 1862
  start-page: 324
  year: 2018
  ident: 441_CR17
  publication-title: Biochim. Biophys. Acta Gen. Subj.
  doi: 10.1016/j.bbagen.2017.07.020
– volume: 596
  start-page: 590
  year: 2021
  ident: 441_CR55
  publication-title: Nature
  doi: 10.1038/s41586-021-03828-1
– volume: 374
  year: 2021
  ident: 441_CR3
  publication-title: Science
  doi: 10.1126/science.abf2911
– year: 2021
  ident: 441_CR57
  publication-title: bioRxiv
  doi: 10.1101/2021.09.15.460468
– volume: 576
  start-page: 149
  year: 2019
  ident: 441_CR110
  publication-title: Nature
  doi: 10.1038/s41586-019-1711-4
– volume: 6
  start-page: 451
  year: 2010
  ident: 441_CR71
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb.2010.107
– volume: 38
  start-page: 318
  year: 2021
  ident: 441_CR138
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msaa204
– volume: 11
  start-page: 801
  year: 2014
  ident: 441_CR91
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3027
– volume: 19
  start-page: 1537
  year: 2013
  ident: 441_CR92
  publication-title: RNA
  doi: 10.1261/rna.040709.113
– volume: 9
  year: 2020
  ident: 441_CR126
  publication-title: eLife
  doi: 10.7554/eLife.59988
– volume: 9
  start-page: 941
  year: 1996
  ident: 441_CR25
  publication-title: Protein Eng.
  doi: 10.1093/protein/9.11.941
– volume: 9
  year: 2014
  ident: 441_CR44
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0092721
– volume: 8
  start-page: 341
  year: 2011
  ident: 441_CR79
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1581
– volume: 193
  start-page: 693
  year: 1987
  ident: 441_CR20
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(87)90352-4
– volume: 7
  year: 2018
  ident: 441_CR100
  publication-title: eLife
  doi: 10.7554/eLife.32472
– volume: 51
  start-page: 1177
  year: 2019
  ident: 441_CR97
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0431-x
– volume: 86
  start-page: 51
  issue: Suppl. 1
  year: 2018
  ident: 441_CR139
  publication-title: Proteins
  doi: 10.1002/prot.25407
– volume: 10
  year: 2012
  ident: 441_CR143
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1001244
– volume: 87
  start-page: 012707
  year: 2013
  ident: 441_CR47
  publication-title: Phys. Rev. E Stat. Nonlin Soft Matter Phys.
  doi: 10.1103/PhysRevE.87.012707
– volume: 109
  start-page: E1540
  year: 2012
  ident: 441_CR38
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1120036109
– volume: 24
  start-page: 333
  year: 2008
  ident: 441_CR26
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm604
– volume: 31
  start-page: 926
  year: 2015
  ident: 441_CR54
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu739
– volume: 14
  start-page: 573
  year: 2017
  ident: 441_CR82
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4225
– volume: 440
  start-page: 637
  year: 2006
  ident: 441_CR6
  publication-title: Nature
  doi: 10.1038/nature04670
– year: 2021
  ident: 441_CR62
  publication-title: bioRxiv
  doi: 10.1101/2021.05.10.443524
– volume: 8
  year: 2017
  ident: 441_CR130
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01706-x
– volume: 56
  start-page: 211
  year: 2004
  ident: 441_CR27
  publication-title: Proteins
  doi: 10.1002/prot.20098
– volume: 481
  start-page: 365
  year: 2011
  ident: 441_CR124
  publication-title: Nature
  doi: 10.1038/nature10719
– volume: 344
  start-page: 1023
  year: 2014
  ident: 441_CR119
  publication-title: Science
  doi: 10.1126/science.1252884
– volume: 10
  start-page: 427
  year: 2013
  ident: 441_CR84
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.2436
– volume: 118
  year: 2021
  ident: 441_CR98
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2010057118
– volume: 3
  start-page: 88
  year: 2007
  ident: 441_CR1
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb4100129
– volume: 78
  start-page: 197
  year: 2020
  ident: 441_CR125
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.02.004
– volume: 294
  start-page: 2364
  year: 2001
  ident: 441_CR15
  publication-title: Science
  doi: 10.1126/science.1065810
– volume: 8
  start-page: 923
  year: 2001
  ident: 441_CR12
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb1101-923
– volume: 355
  start-page: 294
  year: 2017
  ident: 441_CR48
  publication-title: Science
  doi: 10.1126/science.aah4043
– volume: 3
  year: 2014
  ident: 441_CR41
  publication-title: eLife
  doi: 10.7554/eLife.02030
– volume: 583
  start-page: 459
  year: 2020
  ident: 441_CR122
  publication-title: Nature
  doi: 10.1038/s41586-020-2286-9
– volume: 9
  start-page: 855
  year: 2008
  ident: 441_CR13
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2452
– volume: 109
  start-page: 16858
  year: 2012
  ident: 441_CR99
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1209751109
– volume: 136
  start-page: 952
  year: 2009
  ident: 441_CR70
  publication-title: Cell
  doi: 10.1016/j.cell.2008.12.039
– volume: 117
  start-page: 4088
  year: 2020
  ident: 441_CR134
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1915542117
– volume: 110
  start-page: 15674
  year: 2013
  ident: 441_CR39
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1314045110
– volume: 59
  start-page: 794
  year: 2015
  ident: 441_CR136
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.07.016
– volume: 55
  start-page: 10354
  year: 2016
  ident: 441_CR101
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201605470
– volume: 373
  start-page: 871
  year: 2021
  ident: 441_CR60
  publication-title: Science
  doi: 10.1126/science.abj8754
– volume: 370
  year: 2020
  ident: 441_CR104
  publication-title: Science
  doi: 10.1126/science.aaz4910
– volume: 4
  year: 2015
  ident: 441_CR94
  publication-title: eLife
  doi: 10.7554/eLife.09532
– volume: 296
  start-page: 100743
  year: 2021
  ident: 441_CR131
  publication-title: J. Biol. Chem.
  doi: 10.1016/j.jbc.2021.100743
– volume: 337
  start-page: 816
  year: 2012
  ident: 441_CR80
  publication-title: Science
  doi: 10.1126/science.1225829
– volume: 113
  start-page: 2344
  year: 2017
  ident: 441_CR142
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2017.10.005
– volume: 49
  start-page: D437
  year: 2021
  ident: 441_CR53
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaa1038
– volume: 7
  year: 2019
  ident: 441_CR107
  publication-title: PeerJ
  doi: 10.7717/peerj.7280
– volume: 7
  start-page: 349
  year: 1994
  ident: 441_CR24
  publication-title: Protein Eng.
  doi: 10.1093/protein/7.3.349
– volume: 5
  start-page: 183
  year: 2008
  ident: 441_CR29
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform
  doi: 10.1109/TCBB.2007.70225
– volume: 10
  year: 2019
  ident: 441_CR103
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12101-z
– year: 2021
  ident: 441_CR61
  publication-title: Science
  doi: 10.1126/science.abm4805
– volume: 46
  start-page: W432
  year: 2018
  ident: 441_CR50
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky420
– volume: 365
  start-page: 185
  year: 2019
  ident: 441_CR45
  publication-title: Science
  doi: 10.1126/science.aaw6718
– volume: 562
  start-page: 217
  year: 2018
  ident: 441_CR113
  publication-title: Nature
  doi: 10.1038/s41586-018-0461-z
– volume: 5
  start-page: 781
  year: 2008
  ident: 441_CR76
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1240
– volume: 325
  start-page: 412
  year: 2009
  ident: 441_CR2
  publication-title: Science
  doi: 10.1126/science.1173299
– volume: 13
  year: 2017
  ident: 441_CR49
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1005324
– volume: 44
  start-page: W430
  year: 2016
  ident: 441_CR137
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkw306
– volume: 46
  start-page: 317
  year: 2017
  ident: 441_CR18
  publication-title: Annu. Rev. Biophys.
  doi: 10.1146/annurev-biophys-070816-033701
– volume: 599
  start-page: 152
  year: 2021
  ident: 441_CR95
  publication-title: Nature
  doi: 10.1038/s41586-021-03982-6
– volume: 446
  start-page: 806
  year: 2007
  ident: 441_CR14
  publication-title: Nature
  doi: 10.1038/nature05649
– volume: 370
  year: 2020
  ident: 441_CR121
  publication-title: Science
  doi: 10.1126/science.abe9403
SSID ssj0016173
Score 2.4947395
SecondaryResourceType review_article
Snippet Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 342
SubjectTerms 631/114/1305
631/114/2163
631/1647/1513
631/535
631/553/2490/1472
Agriculture
Animal Genetics and Genomics
Biomedical and Life Sciences
Biomedicine
Cancer Research
Coevolution
Deep learning
Epistasis, Genetic
Gene Function
Gene mapping
Gene Regulatory Networks
Genetic diversity
Genomes
Human Genetics
Integration
Molecular modelling
Mutation
Peptide mapping
Protein interaction
Protein Interaction Mapping
Protein Interaction Maps
Proteins
Proteins - genetics
Proteins - metabolism
Review
Review Article
Scanning
Title From systems to structure — using genetic data to model protein structures
URI https://link.springer.com/article/10.1038/s41576-021-00441-w
https://www.ncbi.nlm.nih.gov/pubmed/35013567
https://www.proquest.com/docview/2666718571
https://www.proquest.com/docview/2618905845
https://pubmed.ncbi.nlm.nih.gov/PMC8744059
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED5tIKS9IDbGCHTIk3hjFnXj2u4TahEVmrYKIZD6FjmpPZC2BEgR4o0fwS_kl3DnpKkKgpckkh0luTv7vvjO3wHseuuVF8Zz602bSzcx3KrMckMxJqs7UnvajfxnpI7P5a9xd1wvuJV1WuVsTgwT9aTIaI18Hx2J0kRcJA6urjlVjaLoal1C4yMsE3UZpXTpcfPDRdA9JNjjBMyJ87LeNNOOzX6JjktT-i21ICTgd4uO6RXafJ00-SJyGhzScA1WayTJ-pXqP8MHl3-Blaq25P06_B7eFP9ZRdRcsmnBKqbY2xvHnh4eGeW7_2VoPbSJkVGeKPUJdXFY4G64zOd3lF_hfHh0dnjM69IJPJNaTrmeCI-D2XYyhQDE4z-OtL00VtJYI1EJ6LCUQXBotcomvaydxl4jUNJOSausa8cbsJQXudsEJp1F-VmhM7wwqTOpcE5Ir5Xvxj3ZjUDM5JZkNa84lbf4l4T4dmySStYJyjoJsk7uIthr7rmqWDXe7d2aqSOpR1iZzO0hgh9NM44NCnjY3BW31EegzSHEwpf8VmmveRwFVOOu0hHoBb02HYh3e7Elv7wI_NtUMQBRaQQ_ZxYwf623v2Lr_a_Yhk8d2lkRFnhasIQadt8R70zTnWDUeDSHYgeW-8PBYITnwdHo5PQZoZABLA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRBcEP8EChgJTmB1k3ht7wEhfrra0u0KoVbqzXWyNlSCpDRbrXrjIXgOHoonYSZOsloqeuttJTtZZ2bs-ZKZ-Qbgubde-lh7br3uc-FmmluZW64pxmRVIpSnauTdqRzvi48Hg4M1-N3WwlBaZXsm1gf1rMzpG_kmOhKpiLgofnP8g1PXKIquti00glnsuLMFvrJVr7c_oH5fJMloa-_9mDddBXgulJhzNYs92rlNcom-2SP8F3aYpVJoqwWuD89yqRE3WSXz2TDvZ6lXiCGUk8JK6_op3vcKrIsUX2V6sP5ua_rpcxe3kCGmHeORz4llsynT6ad6s0JXqSjhl0YQhPDFqis8h2_Pp2n-E6utXeDoJtxosCt7G4ztFqy54jZcDd0sz-7AZHRSfmeBGrpi85IFbtrTE8f-_PzFKMP-C0N7pbJJRpmpNKfuxMNqtoijYnlFdRf2L0Ws96BXlIV7AEw4i_Kzscrxh86czmLnYuGV9IN0KAYRxK3cTN4wmVNDjW-mjqin2gRZG5S1qWVtFhG87K45DjweF87eaNVhmj1dmaUFRvCsG8bdSCEWW7jylObEaOUI6nCR94P2ur-jEG46kCoCtaLXbgIxfa-OFEdfa8Zv6lGAODiCV60FLJf1_6d4ePFTPIVr473diZlsT3cewfWE6jrqz0sb0ENtu8eItubZk8bEGRxe9q76CzvrObA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlAviP8GChgJTmDtJnFs76FCiLJqaak4UGlvxsnatFJJSrPVqjcegqfhcfokzDg_q6Wit94i2Umc-fGMMzPfALzy1ksfa8-t10Mu3FRzKwvLNcWYrEqE8lSN_Hlfbh-IT5NssgJ_uloYSqvs9sSwUU-rgv6RD9CQSEXARfHAt2kRX7bG705-cuogRZHWrp1GIyK77nyOx7d6c2cLef06ScYfv37Y5m2HAV4IJWZcTWOPMm-TQqKd9ngUEHaUp1JoqwWuFfd1qdGHskoW01ExzFOv0J9QTgorrRum-NwbcFOlWUw6pib9YY-ODSG5Hzd_TnibbcHOMNWDGo2motRfGkF3hM-XjeIlT_dywuY_UdtgDMd34U7rxbL3jdjdgxVX3odbTV_L8wewNz6tfrAGJLpms4o1KLVnp45d_PrNKNf-O0PJpQJKRjmqNCf05GEBN-KoXNxRP4SDayHqI1gtq9KtAxPOIv1srAq80LnTeexcLLySPktHIosg7uhmihbTnFprHJsQW0-1aWhtkNYm0NrMI3jT33PSIHpcOXujY4dptbs2C1mM4GU_jHpJwRZbuuqM5sQo7-je4SIfN9zrX0fB3DSTKgK1xNd-AmF-L4-UR4cB-5u6FaBHHMHbTgIWy_r_Vzy5-itewG3UJbO3s7_7FNYSKvAI_5k2YBWZ7Z6h2zXLnwf5ZvDtuhXqL414PIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+systems+to+structure+%E2%80%94+using+genetic+data+to+model+protein+structures&rft.jtitle=Nature+reviews.+Genetics&rft.au=Braberg%2C+Hannes&rft.au=Echeverria%2C+Ignacia&rft.au=Kaake%2C+Robyn+M.&rft.au=Sali%2C+Andrej&rft.date=2022-06-01&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=23&rft.issue=6&rft.spage=342&rft.epage=354&rft_id=info:doi/10.1038%2Fs41576-021-00441-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41576_021_00441_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon