The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation
In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation...
Saved in:
Published in | Journal of experimental botany Vol. 63; no. 8; pp. 2985 - 3000 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Oxford University Press
01.05.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3. |
---|---|
AbstractList | In
Arabidopsis thaliana
, acyl-CoA-binding protein 3 (
ACBP3
), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to
Pseudomonas syringae
pv.
tomato
DC3000. To understand the regulation of
ACBP3
, a 1.7 kb 5'-flanking region of
ACBP3
and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (–151/+223) could drive GUS expression while a 1698 bp fragment (–1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic
Arabidopsis
harbouring the largest (1698 bp)
ACBP3pro::GUS
fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized
ACBP3
functions in plant defence. A 160 bp region (–434/–274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, –341/–338) interacted specifically with leaf nuclear proteins from dark-treated
Arabidopsis
, while GT-1 (–406/–401) binds both dark- and light-treated
Arabidopsis
, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of
ACBP3
. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (–543/–434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (–516/–512) was identified to bind nuclear proteins from pathogen-infected
Arabidopsis
leaves, providing the basis for pathogen-inducible regulation of
ACBP3
expression. Thus, three
cis
-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of
ACBP3
are proven functional in the regulation of
ACBP3
. In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3.In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3. In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using β-glucuronidase (GUS) fusions. A 374 bp minimal fragment (–151/+223) could drive GUS expression while a 1698 bp fragment (–1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (–434/–274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, –341/–338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (–406/–401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (–543/–434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (–516/–512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3. In Arabidopsis thaliana, acyl-CoA-binding protein 3 (ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It promotes autophagy-mediated leaf senescence and confers resistance to Pseudomonas syringae pv. tomato DC3000. To understand the regulation of ACBP3, a 1.7 kb 5'-flanking region of ACBP3 and its deletion derivatives were characterized using beta -glucuronidase (GUS) fusions. A 374 bp minimal fragment (-151/+223) could drive GUS expression while a 1698 bp fragment (-1475/+223) conferred maximal activity. Further, histochemical analysis on transgenic Arabidopsis harbouring the largest (1698 bp) ACBP3pro::GUS fusion displayed ubiquitous expression in floral organs and vegetative tissues (vascular bundles of leaves and stems), consistent with previous results showing that extracellularly localized ACBP3 functions in plant defence. A 160 bp region (-434/-274) induced expression in extended darkness and caused down-regulation in extended light. Electrophoretic mobility shift assay (EMSA) and DNase I footprinting assay showed that the DNA-binding with one finger box (Dof-box, -341/-338) interacted specifically with leaf nuclear proteins from dark-treated Arabidopsis, while GT-1 (-406/-401) binds both dark- and light-treated Arabidopsis, suggesting that Dof and GT-1 motifs are required to mediate circadian regulation of ACBP3. Moreover, GUS staining and fluorometric measurements revealed that a 109 bp region (-543/-434) was responsive to phytohormones and pathogens. An S-box of AT-rich sequence (-516/-512) was identified to bind nuclear proteins from pathogen-infected Arabidopsis leaves, providing the basis for pathogen-inducible regulation of ACBP3 expression. Thus, three cis-responsive elements (Dof, GT-1, and the S-box) in the 5'-flanking region of ACBP3 are proven functional in the regulation of ACBP3. |
Author | Zheng, Shu-Xiao Xiao, Shi Chye, Mee-Len |
AuthorAffiliation | School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China |
AuthorAffiliation_xml | – name: School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China |
Author_xml | – sequence: 1 givenname: Shu-Xiao surname: Zheng fullname: Zheng, Shu-Xiao – sequence: 2 givenname: Shi surname: Xiao fullname: Xiao, Shi – sequence: 3 givenname: Mee-Len surname: Chye fullname: Chye, Mee-Len |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25901606$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22345636$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkt1rFDEUxYNU7Lb64h8geRGkMPYmk8xMXoRlsSoUfKnPIR93drPMJmsyU-x_77S79QtBn_JwfufcXO45IycxRSTkJYO3DFR9uf1mLzEXAPWELJhooOKiZidkAcB5BUq2p-SslC0ASJDyGTnlvBayqZsFyTcbpGuMSDG65ENc02U2Nvi0L6FQ4-6GapWWlQ3xQdznNGKItKazujfjJs1mOouTC3ZAaqKnZbJbdCMdE3UhO-ODiTTjehrMGFJ8Tp72Zij44vieky9X729WH6vrzx8-rZbXlROtGKvW-cZ03qDtjTfSMbQCVMucaZywXjWubRQ02EnZG0Thfascl97ante9hfqcvDvk7ie7Q-8wjtkMep_DzuQ7nUzQvysxbPQ63eq6lqCYnAPeHANy-jphGfUuFIfDYCKmqWgmODDeSdX9GwUOnWBdp_4DZbXiTAo2o69-3eDH1x_PNwOvj4Apzgx9NtGF8pOTClgD9xwcOJdTKRl77cL4cIx58TDMM_V9k_TcJH1o0my5-MPymPoX-DswRc1s |
CODEN | JEBOA6 |
CitedBy_id | crossref_primary_10_1002_1873_3468_13923 crossref_primary_10_1093_pcp_pcz237 crossref_primary_10_1371_journal_pone_0107372 crossref_primary_10_3389_fcell_2020_616434 crossref_primary_10_3389_fgene_2022_1057160 crossref_primary_10_3389_fpls_2017_01868 crossref_primary_10_1042_BSR20140139 crossref_primary_10_1093_jxb_eru304 crossref_primary_10_1016_j_ijbiomac_2024_131631 crossref_primary_10_1016_j_pmpp_2024_102459 crossref_primary_10_1016_j_tplants_2015_10_011 crossref_primary_10_1080_21541264_2020_1820300 crossref_primary_10_1016_j_bbalip_2015_12_018 crossref_primary_10_1016_j_plipres_2016_06_002 crossref_primary_10_1111_acel_13910 crossref_primary_10_1007_s00425_021_03721_1 crossref_primary_10_1016_j_plantsci_2013_03_016 crossref_primary_10_1080_15592324_2017_1359365 crossref_primary_10_1080_15548627_2018_1520547 crossref_primary_10_3389_fpls_2022_872218 crossref_primary_10_1111_nph_19924 crossref_primary_10_3390_biology9120454 crossref_primary_10_17660_ActaHortic_2023_1362_58 crossref_primary_10_3390_cells10051064 crossref_primary_10_1016_j_bcab_2013_09_010 crossref_primary_10_3389_fgene_2018_00182 crossref_primary_10_1038_srep23072 crossref_primary_10_1093_jxb_erab499 crossref_primary_10_1016_j_ijbiomac_2023_125526 crossref_primary_10_1038_srep33332 crossref_primary_10_1007_s11103_016_0557_5 crossref_primary_10_1016_j_pmpp_2020_101548 crossref_primary_10_3389_fpls_2018_00002 crossref_primary_10_1007_s11103_016_0541_0 crossref_primary_10_15835_nbha50112640 crossref_primary_10_1016_j_jbiotec_2014_01_027 crossref_primary_10_1007_s00709_015_0882_6 crossref_primary_10_3389_fpls_2020_00331 crossref_primary_10_1016_j_plantsci_2012_12_009 crossref_primary_10_1111_pce_12382 crossref_primary_10_3390_ijms25158114 crossref_primary_10_1111_tpj_12692 crossref_primary_10_1007_s11745_015_4103_z crossref_primary_10_1186_s12870_024_04944_6 |
Cites_doi | 10.4161/psb.4.11.9718 10.1093/nar/27.1.295 10.1111/j.1365-313X.2008.03402.x 10.1093/jxb/ern241 10.1046/j.1365-313X.1999.00443.x 10.1007/s11103-004-0642-z 10.1111/j.1469-8137.2010.03231.x 10.1007/s11103-005-0954-7 10.1046/j.1365-313X.1993.04020225.x 10.1002/j.1460-2075.1987.tb02542.x 10.1007/BF00029009 10.1126/science.290.5499.2110 10.1023/A:1006052108468 10.1023/A:1006177414456 10.1023/A:1022330304402 10.1002/j.1460-2075.1988.tb03297.x 10.1093/jn/130.2.294S 10.1038/nature09766 10.1093/jxb/erp027 10.1093/nar/gkg041 10.1104/pp.111.176933 10.1105/tpc.015800 10.1016/S1369-5266(02)00275-3 10.1023/B:PLAN.0000028790.75090.ab 10.1111/j.1365-313X.2007.03268.x 10.1105/tpc.1.1.141 10.1104/pp.104.041442 10.1016/0003-2697(76)90527-3 10.1104/pp.108.123331 10.1016/j.plipres.2010.11.002 10.1105/tpc.110.075333 10.1111/j.1399-3054.1962.tb08052.x 10.1016/S0021-9258(18)67188-1 10.1094/MPMI-9-0713 10.1105/tpc.13.6.1411 10.1105/tpc.4.7.839 10.1007/s11103-008-9392-7 10.1104/pp.109.147066 10.1023/A:1026524108095 10.1104/pp.103.025114 10.1016/j.plaphy.2008.12.002 10.1007/BF00049327 10.1042/bj20021413 10.1002/j.1460-2075.1987.tb02730.x 10.1007/BF00016068 10.1126/science.2330508 10.1007/s00425-005-0139-2 10.1105/tpc.2.5.369 10.1105/tpc.2.1.85 10.1002/1522-2683(200106)22:10<1979::AID-ELPS1979>3.0.CO;2-A 10.1016/S1360-1385(02)02362-2 10.1007/BF00020555 10.1023/A:1006084104041 10.1073/pnas.83.5.1276 10.1002/j.1460-2075.1992.tb05506.x 10.1111/j.1469-8137.2008.02631.x 10.1105/tpc.4.7.831 10.1104/pp.002857 10.1016/0014-5793(83)80370-6 10.1046/j.1365-313x.1998.00343.x 10.1016/S1360-1385(99)01418-1 10.1007/BF00028855 10.1105/tpc.017806 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS 2012 The Author(s). 2012 |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: 2012 The Author(s). 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7UA 8FD C1K FR3 P64 RC3 7S9 L.6 5PM |
DOI | 10.1093/jxb/ers009 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts AGRICOLA AGRICOLA - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Genetics Abstracts Engineering Research Database Technology Research Database Water Resources Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1460-2431 |
EndPage | 3000 |
ExternalDocumentID | PMC3350915 22345636 25901606 10_1093_jxb_ers009 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -E4 -~X .2P .I3 0R~ 18M 1TH 29K 2WC 2~F 4.4 482 48X 5GY 5VS 5WA 5WD 70D AAHBH AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAXTN AAYXX ABBHK ABDFA ABEJV ABEUO ABGNP ABIXL ABJNI ABLJU ABMNT ABNKS ABPPZ ABPQP ABPTD ABQLI ABVGC ABWST ABXSQ ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACHIC ACIWK ACNCT ACPRK ACUFI ACUTJ ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADULT ADVEK ADYVW ADZTZ ADZXQ AEEJZ AEGPL AEGXH AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEUPB AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AFYAG AGINJ AGKEF AGORE AGQXC AGSYK AHMBA AHXPO AIAGR AIJHB AJBYB AJEEA AJNCP AKHUL AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX APIBT APWMN AQVQM ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BSWAC CDBKE CITATION COF CS3 CZ4 D-I DAKXR DATOO DIK DILTD DU5 D~K E3Z EBS ECGQY EE~ EJD F5P F9B FHSFR FLUFQ FOEOM FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX IPSME J21 JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JST JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z ML0 N9A NGC NLBLG NOMLY NU- NVLIB O0~ O9- OAWHX OBOKY ODMLO OJQWA OJZSN OK1 OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y QBD R44 RD5 ROL ROX ROZ RUSNO RW1 RXO RZO SA0 TEORI TLC TN5 TR2 UHB UPT W8F WH7 WOQ X7H YAYTL YKOAZ YQT YSK YXANX YZZ ZCG ZKX ~02 ~91 ~KM 3O- 53G AAWDT ABDPE ABIME ABNGD ABPIB ABSMQ ABZEO ACFRR ACPQN ACUKT ACVCV ACZBC AEHUL AEKPW AETEA AFSHK AGKRT AGMDO AGQPQ AHGBF AI. AJDVS ANFBD APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN C1A CAG CXTWN DFGAJ ELUNK FEDTE HVGLF H~9 IQODW MBTAY MVM NEJ NTWIH OHT O~Y PB- RIG RNI RZF TCN UKR VH1 XOL 6.Y ABQTQ ABSAR ADRIX AFXEN CGR CUY CVF ECM EIF ESX JSODD M49 NPM Z5M 7X8 7UA 8FD C1K FR3 P64 RC3 7S9 L.6 5PM |
ID | FETCH-LOGICAL-c474t-7cd6a8daebfada5c1eb40971ca6c4bd96c76906e855faee4dd79c25dbbf23fb03 |
ISSN | 0022-0957 1460-2431 |
IngestDate | Thu Aug 21 18:14:37 EDT 2025 Fri Jul 11 01:43:54 EDT 2025 Fri Jul 11 00:30:28 EDT 2025 Thu Jul 10 19:27:27 EDT 2025 Wed Feb 19 01:54:56 EST 2025 Mon Jul 21 09:17:58 EDT 2025 Tue Jul 01 03:05:15 EDT 2025 Thu Apr 24 23:04:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Light effect dark/light regulation GT-1 cis-acting element Acyl Circadian rhythm Defensive response Arabidopsis thaliana Arabidopsis ACBP3 Binding protein defence response Gene Cruciferae Dicotyledones Pathogenic S-box Angiospermae Botany Regulatory sequence Spermatophyta Cis effect Experimental plant Dof-box Photoregulation |
Language | English |
License | CC BY 4.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper is available online free of all access charges (see http://jxb.oxfordjournals.org/open_access.html for further details) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c474t-7cd6a8daebfada5c1eb40971ca6c4bd96c76906e855faee4dd79c25dbbf23fb03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Present address: State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC3350915 |
PMID | 22345636 |
PQID | 1013921541 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3350915 proquest_miscellaneous_1420128598 proquest_miscellaneous_1020841889 proquest_miscellaneous_1013921541 pubmed_primary_22345636 pascalfrancis_primary_25901606 crossref_citationtrail_10_1093_jxb_ers009 crossref_primary_10_1093_jxb_ers009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-01 |
PublicationDateYYYYMMDD | 2012-05-01 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford – name: England |
PublicationTitle | Journal of experimental botany |
PublicationTitleAlternate | J Exp Bot |
PublicationYear | 2012 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Rawat ( key 20170512103932_bib47) 2005; 57 Xiao ( key 20170512103932_bib62) 2008; 54 Nantel ( key 20170512103932_bib42) 1991; 16 Chye ( key 20170512103932_bib10) 2000; 44 Leung ( key 20170512103932_bib34) 2004; 55 Gao ( key 20170512103932_bib20) 2009; 181 Xiao ( key 20170512103932_bib60) 2011; 156 Xiao ( key 20170512103932_bib63) 2008; 68 Zhou ( key 20170512103932_bib66) 1999; 4 Solomon ( key 20170512103932_bib52) 1986; 83 Yanagisawa ( key 20170512103932_bib65) 2002; 7 Sanchez ( key 20170512103932_bib49) 2004; 16 Buchel ( key 20170512103932_bib3) 1996; 30 Edlund ( key 20170512103932_bib14) 2004; 16 Fang ( key 20170512103932_bib17) 1989; 1 Leung ( key 20170512103932_bib35) 2006; 223 Xiao ( key 20170512103932_bib59) 2011; 50 Park ( key 20170512103932_bib43) 2004; 135 Gilmartin ( key 20170512103932_bib21) 1992; 4 Xiao ( key 20170512103932_bib61) 2010; 22 Lund ( key 20170512103932_bib39) 1983; 152 Green ( key 20170512103932_bib23) 1987; 6 Kay ( key 20170512103932_bib28) 1989; 1 Shahmuradov ( key 20170512103932_bib50) 2003; 31 Proels ( key 20170512103932_bib46) 2009; 60 Chen ( key 20170512103932_bib6) 2010; 186 Lam ( key 20170512103932_bib32) 1990; 248 Lawton ( key 20170512103932_bib33) 1991; 16 Xiao ( key 20170512103932_bib58) 2009; 47 Jacobsen ( key 20170512103932_bib26) 1990; 2 Rombauts ( key 20170512103932_bib48) 1999; 27 Murashige ( key 20170512103932_bib41) 1962; 15 Kunkel ( key 20170512103932_bib31) 2002; 5 Chen ( key 20170512103932_bib5) 2008; 148 Eyal ( key 20170512103932_bib15) 1993; 4 Perisic ( key 20170512103932_bib45) 1992; 4 Harmer ( key 20170512103932_bib25) 2000; 290 Zianni ( key 20170512103932_bib67) 2006; 17 Breda ( key 20170512103932_bib2) 1996; 9 Gao ( key 20170512103932_bib19) 2010; 62 Li ( key 20170512103932_bib38) 2008; 59 Li ( key 20170512103932_bib36) 2003; 51 Jefferson ( key 20170512103932_bib27) 1987; 6 Shoyab ( key 20170512103932_bib51) 1986; 261 Willmott ( key 20170512103932_bib55) 1998; 38 Kuhn ( key 20170512103932_bib30) 1993; 23 Wilson ( key 20170512103932_bib56) 2001; 22 Pasquali ( key 20170512103932_bib44) 1999; 39 Xiao ( key 20170512103932_bib57) 2009; 4 Bradford ( key 20170512103932_bib1) 1976; 72 Cheong ( key 20170512103932_bib7) 2002; 129 Faergeman ( key 20170512103932_bib16) 2002; 368 Clough ( key 20170512103932_bib11) 1998; 16 Du ( key 20170512103932_bib13) 2010; 152 Chye ( key 20170512103932_bib9) 1999; 18 Knudsen ( key 20170512103932_bib29) 2000; 130 Xu ( key 20170512103932_bib64) 2001; 13 Wang ( key 20170512103932_bib54) 2011; 470 Green ( key 20170512103932_bib24) 1988; 7 Gilmartin ( key 20170512103932_bib22) 1990; 2 Li ( key 20170512103932_bib37) 2004; 54 Chye ( key 20170512103932_bib8) 1998; 38 Wang ( key 20170512103932_bib53) 2007; 52 Dehesh ( key 20170512103932_bib12) 1992; 11 Fisscher ( key 20170512103932_bib18) 1994; 26 Maxwell ( key 20170512103932_bib40) 2003; 133 Cardoso ( key 20170512103932_bib4) 1997; 256 12068110 - Plant Physiol. 2002 Jun;129(2):661-77 11402169 - Plant Cell. 2001 Jun;13(6):1411-25 16231156 - Planta. 2006 Apr;223(5):871-81 20345607 - Plant J. 2010 Jun 1;62(6):989-1003 15988560 - Plant Mol Biol. 2005 Mar;57(5):629-43 11202434 - Plant Mol Biol. 2000 Dec;44(6):711-21 20107029 - Plant Physiol. 2010 Mar;152(3):1585-97 12475498 - Trends Plant Sci. 2002 Dec;7(12):555-60 10069079 - Plant J. 1998 Dec;16(6):735-43 15159625 - Plant Mol Biol. 2004 Jan;54(2):233-43 3243271 - EMBO J. 1988 Dec 20;7(13):4035-44 2535461 - Plant Cell. 1989 Jan;1(1):141-50 10721891 - J Nutr. 2000 Feb;130(2S Suppl):294S-298S 15310827 - Plant Physiol. 2004 Aug;135(4):2150-61 16741237 - J Biomol Tech. 2006 Apr;17(2):103-13 19297549 - J Exp Bot. 2009;60(6):1555-67 9862500 - Plant Mol Biol. 1998 Nov;38(5):827-38 2152106 - Plant Cell. 1990 Jan;2(1):85-94 8000001 - Plant Mol Biol. 1994 Nov;26(3):873-86 9435792 - Mol Gen Genet. 1997 Nov;256(6):674-81 2152164 - Plant Cell. 1990 May;2(5):369-78 1396594 - EMBO J. 1992 Nov;11(11):4131-44 18773301 - Plant Mol Biol. 2008 Dec;68(6):571-83 21144863 - Prog Lipid Res. 2011 Apr;50(2):141-51 21293378 - Nature. 2011 Feb 3;470(7332):110-4 6297996 - FEBS Lett. 1983 Feb 21;152(2):163-7 20442372 - Plant Cell. 2010 May;22(5):1463-82 8605301 - Plant Mol Biol. 1996 Feb;30(3):493-504 1392598 - Plant Cell. 1992 Jul;4(7):839-49 10363372 - Plant J. 1999 Apr;18(2):205-14 15075396 - Plant Cell. 2004;16 Suppl:S84-97 3745175 - J Biol Chem. 1986 Sep 15;261(26):11968-73 14563928 - Plant Physiol. 2003 Dec;133(4):1565-77 10366876 - Trends Plant Sci. 1999 Jun;4(6):210-214 9862499 - Plant Mol Biol. 1998 Nov;38(5):817-25 8870270 - Mol Plant Microbe Interact. 1996 Nov;9(8):713-9 8219069 - Plant Mol Biol. 1993 Oct;23(2):337-48 17877700 - Plant J. 2007 Nov;52(4):716-29 1392597 - Plant Cell. 1992 Jul;4(7):831-8 10380815 - Plant Mol Biol. 1999 Apr;39(6):1299-310 20009557 - Plant Signal Behav. 2009 Nov;4(11):1063-5 15604682 - Plant Mol Biol. 2004 May;55(2):297-309 21670223 - Plant Physiol. 2011 Aug;156(4):2069-81 11465496 - Electrophoresis. 2001 Jun;22(10):1979-86 15010514 - Plant Cell. 2004;16 Suppl:S98-106 3327686 - EMBO J. 1987 Dec 20;6(13):3901-7 12519961 - Nucleic Acids Res. 2003 Jan 1;31(1):114-7 1863768 - Plant Mol Biol. 1991 Jun;16(6):955-66 942051 - Anal Biochem. 1976 May 7;72:248-54 18182029 - Plant J. 2008 Apr;54(1):141-51 2330508 - Science. 1990 Apr 27;248(4954):471-4 3456586 - Proc Natl Acad Sci U S A. 1986 Mar;83(5):1276-80 12179966 - Curr Opin Plant Biol. 2002 Aug;5(4):325-31 3678200 - EMBO J. 1987 Sep;6(9):2543-9 8220480 - Plant J. 1993 Aug;4(2):225-34 18836139 - J Exp Bot. 2008;59(14):3997-4006 12396232 - Biochem J. 2002 Dec 15;368(Pt 3):679-82 20345632 - New Phytol. 2010 Jun;186(4):843-55 19121948 - Plant Physiol Biochem. 2009 Jun;47(6):479-84 11118138 - Science. 2000 Dec 15;290(5499):2110-3 18621979 - Plant Physiol. 2008 Sep;148(1):304-15 12650615 - Plant Mol Biol. 2003 Mar;51(4):483-92 9847207 - Nucleic Acids Res. 1999 Jan 1;27(1):295-6 1893099 - Plant Mol Biol. 1991 Feb;16(2):235-49 2535506 - Plant Cell. 1989 Mar;1(3):351-60 18823312 - New Phytol. 2009;181(1):89-102 |
References_xml | – volume: 4 start-page: 1063 year: 2009 ident: key 20170512103932_bib57 article-title: Expression of ACBP4 and ACBP5 proteins is modulated by light in Arabidopsis publication-title: Plant Signaling and Behavior doi: 10.4161/psb.4.11.9718 – volume: 27 start-page: 295 year: 1999 ident: key 20170512103932_bib48 article-title: PlantCARE, a plant cis-acting regulatory element database publication-title: Nucleic Acids Research doi: 10.1093/nar/27.1.295 – volume: 54 start-page: 141 year: 2008 ident: key 20170512103932_bib62 article-title: Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2008.03402.x – volume: 59 start-page: 3997 year: 2008 ident: key 20170512103932_bib38 article-title: Ethylene- and pathogen-inducible Arabidopsis acyl-CoA-binding protein 4 interacts with an ethylene-responsive element binding protein publication-title: Journal of Experimental Botany doi: 10.1093/jxb/ern241 – volume: 18 start-page: 205 year: 1999 ident: key 20170512103932_bib9 article-title: Isolation of a gene encoding Arabidopsis membrane-associated acyl-CoA binding protein and immunolocalization of its gene product publication-title: The Plant Journal doi: 10.1046/j.1365-313X.1999.00443.x – volume: 55 start-page: 297 year: 2004 ident: key 20170512103932_bib34 article-title: ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA publication-title: Plant Molecular Biology doi: 10.1007/s11103-004-0642-z – volume: 186 start-page: 843 year: 2010 ident: key 20170512103932_bib6 article-title: The Arabidopsis acbp1acbp2 double mutant lacking acyl-CoA-binding proteins ACBP1 and ACBP2 is embryo lethal publication-title: New Phytologist doi: 10.1111/j.1469-8137.2010.03231.x – volume: 57 start-page: 629 year: 2005 ident: key 20170512103932_bib47 article-title: Identification of cis-elements for ethylene and circadian regulation of the Solanum melongena gene encoding cysteine proteinase publication-title: Plant Molecular Biology doi: 10.1007/s11103-005-0954-7 – volume: 4 start-page: 225 year: 1993 ident: key 20170512103932_bib15 article-title: A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression publication-title: The Plant Journal doi: 10.1046/j.1365-313X.1993.04020225.x – volume: 62 start-page: 989 year: 2010 ident: key 20170512103932_bib19 article-title: Acyl-CoA-binding protein 2 binds lysophospholipase 2 and lysoPC to promote tolerance to cadmium-induced oxidative stress in transgenic Arabidopsis publication-title: The Plant Journal – volume: 6 start-page: 2543 year: 1987 ident: key 20170512103932_bib23 article-title: Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene publication-title: EMBO Journal doi: 10.1002/j.1460-2075.1987.tb02542.x – volume: 23 start-page: 337 year: 1993 ident: key 20170512103932_bib30 article-title: DNA binding factor GT-2 from Arabidopsis publication-title: Plant Molecular Biology doi: 10.1007/BF00029009 – volume: 290 start-page: 2110 year: 2000 ident: key 20170512103932_bib25 article-title: Orchestrated transcription of key pathways in Arabidopsis by the circadian clock publication-title: Science doi: 10.1126/science.290.5499.2110 – volume: 38 start-page: 827 year: 1998 ident: key 20170512103932_bib8 article-title: Arabidopsis cDNA encoding a membrane-associated protein with an acyl-CoA binding domain publication-title: Plant Molecular Biology doi: 10.1023/A:1006052108468 – volume: 39 start-page: 1299 year: 1999 ident: key 20170512103932_bib44 article-title: The promoter of the strictosidine synthase gene from periwinkle confers elicitor-inducible expression in transgenic tobacco and binds nuclear factors GT-1 and GBF publication-title: Plant Molecular Biology doi: 10.1023/A:1006177414456 – volume: 51 start-page: 483 year: 2003 ident: key 20170512103932_bib36 article-title: Membrane localization of Arabidopsis acyl-CoA binding protein ACBP2 publication-title: Plant Molecular Biology doi: 10.1023/A:1022330304402 – volume: 7 start-page: 4035 year: 1988 ident: key 20170512103932_bib24 article-title: Binding site requirements for pea nuclear protein factor GT-1 correlate with sequences required for light-dependent transcriptional activation of the rbcS-3A gene publication-title: EMBO Journal doi: 10.1002/j.1460-2075.1988.tb03297.x – volume: 130 start-page: 294S year: 2000 ident: key 20170512103932_bib29 article-title: Role of acyl-CoA binding protein in acyl-CoA metabolism and acyl-CoA-mediated cell signaling publication-title: Journal of Nutrition doi: 10.1093/jn/130.2.294S – volume: 470 start-page: 110 year: 2011 ident: key 20170512103932_bib54 article-title: Timing of plant immune responses by a central circadian regulator publication-title: Nature doi: 10.1038/nature09766 – volume: 60 start-page: 1555 year: 2009 ident: key 20170512103932_bib46 article-title: Extracellular invertase LIN6 of tomato: a pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erp027 – volume: 31 start-page: 114 year: 2003 ident: key 20170512103932_bib50 article-title: PlantProm: a database of plant promoter sequences publication-title: Nucleic Acids Research doi: 10.1093/nar/gkg041 – volume: 156 start-page: 2069 year: 2011 ident: key 20170512103932_bib60 article-title: Overexpression of Arabidopsis ACBP3 enhances NPR1-dependent plant resistance to Pseudomonas syringe pv. tomato DC3000 publication-title: Plant Physiology doi: 10.1104/pp.111.176933 – volume: 16 start-page: S84 year: 2004 ident: key 20170512103932_bib14 article-title: Pollen and stigma structure and function: the role of diversity in pollination publication-title: The Plant Cell doi: 10.1105/tpc.015800 – volume: 5 start-page: 325 year: 2002 ident: key 20170512103932_bib31 article-title: Cross talk between signaling pathways in pathogen defense publication-title: Current Opinion in Plant Biology doi: 10.1016/S1369-5266(02)00275-3 – volume: 54 start-page: 233 year: 2004 ident: key 20170512103932_bib37 article-title: Arabidopsis acyl-CoA-binding protein ACBP2 interacts with an ethylene-responsive element-binding protein, AtEBP, via its ankyrin repeats publication-title: Plant Molecular Biology doi: 10.1023/B:PLAN.0000028790.75090.ab – volume: 52 start-page: 716 year: 2007 ident: key 20170512103932_bib53 article-title: The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2007.03268.x – volume: 1 start-page: 141 year: 1989 ident: key 20170512103932_bib17 article-title: Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants publication-title: The Plant Cell doi: 10.1105/tpc.1.1.141 – volume: 135 start-page: 2150 year: 2004 ident: key 20170512103932_bib43 article-title: Pathogen- and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor publication-title: Plant Physiology doi: 10.1104/pp.104.041442 – volume: 72 start-page: 248 year: 1976 ident: key 20170512103932_bib1 article-title: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding publication-title: Analytical Biochemistry doi: 10.1016/0003-2697(76)90527-3 – volume: 148 start-page: 304 year: 2008 ident: key 20170512103932_bib5 article-title: Overexpression of the Arabidopsis 10-kilodalton acyl-coenzyme A-binding protein ACBP6 enhances freezing tolerance publication-title: Plant Physiology doi: 10.1104/pp.108.123331 – volume: 17 start-page: 103 year: 2006 ident: key 20170512103932_bib67 article-title: Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument publication-title: Journal of Biomolecular Techniques – volume: 50 start-page: 141 year: 2011 ident: key 20170512103932_bib59 article-title: New roles for acyl-CoA-binding proteins (ACBPs) in plant development, stress responses and lipid metabolism publication-title: Progress in Lipid Research doi: 10.1016/j.plipres.2010.11.002 – volume: 22 start-page: 1463 year: 2010 ident: key 20170512103932_bib61 article-title: Overexpression of Arabidopsis acyl-CoA binding protein ACBP3 promotes starvation-induced and age-dependent leaf senescence publication-title: The Plant Cell doi: 10.1105/tpc.110.075333 – volume: 15 start-page: 473 year: 1962 ident: key 20170512103932_bib41 article-title: A revised medium for rapid growth and bioassays with tobacco tissue cultures publication-title: Physiologia Plantarum doi: 10.1111/j.1399-3054.1962.tb08052.x – volume: 1 start-page: 351 year: 1989 ident: key 20170512103932_bib28 article-title: The rice phytochrome gene: structure, autoregulated expression, and binding of GT-1 to a conserved site in the 5' upstream region publication-title: The Plant Cell – volume: 261 start-page: 11968 year: 1986 ident: key 20170512103932_bib51 article-title: Isolation and characterization of a putative endogenous benzodiazepineoid (endozepine) from bovine and human brain publication-title: Journal of Biological Chemistry doi: 10.1016/S0021-9258(18)67188-1 – volume: 9 start-page: 713 year: 1996 ident: key 20170512103932_bib2 article-title: Defense reaction in Medicago sativa: a gene encoding a class 10 PR protein is expressed in vascular bundles publication-title: Molecular Plant-Microbe Interactions doi: 10.1094/MPMI-9-0713 – volume: 13 start-page: 1411 year: 2001 ident: key 20170512103932_bib64 article-title: A clock- and light-regulated gene that links the circadian oscillator to LHCB gene expression publication-title: The Plant Cell doi: 10.1105/tpc.13.6.1411 – volume: 4 start-page: 839 year: 1992 ident: key 20170512103932_bib21 article-title: Characterization of a gene encoding a DNA binding protein with specificity for a light-responsive element publication-title: The Plant Cell doi: 10.1105/tpc.4.7.839 – volume: 68 start-page: 571 year: 2008 ident: key 20170512103932_bib63 article-title: Arabidopsis acyl-CoA-binding proteins ACBP4 and ACBP5 are subcellularly localized to the cytosol and ACBP4 depletion affects membrane lipid composition publication-title: Plant Molecular Biology doi: 10.1007/s11103-008-9392-7 – volume: 152 start-page: 1585 year: 2010 ident: key 20170512103932_bib13 article-title: Depletion of the membrane-associated acyl-coenzyme A-binding protein ACBP1 enhances the ability of cold acclimation in Arabidopsis publication-title: Plant Physiology doi: 10.1104/pp.109.147066 – volume: 44 start-page: 711 year: 2000 ident: key 20170512103932_bib10 article-title: Single amino acid substitutions at the acyl-CoA-binding domain interrupt 14[C]palmitoyl-CoA binding of ACBP2, an Arabidopsis acyl-CoA-binding protein with ankyrin repeats publication-title: Plant Molecular Biology doi: 10.1023/A:1026524108095 – volume: 133 start-page: 1565 year: 2003 ident: key 20170512103932_bib40 article-title: HY5, Circadian Clock-Associated 1, and a cis-element, DET1 dark response element, mediate DET1 regulation of chlorophyll a/b-binding protein 2 expression publication-title: Plant Physiology doi: 10.1104/pp.103.025114 – volume: 47 start-page: 479 year: 2009 ident: key 20170512103932_bib58 article-title: An Arabidopsis family of six acyl-CoA-binding proteins has three cytosolic members publication-title: Plant Physiology and Biochemistry doi: 10.1016/j.plaphy.2008.12.002 – volume: 30 start-page: 493 year: 1996 ident: key 20170512103932_bib3 article-title: The PR-1a promoter contains a number of elements that bind GT-1-like nuclear factors with different affinity publication-title: Plant Molecular Biology doi: 10.1007/BF00049327 – volume: 368 start-page: 679 year: 2002 ident: key 20170512103932_bib16 article-title: Acyl-CoA binding protein is an essential protein in mammalian cell lines publication-title: Biochemical Journal doi: 10.1042/bj20021413 – volume: 6 start-page: 3901 year: 1987 ident: key 20170512103932_bib27 article-title: GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants publication-title: EMBO Journal doi: 10.1002/j.1460-2075.1987.tb02730.x – volume: 16 start-page: 955 year: 1991 ident: key 20170512103932_bib42 article-title: Promoter for a Brassica napus ribulose bisphosphate carboxylase/oxygenase small subunit gene binds multiple nuclear factors and contains a negative-strand open reading frame encoding a putative transmembrane protein publication-title: Plant Molecular Biology doi: 10.1007/BF00016068 – volume: 248 start-page: 471 year: 1990 ident: key 20170512103932_bib32 article-title: GT-1 binding site confers light responsive expression in transgenic tobacco publication-title: Science doi: 10.1126/science.2330508 – volume: 223 start-page: 871 year: 2006 ident: key 20170512103932_bib35 article-title: Arabidopsis ACBP3 is an extracellularly targeted acyl-CoA-binding protein publication-title: Planta doi: 10.1007/s00425-005-0139-2 – volume: 2 start-page: 369 year: 1990 ident: key 20170512103932_bib22 article-title: Molecular light switches for plant genes publication-title: The Plant Cell doi: 10.1105/tpc.2.5.369 – volume: 256 start-page: 674 year: 1997 ident: key 20170512103932_bib4 article-title: A promoter region that controls basal and elicitor-inducible expression levels of the NADPH:cytochrome P450 reductase gene (Cpr) from Catharanthus roseus binds nuclear factor GT-1 publication-title: Molecular and General Genetics – volume: 2 start-page: 85 year: 1990 ident: key 20170512103932_bib26 article-title: HMG I-like proteins from leaf and nodule nuclei interact with different AT motifs in soybean nodulin promoters publication-title: The Plant Cell doi: 10.1105/tpc.2.1.85 – volume: 22 start-page: 1979 year: 2001 ident: key 20170512103932_bib56 article-title: Nonradiochemical DNase I footprinting by capillary electrophoresis publication-title: Electrophoresis doi: 10.1002/1522-2683(200106)22:10<1979::AID-ELPS1979>3.0.CO;2-A – volume: 7 start-page: 555 year: 2002 ident: key 20170512103932_bib65 article-title: The Dof family of plant transcription factors publication-title: Trends in Plant Science doi: 10.1016/S1360-1385(02)02362-2 – volume: 16 start-page: 235 year: 1991 ident: key 20170512103932_bib33 article-title: Silencer region of a chalcone synthase promoter contains multiple binding sites for a factor, SBF-1, closely related to GT-1 publication-title: Plant Molecular Biology doi: 10.1007/BF00020555 – volume: 38 start-page: 817 year: 1998 ident: key 20170512103932_bib55 article-title: DNase1 footprints suggest the involvement of at least three types of transcription factors in the regulation of alpha-Amy2/A by gibberellin publication-title: Plant Molecular Biology doi: 10.1023/A:1006084104041 – volume: 83 start-page: 1276 year: 1986 ident: key 20170512103932_bib52 article-title: A mammalian high mobility group protein recognizes any stretch of six A·T base pairs in duplex DNA publication-title: Proceedings of the National Academy of Sciences, USA doi: 10.1073/pnas.83.5.1276 – volume: 11 start-page: 4131 year: 1992 ident: key 20170512103932_bib12 article-title: GT-2: a transcription factor with twin autonomous DNA-binding domains of closely related but different target sequence specificity publication-title: The EMBO Journal doi: 10.1002/j.1460-2075.1992.tb05506.x – volume: 181 start-page: 89 year: 2009 ident: key 20170512103932_bib20 article-title: Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6 publication-title: New Phytologist doi: 10.1111/j.1469-8137.2008.02631.x – volume: 4 start-page: 831 year: 1992 ident: key 20170512103932_bib45 article-title: A tobacco DNA binding protein that interacts with a light-responsive box II element publication-title: The Plant Cell doi: 10.1105/tpc.4.7.831 – volume: 129 start-page: 661 year: 2002 ident: key 20170512103932_bib7 article-title: Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis publication-title: Plant Physiology doi: 10.1104/pp.002857 – volume: 152 start-page: 163 year: 1983 ident: key 20170512103932_bib39 article-title: On the presence of two new high mobility group-like proteins in HeLa S3 cells publication-title: FEBS Letters doi: 10.1016/0014-5793(83)80370-6 – volume: 16 start-page: 735 year: 1998 ident: key 20170512103932_bib11 article-title: Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana publication-title: The Plant Journal doi: 10.1046/j.1365-313x.1998.00343.x – volume: 4 start-page: 210 year: 1999 ident: key 20170512103932_bib66 article-title: Regulatory mechanism of plant gene transcription by GT-elements and GT-factors publication-title: Trends in Plant Science doi: 10.1016/S1360-1385(99)01418-1 – volume: 26 start-page: 873 year: 1994 ident: key 20170512103932_bib18 article-title: Identification of potential regulatory elements in the far-upstream region of the Arabidopsis thaliana plastocyanin promoter publication-title: Plant Molecular Biology doi: 10.1007/BF00028855 – volume: 16 start-page: S98 year: 2004 ident: key 20170512103932_bib49 article-title: Pistil factors controlling pollination publication-title: The Plant Cell doi: 10.1105/tpc.017806 – reference: 18621979 - Plant Physiol. 2008 Sep;148(1):304-15 – reference: 11202434 - Plant Mol Biol. 2000 Dec;44(6):711-21 – reference: 11118138 - Science. 2000 Dec 15;290(5499):2110-3 – reference: 1396594 - EMBO J. 1992 Nov;11(11):4131-44 – reference: 12396232 - Biochem J. 2002 Dec 15;368(Pt 3):679-82 – reference: 8220480 - Plant J. 1993 Aug;4(2):225-34 – reference: 16231156 - Planta. 2006 Apr;223(5):871-81 – reference: 21670223 - Plant Physiol. 2011 Aug;156(4):2069-81 – reference: 20345607 - Plant J. 2010 Jun 1;62(6):989-1003 – reference: 18836139 - J Exp Bot. 2008;59(14):3997-4006 – reference: 8000001 - Plant Mol Biol. 1994 Nov;26(3):873-86 – reference: 12475498 - Trends Plant Sci. 2002 Dec;7(12):555-60 – reference: 11402169 - Plant Cell. 2001 Jun;13(6):1411-25 – reference: 19121948 - Plant Physiol Biochem. 2009 Jun;47(6):479-84 – reference: 10363372 - Plant J. 1999 Apr;18(2):205-14 – reference: 12519961 - Nucleic Acids Res. 2003 Jan 1;31(1):114-7 – reference: 18773301 - Plant Mol Biol. 2008 Dec;68(6):571-83 – reference: 3243271 - EMBO J. 1988 Dec 20;7(13):4035-44 – reference: 8605301 - Plant Mol Biol. 1996 Feb;30(3):493-504 – reference: 2535506 - Plant Cell. 1989 Mar;1(3):351-60 – reference: 2330508 - Science. 1990 Apr 27;248(4954):471-4 – reference: 21293378 - Nature. 2011 Feb 3;470(7332):110-4 – reference: 3745175 - J Biol Chem. 1986 Sep 15;261(26):11968-73 – reference: 9862499 - Plant Mol Biol. 1998 Nov;38(5):817-25 – reference: 10721891 - J Nutr. 2000 Feb;130(2S Suppl):294S-298S – reference: 18823312 - New Phytol. 2009;181(1):89-102 – reference: 10380815 - Plant Mol Biol. 1999 Apr;39(6):1299-310 – reference: 15010514 - Plant Cell. 2004;16 Suppl:S98-106 – reference: 15988560 - Plant Mol Biol. 2005 Mar;57(5):629-43 – reference: 12179966 - Curr Opin Plant Biol. 2002 Aug;5(4):325-31 – reference: 21144863 - Prog Lipid Res. 2011 Apr;50(2):141-51 – reference: 6297996 - FEBS Lett. 1983 Feb 21;152(2):163-7 – reference: 20009557 - Plant Signal Behav. 2009 Nov;4(11):1063-5 – reference: 8219069 - Plant Mol Biol. 1993 Oct;23(2):337-48 – reference: 20345632 - New Phytol. 2010 Jun;186(4):843-55 – reference: 3456586 - Proc Natl Acad Sci U S A. 1986 Mar;83(5):1276-80 – reference: 1893099 - Plant Mol Biol. 1991 Feb;16(2):235-49 – reference: 2152106 - Plant Cell. 1990 Jan;2(1):85-94 – reference: 15604682 - Plant Mol Biol. 2004 May;55(2):297-309 – reference: 3327686 - EMBO J. 1987 Dec 20;6(13):3901-7 – reference: 18182029 - Plant J. 2008 Apr;54(1):141-51 – reference: 1392597 - Plant Cell. 1992 Jul;4(7):831-8 – reference: 10366876 - Trends Plant Sci. 1999 Jun;4(6):210-214 – reference: 12650615 - Plant Mol Biol. 2003 Mar;51(4):483-92 – reference: 14563928 - Plant Physiol. 2003 Dec;133(4):1565-77 – reference: 942051 - Anal Biochem. 1976 May 7;72:248-54 – reference: 2152164 - Plant Cell. 1990 May;2(5):369-78 – reference: 17877700 - Plant J. 2007 Nov;52(4):716-29 – reference: 9435792 - Mol Gen Genet. 1997 Nov;256(6):674-81 – reference: 20442372 - Plant Cell. 2010 May;22(5):1463-82 – reference: 20107029 - Plant Physiol. 2010 Mar;152(3):1585-97 – reference: 1392598 - Plant Cell. 1992 Jul;4(7):839-49 – reference: 11465496 - Electrophoresis. 2001 Jun;22(10):1979-86 – reference: 8870270 - Mol Plant Microbe Interact. 1996 Nov;9(8):713-9 – reference: 15159625 - Plant Mol Biol. 2004 Jan;54(2):233-43 – reference: 9847207 - Nucleic Acids Res. 1999 Jan 1;27(1):295-6 – reference: 3678200 - EMBO J. 1987 Sep;6(9):2543-9 – reference: 2535461 - Plant Cell. 1989 Jan;1(1):141-50 – reference: 15310827 - Plant Physiol. 2004 Aug;135(4):2150-61 – reference: 12068110 - Plant Physiol. 2002 Jun;129(2):661-77 – reference: 16741237 - J Biomol Tech. 2006 Apr;17(2):103-13 – reference: 1863768 - Plant Mol Biol. 1991 Jun;16(6):955-66 – reference: 9862500 - Plant Mol Biol. 1998 Nov;38(5):827-38 – reference: 10069079 - Plant J. 1998 Dec;16(6):735-43 – reference: 19297549 - J Exp Bot. 2009;60(6):1555-67 – reference: 15075396 - Plant Cell. 2004;16 Suppl:S84-97 |
SSID | ssj0005055 |
Score | 2.2607546 |
Snippet | In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain.... In Arabidopsis thaliana, acyl-CoA-binding protein 3 (ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain. It... In Arabidopsis thaliana, acyl-CoA-binding protein 3 ( ACBP3), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding domain.... In Arabidopsis thaliana , acyl-CoA-binding protein 3 ( ACBP3 ), one of six ACBPs, is unique in terms of the C-terminal location of its acyl-CoA-binding... |
SourceID | pubmedcentral proquest pubmed pascalfrancis crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 2985 |
SubjectTerms | 5' Flanking Region 5' Flanking Region - genetics Arabidopsis Arabidopsis - drug effects Arabidopsis - genetics Arabidopsis - growth & development Arabidopsis - microbiology Arabidopsis Proteins Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Arabidopsis thaliana Base Sequence binding proteins Biological and medical sciences Carrier Proteins Carrier Proteins - genetics Carrier Proteins - metabolism Circadian Rhythm Circadian Rhythm - drug effects Circadian Rhythm - genetics Darkness deoxyribonuclease I Deoxyribonuclease I - metabolism DNA Footprinting drug effects electrophoresis Electrophoretic Mobility Shift Assay Fundamental and applied biological sciences. Psychology Gene Expression Regulation, Developmental Gene Expression Regulation, Developmental - drug effects Gene Expression Regulation, Plant Gene Expression Regulation, Plant - drug effects genes Genes, Plant Genes, Plant - genetics genetics Glucuronidase Glucuronidase - metabolism growth & development leaf protein leaves Lycopersicon esculentum metabolism microbiology Molecular Sequence Data pathogens pharmacology physiology Plant Growth Regulators Plant Growth Regulators - pharmacology Plant physiology and development Pseudomonas syringae Pseudomonas syringae - drug effects Pseudomonas syringae - physiology Pseudomonas syringae pv. tomato Recombinant Fusion Proteins Recombinant Fusion Proteins - metabolism Regulatory Sequences, Nucleic Acid Regulatory Sequences, Nucleic Acid - genetics Reproducibility of Results Research Papers Sequence Analysis, DNA Sequence Deletion Sequence Deletion - genetics stems Time Factors vascular bundles |
Title | The gene encoding Arabidopsis acyl-CoA-binding protein 3 is pathogen inducible and subject to circadian regulation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22345636 https://www.proquest.com/docview/1013921541 https://www.proquest.com/docview/1020841889 https://www.proquest.com/docview/1420128598 https://pubmed.ncbi.nlm.nih.gov/PMC3350915 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagcEBCiDfLozKCC1qlzcNOnONSQOV5aqW9rWzHVoNKsspmJcqvZyZ2so8uFXCJrNhJVvt9noydmW8IeS3gnWiiTAaJLnjARGQDmUIrt7Fh0ihbWExO_votPT5ln6Z8upVd0qoD_WtnXsn_oArnAFfMkv0HZIebwgloA75wBITh-NcYQ6cZoxpll50yaaQqi3qOMiNSX5wHR_UEF7-FSzqvsbblOMEq5liKuIaLx9C51CUmUHV76EuFOzPokuqy0U65oHEF63sIL_uyG3UCVN32FqbbkTZ-R_psGUxLWfcd2Hbny1WMwYXbKDcm-OJz1PyOBIZ29PF_B8ZZUZaGQcy8efdm1tsxRyexbjNzV7TnkjF3QlfffyoEt1mEnY5Cu4br_EcHLHg44AYmW4ra3Tu677pObsSwjsASF-8-fl7FAIWc95q1eXIIjzp0D0KNaH_phsNyey4XMHesK3qya1WyHVy75q2c3CV3PDR04jhzj1wz1X1y822HzAPSAHEoEof2xKFrxKHbxKGeODSh0NsThw7EoUAc6olD25oOxKEr4jwkpx_enxwdB774RqBZxtog00UqRYHTVRaS68golEaLtEw1U0We6gw1ro3g3EpjWFFkuY55oZSNE6vC5BHZq-rKPCE0Tm0mJApis5Bpm8uc8dgoVKqzkQ7jEXnT_8Mz7ZXpsUDK-cxFSCQzAGbmgBmRV8PYudNj2TlqfwOoYWiMqdawZh-Rlz1yM7Cn-JFMVqZeLjDkEZYMsLCIrhoTh4JFQuRXjGE4NQTPxYg8doxY_QpPrRHJNrgyDEDN982eqjzrtN-TBD18_vSP93xGbq3m5HOy1zZL8wL85lbtd9z_DfE3zHM |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+gene+encoding+Arabidopsis+acyl-CoA-binding+protein+3+is+pathogen+inducible+and+subject+to+circadian+regulation&rft.jtitle=Journal+of+experimental+botany&rft.au=Zheng%2C+Shu-Xiao&rft.au=Xiao%2C+Shi&rft.au=Chye%2C+Mee-Len&rft.date=2012-05-01&rft.eissn=1460-2431&rft.volume=63&rft.issue=8&rft.spage=2985&rft_id=info:doi/10.1093%2Fjxb%2Fers009&rft_id=info%3Apmid%2F22345636&rft.externalDocID=22345636 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0957&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0957&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0957&client=summon |