From systems to structure — using genetic data to model protein structures
Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physica...
Saved in:
Published in | Nature reviews. Genetics Vol. 23; no. 6; pp. 342 - 354 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.06.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1471-0056 1471-0064 1471-0064 |
DOI | 10.1038/s41576-021-00441-w |
Cover
Loading…
Abstract | Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical–genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources.
Large-scale genetic datasets and deep learning approaches are being used to model the structures of proteins or protein complexes. This Review describes approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical–genetic interaction mapping and their application and integration to inform structural modelling. |
---|---|
AbstractList | Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical–genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources.
Large-scale genetic datasets and deep learning approaches are being used to model the structures of proteins or protein complexes. This Review describes approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical–genetic interaction mapping and their application and integration to inform structural modelling. Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical-genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources. Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical–genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources.Large-scale genetic datasets and deep learning approaches are being used to model the structures of proteins or protein complexes. This Review describes approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical–genetic interaction mapping and their application and integration to inform structural modelling. Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical-genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources.Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences of sequence changes at systems-wide and mechanistic scales. To achieve a systems view, protein interaction networks map which proteins physically interact, while genetic interaction networks inform on the phenotypic consequences of perturbing these protein interactions. Until recently, understanding the molecular mechanisms that underlie these interactions often required biophysical methods to determine the structures of the proteins involved. The past decade has seen the emergence of new approaches based on coevolution, deep mutational scanning and genome-scale genetic or chemical-genetic interaction mapping that enable modelling of the structures of individual proteins or protein complexes. Here, we review the emerging use of large-scale genetic datasets and deep learning approaches to model protein structures and their interactions, and discuss the integration of structural data from different sources. |
Author | Echeverria, Ignacia Kaake, Robyn M. Braberg, Hannes Krogan, Nevan J. Sali, Andrej |
Author_xml | – sequence: 1 givenname: Hannes orcidid: 0000-0002-7070-2257 surname: Braberg fullname: Braberg, Hannes organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Quantitative Biosciences Institute, University of California, San Francisco – sequence: 2 givenname: Ignacia orcidid: 0000-0003-4717-1467 surname: Echeverria fullname: Echeverria, Ignacia organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Quantitative Biosciences Institute, University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco – sequence: 3 givenname: Robyn M. orcidid: 0000-0002-8341-3067 surname: Kaake fullname: Kaake, Robyn M. organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Quantitative Biosciences Institute, University of California, San Francisco, Gladstone Institutes – sequence: 4 givenname: Andrej orcidid: 0000-0003-0435-6197 surname: Sali fullname: Sali, Andrej organization: Quantitative Biosciences Institute, University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, Department of Pharmaceutical Chemistry, University of California, San Francisco – sequence: 5 givenname: Nevan J. orcidid: 0000-0003-4902-337X surname: Krogan fullname: Krogan, Nevan J. email: nevan.krogan@ucsf.edu organization: Department of Cellular and Molecular Pharmacology, University of California, San Francisco, Quantitative Biosciences Institute, University of California, San Francisco, Gladstone Institutes, Department of Microbiology, Icahn School of Medicine at Mount Sinai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35013567$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kb1uFDEUhS2UKP8vQIFGoqEZYo__GyQUEUBaKQ3UltdzZ3E0Yy-2hyhdHoIn5EnwssmGpEhlW_7O8bk-x2gvxAAIvSb4PcFUnWdGuBQt7kiLMWOkvXmFjgiTm6Nge7s9F4foOOdrjIkgkh6gQ8oxoVzII7S4THFq8m0uMOWmxCaXNLsyJ2j-3P1u5uzDqllBgOJd09tiN8wUexibdYoFfHhU5FO0P9gxw9n9eoK-X376dvGlXVx9_nrxcdE6JllpZU8GLLHtnNCaDh3XzOolFUxZxZS2HemEwlpbKVyvHV7SQepOSxDMCguYnqAPW9_1vJygdxBKsqNZJz_ZdGui9ebpTfA_zCr-MkoyhrmuBu_uDVL8OUMuZvLZwTjaAHHOphNEacwV4xV9-wy9jnMKdbxKCSGJ4pJU6s3_iXZRHj66At0WcCnmnGDYIQSbTZtm26apbZp_bZqbKlLPRM4XW3zcTOXHl6V0K831nbCC9Bj7BdVfoF21Iw |
CitedBy_id | crossref_primary_10_1038_s41592_024_02341_3 crossref_primary_10_3389_fgene_2022_951939 crossref_primary_10_1002_mgg3_2354 crossref_primary_10_1007_s11274_023_03518_2 crossref_primary_10_1016_j_fochms_2023_100168 crossref_primary_10_1016_j_biosystems_2024_105272 crossref_primary_10_1016_j_canlet_2024_216991 crossref_primary_10_1093_bioadv_vbad191 crossref_primary_10_1021_acs_jcim_2c00026 crossref_primary_10_1007_s42250_022_00414_4 crossref_primary_10_1016_j_ijbiomac_2025_141233 crossref_primary_10_1016_j_sbi_2022_102517 crossref_primary_10_1021_acs_iecr_1c04943 crossref_primary_10_1038_s41587_024_02428_4 crossref_primary_10_1016_j_sbi_2023_102608 |
Cites_doi | 10.1126/science.aal3321 10.1038/s41576-020-0212-5 10.7554/eLife.03430 10.7554/eLife.00631 10.1016/j.cell.2012.08.011 10.1016/j.cell.2014.10.051 10.1126/science.1158684 10.1038/35041601 10.1016/j.cell.2018.03.014 10.1038/nbt.4137 10.1038/nmeth.1239 10.1371/journal.pcbi.1000694 10.1073/pnas.1207864109 10.1093/bioinformatics/bty341 10.1038/nrg3574 10.1016/j.cell.2006.10.030 10.1038/s41587-020-0561-9 10.1038/nature26003 10.1126/science.abf3066 10.1126/science.1150021 10.1038/ng1844 10.1016/j.cell.2013.01.030 10.1073/pnas.1814649116 10.1186/gb-2006-7-7-r63 10.1038/nature04532 10.1093/bioinformatics/btr638 10.1016/j.cell.2012.04.012 10.1074/mcp.M600381-MCP200 10.1126/science.1180823 10.1073/pnas.0805923106 10.1016/j.ymeth.2006.07.034 10.1101/gad.1477507 10.1371/journal.pcbi.1000633 10.1038/nrg2085 10.1002/pro.3995 10.1016/j.cell.2010.05.019 10.1038/nmeth.4286 10.1038/s41594-020-0463-z 10.1073/pnas.91.1.98 10.1002/prot.22934 10.1038/nbt.2419 10.1093/nar/gkaa1100 10.1038/s41586-021-03819-2 10.1371/journal.pone.0028766 10.1073/pnas.262669299 10.1002/bies.201400044 10.1073/pnas.1120559109 10.1101/2021.09.26.461876 10.1093/protein/7.3.341 10.1101/2021.10.04.463034 10.1016/j.molcel.2021.04.027 10.1016/j.cell.2013.07.033 10.1038/s41589-020-0480-6 10.1073/pnas.1708268114 10.1126/science.1162609 10.1101/2021.05.11.443710 10.1016/j.molcel.2014.12.028 10.1016/j.chom.2020.11.007 10.1016/j.cels.2019.11.008 10.1073/pnas.1606762113 10.1126/science.aaf1420 10.1016/j.sbi.2018.01.009 10.1101/2021.09.07.459290 10.1016/j.molcel.2004.09.035 10.1016/j.cub.2014.09.072 10.1016/j.cell.2020.08.012 10.1146/annurev-biochem-013118-111947 10.1126/science.abf3067 10.1038/s41588-019-0432-9 10.1016/j.cell.2010.11.052 10.1016/j.cell.2019.05.016 10.1002/prot.340180402 10.1017/S0033583504003920 10.1006/jmbi.1997.1198 10.1038/nmeth.2398 10.1016/j.bbagen.2017.07.020 10.1038/s41586-021-03828-1 10.1126/science.abf2911 10.1101/2021.09.15.460468 10.1038/s41586-019-1711-4 10.1038/msb.2010.107 10.1093/molbev/msaa204 10.1038/nmeth.3027 10.1261/rna.040709.113 10.7554/eLife.59988 10.1093/protein/9.11.941 10.1371/journal.pone.0092721 10.1038/nmeth.1581 10.1016/0022-2836(87)90352-4 10.7554/eLife.32472 10.1038/s41588-019-0431-x 10.1002/prot.25407 10.1371/journal.pbio.1001244 10.1103/PhysRevE.87.012707 10.1073/pnas.1120036109 10.1093/bioinformatics/btm604 10.1093/bioinformatics/btu739 10.1038/nmeth.4225 10.1038/nature04670 10.1101/2021.05.10.443524 10.1038/s41467-017-01706-x 10.1002/prot.20098 10.1038/nature10719 10.1126/science.1252884 10.1038/nmeth.2436 10.1073/pnas.2010057118 10.1038/msb4100129 10.1016/j.molcel.2020.02.004 10.1126/science.1065810 10.1038/nsb1101-923 10.1126/science.aah4043 10.7554/eLife.02030 10.1038/s41586-020-2286-9 10.1038/nrg2452 10.1073/pnas.1209751109 10.1016/j.cell.2008.12.039 10.1073/pnas.1915542117 10.1073/pnas.1314045110 10.1016/j.molcel.2015.07.016 10.1002/anie.201605470 10.1126/science.abj8754 10.1126/science.aaz4910 10.7554/eLife.09532 10.1016/j.jbc.2021.100743 10.1126/science.1225829 10.1016/j.bpj.2017.10.005 10.1093/nar/gkaa1038 10.7717/peerj.7280 10.1093/protein/7.3.349 10.1109/TCBB.2007.70225 10.1038/s41467-019-12101-z 10.1126/science.abm4805 10.1093/nar/gky420 10.1126/science.aaw6718 10.1038/s41586-018-0461-z 10.1038/nmeth.1240 10.1126/science.1173299 10.1371/journal.pcbi.1005324 10.1093/nar/gkw306 10.1146/annurev-biophys-070816-033701 10.1038/s41586-021-03982-6 10.1038/nature05649 10.1126/science.abe9403 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2022 2022. Springer Nature Limited. Copyright Nature Publishing Group Jun 2022 |
Copyright_xml | – notice: Springer Nature Limited 2022 – notice: 2022. Springer Nature Limited. – notice: Copyright Nature Publishing Group Jun 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QP 7QR 7RV 7TK 7TM 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 5PM |
DOI | 10.1038/s41576-021-00441-w |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Nursing & Allied Health Database Neurosciences Abstracts Nucleic Acids Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1471-0064 |
EndPage | 354 |
ExternalDocumentID | PMC8744059 35013567 10_1038_s41576_021_00441_w |
Genre | Research Support, U.S. Gov't, Non-P.H.S Review Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: P41 GM109824 – fundername: NIMH NIH HHS grantid: U01 MH115747 – fundername: NIAID NIH HHS grantid: U19 AI135990 – fundername: NINDS NIH HHS grantid: U54 NS100717 – fundername: NCI NIH HHS grantid: U54 CA209891 – fundername: NIGMS NIH HHS grantid: R01 GM083960 – fundername: NIAID NIH HHS grantid: P50 AI150476 – fundername: NIAID NIH HHS grantid: U19 AI135972 |
GroupedDBID | --- -DZ .55 0R~ 123 29M 36B 39C 3V. 4.4 53G 70F 7RV 7X7 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAWYQ AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ACGFS ACIWK ACPRK ACUHS ADBBV AENEX AFBBN AFFNX AFKRA AFSHS AGAYW AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN B0M BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 EAD EAP EBS EE. EJD EMB EMK EMOBN EPL ESX EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IGS IHR IHW INH INR ISR ITC LK8 M0L M1P M7P N9A NAPCQ NNMJJ O9- ODYON PQQKQ PROAC PSQYO Q2X RIG RNR RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP WOW X7M ~8M AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NFIDA NPM PJZUB PPXIY PQGLB 7QP 7QR 7TK 7TM 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI PRINS RC3 7X8 5PM |
ID | FETCH-LOGICAL-c474t-7d1f070a2c6993f2594a9b3648a8489a21268099a76cd9c0b3f79297e64a6ae03 |
IEDL.DBID | 7X7 |
ISSN | 1471-0056 1471-0064 |
IngestDate | Thu Aug 21 13:19:35 EDT 2025 Fri Jul 11 11:24:03 EDT 2025 Tue Aug 12 07:26:26 EDT 2025 Sun Aug 17 02:24:12 EDT 2025 Thu Apr 24 23:03:35 EDT 2025 Tue Jul 01 01:19:57 EDT 2025 Fri Feb 21 02:36:21 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | 2022. Springer Nature Limited. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-7d1f070a2c6993f2594a9b3648a8489a21268099a76cd9c0b3f79297e64a6ae03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-7070-2257 0000-0003-4717-1467 0000-0002-8341-3067 0000-0003-0435-6197 0000-0003-4902-337X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8744059 |
PMID | 35013567 |
PQID | 2666718571 |
PQPubID | 44267 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8744059 proquest_miscellaneous_2618905845 proquest_journals_2666718571 pubmed_primary_35013567 crossref_primary_10_1038_s41576_021_00441_w crossref_citationtrail_10_1038_s41576_021_00441_w springer_journals_10_1038_s41576_021_00441_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-06-01 |
PublicationDateYYYYMMDD | 2022-06-01 |
PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature reviews. Genetics |
PublicationTitleAbbrev | Nat Rev Genet |
PublicationTitleAlternate | Nat Rev Genet |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | MA Stiffler (441_CR46) 2020; 10 G Butland (441_CR75) 2008; 5 NJ Rollins (441_CR96) 2019; 51 AC Gavin (441_CR7) 2006; 440 DL Swaney (441_CR3) 2021; 374 T Perica (441_CR95) 2021; 599 L Ma (441_CR111) 2017; 114 S Jager (441_CR124) 2011; 481 M Gupta (441_CR62) 2021 RC Eccleston (441_CR98) 2021; 118 M Costanzo (441_CR69) 2010; 327 AL Barabasi (441_CR2) 2009; 325 M Weigt (441_CR32) 2009; 106 S Wang (441_CR49) 2017; 13 Q Cong (441_CR45) 2019; 365 T Nugent (441_CR38) 2012; 109 J Singla (441_CR116) 2018; 173 C Gutierrez (441_CR134) 2020; 117 MP Rout (441_CR105) 2019; 177 D Fiedler (441_CR70) 2009; 136 CM Dobson (441_CR16) 2019; 88 DT Jones (441_CR51) 2018; 34 K Lasker (441_CR133) 2012; 109 U Ghani (441_CR58) 2021 ME Wall (441_CR19) 2018; 50 AA Fodor (441_CR27) 2004; 56 C UniProt (441_CR34) 2021; 49 M Kim (441_CR4) 2021; 374 A Roguev (441_CR78) 2008; 322 TN Starr (441_CR127) 2020; 182 DS Marks (441_CR35) 2011; 6 M Akdel (441_CR56) 2021 P Beltrao (441_CR63) 2010; 141 AHM Wong (441_CR130) 2017; 8 H Braberg (441_CR104) 2020; 370 DJ Saltzberg (441_CR141) 2021; 30 TA Hopf (441_CR36) 2012; 149 C Baldassi (441_CR44) 2014; 9 C Laufer (441_CR84) 2013; 10 A Sali (441_CR131) 2021; 296 DJ Thomas (441_CR25) 1996; 9 S Erwood (441_CR114) 2021 S Viswanath (441_CR140) 2019; 116 B Haarer (441_CR86) 2007; 21 PJ Thul (441_CR118) 2017; 356 JM Schmiedel (441_CR97) 2019; 51 X Pan (441_CR65) 2004; 16 M Chang (441_CR73) 2002; 99 AV Anzalone (441_CR110) 2019; 576 A Typas (441_CR76) 2008; 5 KR Roy (441_CR108) 2018; 36 BG Wilhelm (441_CR119) 2014; 344 HR Ramage (441_CR123) 2015; 57 L Burger (441_CR31) 2010; 6 Z Zhang (441_CR88) 2000; 408 D Altschuh (441_CR20) 1987; 193 RW Newberry (441_CR102) 2020; 16 DE Gordon (441_CR121) 2020; 370 AL Shiver (441_CR106) 2021; 81 S Ovchinnikov (441_CR41) 2014; 3 SR Collins (441_CR109) 2007; 6 SD Dunn (441_CR26) 2008; 24 C Boone (441_CR64) 2007; 8 R Henderson (441_CR11) 2004; 37 J Thomas (441_CR29) 2008; 5 LI Gong (441_CR129) 2013; 2 M Ekeberg (441_CR47) 2013; 87 DS Marks (441_CR28) 2012; 30 AJ Greaney (441_CR128) 2021; 29 AH Tong (441_CR15) 2001; 294 M Eckhardt (441_CR120) 2020; 21 SK Burley (441_CR53) 2021; 49 L Kapitzky (441_CR71) 2010; 6 S Ovchinnikov (441_CR48) 2017; 355 S Wang (441_CR137) 2016; 44 BE Suzek (441_CR54) 2015; 31 M Jinek (441_CR80) 2012; 337 K Murata (441_CR17) 2018; 1862 C Huang (441_CR18) 2017; 46 SJ Kim (441_CR132) 2018; 555 D Du (441_CR81) 2017; 14 PC Havugimana (441_CR9) 2012; 150 J Schaarschmidt (441_CR139) 2018; 86 SR Collins (441_CR14) 2007; 446 AV Anzalone (441_CR112) 2020; 38 J Fernandez-de-Cossio-Diaz (441_CR138) 2021; 38 IN Shindyalov (441_CR24) 1994; 7 AF Bitbol (441_CR42) 2016; 113 JL Tenthorey (441_CR126) 2020; 9 PC Phillips (441_CR13) 2008; 9 P Bryant (441_CR57) 2021 H Yu (441_CR8) 2008; 322 DT Jones (441_CR33) 2012; 28 M Schuldiner (441_CR67) 2006; 40 H Kamisetty (441_CR39) 2013; 110 S Balakrishnan (441_CR30) 2011; 79 SR Collins (441_CR66) 2006; 7 G Diss (441_CR100) 2018; 7 D Russel (441_CR143) 2012; 10 CJ Ryan (441_CR87) 2013; 14 H Zeng (441_CR50) 2018; 46 T Horn (441_CR79) 2011; 8 S Takamori (441_CR117) 2006; 127 R Sharan (441_CR1) 2007; 3 JI Sulkowska (441_CR37) 2012; 109 H Braberg (441_CR89) 2013; 154 E Neher (441_CR22) 1994; 91 A Roguev (441_CR83) 2013; 10 D Melamed (441_CR92) 2013; 19 M Costanzo (441_CR68) 2016; 353 JP Shen (441_CR82) 2017; 14 WR Taylor (441_CR23) 1994; 7 J Luo (441_CR136) 2015; 59 DM Fowler (441_CR91) 2014; 11 ME Hillenmeyer (441_CR74) 2008; 320 DE Gordon (441_CR125) 2020; 78 F Zheng (441_CR5) 2021; 374 B Lehner (441_CR77) 2006; 38 CA Olson (441_CR93) 2014; 24 TA Hopf (441_CR40) 2014; 3 DE Gordon (441_CR122) 2020; 583 A Sahoo (441_CR94) 2015; 4 Y Shi (441_CR10) 2014; 159 S Viswanath (441_CR142) 2017; 113 K Tunyasuvunakool (441_CR55) 2021; 596 MC Bassik (441_CR85) 2013; 152 SR McGuffee (441_CR115) 2010; 6 K Wuthrich (441_CR12) 2001; 8 GM Findlay (441_CR113) 2018; 562 S Kobori (441_CR101) 2016; 55 H Braberg (441_CR90) 2014; 36 CL Araya (441_CR99) 2012; 109 U Gobel (441_CR21) 1994; 18 AJ Hockenberry (441_CR107) 2019; 7 IR Humphreys (441_CR61) 2021 J Jumper (441_CR52) 2021; 596 RJ Nichols (441_CR72) 2011; 144 M Baek (441_CR60) 2021; 373 Y Kwon (441_CR135) 2020; 27 B Bolognesi (441_CR103) 2019; 10 R Evans (441_CR59) 2021 F Pazos (441_CR43) 1997; 271 NJ Krogan (441_CR6) 2006; 440 |
References_xml | – volume: 356 year: 2017 ident: 441_CR118 publication-title: Science doi: 10.1126/science.aal3321 – volume: 21 start-page: 339 year: 2020 ident: 441_CR120 publication-title: Nat. Rev. Genet. doi: 10.1038/s41576-020-0212-5 – volume: 3 year: 2014 ident: 441_CR40 publication-title: eLife doi: 10.7554/eLife.03430 – volume: 2 year: 2013 ident: 441_CR129 publication-title: eLife doi: 10.7554/eLife.00631 – volume: 150 start-page: 1068 year: 2012 ident: 441_CR9 publication-title: Cell doi: 10.1016/j.cell.2012.08.011 – volume: 159 start-page: 995 year: 2014 ident: 441_CR10 publication-title: Cell doi: 10.1016/j.cell.2014.10.051 – volume: 322 start-page: 104 year: 2008 ident: 441_CR8 publication-title: Science doi: 10.1126/science.1158684 – volume: 408 start-page: 221 year: 2000 ident: 441_CR88 publication-title: Nature doi: 10.1038/35041601 – volume: 173 start-page: 11 year: 2018 ident: 441_CR116 publication-title: Cell doi: 10.1016/j.cell.2018.03.014 – volume: 36 start-page: 512 year: 2018 ident: 441_CR108 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4137 – volume: 5 start-page: 789 year: 2008 ident: 441_CR75 publication-title: Nat. Methods doi: 10.1038/nmeth.1239 – volume: 6 year: 2010 ident: 441_CR115 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000694 – volume: 109 start-page: 10340 year: 2012 ident: 441_CR37 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1207864109 – volume: 34 start-page: 3308 year: 2018 ident: 441_CR51 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty341 – volume: 14 start-page: 865 year: 2013 ident: 441_CR87 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3574 – volume: 127 start-page: 831 year: 2006 ident: 441_CR117 publication-title: Cell doi: 10.1016/j.cell.2006.10.030 – volume: 38 start-page: 824 year: 2020 ident: 441_CR112 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-020-0561-9 – volume: 555 start-page: 475 year: 2018 ident: 441_CR132 publication-title: Nature doi: 10.1038/nature26003 – volume: 374 year: 2021 ident: 441_CR4 publication-title: Science doi: 10.1126/science.abf3066 – volume: 320 start-page: 362 year: 2008 ident: 441_CR74 publication-title: Science doi: 10.1126/science.1150021 – volume: 38 start-page: 896 year: 2006 ident: 441_CR77 publication-title: Nat. Genet. doi: 10.1038/ng1844 – volume: 152 start-page: 909 year: 2013 ident: 441_CR85 publication-title: Cell doi: 10.1016/j.cell.2013.01.030 – volume: 116 start-page: 540 year: 2019 ident: 441_CR140 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1814649116 – volume: 7 year: 2006 ident: 441_CR66 publication-title: Genome Biol. doi: 10.1186/gb-2006-7-7-r63 – volume: 440 start-page: 631 year: 2006 ident: 441_CR7 publication-title: Nature doi: 10.1038/nature04532 – volume: 28 start-page: 184 year: 2012 ident: 441_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr638 – volume: 149 start-page: 1607 year: 2012 ident: 441_CR36 publication-title: Cell doi: 10.1016/j.cell.2012.04.012 – volume: 6 start-page: 439 year: 2007 ident: 441_CR109 publication-title: Mol. Cell Proteom. doi: 10.1074/mcp.M600381-MCP200 – volume: 327 start-page: 425 year: 2010 ident: 441_CR69 publication-title: Science doi: 10.1126/science.1180823 – volume: 106 start-page: 67 year: 2009 ident: 441_CR32 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0805923106 – volume: 40 start-page: 344 year: 2006 ident: 441_CR67 publication-title: Methods doi: 10.1016/j.ymeth.2006.07.034 – volume: 21 start-page: 148 year: 2007 ident: 441_CR86 publication-title: Genes Dev. doi: 10.1101/gad.1477507 – volume: 6 year: 2010 ident: 441_CR31 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000633 – volume: 8 start-page: 437 year: 2007 ident: 441_CR64 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2085 – volume: 30 start-page: 250 year: 2021 ident: 441_CR141 publication-title: Protein Sci. doi: 10.1002/pro.3995 – volume: 141 start-page: 739 year: 2010 ident: 441_CR63 publication-title: Cell doi: 10.1016/j.cell.2010.05.019 – volume: 14 start-page: 577 year: 2017 ident: 441_CR81 publication-title: Nat. Methods doi: 10.1038/nmeth.4286 – volume: 27 start-page: 822 year: 2020 ident: 441_CR135 publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/s41594-020-0463-z – volume: 91 start-page: 98 year: 1994 ident: 441_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.91.1.98 – volume: 79 start-page: 1061 year: 2011 ident: 441_CR30 publication-title: Proteins doi: 10.1002/prot.22934 – volume: 30 start-page: 1072 year: 2012 ident: 441_CR28 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2419 – volume: 49 start-page: D480 year: 2021 ident: 441_CR34 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1100 – volume: 596 start-page: 583 year: 2021 ident: 441_CR52 publication-title: Nature doi: 10.1038/s41586-021-03819-2 – volume: 6 year: 2011 ident: 441_CR35 publication-title: PLoS ONE doi: 10.1371/journal.pone.0028766 – volume: 99 start-page: 16934 year: 2002 ident: 441_CR73 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.262669299 – volume: 36 start-page: 706 year: 2014 ident: 441_CR90 publication-title: Bioessays doi: 10.1002/bies.201400044 – volume: 109 start-page: 1380 year: 2012 ident: 441_CR133 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1120559109 – year: 2021 ident: 441_CR56 publication-title: bioRxiv doi: 10.1101/2021.09.26.461876 – volume: 7 start-page: 341 year: 1994 ident: 441_CR23 publication-title: Protein Eng. doi: 10.1093/protein/7.3.341 – year: 2021 ident: 441_CR59 publication-title: bioRxiv doi: 10.1101/2021.10.04.463034 – volume: 81 start-page: 2201 year: 2021 ident: 441_CR106 publication-title: Mol. Cell doi: 10.1016/j.molcel.2021.04.027 – volume: 154 start-page: 775 year: 2013 ident: 441_CR89 publication-title: Cell doi: 10.1016/j.cell.2013.07.033 – volume: 16 start-page: 653 year: 2020 ident: 441_CR102 publication-title: Nat. Chem. Biol. doi: 10.1038/s41589-020-0480-6 – volume: 114 start-page: 11751 year: 2017 ident: 441_CR111 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708268114 – volume: 322 start-page: 405 year: 2008 ident: 441_CR78 publication-title: Science doi: 10.1126/science.1162609 – year: 2021 ident: 441_CR114 publication-title: bioRxiv doi: 10.1101/2021.05.11.443710 – volume: 57 start-page: 329 year: 2015 ident: 441_CR123 publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.12.028 – volume: 29 start-page: 44 year: 2021 ident: 441_CR128 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.11.007 – volume: 10 start-page: 15 year: 2020 ident: 441_CR46 publication-title: Cell Syst. doi: 10.1016/j.cels.2019.11.008 – volume: 113 start-page: 12180 year: 2016 ident: 441_CR42 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1606762113 – volume: 353 start-page: aaf1420 year: 2016 ident: 441_CR68 publication-title: Science doi: 10.1126/science.aaf1420 – volume: 50 start-page: 109 year: 2018 ident: 441_CR19 publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2018.01.009 – year: 2021 ident: 441_CR58 publication-title: bioRxiv doi: 10.1101/2021.09.07.459290 – volume: 16 start-page: 487 year: 2004 ident: 441_CR65 publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.09.035 – volume: 24 start-page: 2643 year: 2014 ident: 441_CR93 publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.09.072 – volume: 182 start-page: 1295 year: 2020 ident: 441_CR127 publication-title: Cell doi: 10.1016/j.cell.2020.08.012 – volume: 88 start-page: 25 year: 2019 ident: 441_CR16 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-013118-111947 – volume: 374 year: 2021 ident: 441_CR5 publication-title: Science doi: 10.1126/science.abf3067 – volume: 51 start-page: 1170 year: 2019 ident: 441_CR96 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0432-9 – volume: 144 start-page: 143 year: 2011 ident: 441_CR72 publication-title: Cell doi: 10.1016/j.cell.2010.11.052 – volume: 177 start-page: 1384 year: 2019 ident: 441_CR105 publication-title: Cell doi: 10.1016/j.cell.2019.05.016 – volume: 18 start-page: 309 year: 1994 ident: 441_CR21 publication-title: Proteins doi: 10.1002/prot.340180402 – volume: 37 start-page: 3 year: 2004 ident: 441_CR11 publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583504003920 – volume: 271 start-page: 511 year: 1997 ident: 441_CR43 publication-title: J. Mol. Biol. doi: 10.1006/jmbi.1997.1198 – volume: 10 start-page: 432 year: 2013 ident: 441_CR83 publication-title: Nat. Methods doi: 10.1038/nmeth.2398 – volume: 1862 start-page: 324 year: 2018 ident: 441_CR17 publication-title: Biochim. Biophys. Acta Gen. Subj. doi: 10.1016/j.bbagen.2017.07.020 – volume: 596 start-page: 590 year: 2021 ident: 441_CR55 publication-title: Nature doi: 10.1038/s41586-021-03828-1 – volume: 374 year: 2021 ident: 441_CR3 publication-title: Science doi: 10.1126/science.abf2911 – year: 2021 ident: 441_CR57 publication-title: bioRxiv doi: 10.1101/2021.09.15.460468 – volume: 576 start-page: 149 year: 2019 ident: 441_CR110 publication-title: Nature doi: 10.1038/s41586-019-1711-4 – volume: 6 start-page: 451 year: 2010 ident: 441_CR71 publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.107 – volume: 38 start-page: 318 year: 2021 ident: 441_CR138 publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msaa204 – volume: 11 start-page: 801 year: 2014 ident: 441_CR91 publication-title: Nat. Methods doi: 10.1038/nmeth.3027 – volume: 19 start-page: 1537 year: 2013 ident: 441_CR92 publication-title: RNA doi: 10.1261/rna.040709.113 – volume: 9 year: 2020 ident: 441_CR126 publication-title: eLife doi: 10.7554/eLife.59988 – volume: 9 start-page: 941 year: 1996 ident: 441_CR25 publication-title: Protein Eng. doi: 10.1093/protein/9.11.941 – volume: 9 year: 2014 ident: 441_CR44 publication-title: PLoS ONE doi: 10.1371/journal.pone.0092721 – volume: 8 start-page: 341 year: 2011 ident: 441_CR79 publication-title: Nat. Methods doi: 10.1038/nmeth.1581 – volume: 193 start-page: 693 year: 1987 ident: 441_CR20 publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(87)90352-4 – volume: 7 year: 2018 ident: 441_CR100 publication-title: eLife doi: 10.7554/eLife.32472 – volume: 51 start-page: 1177 year: 2019 ident: 441_CR97 publication-title: Nat. Genet. doi: 10.1038/s41588-019-0431-x – volume: 86 start-page: 51 issue: Suppl. 1 year: 2018 ident: 441_CR139 publication-title: Proteins doi: 10.1002/prot.25407 – volume: 10 year: 2012 ident: 441_CR143 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.1001244 – volume: 87 start-page: 012707 year: 2013 ident: 441_CR47 publication-title: Phys. Rev. E Stat. Nonlin Soft Matter Phys. doi: 10.1103/PhysRevE.87.012707 – volume: 109 start-page: E1540 year: 2012 ident: 441_CR38 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1120036109 – volume: 24 start-page: 333 year: 2008 ident: 441_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm604 – volume: 31 start-page: 926 year: 2015 ident: 441_CR54 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu739 – volume: 14 start-page: 573 year: 2017 ident: 441_CR82 publication-title: Nat. Methods doi: 10.1038/nmeth.4225 – volume: 440 start-page: 637 year: 2006 ident: 441_CR6 publication-title: Nature doi: 10.1038/nature04670 – year: 2021 ident: 441_CR62 publication-title: bioRxiv doi: 10.1101/2021.05.10.443524 – volume: 8 year: 2017 ident: 441_CR130 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01706-x – volume: 56 start-page: 211 year: 2004 ident: 441_CR27 publication-title: Proteins doi: 10.1002/prot.20098 – volume: 481 start-page: 365 year: 2011 ident: 441_CR124 publication-title: Nature doi: 10.1038/nature10719 – volume: 344 start-page: 1023 year: 2014 ident: 441_CR119 publication-title: Science doi: 10.1126/science.1252884 – volume: 10 start-page: 427 year: 2013 ident: 441_CR84 publication-title: Nat. Methods doi: 10.1038/nmeth.2436 – volume: 118 year: 2021 ident: 441_CR98 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2010057118 – volume: 3 start-page: 88 year: 2007 ident: 441_CR1 publication-title: Mol. Syst. Biol. doi: 10.1038/msb4100129 – volume: 78 start-page: 197 year: 2020 ident: 441_CR125 publication-title: Mol. Cell doi: 10.1016/j.molcel.2020.02.004 – volume: 294 start-page: 2364 year: 2001 ident: 441_CR15 publication-title: Science doi: 10.1126/science.1065810 – volume: 8 start-page: 923 year: 2001 ident: 441_CR12 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb1101-923 – volume: 355 start-page: 294 year: 2017 ident: 441_CR48 publication-title: Science doi: 10.1126/science.aah4043 – volume: 3 year: 2014 ident: 441_CR41 publication-title: eLife doi: 10.7554/eLife.02030 – volume: 583 start-page: 459 year: 2020 ident: 441_CR122 publication-title: Nature doi: 10.1038/s41586-020-2286-9 – volume: 9 start-page: 855 year: 2008 ident: 441_CR13 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2452 – volume: 109 start-page: 16858 year: 2012 ident: 441_CR99 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1209751109 – volume: 136 start-page: 952 year: 2009 ident: 441_CR70 publication-title: Cell doi: 10.1016/j.cell.2008.12.039 – volume: 117 start-page: 4088 year: 2020 ident: 441_CR134 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1915542117 – volume: 110 start-page: 15674 year: 2013 ident: 441_CR39 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1314045110 – volume: 59 start-page: 794 year: 2015 ident: 441_CR136 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.07.016 – volume: 55 start-page: 10354 year: 2016 ident: 441_CR101 publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201605470 – volume: 373 start-page: 871 year: 2021 ident: 441_CR60 publication-title: Science doi: 10.1126/science.abj8754 – volume: 370 year: 2020 ident: 441_CR104 publication-title: Science doi: 10.1126/science.aaz4910 – volume: 4 year: 2015 ident: 441_CR94 publication-title: eLife doi: 10.7554/eLife.09532 – volume: 296 start-page: 100743 year: 2021 ident: 441_CR131 publication-title: J. Biol. Chem. doi: 10.1016/j.jbc.2021.100743 – volume: 337 start-page: 816 year: 2012 ident: 441_CR80 publication-title: Science doi: 10.1126/science.1225829 – volume: 113 start-page: 2344 year: 2017 ident: 441_CR142 publication-title: Biophys. J. doi: 10.1016/j.bpj.2017.10.005 – volume: 49 start-page: D437 year: 2021 ident: 441_CR53 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkaa1038 – volume: 7 year: 2019 ident: 441_CR107 publication-title: PeerJ doi: 10.7717/peerj.7280 – volume: 7 start-page: 349 year: 1994 ident: 441_CR24 publication-title: Protein Eng. doi: 10.1093/protein/7.3.349 – volume: 5 start-page: 183 year: 2008 ident: 441_CR29 publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform doi: 10.1109/TCBB.2007.70225 – volume: 10 year: 2019 ident: 441_CR103 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12101-z – year: 2021 ident: 441_CR61 publication-title: Science doi: 10.1126/science.abm4805 – volume: 46 start-page: W432 year: 2018 ident: 441_CR50 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky420 – volume: 365 start-page: 185 year: 2019 ident: 441_CR45 publication-title: Science doi: 10.1126/science.aaw6718 – volume: 562 start-page: 217 year: 2018 ident: 441_CR113 publication-title: Nature doi: 10.1038/s41586-018-0461-z – volume: 5 start-page: 781 year: 2008 ident: 441_CR76 publication-title: Nat. Methods doi: 10.1038/nmeth.1240 – volume: 325 start-page: 412 year: 2009 ident: 441_CR2 publication-title: Science doi: 10.1126/science.1173299 – volume: 13 year: 2017 ident: 441_CR49 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1005324 – volume: 44 start-page: W430 year: 2016 ident: 441_CR137 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkw306 – volume: 46 start-page: 317 year: 2017 ident: 441_CR18 publication-title: Annu. Rev. Biophys. doi: 10.1146/annurev-biophys-070816-033701 – volume: 599 start-page: 152 year: 2021 ident: 441_CR95 publication-title: Nature doi: 10.1038/s41586-021-03982-6 – volume: 446 start-page: 806 year: 2007 ident: 441_CR14 publication-title: Nature doi: 10.1038/nature05649 – volume: 370 year: 2020 ident: 441_CR121 publication-title: Science doi: 10.1126/science.abe9403 |
SSID | ssj0016173 |
Score | 2.4947395 |
SecondaryResourceType | review_article |
Snippet | Understanding the effects of genetic variation is a fundamental problem in biology that requires methods to analyse both physical and functional consequences... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 342 |
SubjectTerms | 631/114/1305 631/114/2163 631/1647/1513 631/535 631/553/2490/1472 Agriculture Animal Genetics and Genomics Biomedical and Life Sciences Biomedicine Cancer Research Coevolution Deep learning Epistasis, Genetic Gene Function Gene mapping Gene Regulatory Networks Genetic diversity Genomes Human Genetics Integration Molecular modelling Mutation Peptide mapping Protein interaction Protein Interaction Mapping Protein Interaction Maps Proteins Proteins - genetics Proteins - metabolism Review Review Article Scanning |
Title | From systems to structure — using genetic data to model protein structures |
URI | https://link.springer.com/article/10.1038/s41576-021-00441-w https://www.ncbi.nlm.nih.gov/pubmed/35013567 https://www.proquest.com/docview/2666718571 https://www.proquest.com/docview/2618905845 https://pubmed.ncbi.nlm.nih.gov/PMC8744059 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED5tIKS9IDbGCHTIk3hjFnXj2u4TahEVmrYKIZD6FjmpPZC2BEgR4o0fwS_kl3DnpKkKgpckkh0luTv7vvjO3wHseuuVF8Zz602bSzcx3KrMckMxJqs7UnvajfxnpI7P5a9xd1wvuJV1WuVsTgwT9aTIaI18Hx2J0kRcJA6urjlVjaLoal1C4yMsE3UZpXTpcfPDRdA9JNjjBMyJ87LeNNOOzX6JjktT-i21ICTgd4uO6RXafJ00-SJyGhzScA1WayTJ-pXqP8MHl3-Blaq25P06_B7eFP9ZRdRcsmnBKqbY2xvHnh4eGeW7_2VoPbSJkVGeKPUJdXFY4G64zOd3lF_hfHh0dnjM69IJPJNaTrmeCI-D2XYyhQDE4z-OtL00VtJYI1EJ6LCUQXBotcomvaydxl4jUNJOSausa8cbsJQXudsEJp1F-VmhM7wwqTOpcE5Ir5Xvxj3ZjUDM5JZkNa84lbf4l4T4dmySStYJyjoJsk7uIthr7rmqWDXe7d2aqSOpR1iZzO0hgh9NM44NCnjY3BW31EegzSHEwpf8VmmveRwFVOOu0hHoBb02HYh3e7Elv7wI_NtUMQBRaQQ_ZxYwf623v2Lr_a_Yhk8d2lkRFnhasIQadt8R70zTnWDUeDSHYgeW-8PBYITnwdHo5PQZoZABLA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VrRBcEP8EChgJTmB1k3ht7wEhfrra0u0KoVbqzXWyNlSCpDRbrXrjIXgOHoonYSZOsloqeuttJTtZZ2bs-ZKZ-Qbgubde-lh7br3uc-FmmluZW64pxmRVIpSnauTdqRzvi48Hg4M1-N3WwlBaZXsm1gf1rMzpG_kmOhKpiLgofnP8g1PXKIquti00glnsuLMFvrJVr7c_oH5fJMloa-_9mDddBXgulJhzNYs92rlNcom-2SP8F3aYpVJoqwWuD89yqRE3WSXz2TDvZ6lXiCGUk8JK6_op3vcKrIsUX2V6sP5ua_rpcxe3kCGmHeORz4llsynT6ad6s0JXqSjhl0YQhPDFqis8h2_Pp2n-E6utXeDoJtxosCt7G4ztFqy54jZcDd0sz-7AZHRSfmeBGrpi85IFbtrTE8f-_PzFKMP-C0N7pbJJRpmpNKfuxMNqtoijYnlFdRf2L0Ws96BXlIV7AEw4i_Kzscrxh86czmLnYuGV9IN0KAYRxK3cTN4wmVNDjW-mjqin2gRZG5S1qWVtFhG87K45DjweF87eaNVhmj1dmaUFRvCsG8bdSCEWW7jylObEaOUI6nCR94P2ur-jEG46kCoCtaLXbgIxfa-OFEdfa8Zv6lGAODiCV60FLJf1_6d4ePFTPIVr473diZlsT3cewfWE6jrqz0sb0ENtu8eItubZk8bEGRxe9q76CzvrObA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlAviP8GChgJTmDtJnFs76FCiLJqaak4UGlvxsnatFJJSrPVqjcegqfhcfokzDg_q6Wit94i2Umc-fGMMzPfALzy1ksfa8-t10Mu3FRzKwvLNcWYrEqE8lSN_Hlfbh-IT5NssgJ_uloYSqvs9sSwUU-rgv6RD9CQSEXARfHAt2kRX7bG705-cuogRZHWrp1GIyK77nyOx7d6c2cLef06ScYfv37Y5m2HAV4IJWZcTWOPMm-TQqKd9ngUEHaUp1JoqwWuFfd1qdGHskoW01ExzFOv0J9QTgorrRum-NwbcFOlWUw6pib9YY-ODSG5Hzd_TnibbcHOMNWDGo2motRfGkF3hM-XjeIlT_dywuY_UdtgDMd34U7rxbL3jdjdgxVX3odbTV_L8wewNz6tfrAGJLpms4o1KLVnp45d_PrNKNf-O0PJpQJKRjmqNCf05GEBN-KoXNxRP4SDayHqI1gtq9KtAxPOIv1srAq80LnTeexcLLySPktHIosg7uhmihbTnFprHJsQW0-1aWhtkNYm0NrMI3jT33PSIHpcOXujY4dptbs2C1mM4GU_jHpJwRZbuuqM5sQo7-je4SIfN9zrX0fB3DSTKgK1xNd-AmF-L4-UR4cB-5u6FaBHHMHbTgIWy_r_Vzy5-itewG3UJbO3s7_7FNYSKvAI_5k2YBWZ7Z6h2zXLnwf5ZvDtuhXqL414PIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+systems+to+structure+%E2%80%94+using+genetic+data+to+model+protein+structures&rft.jtitle=Nature+reviews.+Genetics&rft.au=Braberg%2C+Hannes&rft.au=Echeverria%2C+Ignacia&rft.au=Kaake%2C+Robyn+M.&rft.au=Sali%2C+Andrej&rft.date=2022-06-01&rft.issn=1471-0056&rft.eissn=1471-0064&rft.volume=23&rft.issue=6&rft.spage=342&rft.epage=354&rft_id=info:doi/10.1038%2Fs41576-021-00441-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41576_021_00441_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-0056&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-0056&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-0056&client=summon |