The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation

In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental botany Vol. 63; no. 8; pp. 2985 - 3000
Main Authors Zheng, Shu-Xiao, Xiao, Shi, Chye, Mee-Len
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.05.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3.
AbstractList In Arabidopsis thaliana , acyl-CoA-binding protein 3 (  ACBP3 ), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3 , a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (–151/+223) could drive GUS expression while a 1698 bp fragment (–1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (–434/–274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, –341/–338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis , while GT-1 (–406/–401) binds both dark- and light-treated Arabidopsis , suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3 . Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (–543/–434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (–516/–512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis -responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3 .
In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3.In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3.
In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (–151/+223) could drive GUS expression while a 1698 bp fragment (–1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (–434/–274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, –341/–338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (–406/–401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (–543/–434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (–516/–512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3.
In Arabidopsis thaliana, acyl-CoA-binding protein 3 (ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using beta -glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3.
Author Zheng, Shu-Xiao
Xiao, Shi
Chye, Mee-Len
AuthorAffiliation School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
AuthorAffiliation_xml – name: School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China
Author_xml – sequence: 1
  givenname: Shu-Xiao
  surname: Zheng
  fullname: Zheng, Shu-Xiao
– sequence: 2
  givenname: Shi
  surname: Xiao
  fullname: Xiao, Shi
– sequence: 3
  givenname: Mee-Len
  surname: Chye
  fullname: Chye, Mee-Len
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25901606$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22345636$$D View this record in MEDLINE/PubMed
BookMark eNqNkt1rFDEUxYNU7Lb64h8geRGkMPYmk8xMXoRlsSoUfKnPIR93drPMJmsyU-x_77S79QtBn_JwfufcXO45IycxRSTkJYO3DFR9uf1mLzEXAPWELJhooOKiZidkAcB5BUq2p-SslC0ASJDyGTnlvBayqZsFyTcbpGuMSDG65ENc02U2Nvi0L6FQ4-6GapWWlQ3xQdznNGKItKazujfjJs1mOouTC3ZAaqKnZbJbdCMdE3UhO-ODiTTjehrMGFJ8Tp72Zij44vieky9X729WH6vrzx8-rZbXlROtGKvW-cZ03qDtjTfSMbQCVMucaZywXjWubRQ02EnZG0Thfascl97ante9hfqcvDvk7ie7Q-8wjtkMep_DzuQ7nUzQvysxbPQ63eq6lqCYnAPeHANy-jphGfUuFIfDYCKmqWgmODDeSdX9GwUOnWBdp_4DZbXiTAo2o69-3eDH1x_PNwOvj4Apzgx9NtGF8pOTClgD9xwcOJdTKRl77cL4cIx58TDMM_V9k_TcJH1o0my5-MPymPoX-DswRc1s
CODEN JEBOA6
CitedBy_id crossref_primary_10_1002_1873_3468_13923
crossref_primary_10_1093_pcp_pcz237
crossref_primary_10_1371_journal_pone_0107372
crossref_primary_10_3389_fcell_2020_616434
crossref_primary_10_3389_fgene_2022_1057160
crossref_primary_10_3389_fpls_2017_01868
crossref_primary_10_1042_BSR20140139
crossref_primary_10_1093_jxb_eru304
crossref_primary_10_1016_j_ijbiomac_2024_131631
crossref_primary_10_1016_j_pmpp_2024_102459
crossref_primary_10_1016_j_tplants_2015_10_011
crossref_primary_10_1080_21541264_2020_1820300
crossref_primary_10_1016_j_bbalip_2015_12_018
crossref_primary_10_1016_j_plipres_2016_06_002
crossref_primary_10_1111_acel_13910
crossref_primary_10_1007_s00425_021_03721_1
crossref_primary_10_1016_j_plantsci_2013_03_016
crossref_primary_10_1080_15592324_2017_1359365
crossref_primary_10_1080_15548627_2018_1520547
crossref_primary_10_3389_fpls_2022_872218
crossref_primary_10_1111_nph_19924
crossref_primary_10_3390_biology9120454
crossref_primary_10_17660_ActaHortic_2023_1362_58
crossref_primary_10_3390_cells10051064
crossref_primary_10_1016_j_bcab_2013_09_010
crossref_primary_10_3389_fgene_2018_00182
crossref_primary_10_1038_srep23072
crossref_primary_10_1093_jxb_erab499
crossref_primary_10_1016_j_ijbiomac_2023_125526
crossref_primary_10_1038_srep33332
crossref_primary_10_1007_s11103_016_0557_5
crossref_primary_10_1016_j_pmpp_2020_101548
crossref_primary_10_3389_fpls_2018_00002
crossref_primary_10_1007_s11103_016_0541_0
crossref_primary_10_15835_nbha50112640
crossref_primary_10_1016_j_jbiotec_2014_01_027
crossref_primary_10_1007_s00709_015_0882_6
crossref_primary_10_3389_fpls_2020_00331
crossref_primary_10_1016_j_plantsci_2012_12_009
crossref_primary_10_1111_pce_12382
crossref_primary_10_3390_ijms25158114
crossref_primary_10_1111_tpj_12692
crossref_primary_10_1007_s11745_015_4103_z
crossref_primary_10_1186_s12870_024_04944_6
Cites_doi 10.4161/psb.4.11.9718
10.1093/nar/27.1.295
10.1111/j.1365-313X.2008.03402.x
10.1093/jxb/ern241
10.1046/j.1365-313X.1999.00443.x
10.1007/s11103-004-0642-z
10.1111/j.1469-8137.2010.03231.x
10.1007/s11103-005-0954-7
10.1046/j.1365-313X.1993.04020225.x
10.1002/j.1460-2075.1987.tb02542.x
10.1007/BF00029009
10.1126/science.290.5499.2110
10.1023/A:1006052108468
10.1023/A:1006177414456
10.1023/A:1022330304402
10.1002/j.1460-2075.1988.tb03297.x
10.1093/jn/130.2.294S
10.1038/nature09766
10.1093/jxb/erp027
10.1093/nar/gkg041
10.1104/pp.111.176933
10.1105/tpc.015800
10.1016/S1369-5266(02)00275-3
10.1023/B:PLAN.0000028790.75090.ab
10.1111/j.1365-313X.2007.03268.x
10.1105/tpc.1.1.141
10.1104/pp.104.041442
10.1016/0003-2697(76)90527-3
10.1104/pp.108.123331
10.1016/j.plipres.2010.11.002
10.1105/tpc.110.075333
10.1111/j.1399-3054.1962.tb08052.x
10.1016/S0021-9258(18)67188-1
10.1094/MPMI-9-0713
10.1105/tpc.13.6.1411
10.1105/tpc.4.7.839
10.1007/s11103-008-9392-7
10.1104/pp.109.147066
10.1023/A:1026524108095
10.1104/pp.103.025114
10.1016/j.plaphy.2008.12.002
10.1007/BF00049327
10.1042/bj20021413
10.1002/j.1460-2075.1987.tb02730.x
10.1007/BF00016068
10.1126/science.2330508
10.1007/s00425-005-0139-2
10.1105/tpc.2.5.369
10.1105/tpc.2.1.85
10.1002/1522-2683(200106)22:10<1979::AID-ELPS1979>3.0.CO;2-A
10.1016/S1360-1385(02)02362-2
10.1007/BF00020555
10.1023/A:1006084104041
10.1073/pnas.83.5.1276
10.1002/j.1460-2075.1992.tb05506.x
10.1111/j.1469-8137.2008.02631.x
10.1105/tpc.4.7.831
10.1104/pp.002857
10.1016/0014-5793(83)80370-6
10.1046/j.1365-313x.1998.00343.x
10.1016/S1360-1385(99)01418-1
10.1007/BF00028855
10.1105/tpc.017806
ContentType Journal Article
Copyright 2015 INIST-CNRS
2012 The Author(s). 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: 2012 The Author(s). 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7UA
8FD
C1K
FR3
P64
RC3
7S9
L.6
5PM
DOI 10.1093/jxb/ers009
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Genetics Abstracts
Engineering Research Database
Technology Research Database
Water Resources Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1460-2431
EndPage 3000
ExternalDocumentID PMC3350915
22345636
25901606
10_1093_jxb_ers009
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-E4
-~X
.2P
.I3
0R~
18M
1TH
29K
2WC
2~F
4.4
482
48X
5GY
5VS
5WA
5WD
70D
AAHBH
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAXTN
AAYXX
ABBHK
ABDFA
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABLJU
ABMNT
ABNKS
ABPPZ
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXSQ
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ACUFI
ACUTJ
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADULT
ADVEK
ADYVW
ADZTZ
ADZXQ
AEEJZ
AEGPL
AEGXH
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUPB
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AFYAG
AGINJ
AGKEF
AGORE
AGQXC
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJBYB
AJEEA
AJNCP
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
APIBT
APWMN
AQVQM
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BSWAC
CDBKE
CITATION
COF
CS3
CZ4
D-I
DAKXR
DATOO
DIK
DILTD
DU5
D~K
E3Z
EBS
ECGQY
EE~
EJD
F5P
F9B
FHSFR
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
IPSME
J21
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JST
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
ML0
N9A
NGC
NLBLG
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
OBOKY
ODMLO
OJQWA
OJZSN
OK1
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QBD
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
RZO
SA0
TEORI
TLC
TN5
TR2
UHB
UPT
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YQT
YSK
YXANX
YZZ
ZCG
ZKX
~02
~91
~KM
3O-
53G
AAWDT
ABDPE
ABIME
ABNGD
ABPIB
ABSMQ
ABZEO
ACFRR
ACPQN
ACUKT
ACVCV
ACZBC
AEHUL
AEKPW
AETEA
AFSHK
AGKRT
AGMDO
AGQPQ
AHGBF
AI.
AJDVS
ANFBD
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
C1A
CAG
CXTWN
DFGAJ
ELUNK
FEDTE
HVGLF
H~9
IQODW
MBTAY
MVM
NEJ
NTWIH
OHT
O~Y
PB-
RIG
RNI
RZF
TCN
UKR
VH1
XOL
6.Y
ABQTQ
ABSAR
ADRIX
AFXEN
CGR
CUY
CVF
ECM
EIF
ESX
JSODD
M49
NPM
Z5M
7X8
7UA
8FD
C1K
FR3
P64
RC3
7S9
L.6
5PM
ID FETCH-LOGICAL-c474t-7cd6a8daebfada5c1eb40971ca6c4bd96c76906e855faee4dd79c25dbbf23fb03
ISSN 0022-0957
1460-2431
IngestDate Thu Aug 21 18:14:37 EDT 2025
Fri Jul 11 01:43:54 EDT 2025
Fri Jul 11 00:30:28 EDT 2025
Thu Jul 10 19:27:27 EDT 2025
Wed Feb 19 01:54:56 EST 2025
Mon Jul 21 09:17:58 EDT 2025
Tue Jul 01 03:05:15 EDT 2025
Thu Apr 24 23:04:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Light effect
dark/light regulation
GT-1 cis-acting element
Acyl
Circadian rhythm
Defensive response
Arabidopsis thaliana
Arabidopsis ACBP3
Binding protein
defence response
Gene
Cruciferae
Dicotyledones
Pathogenic
S-box
Angiospermae
Botany
Regulatory sequence
Spermatophyta
Cis effect
Experimental plant
Dof-box
Photoregulation
Language English
License CC BY 4.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-7cd6a8daebfada5c1eb40971ca6c4bd96c76906e855faee4dd79c25dbbf23fb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Present address: State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC3350915
PMID 22345636
PQID 1013921541
PQPubID 23479
PageCount 16
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3350915
proquest_miscellaneous_1420128598
proquest_miscellaneous_1020841889
proquest_miscellaneous_1013921541
pubmed_primary_22345636
pascalfrancis_primary_25901606
crossref_citationtrail_10_1093_jxb_ers009
crossref_primary_10_1093_jxb_ers009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Journal of experimental botany
PublicationTitleAlternate J Exp Bot
PublicationYear 2012
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Rawat ( key 20170512103932_bib47) 2005; 57
Xiao ( key 20170512103932_bib62) 2008; 54
Nantel ( key 20170512103932_bib42) 1991; 16
Chye ( key 20170512103932_bib10) 2000; 44
Leung ( key 20170512103932_bib34) 2004; 55
Gao ( key 20170512103932_bib20) 2009; 181
Xiao ( key 20170512103932_bib60) 2011; 156
Xiao ( key 20170512103932_bib63) 2008; 68
Zhou ( key 20170512103932_bib66) 1999; 4
Solomon ( key 20170512103932_bib52) 1986; 83
Yanagisawa ( key 20170512103932_bib65) 2002; 7
Sanchez ( key 20170512103932_bib49) 2004; 16
Buchel ( key 20170512103932_bib3) 1996; 30
Edlund ( key 20170512103932_bib14) 2004; 16
Fang ( key 20170512103932_bib17) 1989; 1
Leung ( key 20170512103932_bib35) 2006; 223
Xiao ( key 20170512103932_bib59) 2011; 50
Park ( key 20170512103932_bib43) 2004; 135
Gilmartin ( key 20170512103932_bib21) 1992; 4
Xiao ( key 20170512103932_bib61) 2010; 22
Lund ( key 20170512103932_bib39) 1983; 152
Green ( key 20170512103932_bib23) 1987; 6
Kay ( key 20170512103932_bib28) 1989; 1
Shahmuradov ( key 20170512103932_bib50) 2003; 31
Proels ( key 20170512103932_bib46) 2009; 60
Chen ( key 20170512103932_bib6) 2010; 186
Lam ( key 20170512103932_bib32) 1990; 248
Lawton ( key 20170512103932_bib33) 1991; 16
Xiao ( key 20170512103932_bib58) 2009; 47
Jacobsen ( key 20170512103932_bib26) 1990; 2
Rombauts ( key 20170512103932_bib48) 1999; 27
Murashige ( key 20170512103932_bib41) 1962; 15
Kunkel ( key 20170512103932_bib31) 2002; 5
Chen ( key 20170512103932_bib5) 2008; 148
Eyal ( key 20170512103932_bib15) 1993; 4
Perisic ( key 20170512103932_bib45) 1992; 4
Harmer ( key 20170512103932_bib25) 2000; 290
Zianni ( key 20170512103932_bib67) 2006; 17
Breda ( key 20170512103932_bib2) 1996; 9
Gao ( key 20170512103932_bib19) 2010; 62
Li ( key 20170512103932_bib38) 2008; 59
Li ( key 20170512103932_bib36) 2003; 51
Jefferson ( key 20170512103932_bib27) 1987; 6
Shoyab ( key 20170512103932_bib51) 1986; 261
Willmott ( key 20170512103932_bib55) 1998; 38
Kuhn ( key 20170512103932_bib30) 1993; 23
Wilson ( key 20170512103932_bib56) 2001; 22
Pasquali ( key 20170512103932_bib44) 1999; 39
Xiao ( key 20170512103932_bib57) 2009; 4
Bradford ( key 20170512103932_bib1) 1976; 72
Cheong ( key 20170512103932_bib7) 2002; 129
Faergeman ( key 20170512103932_bib16) 2002; 368
Clough ( key 20170512103932_bib11) 1998; 16
Du ( key 20170512103932_bib13) 2010; 152
Chye ( key 20170512103932_bib9) 1999; 18
Knudsen ( key 20170512103932_bib29) 2000; 130
Xu ( key 20170512103932_bib64) 2001; 13
Wang ( key 20170512103932_bib54) 2011; 470
Green ( key 20170512103932_bib24) 1988; 7
Gilmartin ( key 20170512103932_bib22) 1990; 2
Li ( key 20170512103932_bib37) 2004; 54
Chye ( key 20170512103932_bib8) 1998; 38
Wang ( key 20170512103932_bib53) 2007; 52
Dehesh ( key 20170512103932_bib12) 1992; 11
Fisscher ( key 20170512103932_bib18) 1994; 26
Maxwell ( key 20170512103932_bib40) 2003; 133
Cardoso ( key 20170512103932_bib4) 1997; 256
12068110 - Plant Physiol. 2002 Jun;129(2):661-77
11402169 - Plant Cell. 2001 Jun;13(6):1411-25
16231156 - Planta. 2006 Apr;223(5):871-81
20345607 - Plant J. 2010 Jun 1;62(6):989-1003
15988560 - Plant Mol Biol. 2005 Mar;57(5):629-43
11202434 - Plant Mol Biol. 2000 Dec;44(6):711-21
20107029 - Plant Physiol. 2010 Mar;152(3):1585-97
12475498 - Trends Plant Sci. 2002 Dec;7(12):555-60
10069079 - Plant J. 1998 Dec;16(6):735-43
15159625 - Plant Mol Biol. 2004 Jan;54(2):233-43
3243271 - EMBO J. 1988 Dec 20;7(13):4035-44
2535461 - Plant Cell. 1989 Jan;1(1):141-50
10721891 - J Nutr. 2000 Feb;130(2S Suppl):294S-298S
15310827 - Plant Physiol. 2004 Aug;135(4):2150-61
16741237 - J Biomol Tech. 2006 Apr;17(2):103-13
19297549 - J Exp Bot. 2009;60(6):1555-67
9862500 - Plant Mol Biol. 1998 Nov;38(5):827-38
2152106 - Plant Cell. 1990 Jan;2(1):85-94
8000001 - Plant Mol Biol. 1994 Nov;26(3):873-86
9435792 - Mol Gen Genet. 1997 Nov;256(6):674-81
2152164 - Plant Cell. 1990 May;2(5):369-78
1396594 - EMBO J. 1992 Nov;11(11):4131-44
18773301 - Plant Mol Biol. 2008 Dec;68(6):571-83
21144863 - Prog Lipid Res. 2011 Apr;50(2):141-51
21293378 - Nature. 2011 Feb 3;470(7332):110-4
6297996 - FEBS Lett. 1983 Feb 21;152(2):163-7
20442372 - Plant Cell. 2010 May;22(5):1463-82
8605301 - Plant Mol Biol. 1996 Feb;30(3):493-504
1392598 - Plant Cell. 1992 Jul;4(7):839-49
10363372 - Plant J. 1999 Apr;18(2):205-14
15075396 - Plant Cell. 2004;16 Suppl:S84-97
3745175 - J Biol Chem. 1986 Sep 15;261(26):11968-73
14563928 - Plant Physiol. 2003 Dec;133(4):1565-77
10366876 - Trends Plant Sci. 1999 Jun;4(6):210-214
9862499 - Plant Mol Biol. 1998 Nov;38(5):817-25
8870270 - Mol Plant Microbe Interact. 1996 Nov;9(8):713-9
8219069 - Plant Mol Biol. 1993 Oct;23(2):337-48
17877700 - Plant J. 2007 Nov;52(4):716-29
1392597 - Plant Cell. 1992 Jul;4(7):831-8
10380815 - Plant Mol Biol. 1999 Apr;39(6):1299-310
20009557 - Plant Signal Behav. 2009 Nov;4(11):1063-5
15604682 - Plant Mol Biol. 2004 May;55(2):297-309
21670223 - Plant Physiol. 2011 Aug;156(4):2069-81
11465496 - Electrophoresis. 2001 Jun;22(10):1979-86
15010514 - Plant Cell. 2004;16 Suppl:S98-106
3327686 - EMBO J. 1987 Dec 20;6(13):3901-7
12519961 - Nucleic Acids Res. 2003 Jan 1;31(1):114-7
1863768 - Plant Mol Biol. 1991 Jun;16(6):955-66
942051 - Anal Biochem. 1976 May 7;72:248-54
18182029 - Plant J. 2008 Apr;54(1):141-51
2330508 - Science. 1990 Apr 27;248(4954):471-4
3456586 - Proc Natl Acad Sci U S A. 1986 Mar;83(5):1276-80
12179966 - Curr Opin Plant Biol. 2002 Aug;5(4):325-31
3678200 - EMBO J. 1987 Sep;6(9):2543-9
8220480 - Plant J. 1993 Aug;4(2):225-34
18836139 - J Exp Bot. 2008;59(14):3997-4006
12396232 - Biochem J. 2002 Dec 15;368(Pt 3):679-82
20345632 - New Phytol. 2010 Jun;186(4):843-55
19121948 - Plant Physiol Biochem. 2009 Jun;47(6):479-84
11118138 - Science. 2000 Dec 15;290(5499):2110-3
18621979 - Plant Physiol. 2008 Sep;148(1):304-15
12650615 - Plant Mol Biol. 2003 Mar;51(4):483-92
9847207 - Nucleic Acids Res. 1999 Jan 1;27(1):295-6
1893099 - Plant Mol Biol. 1991 Feb;16(2):235-49
2535506 - Plant Cell. 1989 Mar;1(3):351-60
18823312 - New Phytol. 2009;181(1):89-102
References_xml – volume: 4
  start-page: 1063
  year: 2009
  ident: key 20170512103932_bib57
  article-title: Expression of ACBP4 and ACBP5 proteins is modulated by light in Arabidopsis
  publication-title: Plant Signaling and Behavior
  doi: 10.4161/psb.4.11.9718
– volume: 27
  start-page: 295
  year: 1999
  ident: key 20170512103932_bib48
  article-title: PlantCARE, a plant cis-acting regulatory element database
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/27.1.295
– volume: 54
  start-page: 141
  year: 2008
  ident: key 20170512103932_bib62
  article-title: Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2008.03402.x
– volume: 59
  start-page: 3997
  year: 2008
  ident: key 20170512103932_bib38
  article-title: Ethylene- and pathogen-inducible Arabidopsis acyl-CoA-binding protein 4 interacts with an ethylene-responsive element binding protein
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/ern241
– volume: 18
  start-page: 205
  year: 1999
  ident: key 20170512103932_bib9
  article-title: Isolation of a gene encoding Arabidopsis membrane-associated acyl-CoA binding protein and immunolocalization of its gene product
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313X.1999.00443.x
– volume: 55
  start-page: 297
  year: 2004
  ident: key 20170512103932_bib34
  article-title: ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-004-0642-z
– volume: 186
  start-page: 843
  year: 2010
  ident: key 20170512103932_bib6
  article-title: The Arabidopsis acbp1acbp2 double mutant lacking acyl-CoA-binding proteins ACBP1 and ACBP2 is embryo lethal
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2010.03231.x
– volume: 57
  start-page: 629
  year: 2005
  ident: key 20170512103932_bib47
  article-title: Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-005-0954-7
– volume: 4
  start-page: 225
  year: 1993
  ident: key 20170512103932_bib15
  article-title: A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313X.1993.04020225.x
– volume: 62
  start-page: 989
  year: 2010
  ident: key 20170512103932_bib19
  article-title: Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis
  publication-title: The Plant Journal
– volume: 6
  start-page: 2543
  year: 1987
  ident: key 20170512103932_bib23
  article-title: Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene
  publication-title: EMBO Journal
  doi: 10.1002/j.1460-2075.1987.tb02542.x
– volume: 23
  start-page: 337
  year: 1993
  ident: key 20170512103932_bib30
  article-title: DNA binding factor GT-2 from Arabidopsis
  publication-title: Plant Molecular Biology
  doi: 10.1007/BF00029009
– volume: 290
  start-page: 2110
  year: 2000
  ident: key 20170512103932_bib25
  article-title: Orchestrated transcription of key pathways in Arabidopsis by the circadian clock
  publication-title: Science
  doi: 10.1126/science.290.5499.2110
– volume: 38
  start-page: 827
  year: 1998
  ident: key 20170512103932_bib8
  article-title: Arabidopsis cDNA encoding a membrane-associated protein with an acyl-CoA binding domain
  publication-title: Plant Molecular Biology
  doi: 10.1023/A:1006052108468
– volume: 39
  start-page: 1299
  year: 1999
  ident: key 20170512103932_bib44
  article-title: The promoter of the strictosidine synthase gene from periwinkle confers elicitor-inducible expression in transgenic tobacco and binds nuclear factors GT-1 and GBF
  publication-title: Plant Molecular Biology
  doi: 10.1023/A:1006177414456
– volume: 51
  start-page: 483
  year: 2003
  ident: key 20170512103932_bib36
  article-title: Membrane localization of Arabidopsis acyl-CoA binding protein ACBP2
  publication-title: Plant Molecular Biology
  doi: 10.1023/A:1022330304402
– volume: 7
  start-page: 4035
  year: 1988
  ident: key 20170512103932_bib24
  article-title: Binding site requirements for pea nuclear protein factor GT-1 correlate with sequences required for light-dependent transcriptional activation of the rbcS-3A gene
  publication-title: EMBO Journal
  doi: 10.1002/j.1460-2075.1988.tb03297.x
– volume: 130
  start-page: 294S
  year: 2000
  ident: key 20170512103932_bib29
  article-title: Role of acyl-CoA binding protein in acyl-CoA metabolism and acyl-CoA-mediated cell signaling
  publication-title: Journal of Nutrition
  doi: 10.1093/jn/130.2.294S
– volume: 470
  start-page: 110
  year: 2011
  ident: key 20170512103932_bib54
  article-title: Timing of plant immune responses by a central circadian regulator
  publication-title: Nature
  doi: 10.1038/nature09766
– volume: 60
  start-page: 1555
  year: 2009
  ident: key 20170512103932_bib46
  article-title: Extracellular invertase LIN6 of tomato: a pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erp027
– volume: 31
  start-page: 114
  year: 2003
  ident: key 20170512103932_bib50
  article-title: PlantProm: a database of plant promoter sequences
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkg041
– volume: 156
  start-page: 2069
  year: 2011
  ident: key 20170512103932_bib60
  article-title: Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv. tomato DC3000
  publication-title: Plant Physiology
  doi: 10.1104/pp.111.176933
– volume: 16
  start-page: S84
  year: 2004
  ident: key 20170512103932_bib14
  article-title: Pollen and stigma structure and function: the role of diversity in pollination
  publication-title: The Plant Cell
  doi: 10.1105/tpc.015800
– volume: 5
  start-page: 325
  year: 2002
  ident: key 20170512103932_bib31
  article-title: Cross talk between signaling pathways in pathogen defense
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/S1369-5266(02)00275-3
– volume: 54
  start-page: 233
  year: 2004
  ident: key 20170512103932_bib37
  article-title: Arabidopsis acyl-CoA-binding protein ACBP2 interacts with an ethylene-responsive element-binding protein, AtEBP, via its ankyrin repeats
  publication-title: Plant Molecular Biology
  doi: 10.1023/B:PLAN.0000028790.75090.ab
– volume: 52
  start-page: 716
  year: 2007
  ident: key 20170512103932_bib53
  article-title: The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2007.03268.x
– volume: 1
  start-page: 141
  year: 1989
  ident: key 20170512103932_bib17
  article-title: Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants
  publication-title: The Plant Cell
  doi: 10.1105/tpc.1.1.141
– volume: 135
  start-page: 2150
  year: 2004
  ident: key 20170512103932_bib43
  article-title: Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor
  publication-title: Plant Physiology
  doi: 10.1104/pp.104.041442
– volume: 72
  start-page: 248
  year: 1976
  ident: key 20170512103932_bib1
  article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding
  publication-title: Analytical Biochemistry
  doi: 10.1016/0003-2697(76)90527-3
– volume: 148
  start-page: 304
  year: 2008
  ident: key 20170512103932_bib5
  article-title: Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance
  publication-title: Plant Physiology
  doi: 10.1104/pp.108.123331
– volume: 17
  start-page: 103
  year: 2006
  ident: key 20170512103932_bib67
  article-title: Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument
  publication-title: Journal of Biomolecular Techniques
– volume: 50
  start-page: 141
  year: 2011
  ident: key 20170512103932_bib59
  article-title: New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism
  publication-title: Progress in Lipid Research
  doi: 10.1016/j.plipres.2010.11.002
– volume: 22
  start-page: 1463
  year: 2010
  ident: key 20170512103932_bib61
  article-title: Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence
  publication-title: The Plant Cell
  doi: 10.1105/tpc.110.075333
– volume: 15
  start-page: 473
  year: 1962
  ident: key 20170512103932_bib41
  article-title: A revised medium for rapid growth and bioassays with tobacco tissue cultures
  publication-title: Physiologia Plantarum
  doi: 10.1111/j.1399-3054.1962.tb08052.x
– volume: 1
  start-page: 351
  year: 1989
  ident: key 20170512103932_bib28
  article-title: The rice phytochrome gene: structure, autoregulated expression, and binding of GT-1 to a conserved site in the 5' upstream region
  publication-title: The Plant Cell
– volume: 261
  start-page: 11968
  year: 1986
  ident: key 20170512103932_bib51
  article-title: Isolation and characterization of a putative endogenous benzodiazepineoid (endozepine) from bovine and human brain
  publication-title: Journal of Biological Chemistry
  doi: 10.1016/S0021-9258(18)67188-1
– volume: 9
  start-page: 713
  year: 1996
  ident: key 20170512103932_bib2
  article-title: Defense reaction in Medicago sativa: a gene encoding a class 10 PR protein is expressed in vascular bundles
  publication-title: Molecular Plant-Microbe Interactions
  doi: 10.1094/MPMI-9-0713
– volume: 13
  start-page: 1411
  year: 2001
  ident: key 20170512103932_bib64
  article-title: A clock- and light-regulated gene that links the circadian oscillator to LHCB gene expression
  publication-title: The Plant Cell
  doi: 10.1105/tpc.13.6.1411
– volume: 4
  start-page: 839
  year: 1992
  ident: key 20170512103932_bib21
  article-title: Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element
  publication-title: The Plant Cell
  doi: 10.1105/tpc.4.7.839
– volume: 68
  start-page: 571
  year: 2008
  ident: key 20170512103932_bib63
  article-title: Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition
  publication-title: Plant Molecular Biology
  doi: 10.1007/s11103-008-9392-7
– volume: 152
  start-page: 1585
  year: 2010
  ident: key 20170512103932_bib13
  article-title: Depletion of the membrane-associated acyl-coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.109.147066
– volume: 44
  start-page: 711
  year: 2000
  ident: key 20170512103932_bib10
  article-title: Single amino acid substitutions at the acyl-CoA-binding domain interrupt 14[C]palmitoyl-CoA binding of ACBP2, an Arabidopsis acyl-CoA-binding protein with ankyrin repeats
  publication-title: Plant Molecular Biology
  doi: 10.1023/A:1026524108095
– volume: 133
  start-page: 1565
  year: 2003
  ident: key 20170512103932_bib40
  article-title: HY5, Circadian Clock-Associated 1, and a cis-element, DET1 dark response element, mediate DET1 regulation of chlorophyll a/b-binding protein 2 expression
  publication-title: Plant Physiology
  doi: 10.1104/pp.103.025114
– volume: 47
  start-page: 479
  year: 2009
  ident: key 20170512103932_bib58
  article-title: An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members
  publication-title: Plant Physiology and Biochemistry
  doi: 10.1016/j.plaphy.2008.12.002
– volume: 30
  start-page: 493
  year: 1996
  ident: key 20170512103932_bib3
  article-title: The PR-1a promoter contains a number of elements that bind GT-1-like nuclear factors with different affinity
  publication-title: Plant Molecular Biology
  doi: 10.1007/BF00049327
– volume: 368
  start-page: 679
  year: 2002
  ident: key 20170512103932_bib16
  article-title: Acyl-CoA binding protein is an essential protein in mammalian cell lines
  publication-title: Biochemical Journal
  doi: 10.1042/bj20021413
– volume: 6
  start-page: 3901
  year: 1987
  ident: key 20170512103932_bib27
  article-title: GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants
  publication-title: EMBO Journal
  doi: 10.1002/j.1460-2075.1987.tb02730.x
– volume: 16
  start-page: 955
  year: 1991
  ident: key 20170512103932_bib42
  article-title: Promoter for a Brassica napus ribulose bisphosphate carboxylase/oxygenase small subunit gene binds multiple nuclear factors and contains a negative-strand open reading frame encoding a putative transmembrane protein
  publication-title: Plant Molecular Biology
  doi: 10.1007/BF00016068
– volume: 248
  start-page: 471
  year: 1990
  ident: key 20170512103932_bib32
  article-title: GT-1 binding site confers light responsive expression in transgenic tobacco
  publication-title: Science
  doi: 10.1126/science.2330508
– volume: 223
  start-page: 871
  year: 2006
  ident: key 20170512103932_bib35
  article-title: Arabidopsis ACBP3 is an extracellularly targeted acyl-CoA-binding protein
  publication-title: Planta
  doi: 10.1007/s00425-005-0139-2
– volume: 2
  start-page: 369
  year: 1990
  ident: key 20170512103932_bib22
  article-title: Molecular light switches for plant genes
  publication-title: The Plant Cell
  doi: 10.1105/tpc.2.5.369
– volume: 256
  start-page: 674
  year: 1997
  ident: key 20170512103932_bib4
  article-title: A promoter region that controls basal and elicitor-inducible expression levels of the NADPH:cytochrome P450 reductase gene (Cpr) from Catharanthus roseus binds nuclear factor GT-1
  publication-title: Molecular and General Genetics
– volume: 2
  start-page: 85
  year: 1990
  ident: key 20170512103932_bib26
  article-title: HMG I-like proteins from leaf and nodule nuclei interact with different AT motifs in soybean nodulin promoters
  publication-title: The Plant Cell
  doi: 10.1105/tpc.2.1.85
– volume: 22
  start-page: 1979
  year: 2001
  ident: key 20170512103932_bib56
  article-title: Nonradiochemical DNase I footprinting by capillary electrophoresis
  publication-title: Electrophoresis
  doi: 10.1002/1522-2683(200106)22:10<1979::AID-ELPS1979>3.0.CO;2-A
– volume: 7
  start-page: 555
  year: 2002
  ident: key 20170512103932_bib65
  article-title: The Dof family of plant transcription factors
  publication-title: Trends in Plant Science
  doi: 10.1016/S1360-1385(02)02362-2
– volume: 16
  start-page: 235
  year: 1991
  ident: key 20170512103932_bib33
  article-title: Silencer region of a chalcone synthase promoter contains multiple binding sites for a factor, SBF-1, closely related to GT-1
  publication-title: Plant Molecular Biology
  doi: 10.1007/BF00020555
– volume: 38
  start-page: 817
  year: 1998
  ident: key 20170512103932_bib55
  article-title: DNase1 footprints suggest the involvement of at least three types of transcription factors in the regulation of alpha-Amy2/A by gibberellin
  publication-title: Plant Molecular Biology
  doi: 10.1023/A:1006084104041
– volume: 83
  start-page: 1276
  year: 1986
  ident: key 20170512103932_bib52
  article-title: A mammalian high mobility group protein recognizes any stretch of six A·T base pairs in duplex DNA
  publication-title: Proceedings of the National Academy of Sciences, USA
  doi: 10.1073/pnas.83.5.1276
– volume: 11
  start-page: 4131
  year: 1992
  ident: key 20170512103932_bib12
  article-title: GT-2: a transcription factor with twin autonomous DNA-binding domains of closely related but different target sequence specificity
  publication-title: The EMBO Journal
  doi: 10.1002/j.1460-2075.1992.tb05506.x
– volume: 181
  start-page: 89
  year: 2009
  ident: key 20170512103932_bib20
  article-title: Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6
  publication-title: New Phytologist
  doi: 10.1111/j.1469-8137.2008.02631.x
– volume: 4
  start-page: 831
  year: 1992
  ident: key 20170512103932_bib45
  article-title: A tobacco DNA binding protein that interacts with a light-responsive box II element
  publication-title: The Plant Cell
  doi: 10.1105/tpc.4.7.831
– volume: 129
  start-page: 661
  year: 2002
  ident: key 20170512103932_bib7
  article-title: Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis
  publication-title: Plant Physiology
  doi: 10.1104/pp.002857
– volume: 152
  start-page: 163
  year: 1983
  ident: key 20170512103932_bib39
  article-title: On the presence of two new high mobility group-like proteins in HeLa S3 cells
  publication-title: FEBS Letters
  doi: 10.1016/0014-5793(83)80370-6
– volume: 16
  start-page: 735
  year: 1998
  ident: key 20170512103932_bib11
  article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana
  publication-title: The Plant Journal
  doi: 10.1046/j.1365-313x.1998.00343.x
– volume: 4
  start-page: 210
  year: 1999
  ident: key 20170512103932_bib66
  article-title: Regulatory mechanism of plant gene transcription by GT-elements and GT-factors
  publication-title: Trends in Plant Science
  doi: 10.1016/S1360-1385(99)01418-1
– volume: 26
  start-page: 873
  year: 1994
  ident: key 20170512103932_bib18
  article-title: Identification of potential regulatory elements in the far-upstream region of the Arabidopsis thaliana plastocyanin promoter
  publication-title: Plant Molecular Biology
  doi: 10.1007/BF00028855
– volume: 16
  start-page: S98
  year: 2004
  ident: key 20170512103932_bib49
  article-title: Pistil factors controlling pollination
  publication-title: The Plant Cell
  doi: 10.1105/tpc.017806
– reference: 18621979 - Plant Physiol. 2008 Sep;148(1):304-15
– reference: 11202434 - Plant Mol Biol. 2000 Dec;44(6):711-21
– reference: 11118138 - Science. 2000 Dec 15;290(5499):2110-3
– reference: 1396594 - EMBO J. 1992 Nov;11(11):4131-44
– reference: 12396232 - Biochem J. 2002 Dec 15;368(Pt 3):679-82
– reference: 8220480 - Plant J. 1993 Aug;4(2):225-34
– reference: 16231156 - Planta. 2006 Apr;223(5):871-81
– reference: 21670223 - Plant Physiol. 2011 Aug;156(4):2069-81
– reference: 20345607 - Plant J. 2010 Jun 1;62(6):989-1003
– reference: 18836139 - J Exp Bot. 2008;59(14):3997-4006
– reference: 8000001 - Plant Mol Biol. 1994 Nov;26(3):873-86
– reference: 12475498 - Trends Plant Sci. 2002 Dec;7(12):555-60
– reference: 11402169 - Plant Cell. 2001 Jun;13(6):1411-25
– reference: 19121948 - Plant Physiol Biochem. 2009 Jun;47(6):479-84
– reference: 10363372 - Plant J. 1999 Apr;18(2):205-14
– reference: 12519961 - Nucleic Acids Res. 2003 Jan 1;31(1):114-7
– reference: 18773301 - Plant Mol Biol. 2008 Dec;68(6):571-83
– reference: 3243271 - EMBO J. 1988 Dec 20;7(13):4035-44
– reference: 8605301 - Plant Mol Biol. 1996 Feb;30(3):493-504
– reference: 2535506 - Plant Cell. 1989 Mar;1(3):351-60
– reference: 2330508 - Science. 1990 Apr 27;248(4954):471-4
– reference: 21293378 - Nature. 2011 Feb 3;470(7332):110-4
– reference: 3745175 - J Biol Chem. 1986 Sep 15;261(26):11968-73
– reference: 9862499 - Plant Mol Biol. 1998 Nov;38(5):817-25
– reference: 10721891 - J Nutr. 2000 Feb;130(2S Suppl):294S-298S
– reference: 18823312 - New Phytol. 2009;181(1):89-102
– reference: 10380815 - Plant Mol Biol. 1999 Apr;39(6):1299-310
– reference: 15010514 - Plant Cell. 2004;16 Suppl:S98-106
– reference: 15988560 - Plant Mol Biol. 2005 Mar;57(5):629-43
– reference: 12179966 - Curr Opin Plant Biol. 2002 Aug;5(4):325-31
– reference: 21144863 - Prog Lipid Res. 2011 Apr;50(2):141-51
– reference: 6297996 - FEBS Lett. 1983 Feb 21;152(2):163-7
– reference: 20009557 - Plant Signal Behav. 2009 Nov;4(11):1063-5
– reference: 8219069 - Plant Mol Biol. 1993 Oct;23(2):337-48
– reference: 20345632 - New Phytol. 2010 Jun;186(4):843-55
– reference: 3456586 - Proc Natl Acad Sci U S A. 1986 Mar;83(5):1276-80
– reference: 1893099 - Plant Mol Biol. 1991 Feb;16(2):235-49
– reference: 2152106 - Plant Cell. 1990 Jan;2(1):85-94
– reference: 15604682 - Plant Mol Biol. 2004 May;55(2):297-309
– reference: 3327686 - EMBO J. 1987 Dec 20;6(13):3901-7
– reference: 18182029 - Plant J. 2008 Apr;54(1):141-51
– reference: 1392597 - Plant Cell. 1992 Jul;4(7):831-8
– reference: 10366876 - Trends Plant Sci. 1999 Jun;4(6):210-214
– reference: 12650615 - Plant Mol Biol. 2003 Mar;51(4):483-92
– reference: 14563928 - Plant Physiol. 2003 Dec;133(4):1565-77
– reference: 942051 - Anal Biochem. 1976 May 7;72:248-54
– reference: 2152164 - Plant Cell. 1990 May;2(5):369-78
– reference: 17877700 - Plant J. 2007 Nov;52(4):716-29
– reference: 9435792 - Mol Gen Genet. 1997 Nov;256(6):674-81
– reference: 20442372 - Plant Cell. 2010 May;22(5):1463-82
– reference: 20107029 - Plant Physiol. 2010 Mar;152(3):1585-97
– reference: 1392598 - Plant Cell. 1992 Jul;4(7):839-49
– reference: 11465496 - Electrophoresis. 2001 Jun;22(10):1979-86
– reference: 8870270 - Mol Plant Microbe Interact. 1996 Nov;9(8):713-9
– reference: 15159625 - Plant Mol Biol. 2004 Jan;54(2):233-43
– reference: 9847207 - Nucleic Acids Res. 1999 Jan 1;27(1):295-6
– reference: 3678200 - EMBO J. 1987 Sep;6(9):2543-9
– reference: 2535461 - Plant Cell. 1989 Jan;1(1):141-50
– reference: 15310827 - Plant Physiol. 2004 Aug;135(4):2150-61
– reference: 12068110 - Plant Physiol. 2002 Jun;129(2):661-77
– reference: 16741237 - J Biomol Tech. 2006 Apr;17(2):103-13
– reference: 1863768 - Plant Mol Biol. 1991 Jun;16(6):955-66
– reference: 9862500 - Plant Mol Biol. 1998 Nov;38(5):827-38
– reference: 10069079 - Plant J. 1998 Dec;16(6):735-43
– reference: 19297549 - J Exp Bot. 2009;60(6):1555-67
– reference: 15075396 - Plant Cell. 2004;16 Suppl:S84-97
SSID ssj0005055
Score 2.2607546
Snippet In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain....
In Arabidopsis thaliana, acyl-CoA-binding protein 3 (ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It...
In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain....
In Arabidopsis thaliana , acyl-CoA-binding protein 3 (  ACBP3 ), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding...
SourceID pubmedcentral
proquest
pubmed
pascalfrancis
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 2985
SubjectTerms 5' Flanking Region
5' Flanking Region - genetics
Arabidopsis
Arabidopsis - drug effects
Arabidopsis - genetics
Arabidopsis - growth & development
Arabidopsis - microbiology
Arabidopsis Proteins
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Arabidopsis thaliana
Base Sequence
binding proteins
Biological and medical sciences
Carrier Proteins
Carrier Proteins - genetics
Carrier Proteins - metabolism
Circadian Rhythm
Circadian Rhythm - drug effects
Circadian Rhythm - genetics
Darkness
deoxyribonuclease I
Deoxyribonuclease I - metabolism
DNA Footprinting
drug effects
electrophoresis
Electrophoretic Mobility Shift Assay
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Developmental
Gene Expression Regulation, Developmental - drug effects
Gene Expression Regulation, Plant
Gene Expression Regulation, Plant - drug effects
genes
Genes, Plant
Genes, Plant - genetics
genetics
Glucuronidase
Glucuronidase - metabolism
growth & development
leaf protein
leaves
Lycopersicon esculentum
metabolism
microbiology
Molecular Sequence Data
pathogens
pharmacology
physiology
Plant Growth Regulators
Plant Growth Regulators - pharmacology
Plant physiology and development
Pseudomonas syringae
Pseudomonas syringae - drug effects
Pseudomonas syringae - physiology
Pseudomonas syringae pv. tomato
Recombinant Fusion Proteins
Recombinant Fusion Proteins - metabolism
Regulatory Sequences, Nucleic Acid
Regulatory Sequences, Nucleic Acid - genetics
Reproducibility of Results
Research Papers
Sequence Analysis, DNA
Sequence Deletion
Sequence Deletion - genetics
stems
Time Factors
vascular bundles
Title The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation
URI https://www.ncbi.nlm.nih.gov/pubmed/22345636
https://www.proquest.com/docview/1013921541
https://www.proquest.com/docview/1020841889
https://www.proquest.com/docview/1420128598
https://pubmed.ncbi.nlm.nih.gov/PMC3350915
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcEBCiDfLozKCC1qlzcNOnONSQOV5aqW9rWzHVoNKsspmJcqvZyZ2so8uFXCJrNhJVvt9noydmW8IeS3gnWiiTAaJLnjARGQDmUIrt7Fh0ihbWExO_votPT5ln6Z8upVd0qoD_WtnXsn_oArnAFfMkv0HZIebwgloA75wBITh-NcYQ6cZoxpll50yaaQqi3qOMiNSX5wHR_UEF7-FSzqvsbblOMEq5liKuIaLx9C51CUmUHV76EuFOzPokuqy0U65oHEF63sIL_uyG3UCVN32FqbbkTZ-R_psGUxLWfcd2Hbny1WMwYXbKDcm-OJz1PyOBIZ29PF_B8ZZUZaGQcy8efdm1tsxRyexbjNzV7TnkjF3QlfffyoEt1mEnY5Cu4br_EcHLHg44AYmW4ra3Tu677pObsSwjsASF-8-fl7FAIWc95q1eXIIjzp0D0KNaH_phsNyey4XMHesK3qya1WyHVy75q2c3CV3PDR04jhzj1wz1X1y822HzAPSAHEoEof2xKFrxKHbxKGeODSh0NsThw7EoUAc6olD25oOxKEr4jwkpx_enxwdB774RqBZxtog00UqRYHTVRaS68golEaLtEw1U0We6gw1ro3g3EpjWFFkuY55oZSNE6vC5BHZq-rKPCE0Tm0mJApis5Bpm8uc8dgoVKqzkQ7jEXnT_8Mz7ZXpsUDK-cxFSCQzAGbmgBmRV8PYudNj2TlqfwOoYWiMqdawZh-Rlz1yM7Cn-JFMVqZeLjDkEZYMsLCIrhoTh4JFQuRXjGE4NQTPxYg8doxY_QpPrRHJNrgyDEDN982eqjzrtN-TBD18_vSP93xGbq3m5HOy1zZL8wL85lbtd9z_DfE3zHM
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+gene+encoding+Arabidopsis+acyl-CoA-binding+protein+3+is+pathogen+inducible+and+subject+to+circadian+regulation&rft.jtitle=Journal+of+experimental+botany&rft.au=Zheng%2C+Shu-Xiao&rft.au=Xiao%2C+Shi&rft.au=Chye%2C+Mee-Len&rft.date=2012-05-01&rft.eissn=1460-2431&rft.volume=63&rft.issue=8&rft.spage=2985&rft_id=info:doi/10.1093%2Fjxb%2Fers009&rft_id=info%3Apmid%2F22345636&rft.externalDocID=22345636
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon