The photocatalytic process in the treatment of polluted water
Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis...
Saved in:
Published in | Chemical papers Vol. 77; no. 2; pp. 677 - 701 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Warsaw
Versita
01.02.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO
2
-based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater. |
---|---|
AbstractList | Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO
-based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater. Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO 2 -based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater. Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO2-based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater.Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO2-based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater. Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO2-based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater. |
Author | Shnain, Zainab Y. Al-Nuaim, Marwah A. Alwasiti, Asawer A. |
Author_xml | – sequence: 1 givenname: Marwah A. surname: Al-Nuaim fullname: Al-Nuaim, Marwah A. organization: Chemical Engineering, Department, University of Technology – sequence: 2 givenname: Asawer A. surname: Alwasiti fullname: Alwasiti, Asawer A. organization: Chemical Engineering, Department, University of Technology – sequence: 3 givenname: Zainab Y. surname: Shnain fullname: Shnain, Zainab Y. email: 80062@uotechnology.edu.iq, zyousif.1973@gmail.com organization: Chemical Engineering, Department, University of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36213320$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1O3DAUha0KBAP0BbqoIrHpJsX_ThZFqhC0SEhsYG05zjVjlIlT26Gat6-HGUrLgoXlxf3O8bk-R2hvDCMg9IngrwRjdZYIka2sMaXlcNnU6gNaUNGIWtEW76EFZlLWkgl6iI5SesSYcyzwATpkkhLGKF6gb3dLqKZlyMGabIZ19raaYrCQUuXHKpdpjmDyCsZcBVdNYRjmDH3122SIJ2jfmSHBx919jO6vLu8uftY3tz-uL77f1JYrnmtlmATRCwWcM0eF651TTAjZudZ1rusUV5RhyZquo9y1rQQmgBDbk57QvmHH6HzrO83dCnpbwkQz6Cn6lYlrHYzX_09Gv9QP4Um3girCZTH4sjOI4dcMKeuVTxaGwYwQ5qRpeZ83Uj2jp2_QxzDHsaxXKCWooASLQn3-N9HfKC8_W4BmC9gYUorgtPXZZB82Af2gCdabEvW2RF1K1M8lalWk9I30xf1dEduKUoHHB4ivsd9R_QG-uq7A |
CitedBy_id | crossref_primary_10_1016_j_jwpe_2024_106699 crossref_primary_10_1016_j_molstruc_2024_137549 crossref_primary_10_1515_ntrev_2024_0001 crossref_primary_10_1016_j_jece_2024_112216 crossref_primary_10_1051_e3sconf_202450901007 crossref_primary_10_1080_03067319_2024_2384653 crossref_primary_10_1016_j_jwpe_2024_105369 crossref_primary_10_1088_1402_4896_ad804a crossref_primary_10_1016_j_cej_2025_161758 crossref_primary_10_1016_j_ijbiomac_2024_136841 crossref_primary_10_1016_j_heliyon_2024_e24191 crossref_primary_10_1016_j_cej_2025_160781 crossref_primary_10_1016_j_mtchem_2024_102226 crossref_primary_10_1016_j_ccr_2024_216227 crossref_primary_10_1186_s40486_023_00168_9 crossref_primary_10_3390_catal13121466 crossref_primary_10_1016_j_jwpe_2024_105251 crossref_primary_10_1007_s10854_024_13955_w crossref_primary_10_1007_s10854_025_14259_3 crossref_primary_10_1007_s11356_024_33285_y crossref_primary_10_1016_j_solener_2024_113198 crossref_primary_10_1016_j_colsurfa_2024_133271 crossref_primary_10_1016_j_ceramint_2025_01_042 crossref_primary_10_1016_j_rechem_2024_101724 crossref_primary_10_1039_D3MA00390F crossref_primary_10_3390_molecules28186681 crossref_primary_10_1016_j_jallcom_2024_178351 crossref_primary_10_1038_s41598_023_49912_6 crossref_primary_10_1016_j_jece_2024_112111 crossref_primary_10_1039_D3RA06109D crossref_primary_10_1016_j_jclepro_2023_138181 crossref_primary_10_1016_j_molliq_2025_127412 crossref_primary_10_1016_j_mtla_2024_102139 crossref_primary_10_1038_s41598_024_81761_9 crossref_primary_10_1002_adsu_202400298 crossref_primary_10_3390_catal14070434 crossref_primary_10_1016_j_jics_2024_101497 crossref_primary_10_1016_j_molstruc_2024_137688 crossref_primary_10_1016_j_jallcom_2025_178876 crossref_primary_10_13005_msri_200301 crossref_primary_10_1016_j_rineng_2024_102515 crossref_primary_10_1039_D4RA00914B crossref_primary_10_1016_j_ijhydene_2024_02_275 crossref_primary_10_1016_j_chemosphere_2024_143237 crossref_primary_10_3390_chemengineering8030061 crossref_primary_10_3390_ma17184575 crossref_primary_10_1016_j_mssp_2024_108385 crossref_primary_10_1016_j_hybadv_2024_100152 crossref_primary_10_1016_j_molliq_2024_126535 crossref_primary_10_1016_j_eti_2023_103300 crossref_primary_10_1038_s41545_024_00334_5 crossref_primary_10_3390_ijms25147876 crossref_primary_10_1016_j_jwpe_2024_105115 crossref_primary_10_1039_D2CP04617B crossref_primary_10_1016_j_ijpe_2025_109557 crossref_primary_10_1016_j_desal_2024_117958 crossref_primary_10_1021_acsestwater_4c00451 crossref_primary_10_1016_j_heliyon_2024_e36978 crossref_primary_10_1007_s10904_024_03575_6 crossref_primary_10_1016_j_cscee_2024_100800 crossref_primary_10_1016_j_jwpe_2023_104597 crossref_primary_10_1039_D4RA03641G crossref_primary_10_1016_j_chemosphere_2024_142033 crossref_primary_10_1007_s12088_024_01389_1 crossref_primary_10_1016_j_molliq_2025_127115 crossref_primary_10_1088_1757_899X_1300_1_012022 crossref_primary_10_1016_j_emcon_2024_100336 crossref_primary_10_1039_D4RA07287A crossref_primary_10_1016_j_inoche_2023_111287 crossref_primary_10_1007_s10854_024_12075_9 crossref_primary_10_1007_s11356_024_33605_2 crossref_primary_10_1016_j_jece_2024_114392 crossref_primary_10_2166_wst_2024_166 crossref_primary_10_1007_s12221_025_00908_1 crossref_primary_10_1016_j_chemosphere_2024_142046 crossref_primary_10_1016_j_crgsc_2024_100408 crossref_primary_10_1021_acsomega_4c02683 crossref_primary_10_1016_j_jwpe_2024_106825 crossref_primary_10_1016_j_surfin_2024_104302 crossref_primary_10_1016_j_jwpe_2024_106261 crossref_primary_10_1002_solr_202300776 crossref_primary_10_1016_j_heliyon_2025_e42375 crossref_primary_10_1016_j_jece_2024_114948 crossref_primary_10_1039_D4EW00713A crossref_primary_10_3390_gels10120778 crossref_primary_10_1051_bioconf_20237305025 crossref_primary_10_1016_j_jre_2024_09_022 crossref_primary_10_1016_j_psep_2024_05_118 crossref_primary_10_1039_D4DT02196G crossref_primary_10_1016_j_poly_2023_116781 crossref_primary_10_1007_s43630_024_00562_1 crossref_primary_10_1088_2053_1591_ad832d crossref_primary_10_1016_j_heliyon_2023_e22758 crossref_primary_10_1007_s11164_024_05445_9 crossref_primary_10_1007_s11696_024_03803_w crossref_primary_10_1080_15435075_2024_2332918 crossref_primary_10_3390_su152416920 crossref_primary_10_1016_j_rechem_2024_101934 crossref_primary_10_3390_en17205043 crossref_primary_10_9767_bcrec_17_4_15838_755_767 crossref_primary_10_1007_s11144_025_02817_z crossref_primary_10_1007_s13399_024_05732_w crossref_primary_10_1016_j_molstruc_2024_137760 crossref_primary_10_1155_2023_7140181 crossref_primary_10_1038_s41598_023_49982_6 crossref_primary_10_3390_chemengineering8050095 crossref_primary_10_1021_acsomega_4c01370 crossref_primary_10_1016_j_pes_2024_100018 crossref_primary_10_1016_j_colsurfa_2024_133441 crossref_primary_10_3390_nano13030526 crossref_primary_10_1016_j_mtener_2024_101774 crossref_primary_10_1007_s44169_024_00067_z crossref_primary_10_1134_S0018143924700401 crossref_primary_10_1016_j_ceramint_2024_05_184 crossref_primary_10_1016_j_jwpe_2024_105882 crossref_primary_10_1016_j_biteb_2024_101865 crossref_primary_10_1016_j_mseb_2024_117866 crossref_primary_10_1016_j_jwpe_2023_104150 crossref_primary_10_1016_j_surfin_2023_103008 crossref_primary_10_1002_slct_202304278 crossref_primary_10_1016_j_molstruc_2025_142107 crossref_primary_10_1016_j_chemosphere_2023_139984 crossref_primary_10_1016_j_inoche_2024_112854 crossref_primary_10_1016_j_jphotochem_2025_116398 crossref_primary_10_3390_inorganics12030080 crossref_primary_10_1016_j_jece_2024_112043 crossref_primary_10_1016_j_surfin_2025_105899 crossref_primary_10_1007_s12598_025_03249_3 crossref_primary_10_1088_1361_6463_adaf37 crossref_primary_10_1007_s10904_024_03266_2 crossref_primary_10_1002_slct_202403806 crossref_primary_10_4236_anp_2025_141002 crossref_primary_10_1007_s11244_024_01961_5 crossref_primary_10_1002_cctc_202400802 crossref_primary_10_1021_acssusresmgt_4c00221 crossref_primary_10_1007_s11082_023_05446_9 crossref_primary_10_1016_j_mseb_2023_116916 crossref_primary_10_1016_j_biombioe_2025_107760 crossref_primary_10_1016_j_dwt_2024_100386 crossref_primary_10_1016_j_jtice_2024_105797 crossref_primary_10_1007_s11144_024_02760_5 crossref_primary_10_9767_bcrec_20222 crossref_primary_10_1016_j_seppur_2024_130165 crossref_primary_10_1016_j_jes_2024_11_010 crossref_primary_10_1007_s10971_024_06384_y crossref_primary_10_1007_s10971_025_06703_x crossref_primary_10_1016_j_cscee_2024_100915 crossref_primary_10_1016_j_psep_2024_08_131 crossref_primary_10_1016_j_scenv_2024_100171 crossref_primary_10_1016_j_surfin_2025_105995 crossref_primary_10_1016_j_jssc_2024_124776 crossref_primary_10_1134_S0965544124020075 crossref_primary_10_1016_j_envres_2024_120209 crossref_primary_10_1016_j_matchemphys_2025_130750 crossref_primary_10_1088_1361_6528_acc407 crossref_primary_10_1016_j_physb_2025_416957 crossref_primary_10_1016_j_surfin_2024_104013 crossref_primary_10_1016_j_jksus_2024_103331 crossref_primary_10_3390_gels10060378 crossref_primary_10_1016_j_jwpe_2024_105566 crossref_primary_10_3390_chemengineering6060089 crossref_primary_10_3390_catal14100661 crossref_primary_10_1007_s43621_024_00439_4 crossref_primary_10_1016_j_mineng_2024_108865 crossref_primary_10_1016_j_inoche_2025_113900 crossref_primary_10_1016_j_matchemphys_2024_129526 crossref_primary_10_1016_j_surfin_2024_105358 crossref_primary_10_1038_s41598_024_61724_w crossref_primary_10_1016_j_jtice_2024_105567 crossref_primary_10_1088_1361_6641_ad2b08 crossref_primary_10_1039_D3NA00204G crossref_primary_10_1007_s13762_024_05627_3 crossref_primary_10_1016_j_crgsc_2023_100383 crossref_primary_10_1016_j_cis_2024_103304 crossref_primary_10_1557_s43580_024_00869_2 crossref_primary_10_1016_j_jwpe_2025_107007 crossref_primary_10_1080_10242422_2023_2289337 crossref_primary_10_1016_j_jwpe_2023_103880 crossref_primary_10_1007_s11270_024_07524_4 crossref_primary_10_1016_j_apsusc_2024_162063 crossref_primary_10_1007_s13399_023_04337_z crossref_primary_10_1016_j_ceramint_2024_10_272 crossref_primary_10_1016_j_jiec_2024_09_003 crossref_primary_10_1016_j_jclepro_2023_137567 crossref_primary_10_35208_ert_1337407 crossref_primary_10_14710_jkli_24_1_59_67 crossref_primary_10_3390_su15075999 crossref_primary_10_1016_j_cej_2024_153518 crossref_primary_10_1557_s43578_023_01077_8 crossref_primary_10_1016_j_nxnano_2023_100016 crossref_primary_10_1002_slct_202404797 crossref_primary_10_1016_j_ceramint_2024_06_412 crossref_primary_10_3390_catal13010026 crossref_primary_10_1002_slct_202304228 crossref_primary_10_15625_0868_3166_21246 crossref_primary_10_1002_pssa_202400612 crossref_primary_10_1016_j_rechem_2024_101315 crossref_primary_10_1016_j_psep_2025_106780 crossref_primary_10_1016_j_jwpe_2024_106883 crossref_primary_10_1016_j_jics_2024_101328 crossref_primary_10_1039_D4EM00052H crossref_primary_10_1016_j_jallcom_2025_178846 crossref_primary_10_1016_j_jwpe_2024_105308 crossref_primary_10_1016_j_optmat_2025_116699 crossref_primary_10_1039_D4RE00193A crossref_primary_10_15251_DJNB_2025_201_37 crossref_primary_10_1007_s11664_024_11340_1 |
Cites_doi | 10.1016/j.envpol.2018.12.076 10.1016/j.carbpol.2020.116691 10.1016/j.jiec.2021.02.017 10.1016/j.jhazmat.2014.12.024 10.1016/j.jhazmat.2020.123070 10.1016/j.ijhydene.2020.05.052 10.1039/tf9373300340 10.3390/su14010499 10.1016/j.solener.2004.03.031 10.1016/j.chemosphere.2016.06.058 10.3184/174751916x14769685673665 10.1016/j.cej.2019.123685 10.1016/j.jiec.2018.01.028 10.1016/j.scitotenv.2019.02.128 10.1016/j.scriptamat.2019.05.036 10.1016/j.cej.2020.125952 10.1016/j.jhazmat.2020.122129 10.1016/J.JECE.2017.10.052 10.1007/s10973-018-7381-x 10.1016/j.jclepro.2019.05.233 10.1143/JJAP.44.8269 10.1016/j.ces.2018.03.016 10.1016/j.jclepro.2019.04.117 10.1016/j.ceramint.2016.03.222 10.1021/acs.jpcc.5b01858 10.3390/catal9090721 10.1016/j.watres.2021.117531 10.1016/j.mssp.2022.106890 10.1016/j.cej.2019.122269 10.1155/2014/945930 10.1016/j.matpr.2021.04.564 10.1016/j.progsolidstchem.2004.08.001 10.1016/j.jwpe.2014.09.007 10.1021/cs300273q 10.1039/C4RA13734E 10.1021/jp204364a 10.3390/app9030472 10.1016/S1872-2067(20)63705-6 10.1021/es00116a013 10.1016/j.materresbull.2020.111000 10.1016/j.molliq.2020.114922 10.1016/j.jiec.2013.01.019 10.1021/cr0500535 10.1143/JJAP.44.L511 10.1007/s10853-010-5113-0 10.1021/am401247h 10.1016/j.chemosphere.2021.130907 10.1021/ja027155m 10.1016/j.chemosphere.2017.10.139 10.1016/j.jphotochem.2020.113038 10.1016/S1872-2067(21)63910-4 10.1016/j.jenvman.2021.113808 10.1063/1.3211291 10.1006/jcat.2001.3316 10.1016/j.watres.2015.12.022 10.1016/j.jece.2019.103482 10.1016/j.powtec.2021.02.012 10.1016/j.eti.2021.101822 10.1016/j.micromeso.2019.109979 10.1016/j.snb.2018.02.042 10.1016/j.jssc.2020.121417 10.1016/J.WATRES.2010.02.039 10.1002/cssc.201800874 10.1016/j.scitotenv.2020.142000 10.5772/30134 10.1016/j.cej.2020.124184 10.1016/S0167-5729(02)00100-0 10.1016/j.jwpe.2020.101224 10.1016/j.chemosphere.2020.128858 10.1016/j.jhazmat.2009.05.044 10.1016/j.solener.2020.03.053 10.1016/j.ceramint.2020.06.087 10.1016/j.chemosphere.2019.125575 10.1016/j.cej.2020.124691 10.1016/S1566-7367(03)00092-X 10.1016/0021-9517(83)90207-5 10.1016/j.materresbull.2018.03.041 10.1016/j.matchemphys.2021.124431 10.1016/j.jenvman.2017.04.010 10.1111/ics.12709 10.1007/s11356-015-4881-0 10.1007/s11164-017-3036-y 10.1021/la803845f 10.1016/j.nanoen.2013.04.002 10.1039/C4EE01299B 10.1016/j.watres.2008.08.011 10.1016/j.jcis.2020.07.001 10.1016/b978-0-08-100301-5.00004-7 10.1016/j.scitotenv.2022.155482 10.1021/es2042977 10.1080/03602549909351643 10.1016/j.jwpe.2019.101052 10.1103/PhysRevLett.106.138302 10.1111/j.1574-6968.2006.00190.x 10.3390/catal5010077 10.3390/catal9030267 10.1016/j.envres.2021.110747 10.1016/j.molliq.2020.113018 10.1016/j.cattod.2009.06.018 10.1016/j.ceramint.2020.07.064 10.1016/j.apcatb.2008.05.012 10.1016/j.cej.2019.123911 10.1016/j.jhazmat.2021.127063 10.1016/j.molliq.2020.114613 10.1016/j.apsusc.2019.04.030 10.1016/j.jtice.2015.03.006 10.1021/acs.iecr.1c01169 10.1016/j.optmat.2019.04.046 10.1016/j.jhazmat.2020.123964 10.1016/j.jenvman.2012.08.028 10.3390/catal10080924 10.1007/BF03326086 10.1016/j.jallcom.2021.159020 10.1016/j.apcatb.2017.05.041 10.1021/jz1013246 10.1016/j.apcatb.2014.06.059 10.1080/09593331003646612 10.1016/j.seppur.2020.117373 10.1016/j.cej.2020.126151 10.1039/c1ee01577j 10.1002/anie.201006057 10.1016/j.cherd.2019.11.035 10.1016/j.seppur.2019.115962 10.1016/j.ijhydene.2018.03.097 10.1007/s10311-020-01167-7 10.1016/J.JENVMAN.2017.04.099 10.1016/j.ceramint.2014.12.023 10.1016/S0021-9517(02)00172-0 10.1016/j.seppur.2019.116270 10.1016/j.scp.2019.100176 10.1016/J.JECE.2017.11.025 10.1016/j.biomaterials.2010.06.032 10.1016/0165-1633(91)90093-Z 10.1039/c2cs35013k 10.1016/j.jphotochem.2004.02.023 10.1021/acs.est.6b05640 10.1021/ie900859z 10.1016/j.surfrep.2008.09.002 10.1016/j.ultsonch.2020.105343 10.3390/nano9071023 10.1007/s11270-019-4366-8 10.1016/j.jhazmat.2019.120994 10.1007/s11814-016-0059-9 10.1016/j.ceramint.2018.05.144 10.1016/j.jhazmat.2019.120888 10.1016/S1359-0294(03)00049-9 10.1016/j.jenvman.2019.109358 10.1016/J.ARABJC.2014.03.014 10.1186/1471-2180-12-5 10.3390/catal10050560 10.1021/es203976a 10.1016/j.jece.2020.104486 10.1016/j.jes.2017.09.020 10.1016/j.chemosphere.2021.130595 10.1016/j.rser.2005.01.009 10.1002/(SICI)1097-4660(199710)70:2<117::AID-JCTB746>3.0.CO;2-F 10.1016/j.watres.2020.115816 10.1007/s40097-015-0158-x 10.1039/C2CS35355E 10.1016/j.jece.2019.103644 10.1021/cr00033a004 10.1016/j.cej.2020.124917 10.1016/j.cej.2020.125981 10.1038/nchem.1006 10.1016/j.ibiod.2015.07.004 10.1016/j.cej.2019.05.017 10.1038/238037a0 10.3390/w12113132 10.3390/catal11050556 10.1007/s10904-020-01679-3 10.3390/catal9030294 10.1016/j.jcis.2011.07.005 10.1038/nmat3697 10.1021/cm00027a008 10.1016/j.materresbull.2018.11.012 10.3390/nano11071804 10.1016/j.apcatb.2003.11.010 10.1016/j.tet.2019.06.002 10.15406/mseij.2017.01.00018 10.1016/j.envres.2022.113336 10.1021/j100530a011 10.1007/978-981-16-2015-7 10.1016/j.psep.2016.01.010 10.1021/cr00035a013 10.1016/j.watres.2010.02.039 10.1007/BF01685575 10.1016/j.watres.2015.01.018 10.1002/anie.201001374 10.3390/environments7060047 10.1016/j.apcata.2009.02.043 10.1016/j.seppur.2021.118606 |
ContentType | Journal Article |
Copyright | Institute of Chemistry, Slovak Academy of Sciences 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Institute of Chemistry, Slovak Academy of Sciences 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Institute of Chemistry, Slovak Academy of Sciences 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: Institute of Chemistry, Slovak Academy of Sciences 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Institute of Chemistry, Slovak Academy of Sciences 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Institute of Chemistry, Slovak Academy of Sciences 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 5PM |
DOI | 10.1007/s11696-022-02468-7 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2585-7290 1336-9075 |
EndPage | 701 |
ExternalDocumentID | PMC9527146 36213320 10_1007_s11696_022_02468_7 |
Genre | Journal Article Review |
GroupedDBID | -Y2 .86 .VR 06D 0VY 1N0 29B 2JY 2LR 2VQ 2WC 2~H 30V 4.4 406 408 40D 53G 5GY 5VS 67Z 6J9 6NX 8FE 8FG 8TC 8UJ 95. 95~ AAAVM AACDK AAFPC AAJBT AAQCX AASML AASQH AATNV AATVU AAXMT AAYQN AAYZH ABAKF ABAQN ABBRH ABDBE ABFKT ABFTV ABJCF ABJNI ABJOX ABKCH ABMNI ABOCM ABQBU ABRQL ABTEG ABTKH ABTMW ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACOMO ACPIV ACREN ACZBO ACZOJ ADGYE ADHHG ADKNI ADOZN ADTPH ADURQ ADYFF AEBTG AEFQL AEGNC AEMSY AENEX AEOHA AEPYU AESKC AEXYK AFBAA AFBBN AFCXV AFDZB AFGCZ AFKRA AFQWF AFWTZ AGDGC AGMZJ AGQEE AGQMX AGRTI AHBYD AHKAY AHPBZ AIGIU AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AYFIA BA0 BENPR BGLVJ BGNMA CAG CCPQU COF CS3 DPUIP EBLON FIGPU G-Y G-Z GJIRD GQ7 H13 HCIFZ HLICF HMJXF HZ~ IAO IEA IHE IJ- IKXTQ ISR ITC IWAJR IXC IXE IY9 IZQ I~X I~Z JZLTJ KDC KOV L6V LLZTM M4Y M7S MA- NPVJJ NQJWS NU0 O9- O9J OAM OK1 P2P P9N PF0 PHGZT PT4 PTHSS QD8 QOS R9I RNS ROL RPX RSV S1Z S27 S3B SCM SDH SHX SJYHP SNE SOJ T13 TSK TSV TUC U2A UG4 VC2 WK8 ~A9 AAYXX ABFSG ACMFV ACSTC AEXIE AEZWR AFHIU AHWEU AIXLP ATHPR CITATION PHGZM -58 -5G -BR ADINQ GQ6 HG6 NPM SZN 7SR 7U5 8BQ 8FD ABRTQ JG9 L7M 7X8 5PM |
ID | FETCH-LOGICAL-c474t-7a36e5d57e443f25fdff73556bf9fbfbb747230638bb24f996e35e11cd1d12d83 |
IEDL.DBID | U2A |
ISSN | 0366-6352 |
IngestDate | Thu Aug 21 18:40:00 EDT 2025 Fri Jul 11 11:36:50 EDT 2025 Wed Aug 13 10:58:46 EDT 2025 Wed Feb 19 02:25:26 EST 2025 Tue Jul 01 05:17:20 EDT 2025 Thu Apr 24 22:59:09 EDT 2025 Thu Apr 10 08:00:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Organic pollutant Wastewater Photocatalysts Photoreactor Titanium (IV) oxide |
Language | English |
License | Institute of Chemistry, Slovak Academy of Sciences 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-7a36e5d57e443f25fdff73556bf9fbfbb747230638bb24f996e35e11cd1d12d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9527146 |
PMID | 36213320 |
PQID | 2775252105 |
PQPubID | 2039839 |
PageCount | 25 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9527146 proquest_miscellaneous_2723486746 proquest_journals_2775252105 pubmed_primary_36213320 crossref_citationtrail_10_1007_s11696_022_02468_7 crossref_primary_10_1007_s11696_022_02468_7 springer_journals_10_1007_s11696_022_02468_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-01 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Warsaw |
PublicationPlace_xml | – name: Warsaw – name: Germany – name: Heidelberg |
PublicationTitle | Chemical papers |
PublicationTitleAbbrev | Chem. Pap |
PublicationTitleAlternate | Chem Zvesti |
PublicationYear | 2023 |
Publisher | Versita Springer Nature B.V |
Publisher_xml | – name: Versita – name: Springer Nature B.V |
References | 2468_CR138 2468_CR134 2468_CR137 2468_CR136 MU Azam (2468_CR16) 2019; 484 S Kalogirou (2468_CR85) 2016 2468_CR130 B Bagyalakshmi (2468_CR18) 2018; 44 J Song (2468_CR164) 2020; 379 JG Tao (2468_CR171) 2010; 1 S Jiménez (2468_CR81) 2019; 666 Y Guo (2468_CR69) 2019; 380 D Kanakaraju (2468_CR86) 2019; 14 2468_CR87 S Alzahrani (2468_CR13) 2014; 4 M Nasr (2468_CR129) 2018; 11 A Carabin (2468_CR32) 2015; 54 2468_CR146 AQ Al-Gamal (2468_CR9) 2021; 323 H Wang (2468_CR184) 2022; 43 P Kajitvichyanukul (2468_CR84) 2022; 212 M Batzill (2468_CR23) 2011; 4 2468_CR144 S Munirasu (2468_CR126) 2016; 100 2468_CR140 Y Yamamoto (2468_CR193) 2005; 44 2468_CR94 AL Pruden (2468_CR147) 1983; 17 IK Konstantinou (2468_CR96) 2004; 49 J Peral (2468_CR145) 1997; 70 N Liu (2468_CR108) 2020; 132 JN Wilson (2468_CR185) 2002; 124 2468_CR98 2468_CR156 MW Kadi (2468_CR83) 2020; 46 2468_CR159 R Dewil (2468_CR46) 2017; 2017 S Khalaf (2468_CR90) 2020; 10 2468_CR155 Y Yang (2468_CR196) 2020; 399 M Xu (2468_CR191) 2011; 106 X Liu (2468_CR106) 2019; 9 A Wold (2468_CR187) 1993; 5 B Thomas (2468_CR175) 2020; 288 R Braham (2468_CR30) 2009; 48 2468_CR166 NM Kinsinger (2468_CR93) 2013; 2013 2468_CR165 2468_CR162 M Borges (2468_CR29) 2016; 5 N Kaur (2468_CR88) 2018; 262 G Gogniat (2468_CR64) 2006; 258 D Zhao (2468_CR203) 2020; 2020 C Goodeve (2468_CR65) 1937; 33 2468_CR170 Y Lan (2468_CR101) 2013; 2 Z Li (2468_CR113) 2019; 111 2468_CR180 L Sun (2468_CR167) 2011; 363 EE Anderson (2468_CR14) 1983 2468_CR48 MRD Khaki (2468_CR89) 2017; 198 2468_CR45 JN Wilson (2468_CR186) 2003; 214 2468_CR188 2468_CR182 X Yan (2468_CR198) 2020; 45 N Davari (2468_CR44) 2017; 5 H Liu (2468_CR107) 2020; 393 2468_CR58 K Hashimoto (2468_CR75) 2005; 44 M Fathinia (2468_CR57) 2013; 19 2468_CR54 2468_CR53 GS Douglas (2468_CR50) 2012; 46 A Enesca (2468_CR52) 2015; 162 2468_CR55 S Khan (2468_CR91) 2012; 12 2468_CR197 A Gottfried (2468_CR66) 2008; 42 2468_CR199 D Akhil (2468_CR6) 2021; 19 2468_CR194 2468_CR61 AÇ Günal (2468_CR68) 2019; 231 SV Manjunath (2468_CR120) 2020; 8 S Jiménez (2468_CR80) 2018; 2018 X Feng (2468_CR59) 2021; 266 AH Pejman (2468_CR143) 2009; 6 A Laschewsky (2468_CR102) 2003; 8 Y Zhang (2468_CR202) 2021; 867 S Malato (2468_CR117) 2009; 147 A Saravanan (2468_CR157) 2021; 280 P Wu (2468_CR189) 2010; 31 A Kumar (2468_CR99) 2017; 3 MJ Sawicka (2468_CR158) 2019; 75 2468_CR74 2468_CR73 P Aarthye (2468_CR1) 2021 I Ali (2468_CR10) 2012; 113 2468_CR76 2468_CR77 YAB Neolaka (2468_CR131) 2019; 7 C Regmi (2468_CR153) 2017; 43 M Grätzel (2468_CR67) 2004; 164 R Tao (2468_CR173) 2018; 104 Y Qin (2468_CR151) 2020; 394 MN Chong (2468_CR40) 2010; 44 KG Pavithra (2468_CR142) 2019; 228 RC Medeiros (2468_CR121) 2020; 178 MW Kadi (2468_CR82) 2020; 580 NA Aziz (2468_CR17) 2016; 40 SM Yakout (2468_CR192) 2020; 8 S Adhikari (2468_CR5) 2019; 373 L Liu (2468_CR105) 2012; 2 N Jallouli (2468_CR78) 2017; 10 A Das (2468_CR43) 2021; 263 JG Tao (2468_CR172) 2011; 3 2468_CR12 S Dong (2468_CR49) 2015; 5 A Rafiqa (2468_CR152) 2021; 97 2468_CR28 D Castilla-Caballero (2468_CR35) 2022; 149 WY Pang (2468_CR139) 2019 Z Ghasemi (2468_CR63) 2016; 159 LL Albornoz (2468_CR8) 2021; 268 A Khan (2468_CR92) 2015; 22 X Yang (2468_CR195) 2020; 381 2468_CR4 D Qiao (2468_CR150) 2020; 400 L Murruni (2468_CR128) 2008; 84 2468_CR27 2468_CR26 2468_CR20 JH Carey (2468_CR33) 1976; 16 2468_CR22 W Wang (2468_CR178) 2012; 46 L Cavigli (2468_CR36) 2009; 106 2468_CR201 2468_CR200 G Ren (2468_CR154) 2021; 11 MN Chong (2468_CR41) 2010; 44 DJ Alpert (2468_CR11) 1991; 25 A Fujishima (2468_CR62) 1972; 238 T Haneef (2468_CR72) 2020; 12 P Awati (2468_CR15) 2003; 4 F Zhou (2468_CR204) 2018; 183 DJ Son (2468_CR163) 2020; 35 Y Sun (2468_CR168) 2020; 385 2468_CR34 T Luttrell (2468_CR115) 2015; 4 TW Ng (2468_CR133) 2016; 90 AL Pruden (2468_CR148) 1983; 82 Y Wu (2468_CR190) 2019; 246 RA Senthil (2468_CR160) 2019; 92 P Hadi (2468_CR70) 2015; 73 R Malik (2468_CR118) 2016; 42 IA Mkhalid (2468_CR124) 2020; 46 B O'regan (2468_CR135) 1991; 1991 A Jamal Sisi (2468_CR79) 2020; 308 N Li (2468_CR112) 2017; 214 2468_CR104 2468_CR103 G Manikandan (2468_CR119) 2018; 62 I Bechohra (2468_CR25) 2015; 104 2468_CR100 X Duan (2468_CR51) 2013; 42 C Chee (2468_CR37) 2012 L Meng (2468_CR122) 2017; 61 MR AbuKhadra (2468_CR3) 2020; 389 M Baneto (2468_CR21) 2015; 41 DAH Hanaor (2468_CR71) 2011; 46 2468_CR109 NR Abdullah (2468_CR2) 2019; 9 GF Teixeira (2468_CR174) 2019; 9 S Moradi (2468_CR125) 2020; 251 X Wang (2468_CR183) 2020; 400 X Li (2468_CR114) 2021; 384 Z Kong (2468_CR95) 2019; 231 EM Bayan (2468_CR24) 2021; 24 2468_CR111 C Supplis (2468_CR169) 2018; 43 2468_CR110 S Wageh (2468_CR177) 2021; 42 X Chen (2468_CR38) 2007; 107 G Fan (2468_CR56) 2021; 403 C-C Wang (2468_CR179) 2014; 7 YF Wang (2468_CR181) 2019; 170 A Butkovskyi (2468_CR31) 2017; 51 2468_CR127 U Diebold (2468_CR47) 2003; 48 2468_CR123 CH Nguyen (2468_CR132) 2020; 232 D Bahnemann (2468_CR19) 2004; 77 SN Frank (2468_CR60) 1977; 81 J Chen (2468_CR39) 2021; 195 A Patchaiyappan (2468_CR141) 2016; 33 B Sharma (2468_CR161) 2018; 6 W Lu (2468_CR116) 2020; 247 S Pu (2468_CR149) 2019; 9 SG Akpe (2468_CR7) 2020; 296 |
References_xml | – volume: 246 start-page: 608 year: 2019 ident: 2468_CR190 publication-title: Environ Pollut doi: 10.1016/j.envpol.2018.12.076 – volume: 247 year: 2020 ident: 2468_CR116 publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2020.116691 – volume: 97 start-page: 111 issue: 2021 year: 2021 ident: 2468_CR152 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2021.02.017 – ident: 2468_CR111 doi: 10.1016/j.jhazmat.2014.12.024 – volume: 399 year: 2020 ident: 2468_CR196 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.123070 – volume: 45 start-page: 19206 year: 2020 ident: 2468_CR198 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2020.05.052 – volume: 33 start-page: 340 year: 1937 ident: 2468_CR65 publication-title: Trans Faraday Soc doi: 10.1039/tf9373300340 – ident: 2468_CR12 doi: 10.3390/su14010499 – volume: 77 start-page: 445 issue: 5 year: 2004 ident: 2468_CR19 publication-title: Sol Energy doi: 10.1016/j.solener.2004.03.031 – volume: 159 start-page: 552 year: 2016 ident: 2468_CR63 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.06.058 – volume: 40 start-page: 704 issue: 11 year: 2016 ident: 2468_CR17 publication-title: J Chem Res doi: 10.3184/174751916x14769685673665 – ident: 2468_CR77 doi: 10.1016/j.cej.2019.123685 – volume: 62 start-page: 446 year: 2018 ident: 2468_CR119 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2018.01.028 – volume: 666 start-page: 12 year: 2019 ident: 2468_CR81 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2019.02.128 – volume: 170 start-page: 76 year: 2019 ident: 2468_CR181 publication-title: Scripta Mater doi: 10.1016/j.scriptamat.2019.05.036 – volume: 400 year: 2020 ident: 2468_CR150 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.125952 – volume: 389 year: 2020 ident: 2468_CR3 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.122129 – volume: 5 start-page: 5707 year: 2017 ident: 2468_CR44 publication-title: J Environ Chem Eng doi: 10.1016/J.JECE.2017.10.052 – ident: 2468_CR162 doi: 10.1007/s10973-018-7381-x – volume: 231 start-page: 913 year: 2019 ident: 2468_CR95 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.05.233 – volume: 44 start-page: 8269 issue: 12R year: 2005 ident: 2468_CR75 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.44.8269 – volume: 183 start-page: 231 year: 2018 ident: 2468_CR204 publication-title: Chem Eng Sci doi: 10.1016/j.ces.2018.03.016 – volume: 228 start-page: 580 year: 2019 ident: 2468_CR142 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2019.04.117 – volume: 42 start-page: 10892 year: 2016 ident: 2468_CR118 publication-title: Ceram Int doi: 10.1016/j.ceramint.2016.03.222 – ident: 2468_CR180 doi: 10.1021/acs.jpcc.5b01858 – volume: 9 start-page: 721 year: 2019 ident: 2468_CR174 publication-title: Catalysts doi: 10.3390/catal9090721 – ident: 2468_CR55 doi: 10.1016/j.watres.2021.117531 – volume: 149 year: 2022 ident: 2468_CR35 publication-title: Mater Sci Semicond Process doi: 10.1016/j.mssp.2022.106890 – volume: 379 start-page: 122269 year: 2020 ident: 2468_CR164 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.122269 – ident: 2468_CR137 doi: 10.1155/2014/945930 – year: 2021 ident: 2468_CR1 publication-title: Mater Today: Proc doi: 10.1016/j.matpr.2021.04.564 – ident: 2468_CR34 doi: 10.1016/j.progsolidstchem.2004.08.001 – volume: 4 start-page: 107 year: 2014 ident: 2468_CR13 publication-title: J Water Process Eng doi: 10.1016/j.jwpe.2014.09.007 – volume: 2 start-page: 1817 year: 2012 ident: 2468_CR105 publication-title: ACS Catal doi: 10.1021/cs300273q – volume: 5 start-page: 14610 issue: 19 year: 2015 ident: 2468_CR49 publication-title: Rsc Adv doi: 10.1039/C4RA13734E – ident: 2468_CR45 doi: 10.1021/jp204364a – ident: 2468_CR156 doi: 10.3390/app9030472 – volume: 42 start-page: 667 year: 2021 ident: 2468_CR177 publication-title: Chin J Catal doi: 10.1016/S1872-2067(20)63705-6 – volume: 17 start-page: 628 year: 1983 ident: 2468_CR147 publication-title: Environ Sci Technol doi: 10.1021/es00116a013 – volume: 132 year: 2020 ident: 2468_CR108 publication-title: Mater Res Bull doi: 10.1016/j.materresbull.2020.111000 – volume: 323 year: 2021 ident: 2468_CR9 publication-title: J Molecular Liquids doi: 10.1016/j.molliq.2020.114922 – volume: 19 start-page: 1525 issue: 5 year: 2013 ident: 2468_CR57 publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2013.01.019 – volume: 107 start-page: 2891 issue: 2007 year: 2007 ident: 2468_CR38 publication-title: Chem Rev doi: 10.1021/cr0500535 – volume: 44 start-page: L511 year: 2005 ident: 2468_CR193 publication-title: Jpn J Appl Phys doi: 10.1143/JJAP.44.L511 – volume: 46 start-page: 855 issue: 2011 year: 2011 ident: 2468_CR71 publication-title: J Mater Sci doi: 10.1007/s10853-010-5113-0 – volume: 2013 start-page: 6247 issue: 5 year: 2013 ident: 2468_CR93 publication-title: ACS Appl Mater Interfaces doi: 10.1021/am401247h – ident: 2468_CR200 doi: 10.1016/j.chemosphere.2021.130907 – volume: 124 start-page: 11284 year: 2002 ident: 2468_CR185 publication-title: J Am Chem Soc doi: 10.1021/ja027155m – volume: 2018 start-page: 186 issue: 192 year: 2018 ident: 2468_CR80 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2017.10.139 – ident: 2468_CR130 doi: 10.1016/j.jphotochem.2020.113038 – volume: 43 start-page: 178 issue: 2 year: 2022 ident: 2468_CR184 publication-title: Chin J Catal doi: 10.1016/S1872-2067(21)63910-4 – ident: 2468_CR22 doi: 10.1016/j.jenvman.2021.113808 – volume: 106 start-page: 053516 year: 2009 ident: 2468_CR36 publication-title: J Appl Phys doi: 10.1063/1.3211291 – ident: 2468_CR136 doi: 10.1006/jcat.2001.3316 – volume: 90 start-page: 111 year: 2016 ident: 2468_CR133 publication-title: Water Res doi: 10.1016/j.watres.2015.12.022 – volume: 7 start-page: 103482 year: 2019 ident: 2468_CR131 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2019.103482 – volume: 384 start-page: 342 year: 2021 ident: 2468_CR114 publication-title: Powder Technol doi: 10.1016/j.powtec.2021.02.012 – volume: 24 year: 2021 ident: 2468_CR24 publication-title: Environ Technol Innov doi: 10.1016/j.eti.2021.101822 – volume: 296 year: 2020 ident: 2468_CR7 publication-title: Microporous Mesoporous Mater doi: 10.1016/j.micromeso.2019.109979 – volume: 262 start-page: 477 year: 2018 ident: 2468_CR88 publication-title: Sens Actuators B doi: 10.1016/j.snb.2018.02.042 – volume: 288 year: 2020 ident: 2468_CR175 publication-title: J Solid State Chem doi: 10.1016/j.jssc.2020.121417 – volume: 44 start-page: 2997 year: 2010 ident: 2468_CR41 publication-title: Water Res doi: 10.1016/J.WATRES.2010.02.039 – volume: 11 start-page: 3023 issue: 18 year: 2018 ident: 2468_CR129 publication-title: Chemsuschem doi: 10.1002/cssc.201800874 – ident: 2468_CR58 doi: 10.1016/j.scitotenv.2020.142000 – year: 2012 ident: 2468_CR37 publication-title: Stud Water Manag Issues doi: 10.5772/30134 – ident: 2468_CR170 doi: 10.1016/j.cej.2020.124184 – volume: 48 start-page: 53 year: 2003 ident: 2468_CR47 publication-title: Surf Sci Rep doi: 10.1016/S0167-5729(02)00100-0 – volume: 35 year: 2020 ident: 2468_CR163 publication-title: J Water Process Eng doi: 10.1016/j.jwpe.2020.101224 – volume: 268 year: 2021 ident: 2468_CR8 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.128858 – ident: 2468_CR54 doi: 10.1016/j.jhazmat.2009.05.044 – volume: 2020 start-page: 872 issue: 201 year: 2020 ident: 2468_CR203 publication-title: Sol Energy doi: 10.1016/j.solener.2020.03.053 – volume: 46 start-page: 23098 year: 2020 ident: 2468_CR83 publication-title: Ceram Int doi: 10.1016/j.ceramint.2020.06.087 – ident: 2468_CR146 doi: 10.1016/j.chemosphere.2019.125575 – volume: 393 start-page: 124691 year: 2020 ident: 2468_CR107 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.124691 – volume: 4 start-page: 393 year: 2003 ident: 2468_CR15 publication-title: Catal Commun doi: 10.1016/S1566-7367(03)00092-X – volume: 82 start-page: 404 year: 1983 ident: 2468_CR148 publication-title: J Catal doi: 10.1016/0021-9517(83)90207-5 – volume: 104 start-page: 124 year: 2018 ident: 2468_CR173 publication-title: Mater Res Bull doi: 10.1016/j.materresbull.2018.03.041 – volume: 263 year: 2021 ident: 2468_CR43 publication-title: Mater Chem Phys doi: 10.1016/j.matchemphys.2021.124431 – volume: 2017 start-page: 93 issue: 195 year: 2017 ident: 2468_CR46 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2017.04.010 – ident: 2468_CR28 doi: 10.1111/ics.12709 – volume: 22 start-page: 13772 year: 2015 ident: 2468_CR92 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-015-4881-0 – volume: 43 start-page: 5203 year: 2017 ident: 2468_CR153 publication-title: Res Chem Intermed doi: 10.1007/s11164-017-3036-y – ident: 2468_CR94 doi: 10.1021/la803845f – volume: 2 start-page: 1031 issue: 5 year: 2013 ident: 2468_CR101 publication-title: Nano Energy doi: 10.1016/j.nanoen.2013.04.002 – volume: 7 start-page: 2831 year: 2014 ident: 2468_CR179 publication-title: Energy Environ Sci doi: 10.1039/C4EE01299B – volume: 42 start-page: 4683 year: 2008 ident: 2468_CR66 publication-title: Water Res doi: 10.1016/j.watres.2008.08.011 – volume: 580 start-page: 223 year: 2020 ident: 2468_CR82 publication-title: J Colloid Interfac Sci doi: 10.1016/j.jcis.2020.07.001 – year: 2016 ident: 2468_CR85 publication-title: Adv Solar Heat Cool doi: 10.1016/b978-0-08-100301-5.00004-7 – ident: 2468_CR123 – ident: 2468_CR109 doi: 10.1016/j.scitotenv.2022.155482 – volume: 46 start-page: 4599 year: 2012 ident: 2468_CR178 publication-title: Environ Sci Technol doi: 10.1021/es2042977 – ident: 2468_CR27 doi: 10.1080/03602549909351643 – ident: 2468_CR197 doi: 10.1016/j.jwpe.2019.101052 – volume: 106 start-page: 138302 year: 2011 ident: 2468_CR191 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.106.138302 – volume: 258 start-page: 18 year: 2006 ident: 2468_CR64 publication-title: FEMS Microbiol Lett doi: 10.1111/j.1574-6968.2006.00190.x – volume: 5 start-page: 77 year: 2016 ident: 2468_CR29 publication-title: Catalysts doi: 10.3390/catal5010077 – volume: 9 start-page: 267 year: 2019 ident: 2468_CR149 publication-title: Catalysts doi: 10.3390/catal9030267 – volume: 195 year: 2021 ident: 2468_CR39 publication-title: Environ Res doi: 10.1016/j.envres.2021.110747 – volume: 308 year: 2020 ident: 2468_CR79 publication-title: J Mol Liq doi: 10.1016/j.molliq.2020.113018 – volume: 147 start-page: 1 issue: 1 year: 2009 ident: 2468_CR117 publication-title: Catal Today doi: 10.1016/j.cattod.2009.06.018 – volume: 46 start-page: 25822 year: 2020 ident: 2468_CR124 publication-title: Ceram Int doi: 10.1016/j.ceramint.2020.07.064 – volume: 84 start-page: 563 year: 2008 ident: 2468_CR128 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2008.05.012 – volume: 385 year: 2020 ident: 2468_CR168 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.123911 – ident: 2468_CR110 doi: 10.1016/j.jhazmat.2021.127063 – ident: 2468_CR165 doi: 10.1016/j.molliq.2020.114613 – volume: 484 start-page: 1089 year: 2019 ident: 2468_CR16 publication-title: App Surf Sci doi: 10.1016/j.apsusc.2019.04.030 – volume: 54 start-page: 109 year: 2015 ident: 2468_CR32 publication-title: J Taiwan Inst Chem Eng doi: 10.1016/j.jtice.2015.03.006 – ident: 2468_CR100 doi: 10.1021/acs.iecr.1c01169 – volume: 1991 start-page: 353 year: 1991 ident: 2468_CR135 publication-title: Nature – ident: 2468_CR138 – volume: 92 start-page: 284 year: 2019 ident: 2468_CR160 publication-title: Opt Mater doi: 10.1016/j.optmat.2019.04.046 – volume: 403 year: 2021 ident: 2468_CR56 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2020.123964 – volume: 113 start-page: 170 year: 2012 ident: 2468_CR10 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2012.08.028 – ident: 2468_CR104 doi: 10.3390/catal10080924 – volume: 6 start-page: 467 year: 2009 ident: 2468_CR143 publication-title: Int J Environ Sci Technol doi: 10.1007/BF03326086 – volume: 867 year: 2021 ident: 2468_CR202 publication-title: J Alloy Compd doi: 10.1016/j.jallcom.2021.159020 – volume: 214 start-page: 126 year: 2017 ident: 2468_CR112 publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2017.05.041 – volume: 1 start-page: 3200 year: 2010 ident: 2468_CR171 publication-title: J Phys Chem Lett doi: 10.1021/jz1013246 – volume: 162 start-page: 352 year: 2015 ident: 2468_CR52 publication-title: Appl Catal B doi: 10.1016/j.apcatb.2014.06.059 – ident: 2468_CR144 doi: 10.1080/09593331003646612 – volume: 251 year: 2020 ident: 2468_CR125 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2020.117373 – ident: 2468_CR182 doi: 10.1016/j.cej.2020.126151 – ident: 2468_CR20 doi: 10.1016/j.solener.2004.03.031 – ident: 2468_CR98 doi: 10.1021/jp204364a – volume: 4 start-page: 3275 year: 2011 ident: 2468_CR23 publication-title: Energy Environm Sci doi: 10.1039/c1ee01577j – ident: 2468_CR140 doi: 10.1002/anie.201006057 – ident: 2468_CR87 doi: 10.1016/j.cherd.2019.11.035 – volume: 232 year: 2020 ident: 2468_CR132 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2019.115962 – volume: 43 start-page: 8221 year: 2018 ident: 2468_CR169 publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2018.03.097 – volume: 19 start-page: 2261 year: 2021 ident: 2468_CR6 publication-title: Environ Chem Lett doi: 10.1007/s10311-020-01167-7 – volume: 198 start-page: 78 year: 2017 ident: 2468_CR89 publication-title: J Environ Manag doi: 10.1016/J.JENVMAN.2017.04.099 – volume: 41 start-page: 4742 year: 2015 ident: 2468_CR21 publication-title: Ceram Int doi: 10.1016/j.ceramint.2014.12.023 – volume: 214 start-page: 46 year: 2003 ident: 2468_CR186 publication-title: J Catal doi: 10.1016/S0021-9517(02)00172-0 – ident: 2468_CR194 doi: 10.1016/j.seppur.2019.116270 – volume: 14 start-page: 100176 year: 2019 ident: 2468_CR86 publication-title: Sustain Chem Pharm doi: 10.1016/j.scp.2019.100176 – volume: 6 start-page: 134 year: 2018 ident: 2468_CR161 publication-title: J Environ Chem Eng doi: 10.1016/J.JECE.2017.11.025 – volume: 31 start-page: 7526 year: 2010 ident: 2468_CR189 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2010.06.032 – volume: 25 start-page: 594 year: 1991 ident: 2468_CR11 publication-title: Solar Energy Mater doi: 10.1016/0165-1633(91)90093-Z – ident: 2468_CR26 – ident: 2468_CR61 doi: 10.1039/c2cs35013k – volume: 164 start-page: 3 issue: 1–3 year: 2004 ident: 2468_CR67 publication-title: J Photochem Photobiol A Chem doi: 10.1016/j.jphotochem.2004.02.023 – volume: 51 start-page: 4740 year: 2017 ident: 2468_CR31 publication-title: Environ Sci Technol doi: 10.1021/acs.est.6b05640 – volume: 48 start-page: 8890 issue: 2009 year: 2009 ident: 2468_CR30 publication-title: Ind Eng Chem Res doi: 10.1021/ie900859z – ident: 2468_CR127 doi: 10.1016/j.surfrep.2008.09.002 – ident: 2468_CR201 doi: 10.1016/j.ultsonch.2020.105343 – volume: 9 start-page: 1023 year: 2019 ident: 2468_CR2 publication-title: Nanomaterials doi: 10.3390/nano9071023 – volume: 231 start-page: 4 year: 2019 ident: 2468_CR68 publication-title: Water Air Soil Pollut doi: 10.1007/s11270-019-4366-8 – volume: 381 year: 2020 ident: 2468_CR195 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.120994 – volume: 33 start-page: 2107 issue: 7 year: 2016 ident: 2468_CR141 publication-title: Korean J Chem Eng doi: 10.1007/s11814-016-0059-9 – volume: 44 start-page: 15099 year: 2018 ident: 2468_CR18 publication-title: Ceram Int doi: 10.1016/j.ceramint.2018.05.144 – volume: 380 year: 2019 ident: 2468_CR69 publication-title: J Hazard Mater doi: 10.1016/j.jhazmat.2019.120888 – volume: 8 start-page: 274 issue: 3 year: 2003 ident: 2468_CR102 publication-title: Curr Opin Colloid Interface Sci doi: 10.1016/S1359-0294(03)00049-9 – year: 2019 ident: 2468_CR139 publication-title: J Environ Manag doi: 10.1016/j.jenvman.2019.109358 – volume: 10 start-page: S3640 year: 2017 ident: 2468_CR78 publication-title: Arab J Chem doi: 10.1016/J.ARABJC.2014.03.014 – volume: 12 start-page: 5 issue: 1 year: 2012 ident: 2468_CR91 publication-title: BMC Microbiol doi: 10.1186/1471-2180-12-5 – volume: 10 start-page: 560 year: 2020 ident: 2468_CR90 publication-title: Catalysts doi: 10.3390/catal10050560 – volume: 46 start-page: 8279 year: 2012 ident: 2468_CR50 publication-title: Environ Sci Technol doi: 10.1021/es203976a – volume: 8 year: 2020 ident: 2468_CR120 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2020.104486 – volume: 61 start-page: 110 year: 2017 ident: 2468_CR122 publication-title: J Environ Sci China doi: 10.1016/j.jes.2017.09.020 – volume: 280 start-page: 130595 year: 2021 ident: 2468_CR157 publication-title: Chemosphere doi: 10.1016/j.chemosphere.2021.130595 – ident: 2468_CR134 doi: 10.1016/j.rser.2005.01.009 – volume: 70 start-page: 117 issue: 2 year: 1997 ident: 2468_CR145 publication-title: J Chem Technol Biotechnol doi: 10.1002/(SICI)1097-4660(199710)70:2<117::AID-JCTB746>3.0.CO;2-F – volume: 178 start-page: 115816 year: 2020 ident: 2468_CR121 publication-title: Water Res doi: 10.1016/j.watres.2020.115816 – ident: 2468_CR199 doi: 10.1007/s40097-015-0158-x – volume: 42 start-page: 2568 issue: 7 year: 2013 ident: 2468_CR51 publication-title: Chem Soc Rev doi: 10.1039/C2CS35355E – volume: 8 year: 2020 ident: 2468_CR192 publication-title: J Environ Chem Eng doi: 10.1016/j.jece.2019.103644 – ident: 2468_CR76 doi: 10.1021/cr00033a004 – volume: 394 year: 2020 ident: 2468_CR151 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.124917 – volume: 400 year: 2020 ident: 2468_CR183 publication-title: Chem Eng J doi: 10.1016/j.cej.2020.125981 – volume: 3 start-page: 296 year: 2011 ident: 2468_CR172 publication-title: Nature Chem doi: 10.1038/nchem.1006 – volume: 104 start-page: 350 year: 2015 ident: 2468_CR25 publication-title: Int Biodeterior Biodegrad doi: 10.1016/j.ibiod.2015.07.004 – volume: 373 start-page: 31 year: 2019 ident: 2468_CR5 publication-title: Chem Eng J doi: 10.1016/j.cej.2019.05.017 – volume: 238 start-page: 37 issue: 5358 year: 1972 ident: 2468_CR62 publication-title: Nature doi: 10.1038/238037a0 – volume: 12 start-page: 3132 year: 2020 ident: 2468_CR72 publication-title: Water doi: 10.3390/w12113132 – ident: 2468_CR53 doi: 10.3390/catal11050556 – ident: 2468_CR48 doi: 10.1007/s10904-020-01679-3 – volume: 9 start-page: 294 year: 2019 ident: 2468_CR106 publication-title: Catalysts doi: 10.3390/catal9030294 – volume: 363 start-page: 175 year: 2011 ident: 2468_CR167 publication-title: J Colloid Interface Sci doi: 10.1016/j.jcis.2011.07.005 – ident: 2468_CR159 doi: 10.1038/nmat3697 – volume: 5 start-page: 280 issue: 3 year: 1993 ident: 2468_CR187 publication-title: Chem Mater doi: 10.1021/cm00027a008 – volume: 111 start-page: 238 year: 2019 ident: 2468_CR113 publication-title: Mater Res Bull doi: 10.1016/j.materresbull.2018.11.012 – volume: 11 start-page: 1804 year: 2021 ident: 2468_CR154 publication-title: Nanomaterials doi: 10.3390/nano11071804 – volume: 49 start-page: 1 issue: 1 year: 2004 ident: 2468_CR96 publication-title: Appl Catal B doi: 10.1016/j.apcatb.2003.11.010 – volume: 75 start-page: 3822 year: 2019 ident: 2468_CR158 publication-title: Tetrahedron doi: 10.1016/j.tet.2019.06.002 – start-page: 653 volume-title: Fundamentals of solar energy conversion year: 1983 ident: 2468_CR14 – ident: 2468_CR188 – volume: 3 start-page: 106 year: 2017 ident: 2468_CR99 publication-title: Mater Sci Eng Int J doi: 10.15406/mseij.2017.01.00018 – volume: 212 year: 2022 ident: 2468_CR84 publication-title: Environ Res doi: 10.1016/j.envres.2022.113336 – volume: 81 start-page: 1484 year: 1977 ident: 2468_CR60 publication-title: J Phys Chem doi: 10.1021/j100530a011 – volume: 4 start-page: 1 issue: 2015 year: 2015 ident: 2468_CR115 publication-title: Sci Rep – ident: 2468_CR74 doi: 10.1007/978-981-16-2015-7 – volume: 100 start-page: 183 year: 2016 ident: 2468_CR126 publication-title: Process Saf Environ Prot doi: 10.1016/j.psep.2016.01.010 – ident: 2468_CR103 doi: 10.1021/cr00035a013 – volume: 44 start-page: 2997 issue: 10 year: 2010 ident: 2468_CR40 publication-title: Water Res doi: 10.1016/j.watres.2010.02.039 – ident: 2468_CR4 – volume: 16 start-page: 697 year: 1976 ident: 2468_CR33 publication-title: Bull Environ Contam Toxicol doi: 10.1007/BF01685575 – volume: 73 start-page: 37 year: 2015 ident: 2468_CR70 publication-title: Water Res doi: 10.1016/j.watres.2015.01.018 – ident: 2468_CR155 doi: 10.1002/anie.201001374 – ident: 2468_CR166 doi: 10.3390/environments7060047 – ident: 2468_CR73 doi: 10.1016/j.apcata.2009.02.043 – volume: 266 year: 2021 ident: 2468_CR59 publication-title: Sep Purif Technol doi: 10.1016/j.seppur.2021.118606 |
SSID | ssj0044050 ssib044732867 ssib029106359 |
Score | 2.6550481 |
SecondaryResourceType | review_article |
Snippet | Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 677 |
SubjectTerms | Alternative technology Biochemistry Biotechnology Chemical synthesis Chemistry Chemistry and Materials Science Chemistry/Food Science Industrial Chemistry/Chemical Engineering Industrial wastes Materials Science Medicinal Chemistry Photocatalysis Photocatalysts Pollutants Review Titanium dioxide Wastewater treatment Water treatment |
Title | The photocatalytic process in the treatment of polluted water |
URI | https://link.springer.com/article/10.1007/s11696-022-02468-7 https://www.ncbi.nlm.nih.gov/pubmed/36213320 https://www.proquest.com/docview/2775252105 https://www.proquest.com/docview/2723486746 https://pubmed.ncbi.nlm.nih.gov/PMC9527146 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-DnoR364vInjTQjt5bY-LKCLoyQVvxTQZVpB2cXcR_72Tvpb1BR56yqRpZ9LON5kXY-fOS-MtuigWSkZSuDSyzukIUgMaMDYWwznk_YO-Hcq7J_XUJIVN2mj31iVZ_annyW6JrgJmga6QL2SW2aoi2z0Ecg1h0O4iIAVIWrRT0lKGejS6M8MkQZS49mDqiAihSaX5eY1FdfUNg34PpfziT63U1M0m22jwJR_UG2KLLflim61dtW3ddqq-8nw8KqdldXLzQXR8XGcL8JeCEx7kXfA5L5GPQy9kgqX8nVDp2y4b3lw_Xt1GTQ-FKJdGTiPzLLRXThkvpUBQ6BANYQxtMUWL1pI5EawQ0bcWJJL144XySZK7xCXg-mKPrRRl4Q8YR61y8BDb1ElphUgVGpUiJujjOPemx5KWVVneFBgPfS5es3lp5MDejNibVezNaM5FN2dcl9f4k_q4lUDWfGqTDIxRQCAkVj121g0TU4Pn47nw5SzQgAilBaXusf1aYN1ypMHJToe4x8yCKDuCUIB7caR4GVWFuFMFJgn3vGyFPn-s39_i8H_kR2w9tLivI8WP2cr0beZPCAhN7Wm17z8BvwD7ag |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF6V9BAuFZQCaYFuJW7Fkj37io9RBEopcCJSblbWuyOQkB2FoKr_vrN-ReEl9eDTzvoxs-v5ZufF2Knz0niLLoqFkpEULo2sczqC1IAGjI3FcA55faMnU3k5U7MmKeyxjXZvXZLVn3qd7JboKmAW6Ar5QmaLfSQwMAxreQqjdhUBKUDSop2SljLUo9GdGSYJosS1B1NHRAhNKs3rz9hUVy8w6MtQymf-1EpNXeywTw2-5KN6QeyyD774zPrjtq3bXtVXni_uylVZndz8JTq-qLMF-H3BCQ_yLvicl8gXoRcywVL-h1Dp8gubXpzfjidR00MhyqWRq8jMhfbKKeOlFAgKHaIhjKEtpmjRWjInghUihtaCRLJ-vFA-SXKXuATcUOyzXlEW_pBx1CoHD7FNnZRWiFShUSligj6Oc28GLGlZleVNgfHQ5-IhW5dGDuzNiL1Zxd6M5vzs5izq8hrvUh-1EsiarfaYgTEKCITEasB-dMPE1OD5mBe-fAo0IEJpQakH7KAWWPc40uBkp0M8YGZDlB1BKMC9OVLc31WFuFMFJgn3PGuFvn6tt7_i6_-Rf2f9ye31VXb16-b3N7Yd2t3XUeNHrLdaPvljAkUre1LtgX_GIf5d |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELaASqWXitJCt6VgpN7aiGT82hxX0BVvcehK3CIcewQSSiIIQv33Hee13dIiccjJ4ziZsTXfeF6MfXVeGm_RRbFQMpLCpZF1TkeQGtCAsbEY7iHPzvXhTB5fqss_svibaPfeJdnmNIQqTUW9Vzncmye-JboJngV6Qu6QWWavZMgGph09g0m_o4CUIWnUQWFLGWrT6MEkkwRX4tabqSMihC6t5t9rLKquJ3j0aVjlX77VRmVN19jbDmvySbs53rElX6yz1f2-xdv7psc8r67LumxucX4RHa_azAF-U3DChnwIROcl8ir0RSaIyh8Jod59YLPpj5_7h1HXTyHKpZF1ZK6E9sop46UUCAodoiG8oS2maNFaMi2CRSLG1oJEsoS8UD5Jcpe4BNxYbLCVoiz8R8ZRqxw8xDZ1UlohUoVGpYgJ-jjOvRmxpGdVlnfFxkPPi9tsXiY5sDcj9mYNezOa822YU7WlNp6l3uolkHXH7j4DYxQQIInViO0Ow8TU4AW5Knz5EGhAhDKDUo_YZiuwYTnS5mSzQzxiZkGUA0Eoxr04UtxcN0W5UwUmCe_83gt9_ln__4tPLyPfYa8vDqbZ6dH5yWf2BghvtQHkW2ylvnvwXwgf1Xa7OQK_AWZFAp8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+photocatalytic+process+in+the+treatment+of+polluted+water&rft.jtitle=Chemical+papers&rft.au=Al-Nuaim%2C+Marwah+A&rft.au=Alwasiti%2C+Asawer+A&rft.au=Shnain%2C+Zainab+Y&rft.date=2023-02-01&rft.issn=0366-6352&rft.volume=77&rft.issue=2&rft.spage=677&rft_id=info:doi/10.1007%2Fs11696-022-02468-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0366-6352&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0366-6352&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0366-6352&client=summon |