The photocatalytic process in the treatment of polluted water

Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis...

Full description

Saved in:
Bibliographic Details
Published inChemical papers Vol. 77; no. 2; pp. 677 - 701
Main Authors Al-Nuaim, Marwah A., Alwasiti, Asawer A., Shnain, Zainab Y.
Format Journal Article
LanguageEnglish
Published Warsaw Versita 01.02.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO 2 -based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater.
AbstractList Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO -based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater.
Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO 2 -based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater.
Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO2-based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater.Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO2-based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater.
Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants such as dyes and pesticides, pharmaceuticals, and other chemicals are gaining extensive attention. Water treatment utilizing photocatalysis has recently received a lot of interest. Photocatalysis is cutting-edge, alternative technology. It has various advantages, including functioning at normal temperatures and atmospheric pressure, cheap prices, no secondary waste creation, and being readily available and easily accessible. This review presented a comprehensive overview of the advances in the application of the photocatalytic process in the treatment of highly polluted industrial wastewater. The analysis of various literature revealed that TiO2-based photocatalysts are highly effective in degrading organic pollutants from wastewater compared to other forms of wastewater treatment technologies. The electrical structure of a semiconductor plays a vital role in the photocatalyst's mechanism. The morphology of a photocatalyst is determined by the synthesis method, chemical content, and technical characteristics. The scaled-up of the photoreactors will significantly help in curbing the effect of organic pollutants in wastewater.
Author Shnain, Zainab Y.
Al-Nuaim, Marwah A.
Alwasiti, Asawer A.
Author_xml – sequence: 1
  givenname: Marwah A.
  surname: Al-Nuaim
  fullname: Al-Nuaim, Marwah A.
  organization: Chemical Engineering, Department, University of Technology
– sequence: 2
  givenname: Asawer A.
  surname: Alwasiti
  fullname: Alwasiti, Asawer A.
  organization: Chemical Engineering, Department, University of Technology
– sequence: 3
  givenname: Zainab Y.
  surname: Shnain
  fullname: Shnain, Zainab Y.
  email: 80062@uotechnology.edu.iq, zyousif.1973@gmail.com
  organization: Chemical Engineering, Department, University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36213320$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1O3DAUha0KBAP0BbqoIrHpJsX_ThZFqhC0SEhsYG05zjVjlIlT26Gat6-HGUrLgoXlxf3O8bk-R2hvDCMg9IngrwRjdZYIka2sMaXlcNnU6gNaUNGIWtEW76EFZlLWkgl6iI5SesSYcyzwATpkkhLGKF6gb3dLqKZlyMGabIZ19raaYrCQUuXHKpdpjmDyCsZcBVdNYRjmDH3122SIJ2jfmSHBx919jO6vLu8uftY3tz-uL77f1JYrnmtlmATRCwWcM0eF651TTAjZudZ1rusUV5RhyZquo9y1rQQmgBDbk57QvmHH6HzrO83dCnpbwkQz6Cn6lYlrHYzX_09Gv9QP4Um3girCZTH4sjOI4dcMKeuVTxaGwYwQ5qRpeZ83Uj2jp2_QxzDHsaxXKCWooASLQn3-N9HfKC8_W4BmC9gYUorgtPXZZB82Af2gCdabEvW2RF1K1M8lalWk9I30xf1dEduKUoHHB4ivsd9R_QG-uq7A
CitedBy_id crossref_primary_10_1016_j_jwpe_2024_106699
crossref_primary_10_1016_j_molstruc_2024_137549
crossref_primary_10_1515_ntrev_2024_0001
crossref_primary_10_1016_j_jece_2024_112216
crossref_primary_10_1051_e3sconf_202450901007
crossref_primary_10_1080_03067319_2024_2384653
crossref_primary_10_1016_j_jwpe_2024_105369
crossref_primary_10_1088_1402_4896_ad804a
crossref_primary_10_1016_j_cej_2025_161758
crossref_primary_10_1016_j_ijbiomac_2024_136841
crossref_primary_10_1016_j_heliyon_2024_e24191
crossref_primary_10_1016_j_cej_2025_160781
crossref_primary_10_1016_j_mtchem_2024_102226
crossref_primary_10_1016_j_ccr_2024_216227
crossref_primary_10_1186_s40486_023_00168_9
crossref_primary_10_3390_catal13121466
crossref_primary_10_1016_j_jwpe_2024_105251
crossref_primary_10_1007_s10854_024_13955_w
crossref_primary_10_1007_s10854_025_14259_3
crossref_primary_10_1007_s11356_024_33285_y
crossref_primary_10_1016_j_solener_2024_113198
crossref_primary_10_1016_j_colsurfa_2024_133271
crossref_primary_10_1016_j_ceramint_2025_01_042
crossref_primary_10_1016_j_rechem_2024_101724
crossref_primary_10_1039_D3MA00390F
crossref_primary_10_3390_molecules28186681
crossref_primary_10_1016_j_jallcom_2024_178351
crossref_primary_10_1038_s41598_023_49912_6
crossref_primary_10_1016_j_jece_2024_112111
crossref_primary_10_1039_D3RA06109D
crossref_primary_10_1016_j_jclepro_2023_138181
crossref_primary_10_1016_j_molliq_2025_127412
crossref_primary_10_1016_j_mtla_2024_102139
crossref_primary_10_1038_s41598_024_81761_9
crossref_primary_10_1002_adsu_202400298
crossref_primary_10_3390_catal14070434
crossref_primary_10_1016_j_jics_2024_101497
crossref_primary_10_1016_j_molstruc_2024_137688
crossref_primary_10_1016_j_jallcom_2025_178876
crossref_primary_10_13005_msri_200301
crossref_primary_10_1016_j_rineng_2024_102515
crossref_primary_10_1039_D4RA00914B
crossref_primary_10_1016_j_ijhydene_2024_02_275
crossref_primary_10_1016_j_chemosphere_2024_143237
crossref_primary_10_3390_chemengineering8030061
crossref_primary_10_3390_ma17184575
crossref_primary_10_1016_j_mssp_2024_108385
crossref_primary_10_1016_j_hybadv_2024_100152
crossref_primary_10_1016_j_molliq_2024_126535
crossref_primary_10_1016_j_eti_2023_103300
crossref_primary_10_1038_s41545_024_00334_5
crossref_primary_10_3390_ijms25147876
crossref_primary_10_1016_j_jwpe_2024_105115
crossref_primary_10_1039_D2CP04617B
crossref_primary_10_1016_j_ijpe_2025_109557
crossref_primary_10_1016_j_desal_2024_117958
crossref_primary_10_1021_acsestwater_4c00451
crossref_primary_10_1016_j_heliyon_2024_e36978
crossref_primary_10_1007_s10904_024_03575_6
crossref_primary_10_1016_j_cscee_2024_100800
crossref_primary_10_1016_j_jwpe_2023_104597
crossref_primary_10_1039_D4RA03641G
crossref_primary_10_1016_j_chemosphere_2024_142033
crossref_primary_10_1007_s12088_024_01389_1
crossref_primary_10_1016_j_molliq_2025_127115
crossref_primary_10_1088_1757_899X_1300_1_012022
crossref_primary_10_1016_j_emcon_2024_100336
crossref_primary_10_1039_D4RA07287A
crossref_primary_10_1016_j_inoche_2023_111287
crossref_primary_10_1007_s10854_024_12075_9
crossref_primary_10_1007_s11356_024_33605_2
crossref_primary_10_1016_j_jece_2024_114392
crossref_primary_10_2166_wst_2024_166
crossref_primary_10_1007_s12221_025_00908_1
crossref_primary_10_1016_j_chemosphere_2024_142046
crossref_primary_10_1016_j_crgsc_2024_100408
crossref_primary_10_1021_acsomega_4c02683
crossref_primary_10_1016_j_jwpe_2024_106825
crossref_primary_10_1016_j_surfin_2024_104302
crossref_primary_10_1016_j_jwpe_2024_106261
crossref_primary_10_1002_solr_202300776
crossref_primary_10_1016_j_heliyon_2025_e42375
crossref_primary_10_1016_j_jece_2024_114948
crossref_primary_10_1039_D4EW00713A
crossref_primary_10_3390_gels10120778
crossref_primary_10_1051_bioconf_20237305025
crossref_primary_10_1016_j_jre_2024_09_022
crossref_primary_10_1016_j_psep_2024_05_118
crossref_primary_10_1039_D4DT02196G
crossref_primary_10_1016_j_poly_2023_116781
crossref_primary_10_1007_s43630_024_00562_1
crossref_primary_10_1088_2053_1591_ad832d
crossref_primary_10_1016_j_heliyon_2023_e22758
crossref_primary_10_1007_s11164_024_05445_9
crossref_primary_10_1007_s11696_024_03803_w
crossref_primary_10_1080_15435075_2024_2332918
crossref_primary_10_3390_su152416920
crossref_primary_10_1016_j_rechem_2024_101934
crossref_primary_10_3390_en17205043
crossref_primary_10_9767_bcrec_17_4_15838_755_767
crossref_primary_10_1007_s11144_025_02817_z
crossref_primary_10_1007_s13399_024_05732_w
crossref_primary_10_1016_j_molstruc_2024_137760
crossref_primary_10_1155_2023_7140181
crossref_primary_10_1038_s41598_023_49982_6
crossref_primary_10_3390_chemengineering8050095
crossref_primary_10_1021_acsomega_4c01370
crossref_primary_10_1016_j_pes_2024_100018
crossref_primary_10_1016_j_colsurfa_2024_133441
crossref_primary_10_3390_nano13030526
crossref_primary_10_1016_j_mtener_2024_101774
crossref_primary_10_1007_s44169_024_00067_z
crossref_primary_10_1134_S0018143924700401
crossref_primary_10_1016_j_ceramint_2024_05_184
crossref_primary_10_1016_j_jwpe_2024_105882
crossref_primary_10_1016_j_biteb_2024_101865
crossref_primary_10_1016_j_mseb_2024_117866
crossref_primary_10_1016_j_jwpe_2023_104150
crossref_primary_10_1016_j_surfin_2023_103008
crossref_primary_10_1002_slct_202304278
crossref_primary_10_1016_j_molstruc_2025_142107
crossref_primary_10_1016_j_chemosphere_2023_139984
crossref_primary_10_1016_j_inoche_2024_112854
crossref_primary_10_1016_j_jphotochem_2025_116398
crossref_primary_10_3390_inorganics12030080
crossref_primary_10_1016_j_jece_2024_112043
crossref_primary_10_1016_j_surfin_2025_105899
crossref_primary_10_1007_s12598_025_03249_3
crossref_primary_10_1088_1361_6463_adaf37
crossref_primary_10_1007_s10904_024_03266_2
crossref_primary_10_1002_slct_202403806
crossref_primary_10_4236_anp_2025_141002
crossref_primary_10_1007_s11244_024_01961_5
crossref_primary_10_1002_cctc_202400802
crossref_primary_10_1021_acssusresmgt_4c00221
crossref_primary_10_1007_s11082_023_05446_9
crossref_primary_10_1016_j_mseb_2023_116916
crossref_primary_10_1016_j_biombioe_2025_107760
crossref_primary_10_1016_j_dwt_2024_100386
crossref_primary_10_1016_j_jtice_2024_105797
crossref_primary_10_1007_s11144_024_02760_5
crossref_primary_10_9767_bcrec_20222
crossref_primary_10_1016_j_seppur_2024_130165
crossref_primary_10_1016_j_jes_2024_11_010
crossref_primary_10_1007_s10971_024_06384_y
crossref_primary_10_1007_s10971_025_06703_x
crossref_primary_10_1016_j_cscee_2024_100915
crossref_primary_10_1016_j_psep_2024_08_131
crossref_primary_10_1016_j_scenv_2024_100171
crossref_primary_10_1016_j_surfin_2025_105995
crossref_primary_10_1016_j_jssc_2024_124776
crossref_primary_10_1134_S0965544124020075
crossref_primary_10_1016_j_envres_2024_120209
crossref_primary_10_1016_j_matchemphys_2025_130750
crossref_primary_10_1088_1361_6528_acc407
crossref_primary_10_1016_j_physb_2025_416957
crossref_primary_10_1016_j_surfin_2024_104013
crossref_primary_10_1016_j_jksus_2024_103331
crossref_primary_10_3390_gels10060378
crossref_primary_10_1016_j_jwpe_2024_105566
crossref_primary_10_3390_chemengineering6060089
crossref_primary_10_3390_catal14100661
crossref_primary_10_1007_s43621_024_00439_4
crossref_primary_10_1016_j_mineng_2024_108865
crossref_primary_10_1016_j_inoche_2025_113900
crossref_primary_10_1016_j_matchemphys_2024_129526
crossref_primary_10_1016_j_surfin_2024_105358
crossref_primary_10_1038_s41598_024_61724_w
crossref_primary_10_1016_j_jtice_2024_105567
crossref_primary_10_1088_1361_6641_ad2b08
crossref_primary_10_1039_D3NA00204G
crossref_primary_10_1007_s13762_024_05627_3
crossref_primary_10_1016_j_crgsc_2023_100383
crossref_primary_10_1016_j_cis_2024_103304
crossref_primary_10_1557_s43580_024_00869_2
crossref_primary_10_1016_j_jwpe_2025_107007
crossref_primary_10_1080_10242422_2023_2289337
crossref_primary_10_1016_j_jwpe_2023_103880
crossref_primary_10_1007_s11270_024_07524_4
crossref_primary_10_1016_j_apsusc_2024_162063
crossref_primary_10_1007_s13399_023_04337_z
crossref_primary_10_1016_j_ceramint_2024_10_272
crossref_primary_10_1016_j_jiec_2024_09_003
crossref_primary_10_1016_j_jclepro_2023_137567
crossref_primary_10_35208_ert_1337407
crossref_primary_10_14710_jkli_24_1_59_67
crossref_primary_10_3390_su15075999
crossref_primary_10_1016_j_cej_2024_153518
crossref_primary_10_1557_s43578_023_01077_8
crossref_primary_10_1016_j_nxnano_2023_100016
crossref_primary_10_1002_slct_202404797
crossref_primary_10_1016_j_ceramint_2024_06_412
crossref_primary_10_3390_catal13010026
crossref_primary_10_1002_slct_202304228
crossref_primary_10_15625_0868_3166_21246
crossref_primary_10_1002_pssa_202400612
crossref_primary_10_1016_j_rechem_2024_101315
crossref_primary_10_1016_j_psep_2025_106780
crossref_primary_10_1016_j_jwpe_2024_106883
crossref_primary_10_1016_j_jics_2024_101328
crossref_primary_10_1039_D4EM00052H
crossref_primary_10_1016_j_jallcom_2025_178846
crossref_primary_10_1016_j_jwpe_2024_105308
crossref_primary_10_1016_j_optmat_2025_116699
crossref_primary_10_1039_D4RE00193A
crossref_primary_10_15251_DJNB_2025_201_37
crossref_primary_10_1007_s11664_024_11340_1
Cites_doi 10.1016/j.envpol.2018.12.076
10.1016/j.carbpol.2020.116691
10.1016/j.jiec.2021.02.017
10.1016/j.jhazmat.2014.12.024
10.1016/j.jhazmat.2020.123070
10.1016/j.ijhydene.2020.05.052
10.1039/tf9373300340
10.3390/su14010499
10.1016/j.solener.2004.03.031
10.1016/j.chemosphere.2016.06.058
10.3184/174751916x14769685673665
10.1016/j.cej.2019.123685
10.1016/j.jiec.2018.01.028
10.1016/j.scitotenv.2019.02.128
10.1016/j.scriptamat.2019.05.036
10.1016/j.cej.2020.125952
10.1016/j.jhazmat.2020.122129
10.1016/J.JECE.2017.10.052
10.1007/s10973-018-7381-x
10.1016/j.jclepro.2019.05.233
10.1143/JJAP.44.8269
10.1016/j.ces.2018.03.016
10.1016/j.jclepro.2019.04.117
10.1016/j.ceramint.2016.03.222
10.1021/acs.jpcc.5b01858
10.3390/catal9090721
10.1016/j.watres.2021.117531
10.1016/j.mssp.2022.106890
10.1016/j.cej.2019.122269
10.1155/2014/945930
10.1016/j.matpr.2021.04.564
10.1016/j.progsolidstchem.2004.08.001
10.1016/j.jwpe.2014.09.007
10.1021/cs300273q
10.1039/C4RA13734E
10.1021/jp204364a
10.3390/app9030472
10.1016/S1872-2067(20)63705-6
10.1021/es00116a013
10.1016/j.materresbull.2020.111000
10.1016/j.molliq.2020.114922
10.1016/j.jiec.2013.01.019
10.1021/cr0500535
10.1143/JJAP.44.L511
10.1007/s10853-010-5113-0
10.1021/am401247h
10.1016/j.chemosphere.2021.130907
10.1021/ja027155m
10.1016/j.chemosphere.2017.10.139
10.1016/j.jphotochem.2020.113038
10.1016/S1872-2067(21)63910-4
10.1016/j.jenvman.2021.113808
10.1063/1.3211291
10.1006/jcat.2001.3316
10.1016/j.watres.2015.12.022
10.1016/j.jece.2019.103482
10.1016/j.powtec.2021.02.012
10.1016/j.eti.2021.101822
10.1016/j.micromeso.2019.109979
10.1016/j.snb.2018.02.042
10.1016/j.jssc.2020.121417
10.1016/J.WATRES.2010.02.039
10.1002/cssc.201800874
10.1016/j.scitotenv.2020.142000
10.5772/30134
10.1016/j.cej.2020.124184
10.1016/S0167-5729(02)00100-0
10.1016/j.jwpe.2020.101224
10.1016/j.chemosphere.2020.128858
10.1016/j.jhazmat.2009.05.044
10.1016/j.solener.2020.03.053
10.1016/j.ceramint.2020.06.087
10.1016/j.chemosphere.2019.125575
10.1016/j.cej.2020.124691
10.1016/S1566-7367(03)00092-X
10.1016/0021-9517(83)90207-5
10.1016/j.materresbull.2018.03.041
10.1016/j.matchemphys.2021.124431
10.1016/j.jenvman.2017.04.010
10.1111/ics.12709
10.1007/s11356-015-4881-0
10.1007/s11164-017-3036-y
10.1021/la803845f
10.1016/j.nanoen.2013.04.002
10.1039/C4EE01299B
10.1016/j.watres.2008.08.011
10.1016/j.jcis.2020.07.001
10.1016/b978-0-08-100301-5.00004-7
10.1016/j.scitotenv.2022.155482
10.1021/es2042977
10.1080/03602549909351643
10.1016/j.jwpe.2019.101052
10.1103/PhysRevLett.106.138302
10.1111/j.1574-6968.2006.00190.x
10.3390/catal5010077
10.3390/catal9030267
10.1016/j.envres.2021.110747
10.1016/j.molliq.2020.113018
10.1016/j.cattod.2009.06.018
10.1016/j.ceramint.2020.07.064
10.1016/j.apcatb.2008.05.012
10.1016/j.cej.2019.123911
10.1016/j.jhazmat.2021.127063
10.1016/j.molliq.2020.114613
10.1016/j.apsusc.2019.04.030
10.1016/j.jtice.2015.03.006
10.1021/acs.iecr.1c01169
10.1016/j.optmat.2019.04.046
10.1016/j.jhazmat.2020.123964
10.1016/j.jenvman.2012.08.028
10.3390/catal10080924
10.1007/BF03326086
10.1016/j.jallcom.2021.159020
10.1016/j.apcatb.2017.05.041
10.1021/jz1013246
10.1016/j.apcatb.2014.06.059
10.1080/09593331003646612
10.1016/j.seppur.2020.117373
10.1016/j.cej.2020.126151
10.1039/c1ee01577j
10.1002/anie.201006057
10.1016/j.cherd.2019.11.035
10.1016/j.seppur.2019.115962
10.1016/j.ijhydene.2018.03.097
10.1007/s10311-020-01167-7
10.1016/J.JENVMAN.2017.04.099
10.1016/j.ceramint.2014.12.023
10.1016/S0021-9517(02)00172-0
10.1016/j.seppur.2019.116270
10.1016/j.scp.2019.100176
10.1016/J.JECE.2017.11.025
10.1016/j.biomaterials.2010.06.032
10.1016/0165-1633(91)90093-Z
10.1039/c2cs35013k
10.1016/j.jphotochem.2004.02.023
10.1021/acs.est.6b05640
10.1021/ie900859z
10.1016/j.surfrep.2008.09.002
10.1016/j.ultsonch.2020.105343
10.3390/nano9071023
10.1007/s11270-019-4366-8
10.1016/j.jhazmat.2019.120994
10.1007/s11814-016-0059-9
10.1016/j.ceramint.2018.05.144
10.1016/j.jhazmat.2019.120888
10.1016/S1359-0294(03)00049-9
10.1016/j.jenvman.2019.109358
10.1016/J.ARABJC.2014.03.014
10.1186/1471-2180-12-5
10.3390/catal10050560
10.1021/es203976a
10.1016/j.jece.2020.104486
10.1016/j.jes.2017.09.020
10.1016/j.chemosphere.2021.130595
10.1016/j.rser.2005.01.009
10.1002/(SICI)1097-4660(199710)70:2<117::AID-JCTB746>3.0.CO;2-F
10.1016/j.watres.2020.115816
10.1007/s40097-015-0158-x
10.1039/C2CS35355E
10.1016/j.jece.2019.103644
10.1021/cr00033a004
10.1016/j.cej.2020.124917
10.1016/j.cej.2020.125981
10.1038/nchem.1006
10.1016/j.ibiod.2015.07.004
10.1016/j.cej.2019.05.017
10.1038/238037a0
10.3390/w12113132
10.3390/catal11050556
10.1007/s10904-020-01679-3
10.3390/catal9030294
10.1016/j.jcis.2011.07.005
10.1038/nmat3697
10.1021/cm00027a008
10.1016/j.materresbull.2018.11.012
10.3390/nano11071804
10.1016/j.apcatb.2003.11.010
10.1016/j.tet.2019.06.002
10.15406/mseij.2017.01.00018
10.1016/j.envres.2022.113336
10.1021/j100530a011
10.1007/978-981-16-2015-7
10.1016/j.psep.2016.01.010
10.1021/cr00035a013
10.1016/j.watres.2010.02.039
10.1007/BF01685575
10.1016/j.watres.2015.01.018
10.1002/anie.201001374
10.3390/environments7060047
10.1016/j.apcata.2009.02.043
10.1016/j.seppur.2021.118606
ContentType Journal Article
Copyright Institute of Chemistry, Slovak Academy of Sciences 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Institute of Chemistry, Slovak Academy of Sciences 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Institute of Chemistry, Slovak Academy of Sciences 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Institute of Chemistry, Slovak Academy of Sciences 2022 Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Institute of Chemistry, Slovak Academy of Sciences 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Institute of Chemistry, Slovak Academy of Sciences 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
5PM
DOI 10.1007/s11696-022-02468-7
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2585-7290
1336-9075
EndPage 701
ExternalDocumentID PMC9527146
36213320
10_1007_s11696_022_02468_7
Genre Journal Article
Review
GroupedDBID -Y2
.86
.VR
06D
0VY
1N0
29B
2JY
2LR
2VQ
2WC
2~H
30V
4.4
406
408
40D
53G
5GY
5VS
67Z
6J9
6NX
8FE
8FG
8TC
8UJ
95.
95~
AAAVM
AACDK
AAFPC
AAJBT
AAQCX
AASML
AASQH
AATNV
AATVU
AAXMT
AAYQN
AAYZH
ABAKF
ABAQN
ABBRH
ABDBE
ABFKT
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMNI
ABOCM
ABQBU
ABRQL
ABTEG
ABTKH
ABTMW
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACOMO
ACPIV
ACREN
ACZBO
ACZOJ
ADGYE
ADHHG
ADKNI
ADOZN
ADTPH
ADURQ
ADYFF
AEBTG
AEFQL
AEGNC
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEXYK
AFBAA
AFBBN
AFCXV
AFDZB
AFGCZ
AFKRA
AFQWF
AFWTZ
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AHBYD
AHKAY
AHPBZ
AIGIU
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AYFIA
BA0
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
DPUIP
EBLON
FIGPU
G-Y
G-Z
GJIRD
GQ7
H13
HCIFZ
HLICF
HMJXF
HZ~
IAO
IEA
IHE
IJ-
IKXTQ
ISR
ITC
IWAJR
IXC
IXE
IY9
IZQ
I~X
I~Z
JZLTJ
KDC
KOV
L6V
LLZTM
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OAM
OK1
P2P
P9N
PF0
PHGZT
PT4
PTHSS
QD8
QOS
R9I
RNS
ROL
RPX
RSV
S1Z
S27
S3B
SCM
SDH
SHX
SJYHP
SNE
SOJ
T13
TSK
TSV
TUC
U2A
UG4
VC2
WK8
~A9
AAYXX
ABFSG
ACMFV
ACSTC
AEXIE
AEZWR
AFHIU
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
-58
-5G
-BR
ADINQ
GQ6
HG6
NPM
SZN
7SR
7U5
8BQ
8FD
ABRTQ
JG9
L7M
7X8
5PM
ID FETCH-LOGICAL-c474t-7a36e5d57e443f25fdff73556bf9fbfbb747230638bb24f996e35e11cd1d12d83
IEDL.DBID U2A
ISSN 0366-6352
IngestDate Thu Aug 21 18:40:00 EDT 2025
Fri Jul 11 11:36:50 EDT 2025
Wed Aug 13 10:58:46 EDT 2025
Wed Feb 19 02:25:26 EST 2025
Tue Jul 01 05:17:20 EDT 2025
Thu Apr 24 22:59:09 EDT 2025
Thu Apr 10 08:00:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Organic pollutant
Wastewater
Photocatalysts
Photoreactor
Titanium (IV) oxide
Language English
License Institute of Chemistry, Slovak Academy of Sciences 2022, Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-7a36e5d57e443f25fdff73556bf9fbfbb747230638bb24f996e35e11cd1d12d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9527146
PMID 36213320
PQID 2775252105
PQPubID 2039839
PageCount 25
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9527146
proquest_miscellaneous_2723486746
proquest_journals_2775252105
pubmed_primary_36213320
crossref_citationtrail_10_1007_s11696_022_02468_7
crossref_primary_10_1007_s11696_022_02468_7
springer_journals_10_1007_s11696_022_02468_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Warsaw
PublicationPlace_xml – name: Warsaw
– name: Germany
– name: Heidelberg
PublicationTitle Chemical papers
PublicationTitleAbbrev Chem. Pap
PublicationTitleAlternate Chem Zvesti
PublicationYear 2023
Publisher Versita
Springer Nature B.V
Publisher_xml – name: Versita
– name: Springer Nature B.V
References 2468_CR138
2468_CR134
2468_CR137
2468_CR136
MU Azam (2468_CR16) 2019; 484
S Kalogirou (2468_CR85) 2016
2468_CR130
B Bagyalakshmi (2468_CR18) 2018; 44
J Song (2468_CR164) 2020; 379
JG Tao (2468_CR171) 2010; 1
S Jiménez (2468_CR81) 2019; 666
Y Guo (2468_CR69) 2019; 380
D Kanakaraju (2468_CR86) 2019; 14
2468_CR87
S Alzahrani (2468_CR13) 2014; 4
M Nasr (2468_CR129) 2018; 11
A Carabin (2468_CR32) 2015; 54
2468_CR146
AQ Al-Gamal (2468_CR9) 2021; 323
H Wang (2468_CR184) 2022; 43
P Kajitvichyanukul (2468_CR84) 2022; 212
M Batzill (2468_CR23) 2011; 4
2468_CR144
S Munirasu (2468_CR126) 2016; 100
2468_CR140
Y Yamamoto (2468_CR193) 2005; 44
2468_CR94
AL Pruden (2468_CR147) 1983; 17
IK Konstantinou (2468_CR96) 2004; 49
J Peral (2468_CR145) 1997; 70
N Liu (2468_CR108) 2020; 132
JN Wilson (2468_CR185) 2002; 124
2468_CR98
2468_CR156
MW Kadi (2468_CR83) 2020; 46
2468_CR159
R Dewil (2468_CR46) 2017; 2017
S Khalaf (2468_CR90) 2020; 10
2468_CR155
Y Yang (2468_CR196) 2020; 399
M Xu (2468_CR191) 2011; 106
X Liu (2468_CR106) 2019; 9
A Wold (2468_CR187) 1993; 5
B Thomas (2468_CR175) 2020; 288
R Braham (2468_CR30) 2009; 48
2468_CR166
NM Kinsinger (2468_CR93) 2013; 2013
2468_CR165
2468_CR162
M Borges (2468_CR29) 2016; 5
N Kaur (2468_CR88) 2018; 262
G Gogniat (2468_CR64) 2006; 258
D Zhao (2468_CR203) 2020; 2020
C Goodeve (2468_CR65) 1937; 33
2468_CR170
Y Lan (2468_CR101) 2013; 2
Z Li (2468_CR113) 2019; 111
2468_CR180
L Sun (2468_CR167) 2011; 363
EE Anderson (2468_CR14) 1983
2468_CR48
MRD Khaki (2468_CR89) 2017; 198
2468_CR45
JN Wilson (2468_CR186) 2003; 214
2468_CR188
2468_CR182
X Yan (2468_CR198) 2020; 45
N Davari (2468_CR44) 2017; 5
H Liu (2468_CR107) 2020; 393
2468_CR58
K Hashimoto (2468_CR75) 2005; 44
M Fathinia (2468_CR57) 2013; 19
2468_CR54
2468_CR53
GS Douglas (2468_CR50) 2012; 46
A Enesca (2468_CR52) 2015; 162
2468_CR55
S Khan (2468_CR91) 2012; 12
2468_CR197
A Gottfried (2468_CR66) 2008; 42
2468_CR199
D Akhil (2468_CR6) 2021; 19
2468_CR194
2468_CR61
AÇ Günal (2468_CR68) 2019; 231
SV Manjunath (2468_CR120) 2020; 8
S Jiménez (2468_CR80) 2018; 2018
X Feng (2468_CR59) 2021; 266
AH Pejman (2468_CR143) 2009; 6
A Laschewsky (2468_CR102) 2003; 8
Y Zhang (2468_CR202) 2021; 867
S Malato (2468_CR117) 2009; 147
A Saravanan (2468_CR157) 2021; 280
P Wu (2468_CR189) 2010; 31
A Kumar (2468_CR99) 2017; 3
MJ Sawicka (2468_CR158) 2019; 75
2468_CR74
2468_CR73
P Aarthye (2468_CR1) 2021
I Ali (2468_CR10) 2012; 113
2468_CR76
2468_CR77
YAB Neolaka (2468_CR131) 2019; 7
C Regmi (2468_CR153) 2017; 43
M Grätzel (2468_CR67) 2004; 164
R Tao (2468_CR173) 2018; 104
Y Qin (2468_CR151) 2020; 394
MN Chong (2468_CR40) 2010; 44
KG Pavithra (2468_CR142) 2019; 228
RC Medeiros (2468_CR121) 2020; 178
MW Kadi (2468_CR82) 2020; 580
NA Aziz (2468_CR17) 2016; 40
SM Yakout (2468_CR192) 2020; 8
S Adhikari (2468_CR5) 2019; 373
L Liu (2468_CR105) 2012; 2
N Jallouli (2468_CR78) 2017; 10
A Das (2468_CR43) 2021; 263
JG Tao (2468_CR172) 2011; 3
2468_CR12
S Dong (2468_CR49) 2015; 5
A Rafiqa (2468_CR152) 2021; 97
2468_CR28
D Castilla-Caballero (2468_CR35) 2022; 149
WY Pang (2468_CR139) 2019
Z Ghasemi (2468_CR63) 2016; 159
LL Albornoz (2468_CR8) 2021; 268
A Khan (2468_CR92) 2015; 22
X Yang (2468_CR195) 2020; 381
2468_CR4
D Qiao (2468_CR150) 2020; 400
L Murruni (2468_CR128) 2008; 84
2468_CR27
2468_CR26
2468_CR20
JH Carey (2468_CR33) 1976; 16
2468_CR22
W Wang (2468_CR178) 2012; 46
L Cavigli (2468_CR36) 2009; 106
2468_CR201
2468_CR200
G Ren (2468_CR154) 2021; 11
MN Chong (2468_CR41) 2010; 44
DJ Alpert (2468_CR11) 1991; 25
A Fujishima (2468_CR62) 1972; 238
T Haneef (2468_CR72) 2020; 12
P Awati (2468_CR15) 2003; 4
F Zhou (2468_CR204) 2018; 183
DJ Son (2468_CR163) 2020; 35
Y Sun (2468_CR168) 2020; 385
2468_CR34
T Luttrell (2468_CR115) 2015; 4
TW Ng (2468_CR133) 2016; 90
AL Pruden (2468_CR148) 1983; 82
Y Wu (2468_CR190) 2019; 246
RA Senthil (2468_CR160) 2019; 92
P Hadi (2468_CR70) 2015; 73
R Malik (2468_CR118) 2016; 42
IA Mkhalid (2468_CR124) 2020; 46
B O'regan (2468_CR135) 1991; 1991
A Jamal Sisi (2468_CR79) 2020; 308
N Li (2468_CR112) 2017; 214
2468_CR104
2468_CR103
G Manikandan (2468_CR119) 2018; 62
I Bechohra (2468_CR25) 2015; 104
2468_CR100
X Duan (2468_CR51) 2013; 42
C Chee (2468_CR37) 2012
L Meng (2468_CR122) 2017; 61
MR AbuKhadra (2468_CR3) 2020; 389
M Baneto (2468_CR21) 2015; 41
DAH Hanaor (2468_CR71) 2011; 46
2468_CR109
NR Abdullah (2468_CR2) 2019; 9
GF Teixeira (2468_CR174) 2019; 9
S Moradi (2468_CR125) 2020; 251
X Wang (2468_CR183) 2020; 400
X Li (2468_CR114) 2021; 384
Z Kong (2468_CR95) 2019; 231
EM Bayan (2468_CR24) 2021; 24
2468_CR111
C Supplis (2468_CR169) 2018; 43
2468_CR110
S Wageh (2468_CR177) 2021; 42
X Chen (2468_CR38) 2007; 107
G Fan (2468_CR56) 2021; 403
C-C Wang (2468_CR179) 2014; 7
YF Wang (2468_CR181) 2019; 170
A Butkovskyi (2468_CR31) 2017; 51
2468_CR127
U Diebold (2468_CR47) 2003; 48
2468_CR123
CH Nguyen (2468_CR132) 2020; 232
D Bahnemann (2468_CR19) 2004; 77
SN Frank (2468_CR60) 1977; 81
J Chen (2468_CR39) 2021; 195
A Patchaiyappan (2468_CR141) 2016; 33
B Sharma (2468_CR161) 2018; 6
W Lu (2468_CR116) 2020; 247
S Pu (2468_CR149) 2019; 9
SG Akpe (2468_CR7) 2020; 296
References_xml – volume: 246
  start-page: 608
  year: 2019
  ident: 2468_CR190
  publication-title: Environ Pollut
  doi: 10.1016/j.envpol.2018.12.076
– volume: 247
  year: 2020
  ident: 2468_CR116
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2020.116691
– volume: 97
  start-page: 111
  issue: 2021
  year: 2021
  ident: 2468_CR152
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2021.02.017
– ident: 2468_CR111
  doi: 10.1016/j.jhazmat.2014.12.024
– volume: 399
  year: 2020
  ident: 2468_CR196
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.123070
– volume: 45
  start-page: 19206
  year: 2020
  ident: 2468_CR198
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2020.05.052
– volume: 33
  start-page: 340
  year: 1937
  ident: 2468_CR65
  publication-title: Trans Faraday Soc
  doi: 10.1039/tf9373300340
– ident: 2468_CR12
  doi: 10.3390/su14010499
– volume: 77
  start-page: 445
  issue: 5
  year: 2004
  ident: 2468_CR19
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2004.03.031
– volume: 159
  start-page: 552
  year: 2016
  ident: 2468_CR63
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.06.058
– volume: 40
  start-page: 704
  issue: 11
  year: 2016
  ident: 2468_CR17
  publication-title: J Chem Res
  doi: 10.3184/174751916x14769685673665
– ident: 2468_CR77
  doi: 10.1016/j.cej.2019.123685
– volume: 62
  start-page: 446
  year: 2018
  ident: 2468_CR119
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2018.01.028
– volume: 666
  start-page: 12
  year: 2019
  ident: 2468_CR81
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2019.02.128
– volume: 170
  start-page: 76
  year: 2019
  ident: 2468_CR181
  publication-title: Scripta Mater
  doi: 10.1016/j.scriptamat.2019.05.036
– volume: 400
  year: 2020
  ident: 2468_CR150
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.125952
– volume: 389
  year: 2020
  ident: 2468_CR3
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.122129
– volume: 5
  start-page: 5707
  year: 2017
  ident: 2468_CR44
  publication-title: J Environ Chem Eng
  doi: 10.1016/J.JECE.2017.10.052
– ident: 2468_CR162
  doi: 10.1007/s10973-018-7381-x
– volume: 231
  start-page: 913
  year: 2019
  ident: 2468_CR95
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.05.233
– volume: 44
  start-page: 8269
  issue: 12R
  year: 2005
  ident: 2468_CR75
  publication-title: Jpn J Appl Phys
  doi: 10.1143/JJAP.44.8269
– volume: 183
  start-page: 231
  year: 2018
  ident: 2468_CR204
  publication-title: Chem Eng Sci
  doi: 10.1016/j.ces.2018.03.016
– volume: 228
  start-page: 580
  year: 2019
  ident: 2468_CR142
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2019.04.117
– volume: 42
  start-page: 10892
  year: 2016
  ident: 2468_CR118
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2016.03.222
– ident: 2468_CR180
  doi: 10.1021/acs.jpcc.5b01858
– volume: 9
  start-page: 721
  year: 2019
  ident: 2468_CR174
  publication-title: Catalysts
  doi: 10.3390/catal9090721
– ident: 2468_CR55
  doi: 10.1016/j.watres.2021.117531
– volume: 149
  year: 2022
  ident: 2468_CR35
  publication-title: Mater Sci Semicond Process
  doi: 10.1016/j.mssp.2022.106890
– volume: 379
  start-page: 122269
  year: 2020
  ident: 2468_CR164
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.122269
– ident: 2468_CR137
  doi: 10.1155/2014/945930
– year: 2021
  ident: 2468_CR1
  publication-title: Mater Today: Proc
  doi: 10.1016/j.matpr.2021.04.564
– ident: 2468_CR34
  doi: 10.1016/j.progsolidstchem.2004.08.001
– volume: 4
  start-page: 107
  year: 2014
  ident: 2468_CR13
  publication-title: J Water Process Eng
  doi: 10.1016/j.jwpe.2014.09.007
– volume: 2
  start-page: 1817
  year: 2012
  ident: 2468_CR105
  publication-title: ACS Catal
  doi: 10.1021/cs300273q
– volume: 5
  start-page: 14610
  issue: 19
  year: 2015
  ident: 2468_CR49
  publication-title: Rsc Adv
  doi: 10.1039/C4RA13734E
– ident: 2468_CR45
  doi: 10.1021/jp204364a
– ident: 2468_CR156
  doi: 10.3390/app9030472
– volume: 42
  start-page: 667
  year: 2021
  ident: 2468_CR177
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(20)63705-6
– volume: 17
  start-page: 628
  year: 1983
  ident: 2468_CR147
  publication-title: Environ Sci Technol
  doi: 10.1021/es00116a013
– volume: 132
  year: 2020
  ident: 2468_CR108
  publication-title: Mater Res Bull
  doi: 10.1016/j.materresbull.2020.111000
– volume: 323
  year: 2021
  ident: 2468_CR9
  publication-title: J Molecular Liquids
  doi: 10.1016/j.molliq.2020.114922
– volume: 19
  start-page: 1525
  issue: 5
  year: 2013
  ident: 2468_CR57
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2013.01.019
– volume: 107
  start-page: 2891
  issue: 2007
  year: 2007
  ident: 2468_CR38
  publication-title: Chem Rev
  doi: 10.1021/cr0500535
– volume: 44
  start-page: L511
  year: 2005
  ident: 2468_CR193
  publication-title: Jpn J Appl Phys
  doi: 10.1143/JJAP.44.L511
– volume: 46
  start-page: 855
  issue: 2011
  year: 2011
  ident: 2468_CR71
  publication-title: J Mater Sci
  doi: 10.1007/s10853-010-5113-0
– volume: 2013
  start-page: 6247
  issue: 5
  year: 2013
  ident: 2468_CR93
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/am401247h
– ident: 2468_CR200
  doi: 10.1016/j.chemosphere.2021.130907
– volume: 124
  start-page: 11284
  year: 2002
  ident: 2468_CR185
  publication-title: J Am Chem Soc
  doi: 10.1021/ja027155m
– volume: 2018
  start-page: 186
  issue: 192
  year: 2018
  ident: 2468_CR80
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2017.10.139
– ident: 2468_CR130
  doi: 10.1016/j.jphotochem.2020.113038
– volume: 43
  start-page: 178
  issue: 2
  year: 2022
  ident: 2468_CR184
  publication-title: Chin J Catal
  doi: 10.1016/S1872-2067(21)63910-4
– ident: 2468_CR22
  doi: 10.1016/j.jenvman.2021.113808
– volume: 106
  start-page: 053516
  year: 2009
  ident: 2468_CR36
  publication-title: J Appl Phys
  doi: 10.1063/1.3211291
– ident: 2468_CR136
  doi: 10.1006/jcat.2001.3316
– volume: 90
  start-page: 111
  year: 2016
  ident: 2468_CR133
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.12.022
– volume: 7
  start-page: 103482
  year: 2019
  ident: 2468_CR131
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2019.103482
– volume: 384
  start-page: 342
  year: 2021
  ident: 2468_CR114
  publication-title: Powder Technol
  doi: 10.1016/j.powtec.2021.02.012
– volume: 24
  year: 2021
  ident: 2468_CR24
  publication-title: Environ Technol Innov
  doi: 10.1016/j.eti.2021.101822
– volume: 296
  year: 2020
  ident: 2468_CR7
  publication-title: Microporous Mesoporous Mater
  doi: 10.1016/j.micromeso.2019.109979
– volume: 262
  start-page: 477
  year: 2018
  ident: 2468_CR88
  publication-title: Sens Actuators B
  doi: 10.1016/j.snb.2018.02.042
– volume: 288
  year: 2020
  ident: 2468_CR175
  publication-title: J Solid State Chem
  doi: 10.1016/j.jssc.2020.121417
– volume: 44
  start-page: 2997
  year: 2010
  ident: 2468_CR41
  publication-title: Water Res
  doi: 10.1016/J.WATRES.2010.02.039
– volume: 11
  start-page: 3023
  issue: 18
  year: 2018
  ident: 2468_CR129
  publication-title: Chemsuschem
  doi: 10.1002/cssc.201800874
– ident: 2468_CR58
  doi: 10.1016/j.scitotenv.2020.142000
– year: 2012
  ident: 2468_CR37
  publication-title: Stud Water Manag Issues
  doi: 10.5772/30134
– ident: 2468_CR170
  doi: 10.1016/j.cej.2020.124184
– volume: 48
  start-page: 53
  year: 2003
  ident: 2468_CR47
  publication-title: Surf Sci Rep
  doi: 10.1016/S0167-5729(02)00100-0
– volume: 35
  year: 2020
  ident: 2468_CR163
  publication-title: J Water Process Eng
  doi: 10.1016/j.jwpe.2020.101224
– volume: 268
  year: 2021
  ident: 2468_CR8
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.128858
– ident: 2468_CR54
  doi: 10.1016/j.jhazmat.2009.05.044
– volume: 2020
  start-page: 872
  issue: 201
  year: 2020
  ident: 2468_CR203
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.03.053
– volume: 46
  start-page: 23098
  year: 2020
  ident: 2468_CR83
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2020.06.087
– ident: 2468_CR146
  doi: 10.1016/j.chemosphere.2019.125575
– volume: 393
  start-page: 124691
  year: 2020
  ident: 2468_CR107
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.124691
– volume: 4
  start-page: 393
  year: 2003
  ident: 2468_CR15
  publication-title: Catal Commun
  doi: 10.1016/S1566-7367(03)00092-X
– volume: 82
  start-page: 404
  year: 1983
  ident: 2468_CR148
  publication-title: J Catal
  doi: 10.1016/0021-9517(83)90207-5
– volume: 104
  start-page: 124
  year: 2018
  ident: 2468_CR173
  publication-title: Mater Res Bull
  doi: 10.1016/j.materresbull.2018.03.041
– volume: 263
  year: 2021
  ident: 2468_CR43
  publication-title: Mater Chem Phys
  doi: 10.1016/j.matchemphys.2021.124431
– volume: 2017
  start-page: 93
  issue: 195
  year: 2017
  ident: 2468_CR46
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2017.04.010
– ident: 2468_CR28
  doi: 10.1111/ics.12709
– volume: 22
  start-page: 13772
  year: 2015
  ident: 2468_CR92
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-015-4881-0
– volume: 43
  start-page: 5203
  year: 2017
  ident: 2468_CR153
  publication-title: Res Chem Intermed
  doi: 10.1007/s11164-017-3036-y
– ident: 2468_CR94
  doi: 10.1021/la803845f
– volume: 2
  start-page: 1031
  issue: 5
  year: 2013
  ident: 2468_CR101
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2013.04.002
– volume: 7
  start-page: 2831
  year: 2014
  ident: 2468_CR179
  publication-title: Energy Environ Sci
  doi: 10.1039/C4EE01299B
– volume: 42
  start-page: 4683
  year: 2008
  ident: 2468_CR66
  publication-title: Water Res
  doi: 10.1016/j.watres.2008.08.011
– volume: 580
  start-page: 223
  year: 2020
  ident: 2468_CR82
  publication-title: J Colloid Interfac Sci
  doi: 10.1016/j.jcis.2020.07.001
– year: 2016
  ident: 2468_CR85
  publication-title: Adv Solar Heat Cool
  doi: 10.1016/b978-0-08-100301-5.00004-7
– ident: 2468_CR123
– ident: 2468_CR109
  doi: 10.1016/j.scitotenv.2022.155482
– volume: 46
  start-page: 4599
  year: 2012
  ident: 2468_CR178
  publication-title: Environ Sci Technol
  doi: 10.1021/es2042977
– ident: 2468_CR27
  doi: 10.1080/03602549909351643
– ident: 2468_CR197
  doi: 10.1016/j.jwpe.2019.101052
– volume: 106
  start-page: 138302
  year: 2011
  ident: 2468_CR191
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.106.138302
– volume: 258
  start-page: 18
  year: 2006
  ident: 2468_CR64
  publication-title: FEMS Microbiol Lett
  doi: 10.1111/j.1574-6968.2006.00190.x
– volume: 5
  start-page: 77
  year: 2016
  ident: 2468_CR29
  publication-title: Catalysts
  doi: 10.3390/catal5010077
– volume: 9
  start-page: 267
  year: 2019
  ident: 2468_CR149
  publication-title: Catalysts
  doi: 10.3390/catal9030267
– volume: 195
  year: 2021
  ident: 2468_CR39
  publication-title: Environ Res
  doi: 10.1016/j.envres.2021.110747
– volume: 308
  year: 2020
  ident: 2468_CR79
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2020.113018
– volume: 147
  start-page: 1
  issue: 1
  year: 2009
  ident: 2468_CR117
  publication-title: Catal Today
  doi: 10.1016/j.cattod.2009.06.018
– volume: 46
  start-page: 25822
  year: 2020
  ident: 2468_CR124
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2020.07.064
– volume: 84
  start-page: 563
  year: 2008
  ident: 2468_CR128
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2008.05.012
– volume: 385
  year: 2020
  ident: 2468_CR168
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.123911
– ident: 2468_CR110
  doi: 10.1016/j.jhazmat.2021.127063
– ident: 2468_CR165
  doi: 10.1016/j.molliq.2020.114613
– volume: 484
  start-page: 1089
  year: 2019
  ident: 2468_CR16
  publication-title: App Surf Sci
  doi: 10.1016/j.apsusc.2019.04.030
– volume: 54
  start-page: 109
  year: 2015
  ident: 2468_CR32
  publication-title: J Taiwan Inst Chem Eng
  doi: 10.1016/j.jtice.2015.03.006
– ident: 2468_CR100
  doi: 10.1021/acs.iecr.1c01169
– volume: 1991
  start-page: 353
  year: 1991
  ident: 2468_CR135
  publication-title: Nature
– ident: 2468_CR138
– volume: 92
  start-page: 284
  year: 2019
  ident: 2468_CR160
  publication-title: Opt Mater
  doi: 10.1016/j.optmat.2019.04.046
– volume: 403
  year: 2021
  ident: 2468_CR56
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2020.123964
– volume: 113
  start-page: 170
  year: 2012
  ident: 2468_CR10
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2012.08.028
– ident: 2468_CR104
  doi: 10.3390/catal10080924
– volume: 6
  start-page: 467
  year: 2009
  ident: 2468_CR143
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/BF03326086
– volume: 867
  year: 2021
  ident: 2468_CR202
  publication-title: J Alloy Compd
  doi: 10.1016/j.jallcom.2021.159020
– volume: 214
  start-page: 126
  year: 2017
  ident: 2468_CR112
  publication-title: Appl Catal B Environ
  doi: 10.1016/j.apcatb.2017.05.041
– volume: 1
  start-page: 3200
  year: 2010
  ident: 2468_CR171
  publication-title: J Phys Chem Lett
  doi: 10.1021/jz1013246
– volume: 162
  start-page: 352
  year: 2015
  ident: 2468_CR52
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2014.06.059
– ident: 2468_CR144
  doi: 10.1080/09593331003646612
– volume: 251
  year: 2020
  ident: 2468_CR125
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2020.117373
– ident: 2468_CR182
  doi: 10.1016/j.cej.2020.126151
– ident: 2468_CR20
  doi: 10.1016/j.solener.2004.03.031
– ident: 2468_CR98
  doi: 10.1021/jp204364a
– volume: 4
  start-page: 3275
  year: 2011
  ident: 2468_CR23
  publication-title: Energy Environm Sci
  doi: 10.1039/c1ee01577j
– ident: 2468_CR140
  doi: 10.1002/anie.201006057
– ident: 2468_CR87
  doi: 10.1016/j.cherd.2019.11.035
– volume: 232
  year: 2020
  ident: 2468_CR132
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2019.115962
– volume: 43
  start-page: 8221
  year: 2018
  ident: 2468_CR169
  publication-title: Int J Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.03.097
– volume: 19
  start-page: 2261
  year: 2021
  ident: 2468_CR6
  publication-title: Environ Chem Lett
  doi: 10.1007/s10311-020-01167-7
– volume: 198
  start-page: 78
  year: 2017
  ident: 2468_CR89
  publication-title: J Environ Manag
  doi: 10.1016/J.JENVMAN.2017.04.099
– volume: 41
  start-page: 4742
  year: 2015
  ident: 2468_CR21
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2014.12.023
– volume: 214
  start-page: 46
  year: 2003
  ident: 2468_CR186
  publication-title: J Catal
  doi: 10.1016/S0021-9517(02)00172-0
– ident: 2468_CR194
  doi: 10.1016/j.seppur.2019.116270
– volume: 14
  start-page: 100176
  year: 2019
  ident: 2468_CR86
  publication-title: Sustain Chem Pharm
  doi: 10.1016/j.scp.2019.100176
– volume: 6
  start-page: 134
  year: 2018
  ident: 2468_CR161
  publication-title: J Environ Chem Eng
  doi: 10.1016/J.JECE.2017.11.025
– volume: 31
  start-page: 7526
  year: 2010
  ident: 2468_CR189
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2010.06.032
– volume: 25
  start-page: 594
  year: 1991
  ident: 2468_CR11
  publication-title: Solar Energy Mater
  doi: 10.1016/0165-1633(91)90093-Z
– ident: 2468_CR26
– ident: 2468_CR61
  doi: 10.1039/c2cs35013k
– volume: 164
  start-page: 3
  issue: 1–3
  year: 2004
  ident: 2468_CR67
  publication-title: J Photochem Photobiol A Chem
  doi: 10.1016/j.jphotochem.2004.02.023
– volume: 51
  start-page: 4740
  year: 2017
  ident: 2468_CR31
  publication-title: Environ Sci Technol
  doi: 10.1021/acs.est.6b05640
– volume: 48
  start-page: 8890
  issue: 2009
  year: 2009
  ident: 2468_CR30
  publication-title: Ind Eng Chem Res
  doi: 10.1021/ie900859z
– ident: 2468_CR127
  doi: 10.1016/j.surfrep.2008.09.002
– ident: 2468_CR201
  doi: 10.1016/j.ultsonch.2020.105343
– volume: 9
  start-page: 1023
  year: 2019
  ident: 2468_CR2
  publication-title: Nanomaterials
  doi: 10.3390/nano9071023
– volume: 231
  start-page: 4
  year: 2019
  ident: 2468_CR68
  publication-title: Water Air Soil Pollut
  doi: 10.1007/s11270-019-4366-8
– volume: 381
  year: 2020
  ident: 2468_CR195
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.120994
– volume: 33
  start-page: 2107
  issue: 7
  year: 2016
  ident: 2468_CR141
  publication-title: Korean J Chem Eng
  doi: 10.1007/s11814-016-0059-9
– volume: 44
  start-page: 15099
  year: 2018
  ident: 2468_CR18
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2018.05.144
– volume: 380
  year: 2019
  ident: 2468_CR69
  publication-title: J Hazard Mater
  doi: 10.1016/j.jhazmat.2019.120888
– volume: 8
  start-page: 274
  issue: 3
  year: 2003
  ident: 2468_CR102
  publication-title: Curr Opin Colloid Interface Sci
  doi: 10.1016/S1359-0294(03)00049-9
– year: 2019
  ident: 2468_CR139
  publication-title: J Environ Manag
  doi: 10.1016/j.jenvman.2019.109358
– volume: 10
  start-page: S3640
  year: 2017
  ident: 2468_CR78
  publication-title: Arab J Chem
  doi: 10.1016/J.ARABJC.2014.03.014
– volume: 12
  start-page: 5
  issue: 1
  year: 2012
  ident: 2468_CR91
  publication-title: BMC Microbiol
  doi: 10.1186/1471-2180-12-5
– volume: 10
  start-page: 560
  year: 2020
  ident: 2468_CR90
  publication-title: Catalysts
  doi: 10.3390/catal10050560
– volume: 46
  start-page: 8279
  year: 2012
  ident: 2468_CR50
  publication-title: Environ Sci Technol
  doi: 10.1021/es203976a
– volume: 8
  year: 2020
  ident: 2468_CR120
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2020.104486
– volume: 61
  start-page: 110
  year: 2017
  ident: 2468_CR122
  publication-title: J Environ Sci China
  doi: 10.1016/j.jes.2017.09.020
– volume: 280
  start-page: 130595
  year: 2021
  ident: 2468_CR157
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2021.130595
– ident: 2468_CR134
  doi: 10.1016/j.rser.2005.01.009
– volume: 70
  start-page: 117
  issue: 2
  year: 1997
  ident: 2468_CR145
  publication-title: J Chem Technol Biotechnol
  doi: 10.1002/(SICI)1097-4660(199710)70:2<117::AID-JCTB746>3.0.CO;2-F
– volume: 178
  start-page: 115816
  year: 2020
  ident: 2468_CR121
  publication-title: Water Res
  doi: 10.1016/j.watres.2020.115816
– ident: 2468_CR199
  doi: 10.1007/s40097-015-0158-x
– volume: 42
  start-page: 2568
  issue: 7
  year: 2013
  ident: 2468_CR51
  publication-title: Chem Soc Rev
  doi: 10.1039/C2CS35355E
– volume: 8
  year: 2020
  ident: 2468_CR192
  publication-title: J Environ Chem Eng
  doi: 10.1016/j.jece.2019.103644
– ident: 2468_CR76
  doi: 10.1021/cr00033a004
– volume: 394
  year: 2020
  ident: 2468_CR151
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.124917
– volume: 400
  year: 2020
  ident: 2468_CR183
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2020.125981
– volume: 3
  start-page: 296
  year: 2011
  ident: 2468_CR172
  publication-title: Nature Chem
  doi: 10.1038/nchem.1006
– volume: 104
  start-page: 350
  year: 2015
  ident: 2468_CR25
  publication-title: Int Biodeterior Biodegrad
  doi: 10.1016/j.ibiod.2015.07.004
– volume: 373
  start-page: 31
  year: 2019
  ident: 2468_CR5
  publication-title: Chem Eng J
  doi: 10.1016/j.cej.2019.05.017
– volume: 238
  start-page: 37
  issue: 5358
  year: 1972
  ident: 2468_CR62
  publication-title: Nature
  doi: 10.1038/238037a0
– volume: 12
  start-page: 3132
  year: 2020
  ident: 2468_CR72
  publication-title: Water
  doi: 10.3390/w12113132
– ident: 2468_CR53
  doi: 10.3390/catal11050556
– ident: 2468_CR48
  doi: 10.1007/s10904-020-01679-3
– volume: 9
  start-page: 294
  year: 2019
  ident: 2468_CR106
  publication-title: Catalysts
  doi: 10.3390/catal9030294
– volume: 363
  start-page: 175
  year: 2011
  ident: 2468_CR167
  publication-title: J Colloid Interface Sci
  doi: 10.1016/j.jcis.2011.07.005
– ident: 2468_CR159
  doi: 10.1038/nmat3697
– volume: 5
  start-page: 280
  issue: 3
  year: 1993
  ident: 2468_CR187
  publication-title: Chem Mater
  doi: 10.1021/cm00027a008
– volume: 111
  start-page: 238
  year: 2019
  ident: 2468_CR113
  publication-title: Mater Res Bull
  doi: 10.1016/j.materresbull.2018.11.012
– volume: 11
  start-page: 1804
  year: 2021
  ident: 2468_CR154
  publication-title: Nanomaterials
  doi: 10.3390/nano11071804
– volume: 49
  start-page: 1
  issue: 1
  year: 2004
  ident: 2468_CR96
  publication-title: Appl Catal B
  doi: 10.1016/j.apcatb.2003.11.010
– volume: 75
  start-page: 3822
  year: 2019
  ident: 2468_CR158
  publication-title: Tetrahedron
  doi: 10.1016/j.tet.2019.06.002
– start-page: 653
  volume-title: Fundamentals of solar energy conversion
  year: 1983
  ident: 2468_CR14
– ident: 2468_CR188
– volume: 3
  start-page: 106
  year: 2017
  ident: 2468_CR99
  publication-title: Mater Sci Eng Int J
  doi: 10.15406/mseij.2017.01.00018
– volume: 212
  year: 2022
  ident: 2468_CR84
  publication-title: Environ Res
  doi: 10.1016/j.envres.2022.113336
– volume: 81
  start-page: 1484
  year: 1977
  ident: 2468_CR60
  publication-title: J Phys Chem
  doi: 10.1021/j100530a011
– volume: 4
  start-page: 1
  issue: 2015
  year: 2015
  ident: 2468_CR115
  publication-title: Sci Rep
– ident: 2468_CR74
  doi: 10.1007/978-981-16-2015-7
– volume: 100
  start-page: 183
  year: 2016
  ident: 2468_CR126
  publication-title: Process Saf Environ Prot
  doi: 10.1016/j.psep.2016.01.010
– ident: 2468_CR103
  doi: 10.1021/cr00035a013
– volume: 44
  start-page: 2997
  issue: 10
  year: 2010
  ident: 2468_CR40
  publication-title: Water Res
  doi: 10.1016/j.watres.2010.02.039
– ident: 2468_CR4
– volume: 16
  start-page: 697
  year: 1976
  ident: 2468_CR33
  publication-title: Bull Environ Contam Toxicol
  doi: 10.1007/BF01685575
– volume: 73
  start-page: 37
  year: 2015
  ident: 2468_CR70
  publication-title: Water Res
  doi: 10.1016/j.watres.2015.01.018
– ident: 2468_CR155
  doi: 10.1002/anie.201001374
– ident: 2468_CR166
  doi: 10.3390/environments7060047
– ident: 2468_CR73
  doi: 10.1016/j.apcata.2009.02.043
– volume: 266
  year: 2021
  ident: 2468_CR59
  publication-title: Sep Purif Technol
  doi: 10.1016/j.seppur.2021.118606
SSID ssj0044050
ssib044732867
ssib029106359
Score 2.6550481
SecondaryResourceType review_article
Snippet Wastewaters often contain toxic organic pollutants with a possible adverse effect on human health and aquatic life upon exposure. Persistent organic pollutants...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 677
SubjectTerms Alternative technology
Biochemistry
Biotechnology
Chemical synthesis
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Industrial Chemistry/Chemical Engineering
Industrial wastes
Materials Science
Medicinal Chemistry
Photocatalysis
Photocatalysts
Pollutants
Review
Titanium dioxide
Wastewater treatment
Water treatment
Title The photocatalytic process in the treatment of polluted water
URI https://link.springer.com/article/10.1007/s11696-022-02468-7
https://www.ncbi.nlm.nih.gov/pubmed/36213320
https://www.proquest.com/docview/2775252105
https://www.proquest.com/docview/2723486746
https://pubmed.ncbi.nlm.nih.gov/PMC9527146
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-DnoR364vInjTQjt5bY-LKCLoyQVvxTQZVpB2cXcR_72Tvpb1BR56yqRpZ9LON5kXY-fOS-MtuigWSkZSuDSyzukIUgMaMDYWwznk_YO-Hcq7J_XUJIVN2mj31iVZ_annyW6JrgJmga6QL2SW2aoi2z0Ecg1h0O4iIAVIWrRT0lKGejS6M8MkQZS49mDqiAihSaX5eY1FdfUNg34PpfziT63U1M0m22jwJR_UG2KLLflim61dtW3ddqq-8nw8KqdldXLzQXR8XGcL8JeCEx7kXfA5L5GPQy9kgqX8nVDp2y4b3lw_Xt1GTQ-FKJdGTiPzLLRXThkvpUBQ6BANYQxtMUWL1pI5EawQ0bcWJJL144XySZK7xCXg-mKPrRRl4Q8YR61y8BDb1ElphUgVGpUiJujjOPemx5KWVVneFBgPfS5es3lp5MDejNibVezNaM5FN2dcl9f4k_q4lUDWfGqTDIxRQCAkVj121g0TU4Pn47nw5SzQgAilBaXusf1aYN1ypMHJToe4x8yCKDuCUIB7caR4GVWFuFMFJgn3vGyFPn-s39_i8H_kR2w9tLivI8WP2cr0beZPCAhN7Wm17z8BvwD7ag
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF6V9BAuFZQCaYFuJW7Fkj37io9RBEopcCJSblbWuyOQkB2FoKr_vrN-ReEl9eDTzvoxs-v5ZufF2Knz0niLLoqFkpEULo2sczqC1IAGjI3FcA55faMnU3k5U7MmKeyxjXZvXZLVn3qd7JboKmAW6Ar5QmaLfSQwMAxreQqjdhUBKUDSop2SljLUo9GdGSYJosS1B1NHRAhNKs3rz9hUVy8w6MtQymf-1EpNXeywTw2-5KN6QeyyD774zPrjtq3bXtVXni_uylVZndz8JTq-qLMF-H3BCQ_yLvicl8gXoRcywVL-h1Dp8gubXpzfjidR00MhyqWRq8jMhfbKKeOlFAgKHaIhjKEtpmjRWjInghUihtaCRLJ-vFA-SXKXuATcUOyzXlEW_pBx1CoHD7FNnZRWiFShUSligj6Oc28GLGlZleVNgfHQ5-IhW5dGDuzNiL1Zxd6M5vzs5izq8hrvUh-1EsiarfaYgTEKCITEasB-dMPE1OD5mBe-fAo0IEJpQakH7KAWWPc40uBkp0M8YGZDlB1BKMC9OVLc31WFuFMFJgn3PGuFvn6tt7_i6_-Rf2f9ye31VXb16-b3N7Yd2t3XUeNHrLdaPvljAkUre1LtgX_GIf5d
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELaASqWXitJCt6VgpN7aiGT82hxX0BVvcehK3CIcewQSSiIIQv33Hee13dIiccjJ4ziZsTXfeF6MfXVeGm_RRbFQMpLCpZF1TkeQGtCAsbEY7iHPzvXhTB5fqss_svibaPfeJdnmNIQqTUW9Vzncmye-JboJngV6Qu6QWWavZMgGph09g0m_o4CUIWnUQWFLGWrT6MEkkwRX4tabqSMihC6t5t9rLKquJ3j0aVjlX77VRmVN19jbDmvySbs53rElX6yz1f2-xdv7psc8r67LumxucX4RHa_azAF-U3DChnwIROcl8ir0RSaIyh8Jod59YLPpj5_7h1HXTyHKpZF1ZK6E9sop46UUCAodoiG8oS2maNFaMi2CRSLG1oJEsoS8UD5Jcpe4BNxYbLCVoiz8R8ZRqxw8xDZ1UlohUoVGpYgJ-jjOvRmxpGdVlnfFxkPPi9tsXiY5sDcj9mYNezOa822YU7WlNp6l3uolkHXH7j4DYxQQIInViO0Ow8TU4AW5Knz5EGhAhDKDUo_YZiuwYTnS5mSzQzxiZkGUA0Eoxr04UtxcN0W5UwUmCe_83gt9_ln__4tPLyPfYa8vDqbZ6dH5yWf2BghvtQHkW2ylvnvwXwgf1Xa7OQK_AWZFAp8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+photocatalytic+process+in+the+treatment+of+polluted+water&rft.jtitle=Chemical+papers&rft.au=Al-Nuaim%2C+Marwah+A&rft.au=Alwasiti%2C+Asawer+A&rft.au=Shnain%2C+Zainab+Y&rft.date=2023-02-01&rft.issn=0366-6352&rft.volume=77&rft.issue=2&rft.spage=677&rft_id=info:doi/10.1007%2Fs11696-022-02468-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0366-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0366-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0366-6352&client=summon