Coinoculation impact on plant growth promotion: a review and meta-analysis on coinoculation of rhizobia and plant growth-promoting bacilli in grain legumes

Coinoculation of symbiotic N 2 -fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung b...

Full description

Saved in:
Bibliographic Details
Published inBrazilian journal of microbiology Vol. 53; no. 4; pp. 2027 - 2037
Main Authors Kaschuk, Glaciela, Auler, André Carlos, Vieira, Crislaine Emidio, Dakora, Felix Dapore, Jaiswal, Sanjay K., da Cruz, Sonia Purin
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coinoculation of symbiotic N 2 -fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung bean, pea, pigeon pea, soybean, and urad bean to verify the magnitude of additive effects of coinoculation in relation to single inoculation of rhizobia on plant growth and yield of grain legumes. Coinoculation of rhizobia and bacilli on legume seeds and/or soil during sowing significantly increased nodulation, nitrogenase activity, plant N and P contents, and shoot and root biomass, as well as the grain yield of most grain legumes studied. There were however a few instances where coinoculation decreased plant growth parameters. Therefore, coinoculation of rhizobia and Bacillus has the potential to increase the growth and productivity of grain legumes, and can be recommended as an environmental-friendly agricultural practice for increased crop yields.
AbstractList Coinoculation of symbiotic N 2 -fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung bean, pea, pigeon pea, soybean, and urad bean to verify the magnitude of additive effects of coinoculation in relation to single inoculation of rhizobia on plant growth and yield of grain legumes. Coinoculation of rhizobia and bacilli on legume seeds and/or soil during sowing significantly increased nodulation, nitrogenase activity, plant N and P contents, and shoot and root biomass, as well as the grain yield of most grain legumes studied. There were however a few instances where coinoculation decreased plant growth parameters. Therefore, coinoculation of rhizobia and Bacillus has the potential to increase the growth and productivity of grain legumes, and can be recommended as an environmental-friendly agricultural practice for increased crop yields.
Coinoculation of symbiotic N2-fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung bean, pea, pigeon pea, soybean, and urad bean to verify the magnitude of additive effects of coinoculation in relation to single inoculation of rhizobia on plant growth and yield of grain legumes. Coinoculation of rhizobia and bacilli on legume seeds and/or soil during sowing significantly increased nodulation, nitrogenase activity, plant N and P contents, and shoot and root biomass, as well as the grain yield of most grain legumes studied. There were however a few instances where coinoculation decreased plant growth parameters. Therefore, coinoculation of rhizobia and Bacillus has the potential to increase the growth and productivity of grain legumes, and can be recommended as an environmental-friendly agricultural practice for increased crop yields.Coinoculation of symbiotic N2-fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung bean, pea, pigeon pea, soybean, and urad bean to verify the magnitude of additive effects of coinoculation in relation to single inoculation of rhizobia on plant growth and yield of grain legumes. Coinoculation of rhizobia and bacilli on legume seeds and/or soil during sowing significantly increased nodulation, nitrogenase activity, plant N and P contents, and shoot and root biomass, as well as the grain yield of most grain legumes studied. There were however a few instances where coinoculation decreased plant growth parameters. Therefore, coinoculation of rhizobia and Bacillus has the potential to increase the growth and productivity of grain legumes, and can be recommended as an environmental-friendly agricultural practice for increased crop yields.
Coinoculation of symbiotic N -fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung bean, pea, pigeon pea, soybean, and urad bean to verify the magnitude of additive effects of coinoculation in relation to single inoculation of rhizobia on plant growth and yield of grain legumes. Coinoculation of rhizobia and bacilli on legume seeds and/or soil during sowing significantly increased nodulation, nitrogenase activity, plant N and P contents, and shoot and root biomass, as well as the grain yield of most grain legumes studied. There were however a few instances where coinoculation decreased plant growth parameters. Therefore, coinoculation of rhizobia and Bacillus has the potential to increase the growth and productivity of grain legumes, and can be recommended as an environmental-friendly agricultural practice for increased crop yields.
Abstract Coinoculation of symbiotic N2-fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung bean, pea, pigeon pea, soybean, and urad bean to verify the magnitude of additive effects of coinoculation in relation to single inoculation of rhizobia on plant growth and yield of grain legumes. Coinoculation of rhizobia and bacilli on legume seeds and/or soil during sowing significantly increased nodulation, nitrogenase activity, plant N and P contents, and shoot and root biomass, as well as the grain yield of most grain legumes studied. There were however a few instances where coinoculation decreased plant growth parameters. Therefore, coinoculation of rhizobia and Bacillus has the potential to increase the growth and productivity of grain legumes, and can be recommended as an environmental-friendly agricultural practice for increased crop yields.
Author Kaschuk, Glaciela
Vieira, Crislaine Emidio
Auler, André Carlos
Jaiswal, Sanjay K.
da Cruz, Sonia Purin
Dakora, Felix Dapore
Author_xml – sequence: 1
  givenname: Glaciela
  orcidid: 0000-0002-8993-6563
  surname: Kaschuk
  fullname: Kaschuk, Glaciela
  email: glaciela.kaschuk@ufpr.br
  organization: Post-Graduation in Soil Science, Federal University of Paraná
– sequence: 2
  givenname: André Carlos
  orcidid: 0000-0002-2700-6512
  surname: Auler
  fullname: Auler, André Carlos
  organization: Post-Graduation in Soil Science, Federal University of Paraná
– sequence: 3
  givenname: Crislaine Emidio
  orcidid: 0000-0003-3503-7228
  surname: Vieira
  fullname: Vieira, Crislaine Emidio
  organization: Post-Graduation in Soil Science, Federal University of Paraná
– sequence: 4
  givenname: Felix Dapore
  orcidid: 0000-0002-9070-6896
  surname: Dakora
  fullname: Dakora, Felix Dapore
  organization: Department of Chemistry, Tshwane University of Technology
– sequence: 5
  givenname: Sanjay K.
  orcidid: 0000-0003-2745-9949
  surname: Jaiswal
  fullname: Jaiswal, Sanjay K.
  organization: Department of Chemistry, Tshwane University of Technology
– sequence: 6
  givenname: Sonia Purin
  orcidid: 0000-0002-7805-2789
  surname: da Cruz
  fullname: da Cruz, Sonia Purin
  organization: Federal University of Santa Catarina
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35896777$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1TAQhS1URH_gBVggS2zYGCa2EzsskNBV-ZEqsYG15ThOrqvEDnbSqrwKL1vn3ltou-jGtjTfOToznlN05IO3CL0u4H0BID4kToUAApQSAAlAxDN0UlRCEs6hPMrvshBEMkmP0WlKlwC0BE5foGNWyroSQpygv5vgfDDLoGcXPHbjpM2M82satJ9xH8P1vMVTDGNYgY9Y42ivnL3G2rd4tLMm2uvhJrm0qswDt9DhuHV_QuP0Dr_vSQ6evseNNm4YHHY-13Q-B9svo00v0fNOD8m-Otxn6NeX85-bb-Tix9fvm88XxHDBZyKkbUXHbdkxyZumBSqN6SraWAE1443JPVPbdrrVhRZdzQrZ2LI00JbUFLxgZ-jT3ndamtG2xvo56kFN0Y063qignXpY8W6r-nCl8gzrAlg2eHcwiOH3YtOsRpeMHXK7NixJ0aquAKpKQkbfPkIvwxLzBDMlmCylKNma6M39RP-i3P1bBuQeMDGkFG2njJt3Q88B3aAKUOuKqP2KqLwiarciapXSR9I79ydFbC9KGfa9jf9jP6G6BQ7B0tU
CitedBy_id crossref_primary_10_1017_S0014479723000285
crossref_primary_10_1007_s13199_024_01003_4
crossref_primary_10_1155_ioa_9491715
crossref_primary_10_1134_S2079086424600140
crossref_primary_10_1111_pce_15023
crossref_primary_10_1007_s40003_023_00692_5
crossref_primary_10_1007_s43621_024_00502_0
crossref_primary_10_1016_j_sajb_2024_07_015
crossref_primary_10_1007_s42729_024_02012_4
Cites_doi 10.1007/s00344-013-9347-3
10.1590/S0100-06832011000300006
10.1111/j.1365-2389.2006.00771.x
10.3389/fpls.2018.01247
10.19084/rca.15828
10.1016/j.heliyon.2017.e00244
10.1016/j.soilbio.2009.03.005
10.1590/S0103-84782009005000249
10.1080/01904160701742097
10.1016/j.apsoil.2021.103913
10.12661/pap.2012.010
10.1016/j.soilbio.2009.05.008
10.1016/j.micres.2018.10.011
10.1017/s0014479715000010
10.1007/s11274-012-1062-x
10.1590/S0100-204X1999000900014
10.4025/actasciagron.v29i3.277
10.1016/S0378-4290(01)00200-3
10.3389/fagro.2021.637196
10.1016/j.rhisph.2021.100309
10.21608/ejss.2020.24792.1344
10.4025/actasciagron.v28i3.964
10.1016/j.rhisph.2021.100348
10.1038/s41598-018-21921-w
10.1016/S1002-0160(19)60825-8
10.1016/B978-0-444-64191-5.00003-1
10.1007/s11104-013-1825-7
10.3390/plants10030571
10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-RLal,2017
10.18188/sap.v19i2.23522
10.21608/assjm.2015.109816
10.1007/s12275-013-2335-2
10.1007/s12275-014-3496-3
10.1046/j.1365-2672.1999.00634.x
10.1080/01904167.2021.1943435
10.1002/jpln.200620602
10.21608/jssae.2009.103835
10.20546/ijcmas.2019.810.061
10.1016/j.soilbio.2009.10.017
10.18637/jss.v036.i03
10.30638/eemj.2018.051
10.1556/AAgr.55.2007.3.7
10.1080/01904167.2010.519084
10.1007/s10725-014-9993-x
10.3923/ijar.2010.148.156
10.1007/s42729-020-00263-5
10.5958/0974-0228.2015.00057.2
10.21608/jpp.2018.35470
10.1134/S0026261715010105
10.3390/agronomy3040595
10.1080/09064710802040558
10.3390/life10030024
10.1093/oso/9780195131871.003.0018
10.3389/fpls.2017.00141
10.1007/s12088-007-0010-1
10.1016/j.micres.2013.10.001
10.1007/s11274-006-9244-z
10.1590/1678-4324-solo-2020190493
10.1139/m97-001
10.1002/jobm.201300173
10.1007/s00374-011-0573-1
10.5897/AJB11.3438
10.31018/jans.v9i2.1312
10.1023/A:1015117027863
10.1007/s12038-014-9470-8
10.1080/00103624.2012.639110
10.1590/1678-992X-2017-0049
10.1007/s00344-020-10146-9
10.1139/m96-129
10.1007/s11104-021-05167-6
10.3390/microorganismos8050678
10.1007/978-3-319-55804-2_12
10.1080/03650340.2010.493880
10.4141/P01-047
10.3906/biy-0809-12
10.1016/j.fcr.2016.05.010
10.1139/w01-107
10.15835/nsb9210081
10.2135/cropsci2003.1774
10.1007/BF02981055
10.1007/s10658-007-9154-4
10.3390/agronomy11020219
10.1023/A:1016291207590
10.4141/P01-048
10.1111/jam.14754
10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
10.5897/AJMR2013.5917
10.33448/rsd-v9i12.11360
10.1016/j.biocontrol.2012.06.008
10.1007/BF02376788
10.1016/j.rhisph.2016.09.002
10.1007/BF02375651
10.1016/j.ejsobi.2014.05.001
10.1016/bs.agron.2014.09.001
10.3389/fpls.2018.01473
10.4060/I7108EN
10.1016/j.envexpbot.2011.10.002
10.3389/fphys.2017.00667
10.5039/agraria.v13i4a5571
10.7717/peerj.7905
10.1007/s11274-009-9963-z
10.1007/978-1-4020-5760-1_82
10.1007/s00203-021-02446-9
10.1016/j.biortech.2007.06.057
10.1016/j.jbiotec.2018.07.044
10.1007/s11274-007-9591-4
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia 2022
2022. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.
The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia 2022.
Copyright_xml – notice: The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia 2022
– notice: 2022. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.
– notice: The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia 2022.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7U9
C1K
H94
K9.
M7N
7X8
5PM
DOI 10.1007/s42770-022-00800-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Virology and AIDS Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

AIDS and Cancer Research Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1678-4405
EndPage 2037
ExternalDocumentID PMC9679103
35896777
10_1007_s42770_022_00800_7
Genre Meta-Analysis
Journal Article
Review
GroupedDBID 0R~
0SF
23N
2WC
3V.
406
457
53G
5GY
5VS
6I.
6J9
7X7
7XC
88E
88I
8FE
8FH
8FI
8FJ
AACDK
AACTN
AAEDW
AAFTH
AAHBH
AAHNG
AAJBT
AALRI
AASML
AATNV
AAUYE
AAXUO
ABAKF
ABECU
ABFTV
ABJNI
ABKCH
ABMAC
ABMQK
ABTEG
ABTKH
ABTMW
ABUWG
ABXHO
ACAOD
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACOKC
ACPIV
ACPRK
ACZOJ
ADBBV
ADFRT
ADKNI
ADTPH
ADURQ
ADVLN
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AEUYN
AEXQZ
AFBBN
AFKRA
AFQWF
AFRAH
AGDGC
AGHFR
AGMZJ
AGQEE
AHMBA
AIGIU
AILAN
AITGF
AITUG
AJZVZ
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMRAJ
AMTXH
AMXSW
AMYLF
AOIJS
APOWU
ATCPS
AXYYD
AZFZN
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CLZPN
CS3
CSCUP
DIK
DPUIP
DU5
DWQXO
E3Z
EBLON
EBS
EJD
FDB
FIGPU
FNLPD
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
IKXTQ
IPNFZ
IWAJR
JZLTJ
KOV
KQ8
LK8
LLZTM
M1P
M2P
M41
M4Y
M7P
M~E
NCXOZ
NPVJJ
NQJWS
NU0
O9-
OK1
P2P
PATMY
PQQKQ
PROAC
PSQYO
PT4
PYCSY
RIG
RNS
ROL
RPM
RSC
RSV
SCD
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
SSZ
TR2
UKHRP
UOJIU
UTJUX
VEKWB
VFIZW
XSB
ZMTXR
AAYWO
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ACVFH
ADCNI
AEUPX
AEZWR
AFDZB
AFHIU
AFOHR
AFPUW
AHPBZ
AHWEU
AIGII
AIXLP
AKBMS
AKYEP
ATHPR
AYFIA
CITATION
OVT
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7U9
ABRTQ
C1K
H94
K9.
M7N
7X8
5PM
ID FETCH-LOGICAL-c474t-78ed7f4e5f384bbd028ccf62be70934bc0422edfada1a7f9318be55c0d52c1413
ISSN 1517-8382
1678-4405
IngestDate Thu Aug 21 18:36:43 EDT 2025
Fri Jul 11 00:02:10 EDT 2025
Fri Jul 25 10:51:39 EDT 2025
Wed Feb 19 02:24:20 EST 2025
Tue Jul 01 00:06:46 EDT 2025
Thu Apr 24 23:01:23 EDT 2025
Fri Feb 21 02:44:24 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Biological nitrogen fixation
Root growth
Grain yield
Nodule
Plant nutrient content
Language English
License 2022. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-78ed7f4e5f384bbd028ccf62be70934bc0422edfada1a7f9318be55c0d52c1413
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-3
ObjectType-Evidence Based Healthcare-1
ObjectType-Feature-1
ObjectType-Review-3
content type line 23
Responsible Editor: Luc F.M. Rouws
ORCID 0000-0003-2745-9949
0000-0002-7805-2789
0000-0002-8993-6563
0000-0003-3503-7228
0000-0002-9070-6896
0000-0002-2700-6512
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/9679103
PMID 35896777
PQID 2738587531
PQPubID 1536339
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9679103
proquest_miscellaneous_2696006680
proquest_journals_2738587531
pubmed_primary_35896777
crossref_citationtrail_10_1007_s42770_022_00800_7
crossref_primary_10_1007_s42770_022_00800_7
springer_journals_10_1007_s42770_022_00800_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Brazil
– name: São Paulo
PublicationTitle Brazilian journal of microbiology
PublicationTitleAbbrev Braz J Microbiol
PublicationTitleAlternate Braz J Microbiol
PublicationYear 2022
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References de JensenCEPercichJAGrahamPHThe effect of Bacillus subtilis and Rhizobium inoculation of dry bean seed on root rot severity and yield in MinnesotaAnnu Rep Bean Improv Coop2002459899
QureshiMAShakirMAIqbalAAkhtarNKhanACoinoculation of phosphate solubilizing bacteria and rhizobia for improving growth and yield of mungbean (Vigna radiata L.)J Anim Plant Sci201121491497
BenjellounIAlamiITEl KhadirMDouiraAUdupaSMCoinoculation of Mesorhizobium ciceri with either Bacillus sp. or Enterobacteraerogenes on chickpea improves growth and productivity in phosphate-deficient soils in dry areas of a Mediterranean RegionPlant20211057110.3390/plants10030571
ShamseldinAHafezEEAbdelsalamHWernerDGenetic biodiversity of common bean nodulating rhizobia and studying their symbiotic effectiveness combined with strains of genus Azotobacter, Bacillus or Pseudomonas in EgyptRes J Agric Biol Sci20073184194
Abdel-FattahIEl-NahrawySEl-MansouryMAInteraction effect of skipping irrigation and coinoculation with Bradyrhizobium and some strains of Bacillus bacteria on growth dynamics of cowpea (Vignaunguiculata L.) its yield and water productivityEgypt J Soil Sci20206016718110.21608/ejss.2020.24792.1344
AlemnehAAZhouYRyderMHDentonMDMechanisms in plant growth-promoting rhizobacteria that enhance legume–rhizobial symbiosesJ Appl Microbiol20201291133115610.1111/jam.1475432592603
AungTTBuranabanyatBPiromyouPLongtonglangATittabutrPBoonkerdNTeaumroongNEnhanced soybean biomass by coinoculation of Bradyrhizobium japonicum and plant growth promoting rhizobacteria and its effects on microbial community structuresAfr J Microbiol Res201373858387310.5897/AJMR2013.5917
Armenta-BojórquezADRoblero-RamírezHRCamacho-BáezJRMundo-OcampoMGarcia-GutierrezCArmenta-MedinaAOrganic versus synthetic fertilisation of beans (Phaseolus vulgaris L.) in MexicoExp Agric20165215416210.1017/s0014479715000010
Alves-NetoAJLanaMCLorenzettiEHenkemeierNPSchimiloskiSRitterGConventional inoculants and biological protector, coinoculation and nitrogen fertilization in soybeanSci Agrar20201918719510.18188/sap.v19i2.23522
KaschukGLeffelaarPAGillerKEAlbertonOHungriaMKuyperTWResponses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbiosesSoil Biol Biochem20104212512710.1016/j.soilbio.2009.10.017
PreyangaRAnandhamRKrishnamoorthyRSenthilkumarMGopalNOVellaikumarAMeenaSGroundnut (Arachis hypogaea) nodule Rhizobium and passenger endophytic bacterial cultivable diversity and their impact on plant growth promotionRhizosphere20211710030910.1016/j.rhisph.2021.100309
World Vegetable Center - WVC, International mungbean improvement network, 2021. Retrieved from https://avrdc.org/intl-mungbean-network/. Available on 15 July 2021
TsigieATilakKVBRSaxenaAKField response of legumes to inoculation with plant growth-promoting rhizobacteriaBiol Fert Soil20114797197410.1007/s00374-011-0573-1
PacentchukFGomesJMLimaVAMendesMCSandiniIEJadoskiSOEffect of coinoculation of plant growth promoting bacteria on soybean cropRes Soc Dev20209e3929121136010.33448/rsd-v9i12.11360
VermaJYadavJImplication of microbial consortium on biomass and yield of chickpea under sustainable agricultureEnviron Eng Manag J20181751352210.30638/eemj.2018.051
AraújoASFCarneiroRFVBezerraAACAraújoFFCo-inoculação rizóbio e Bacillus subtilis em feijão-caupi e leucena: efeito sobre a nodulação, a fixação de N2 e o crescimento das plantasCiênc Rural20104018218510.1590/S0103-84782009005000249
RodriguesACAntunesJELMedeirosVVBarrosBGFFigueiredoMVBResposta da co-inoculação de bactérias promotoras de crescimento em plantas e Bradyrhizobium sp. em caupiBioSci J201228196202
MorettiLGCrusciolCACBossolaniJWMomessoJWGarciaAKuramaeEEHungriaMBacterial consortium and microbial metabolites increase grain quality and soybean yieldJ Soil Sci Plant Nutr2020201923193410.1007/s42729-020-00263-5
Abd-El-KhairHHaggagKHEl-NasrHISField application of Trichoderma harzianum and Bacillus subtilis combined with Rhizobium for controlling Fusarium root rot in faba bean in organic farmingMiddle East J Appl Sci20188865873
WaniPKhanMZaidiACoinoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpeaActa Agron Hung20075531532310.1556/AAgr.55.2007.3.7
KumarRChandraRInfluence of PGPR and PSB on Rhizobium leguminosarum bv. viciae strain competition and symbiotic performance in lentilWorld J Agric Sci20084297301
BaiYZhouXSmithDLEnhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicumCrop Sci2003431774178110.2135/cropsci2003.1774
FerreiraLDVMCarvalhoFDAndradeJFCMoreiraFMDSGrowth promotion of common bean and genetic diversity of bacteria from Amazon pasturelandSci Agric20187546146910.1590/1678-992X-2017-0049
GharibAAShaheinMMRagabAAInfluence of Rhizobium inoculation combined with Azotobacterchrococcum and Bacillusmegaterium var phosphaticum on growth, nodulation, yield and quality of two snap been (Phaseolusvulgaris l.) cultivarsAnn Agric Sci20155324926110.21608/assjm.2015.109816
Mel'nikovaNNBulavenkoLVKurdishIKTitovaLVKots' SYa, Formation and function of the Legume-Rhizobium symbiosis of soybean plants while introducing bacterial strains from the genera Azotobacter and BacillusAppl Biochem Microbiol20023836837210.1023/A:1016291207590
WaniPAKhanMSZaidiASynergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpeaJ Soil Sci Plant Nutr200717028328710.1002/jpln.200620602
FigueiredoMVBBurityHAMartinezCRChanwayCPAlleviation of water stress effects in common bean (Phaseolus vulgaris L) by coi-noculation Paenibacillus X Rhizobium tropiciAppl Soil Ecol20084018218810.1038/s41598-018-21921-w
VermaJPYadavJTiwariKNApplication of Rhizobium sp. BHURC01 and plant growth promoting rhizobacteria on nodulation, plant biomass and yields of chickpea (Cicer arietinum L.)Int J Agric Res2010514815610.3923/ijar.2010.148.156
SinghNSinghGAggarwalNEconomic analysis of application of phosphorus, single and dual inoculation of Rhizobium and plant growth promoting rhizobacteria in lentil (Lens culinaris Medikus)J Appl Nat Sci201791008101110.31018/jans.v9i2.1312
OliveiraLBGTeixeira-FilhoMCMGalindoFSNogueiraTARBarco-NetoMBuzettiSForms and types of coinoculation in the soybean crop in Cerrado regionRev Ciênc Agrar20194292493210.19084/rca.15828
SilvaVNSilvaLESFMartínezCRBurityHAFigueiredoMVBEstirpes de Paenibacillus promotoras de nodulação específica na simbiose em Bradyrhizobium em caupiActa Sci Agron20072933133810.4025/actasciagron.v29i3.277
QureshiMAShakirMANaveedMAhmadMJGrowth and yield response of chickpea to coinoculation with Mesorhizobium ciceri and Bacillus megateriumJ Anim Plant Sci200919205211
RajendranGSingFDesaiAJArchanaGEnhanced growth and nodulation of pigeon pea by coinoculation of Bacillus strains with Rhizobium sppBioresour Technol2008994544455010.1016/j.biortech.2007.06.05717826983
QureshiMAIqbalAAkhtarNShakirMAKhanACoinoculation of phosphate solubilizing bacteria and rhizobia in the presence of L-tryptophan for the promotion of mash bean (Vigna mungo L.)Soil Environm2012314754
BarnawalDMajiDBhartiNChanotiyaCSKalraAACC Deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stressJ Plant Growth Regul20133280982210.1007/s00344-013-9347-3
MarinkovićJBjelićDTintorBMiladinovićJĐurićVĐordevićVEffects of soybean coinoculation with plant growth promoting rhizobacteria in field trialRom Biotechnol Lett2018231340113408
MathivananSChidambaramAASundramoorthyPBaskaranLKalaikandhanREffect of combined inoculations of plant growth promoting rhizobacteria (PGPR) on the growth and yield of groundnut (Arachis hypogaea L.)Int J Curr Microbiol Appl Sci2014310101020
RawalVNavarroDKThe global economy of pulses2019RomeFAO10.4060/I7108EN
SrinivasanMHollFBPetersenDJInfluence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic conditionsCan J Microbiol1996421006101410.1139/m96-129
SiddiquiZABaghelGAkhtarMSBiocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentilWorld J Microbiol Biotechnol20072343544110.1007/s11274-006-9244-z
GurevitchJHedgesLVScheneirSMGurevitchJMeta-analysis: combining the results of independent experimentsDesigns and analysis of ecological experiments20012OxfordOxford University Press347369
SantoyoGGuzmán-GuzmánPParra-CotaFISantos-VillalobosSdlOrozco-MosquedaMdCGlickBRPlant growth stimulation by microbial consortiaAgronomy202111221910.3390/agronomy11020219
CamachoMSantamariaCTempranoFRodriguez-NavarroDNDazaACoinoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris LCan J Microbiol2001471058106210.1139/w01-10711766056
ElkocaEKantarFSahinFInfluence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpeaJ Plant Nutr20073115717110.1080/01904160701742097
TilakKVBRRanganayakiNManoharachariCSynergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan)Eur J Soil Sci200657677110.1111/j.1365-2389.2006.00771.x
de JensenCEPercichJAGrahamPHIntegrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in MinnesotaField Crop Res20027410711510.1016/S0378-4290(01)00200-3
SinghGSekhonHSSharmaPEffect of irrigation and biofertilizer on water use, nodulation, growth and yield of chickpea (Cicer arietinum L.)Arch Agronomy Soil Sci20115771572610.1080/03650340.2010.493880
GuptaASaxenaAKGopalMTilakKVBREffects of coinoculation of plant growth promoting rhizobacteria and Bradyrhizobium sp.(vigna) on growth and yield of green gram [Vigna radiata (L.) Wilczek]Trop Agric-London Then Trinidad20038028350041-3216/2003/010028-08
AtienoMHerrmannLOkaleboRLesueurDEfficiency of different formulations of Bradyrhizobiu
S Dutta (800_CR93) 2014; 52
G Singh (800_CR40) 2011; 57
V Rawal (800_CR1) 2019
J Yadav (800_CR49) 2014; 63
AD Armenta-Bojórquez (800_CR50) 2016; 52
WJ Bullied (800_CR104) 2002; 82
O Masciarelli (800_CR108) 2014; 169
ASEE Hafez (800_CR57) 2007; 3
800_CR4
M Pandya (800_CR88) 2015; 84
800_CR5
M Camacho (800_CR51) 2001; 47
CE de Jensen (800_CR23) 2002; 74
AA Gharib (800_CR56) 2015; 53
PA Wani (800_CR48) 2007; 170
A Kumar (800_CR82) 2021; 203
SM Sousa (800_CR17) 2021; 40
E Elkoca (800_CR35) 2007; 31
J Verma (800_CR44) 2018; 17
A Gupta (800_CR87) 2003; 80
T Mahakavi (800_CR77) 2014; 2
P Subramanian (800_CR115) 2015; 76
MA El-Howeity (800_CR74) 2009; 34
G Kaschuk (800_CR2) 2009; 41
LG Moretti (800_CR110) 2020; 20
DM Zeffa (800_CR13) 2020; 8
AR Schwartz (800_CR92) 2013; 3
GM Braga-Junior (800_CR103) 2018; 13
M Srinivasan (800_CR63) 1997; 43
800_CR6
AG Osman (800_CR94) 2011; 5
G Kaschuk (800_CR3) 2010; 42
JP Verma (800_CR46) 2012; 43
N Sivaramaiah (800_CR43) 2007; 47
W Janati (800_CR11) 2021; 3
EF Abd-Allah (800_CR25) 2007; 35
LBG Oliveira (800_CR111) 2019; 42
I Abdel-Fattah (800_CR85) 2020; 60
D Barnawal (800_CR122) 2013; 32
G Kaschuk (800_CR12) 2016; 195
Y Kuzyakov (800_CR124) 2000; 163
PK Mishra (800_CR83) 2009; 25
Y Bai (800_CR102) 2003; 43
MS Akhtar (800_CR80) 2010; 34
RM Iličić (800_CR105) 2017; 9
R Kumar (800_CR81) 2008; 4
J Marinković (800_CR107) 2018; 23
LDVM Ferreira (800_CR30) 2020; 30
P Kumar (800_CR60) 2016; 2
N Parmar (800_CR36) 1999; 86
R Remans (800_CR61) 2007; 119
AA Alemneh (800_CR32) 2020; 129
G Kaschuk (800_CR125) 2012; 76
A Tsigie (800_CR84) 2011; 47
N Singh (800_CR41) 2017; 9
MA Qureshi (800_CR89) 2011; 21
AC Rodrigues (800_CR72) 2013; 51
G Rajendran (800_CR95) 2008; 99
R Saini (800_CR39) 2015; 55
M Tariq (800_CR91) 2012; 11
M Rana (800_CR38) 2015; 63
F Pacentchuk (800_CR112) 2020; 9
O Stajković (800_CR64) 2011; 16
LV Hedges (800_CR117) 1999; 80
VN Silva (800_CR68) 2006; 28
BN Aloo (800_CR15) 2019; 219
V Gangaraddi (800_CR86) 2018; 6
DM Li (800_CR106) 1988; 108
JD Cardoso (800_CR9) 2009; 41
J Gurevitch (800_CR118) 2001
TT Aung (800_CR20) 2013; 7
F Araújo (800_CR67) 2012; 17
H Abd-El-Khair (800_CR76) 2018; 8
MB Peoples (800_CR8) 2021
ASF Araújo (800_CR66) 2010; 40
P Wani (800_CR47) 2007; 55
E Dayoub (800_CR121) 2017; 3
M Abbas (800_CR73) 2018; 9
N Karanja (800_CR58) 2007
K Pankaj (800_CR113) 2009; 59
S Mathivanan (800_CR78) 2014; 3
M Atieno (800_CR101) 2012; 28
WP Buhian (800_CR120) 2018; 9
R Backer (800_CR126) 2018; 9
M Srinivasan (800_CR18) 1996; 42
CE de Jensen (800_CR24) 2002; 45
AR Alagawadi (800_CR34) 1988; 105
AJ Alves-Neto (800_CR97) 2020; 19
JP Verma (800_CR45) 2010; 5
KVBR Tilak (800_CR96) 2006; 57
A Shamseldin (800_CR62) 2007; 3
R Preyanga (800_CR79) 2021; 17
JZ Barbosa (800_CR14) 2021; 163
AME Rugheim (800_CR75) 2009; 3
E Elkoca (800_CR52) 2010; 33
VN Silva (800_CR69) 2007; 29
SL Dwivedi (800_CR7) 2015; 129
Z Singh (800_CR42) 2021
AM Massoud (800_CR21) 2008; 33
LDVM Ferreira (800_CR53) 2018; 75
MA Qureshi (800_CR19) 2012; 31
VV Gabre (800_CR55) 2020; 63
P Poonguzhali (800_CR116) 2005; 15
MA Qureshi (800_CR37) 2009; 19
R Radhakrishnan (800_CR123) 2017; 8
S Sibponkrung (800_CR114) 2020; 8
JK Vessey (800_CR65) 2002; 82
D Fira (800_CR29) 2018; 285
MS Figueredo (800_CR28) 2014; 39
W Viechtbauer (800_CR119) 2010; 36
W Yuttavanichakul (800_CR27) 2012; 63
MVB Figueiredo (800_CR54) 2008; 24
FFD Araújo (800_CR99) 1999; 34
ZA Siddiqui (800_CR26) 2007; 23
NN Mel'nikova (800_CR109) 2002; 38
H Korir (800_CR59) 2017; 8
S Tiwari (800_CR16) 2019
SS Sindhu (800_CR90) 2002; 45
MVB Figueiredo (800_CR31) 2008; 40
I Benjelloun (800_CR22) 2021; 10
E Menéndez (800_CR10) 2020; 10
G Santoyo (800_CR33) 2021; 11
ASTD Lima (800_CR70) 2011; 35
K Annapurna (800_CR98) 2013; 373
AC Rodrigues (800_CR71) 2012; 28
FF Araújo (800_CR100) 2021; 18
References_xml – reference: GurevitchJHedgesLVScheneirSMGurevitchJMeta-analysis: combining the results of independent experimentsDesigns and analysis of ecological experiments20012OxfordOxford University Press347369
– reference: World Vegetable Center - WVC, International mungbean improvement network, 2021. Retrieved from https://avrdc.org/intl-mungbean-network/. Available on 15 July 2021
– reference: LimaASTDBarretoMDCSAraújoJMSeldinLBurityHAFigueiredoMDVBSinergismo Bacillus, Brevibacillus e, ou, Paenibacillus na simbiose Bradyrhizobium-caupiRev Bras Ciênc Solo20113571372110.1590/S0100-06832011000300006
– reference: Abd-AllahEFEl-DidamonyGEffect of seed treatment of Arachis hypogaea with Bacillus subtilis on nodulation in biocontrol of southern blight (Sclerotium rolfsii) diseasePhytoparasitica20073581210.1007/BF02981055
– reference: ElkocaETuranMDonmezMFEffects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris l. cv. ‘elkoca-05’)J Plant Nutr2010332104211910.1080/01904167.2010.519084
– reference: GangaraddiVBrahmaprakashGEvaluation of selected microbial consortium formulations on growth of green gram (Vignaradiata L.)Int J Chem Stud201861909191310.20546/ijcmas.2019.810.061
– reference: MorettiLGCrusciolCACBossolaniJWMomessoJWGarciaAKuramaeEEHungriaMBacterial consortium and microbial metabolites increase grain quality and soybean yieldJ Soil Sci Plant Nutr2020201923193410.1007/s42729-020-00263-5
– reference: KuzyakovYDomanskiGCarbon input by plants into the soil. ReviewJ Plant Nutr Soil Sc200016342143110.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-RLal,2017
– reference: MenéndezEPaçoAIs the application of plant probiotic bacterial consortia always beneficial for plants? Exploring synergies between rhizobial and non-rhizobial bacteria and their effects on agro-economically valuable cropsLife2020102410.3390/life100300247151578
– reference: AlemnehAAZhouYRyderMHDentonMDMechanisms in plant growth-promoting rhizobacteria that enhance legume–rhizobial symbiosesJ Appl Microbiol20201291133115610.1111/jam.1475432592603
– reference: AbbasMHarounSMowfyAAghaMCoinoculation effect of rhizobia and endophytic bacteria on Vicia faba growth and metabolismJ Plant Prod2018926927210.21608/jpp.2018.35470
– reference: MishraPKMishraSSelvakumarGBishtJKKunduSGuptaHSCoinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.)World J Microbiol Biotechnol20092575376110.1007/s11274-009-9963-z
– reference: BaiYZhouXSmithDLEnhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicumCrop Sci2003431774178110.2135/cropsci2003.1774
– reference: de JensenCEPercichJAGrahamPHThe effect of Bacillus subtilis and Rhizobium inoculation of dry bean seed on root rot severity and yield in MinnesotaAnnu Rep Bean Improv Coop2002459899
– reference: BulliedWJBussTJVesseyJKBacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: field studiesCan J Plant Sci20028229129810.4141/P01-048
– reference: JanatiWBenmridBElhaissoufiWZeroualYNasielskiJBargazAWill phosphate bio-solubilization stimulate biological nitrogen fixation in grain legumes?Front Agron2021363719610.3389/fagro.2021.637196
– reference: MasciarelliOLlanesALunaVA new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulationMicrobiol Res201416960961510.1016/j.micres.2013.10.00124280513
– reference: AnnapurnaKRamadossDBosePVithalkumarLIn situ localization of Paenibacillus polymyxa HKA-15 in roots and root nodules of soybean (Glycine max. L.)Plant Soil201337364164810.1007/s11104-013-1825-7
– reference: BarbosaJZHungriaMSenaJVSPoggereGdos ReisARCorrêaRSMeta-analysis reveals benefits of coinoculation of soybean with Azospirillumbrasilense and Bradyrhizobium spp. in BrazilAppl Soil Ecol202116310391310.1016/j.apsoil.2021.103913
– reference: GabreVVVenancioWSMoraesBAFurmamFGGalvãoCWGonçalvesDRPEttoRMMultiple effect of different plant growth promoting microorganisms on beans (Phaseolusvulgaris L.) cropBraz Arch Biol Technol202063e2019049310.1590/1678-4324-solo-2020190493
– reference: AtienoMHerrmannLOkaleboRLesueurDEfficiency of different formulations of Bradyrhizobium japonicum and effect of coinoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicumWorld J Microbiol Biotechnol2012282541255010.1007/s11274-012-1062-x22806160
– reference: BackerRRokemJSIlangumaranGLamontJPraslickovaDRicciESubramanianSSmithDLPlant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agricultureFront Plant Sci20189147310.3389/fpls.2018.01473304056526206271
– reference: SchwartzAROrtizIMaymonMHerboldCWFujishigeNAVijanderanJAVillellaWHanamotoKDienerASandersERMasonDAHirschAMBacillus simplex—A little known PGPB with anti-fungal activity—alters pea legume root architecture and nodule morphology when coinoculated with Rhizobium leguminosarum bv. viciaeAgron2013359562010.3390/agronomy3040595
– reference: PacentchukFGomesJMLimaVAMendesMCSandiniIEJadoskiSOEffect of coinoculation of plant growth promoting bacteria on soybean cropRes Soc Dev20209e3929121136010.33448/rsd-v9i12.11360
– reference: RawalVNavarroDKThe global economy of pulses2019RomeFAO10.4060/I7108EN
– reference: YadavJVermaJPEffect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields of chickpea (Cicer arietinum L.)Eur J Soil Biol201463707710.1016/j.ejsobi.2014.05.001
– reference: SousaSMOliveiraCAAndradeDLCarvalhoCGRibeiroVPPastinaMMMarrielIELanaUHPGomesEATropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yieldJ Plant Growth Reg20214086787710.1007/s00344-020-10146-9
– reference: KorirHMungaiNWThuitaMHambaYMassoCCoinoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soilFront Plant Sci2017814110.3389/fpls.2017.00141282240005293795
– reference: Braga-JuniorGMChagasLFBAmaralLROMillerLOJuniorAFCEficiência da inoculação por Bacillus subtilis sobre biomassa e produtividade de sojaRev Bras Ciênc Agrár201813557110.5039/agraria.v13i4a5571
– reference: KumarPPandeyPDubeyRCMaheshwariDKBacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studiesRhizosphere20162132310.1016/j.rhisph.2016.09.002
– reference: BuhianWPBensmihenSMini-review: nod factor regulation of phytohormone signaling and homeostasis during rhizobia-legume symbiosisFront Plant Sci20189124710.3389/fpls.2018.01247303196656166096
– reference: SinghZSinghGAggarwalNVirkHKSharma P (2021) Symbiotic efficiency vis-à-vis chickpea performance as affected by seed inoculation with Mesorhizobium, phosphorus-solubilizing bacteria, and phosphorus applicationJ Plant Nutr202110.1080/01904167.2021.1943435
– reference: WaniPAKhanMSZaidiASynergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpeaJ Soil Sci Plant Nutr200717028328710.1002/jpln.200620602
– reference: BarnawalDMajiDBhartiNChanotiyaCSKalraAACC Deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stressJ Plant Growth Regul20133280982210.1007/s00344-013-9347-3
– reference: VermaJPYadavJTiwariKNApplication of Rhizobium sp. BHURC01 and plant growth promoting rhizobacteria on nodulation, plant biomass and yields of chickpea (Cicer arietinum L.)Int J Agric Res2010514815610.3923/ijar.2010.148.156
– reference: TilakKVBRRanganayakiNManoharachariCSynergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan)Eur J Soil Sci200657677110.1111/j.1365-2389.2006.00771.x
– reference: TiwariSPrasadVLataCSinghJSSinghDPBacillus: plant growth promoting bacteria for sustainable agriculture and environmentNew and future developments in microbial biotechnology and bioengineering2019LondonElsevier435510.1016/B978-0-444-64191-5.00003-1
– reference: WaniPKhanMZaidiACoinoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpeaActa Agron Hung20075531532310.1556/AAgr.55.2007.3.7
– reference: CamachoMSantamariaCTempranoFRodriguez-NavarroDNDazaACoinoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris LCan J Microbiol2001471058106210.1139/w01-10711766056
– reference: AkhtarMSShakeelUSiddiquiZABiocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas alcaligenes and Rhizobium sp. on lentilTurk J Biol2010341710.3906/biy-0809-12
– reference: QureshiMAIqbalAAkhtarNShakirMAKhanACoinoculation of phosphate solubilizing bacteria and rhizobia in the presence of L-tryptophan for the promotion of mash bean (Vigna mungo L.)Soil Environm2012314754
– reference: SrinivasanMHollFBPetersenDJInfluence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic conditionsCan J Microbiol1996421006101410.1139/m96-129
– reference: HedgesLVGurevitchJCurtisPSThe meta-analysis of response ratios in experimental ecologyEcol1999801150115610.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– reference: ShamseldinAHafezEEAbdelsalamHWernerDGenetic biodiversity of common bean nodulating rhizobia and studying their symbiotic effectiveness combined with strains of genus Azotobacter, Bacillus or Pseudomonas in EgyptRes J Agric Biol Sci20073184194
– reference: SiddiquiZABaghelGAkhtarMSBiocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentilWorld J Microbiol Biotechnol20072343544110.1007/s11274-006-9244-z
– reference: FiraDDimkićIBerićTLozoJStankovićSBiological control of plant pathogens by Bacillus speciesJ Biotechnol2018285445510.1016/j.jbiotec.2018.07.04430172784
– reference: GharibAAShaheinMMRagabAAInfluence of Rhizobium inoculation combined with Azotobacterchrococcum and Bacillusmegaterium var phosphaticum on growth, nodulation, yield and quality of two snap been (Phaseolusvulgaris l.) cultivarsAnn Agric Sci20155324926110.21608/assjm.2015.109816
– reference: KaschukGYinXHungriaMLeffelaarPAGillerKEKuyperTWPhotosynthetic adaptation of soybean due to varying effectiveness of N2 fixation by two distinct Bradyrhizobium japonicum strainsEnvironm Exp Bot2012761610.1016/j.envexpbot.2011.10.002
– reference: RanaMChandraRPareekNCoinoculation effect of endophytic bacteria with Mesorhizobium sp. in chickpea (Cicer arietinum L.) on nodulation, yields, nutrient uptake and soil biological propertiesJ Indian Soc Soil Sci20156342943510.5958/0974-0228.2015.00057.2
– reference: OsmanAGRugheimAMEElsoniEMEffects of biofertilization on nodulation, nitrogen and phosphorus content and yield of pigeon pea (Cajanus cajan)Adv Environ Biol2011527422749
– reference: VermaJYadavJImplication of microbial consortium on biomass and yield of chickpea under sustainable agricultureEnviron Eng Manag J20181751352210.30638/eemj.2018.051
– reference: Armenta-BojórquezADRoblero-RamírezHRCamacho-BáezJRMundo-OcampoMGarcia-GutierrezCArmenta-MedinaAOrganic versus synthetic fertilisation of beans (Phaseolus vulgaris L.) in MexicoExp Agric20165215416210.1017/s0014479715000010
– reference: RugheimAMEAbdelganiMEEffects of Rhizobium and Bacillus megaterium var. phosphaticum strains and chemical fertilizers on symbiotic properties and yield of faba bean (Vicia faba L.)Adv Environ Biol20093337346
– reference: Abd-El-KhairHHaggagKHEl-NasrHISField application of Trichoderma harzianum and Bacillus subtilis combined with Rhizobium for controlling Fusarium root rot in faba bean in organic farmingMiddle East J Appl Sci20188865873
– reference: AungTTBuranabanyatBPiromyouPLongtonglangATittabutrPBoonkerdNTeaumroongNEnhanced soybean biomass by coinoculation of Bradyrhizobium japonicum and plant growth promoting rhizobacteria and its effects on microbial community structuresAfr J Microbiol Res201373858387310.5897/AJMR2013.5917
– reference: SilvaVNSilvaLESFMartínezCRBurityHAFigueiredoMVBEstirpes de Paenibacillus promotoras de nodulação específica na simbiose em Bradyrhizobium em caupiActa Sci Agron20072933133810.4025/actasciagron.v29i3.277
– reference: ZeffaDMFantinLHKoltunAde OliveiraALMNunesMPBACanteriMGGonçalvesLSAEffects of plant growth-promoting rhizobacteria on coinoculation with Bradyrhizobium in soybean crop: a meta-analysis of studies from 1987 to 2018PeerJ20208e790510.7717/peerj.7905319422486955106
– reference: KaschukGLeffelaarPAGillerKEAlbertonOHungriaMKuyperTWResponses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbiosesSoil Biol Biochem20104212512710.1016/j.soilbio.2009.10.017
– reference: RemansRCroonenborghsAGutierrezRTMichielsJVanderleydenJEffects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutritionEur J Plant Pathol200711934135110.1007/s10658-007-9154-4
– reference: GuptaASaxenaAKGopalMTilakKVBREffects of coinoculation of plant growth promoting rhizobacteria and Bradyrhizobium sp.(vigna) on growth and yield of green gram [Vigna radiata (L.) Wilczek]Trop Agric-London Then Trinidad20038028350041-3216/2003/010028-08
– reference: SivaramaiahNMalikDKSindhuSImprovement in symbiotic efficiency of chickpea (Cicer arietinum) by coinoculation of Bacillus strains with Mesorhizobium sp. cicerIndian J Microbiol200747515610.1007/s12088-007-0010-1231006403450223
– reference: TariqMHameedSYasmeenTAliANon-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vignaradiata (L.) Wilczek]Afr J Biotec201211150121501910.5897/AJB11.3438
– reference: PreyangaRAnandhamRKrishnamoorthyRSenthilkumarMGopalNOVellaikumarAMeenaSGroundnut (Arachis hypogaea) nodule Rhizobium and passenger endophytic bacterial cultivable diversity and their impact on plant growth promotionRhizosphere20211710030910.1016/j.rhisph.2021.100309
– reference: PoonguzhaliPSelvarajSMadhaiyanMThangarajuMRyuJChungKSaTEffects of co-cultures, containing N-fixer and P-solubilizer, on the growth and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) and blackgram (Vigna mungo L.)J Microbiol Biotec200515903908
– reference: PeoplesMBGillerKEJensenESHerridgeDFQuantifying country-to-global scale nitrogen fixation for grain legumes: I. Reliance on nitrogen fixation of soybean, groundnut and pulsesPlant Soil202110.1007/s11104-021-05167-6
– reference: KaschukGNogueiraMADe LucaMJHungriaMResponse of determinate and indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole inoculation with BradyrhizobiumField Crop Res2016195212710.1016/j.fcr.2016.05.010
– reference: SilvaVNFigueiredoMDVBAtuação de rizóbios com rizobactéria promotora de crescimento em plantas na cultura do caupi (Vigna unguiculata [L.] Walp.)Acta Sci Agron20062840741210.4025/actasciagron.v28i3.964
– reference: FigueiredoMVBBurityHAMartinezCRChanwayCPAlleviation of water stress effects in common bean (Phaseolus vulgaris L) by coi-noculation Paenibacillus X Rhizobium tropiciAppl Soil Ecol20084018218810.1038/s41598-018-21921-w
– reference: MarinkovićJBjelićDTintorBMiladinovićJĐurićVĐordevićVEffects of soybean coinoculation with plant growth promoting rhizobacteria in field trialRom Biotechnol Lett2018231340113408
– reference: CardosoJDGomesDFGoesKCGPFonsecaNSDorigoOFHungriaMAndradeDSRelationship between total nodulation and nodulation at the root crown of peanut, soybean and common bean plantsSoil Biol Biochem2009411760176310.1016/j.soilbio.2009.05.008
– reference: IličićRMPivićRNDinićZSLatkovićDSVlajićSAJošićDLJThe enhancement of soybean growth and yield in a field trial through introduction of mixtures of Bradyrhizobiumjaponicum, Bacillus sp. and PseudomonaschlororaphisNot Sci Biol2017927427910.15835/nsb9210081
– reference: El-HoweityMAAbdallaAAAbo-KoraHAEl-ShinnawiMMResponse of faba bean plants to inoculation with Rhizobium leguminosarium and other rhizobacteria under three nitrogen leves in newly reclaimed soilJ Soil Sci Agric Eng2009347325734510.21608/jssae.2009.103835
– reference: FigueiredoMVBMartinezCRBurityHAChanwayCPPlant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.)World J Microbiol Biotechnol2008241187119310.1007/s11274-007-9591-4
– reference: FigueredoMSTonelliMLTaurianTAngeliniJIbañezFValettiLMuñozVAnzuayMSLudueñaLFabraAInterrelationships between Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA 6144 in the induced systemic resistance against Sclerotium rolfsii and symbiosis on peanut plantsJ Biosci20143987788510.1007/s12038-014-9470-825431416
– reference: ElkocaEKantarFSahinFInfluence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpeaJ Plant Nutr20073115717110.1080/01904160701742097
– reference: QureshiMAShakirMANaveedMAhmadMJGrowth and yield response of chickpea to coinoculation with Mesorhizobium ciceri and Bacillus megateriumJ Anim Plant Sci200919205211
– reference: VermaJPYadavJTiwariKNEnhancement of nodulation and yield of chickpea by coinoculation of indigenous Mesorhizobium spp. and plant growth–promoting rhizobacteria in Eastern Uttar PradeshComm Soil Sci Plant Anal20124360562110.1080/00103624.2012.639110
– reference: AlooBNMakumbaBAMbegaERThe potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainabilityMicrobiol Res2019219263910.1016/j.micres.2018.10.01130642464
– reference: KaranjaNMutuaGKimenjuJBationoAWaswaBKiharaJKimetuJEvaluating the effect of Bacillus and Rhizobium bi-inoculant on nodulation and nematode control in Phaseolus vulgaris LAdvances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities2007DordrechtSpringer10.1007/978-1-4020-5760-1_82
– reference: DwivediSLSahrawatKLUpadhyayaHDMengoniAGalardiniMBazzicalupoMBiondiEGHungríaMKaschukGBlairMWOrtizRAdvances in host plant and rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumesAdv Agron2015129111610.1016/bs.agron.2014.09.001
– reference: AraújoFFDHungriaMNodulação e rendimento de soja co-infectada com Bacillus subtilis e Bradyrhizobium japonicum/Bradyrhizobium elkaniiPesq Agropec Bras1999341633164310.1590/S0100-204X1999000900014
– reference: TsigieATilakKVBRSaxenaAKField response of legumes to inoculation with plant growth-promoting rhizobacteriaBiol Fert Soil20114797197410.1007/s00374-011-0573-1
– reference: Kaschuk G, Hungria M (2017) Diversity and importance of diazotrophic bacteria to agricultural sustainability in the tropics. In: Diversity and benefits of microorganisms from the tropics. Springer, Cham. p. 269–292. https://doi.org/10.1007/978-3-319-55804-2_12
– reference: BenjellounIAlamiITEl KhadirMDouiraAUdupaSMCoinoculation of Mesorhizobium ciceri with either Bacillus sp. or Enterobacteraerogenes on chickpea improves growth and productivity in phosphate-deficient soils in dry areas of a Mediterranean RegionPlant20211057110.3390/plants10030571
– reference: RajendranGSingFDesaiAJArchanaGEnhanced growth and nodulation of pigeon pea by coinoculation of Bacillus strains with Rhizobium sppBioresour Technol2008994544455010.1016/j.biortech.2007.06.05717826983
– reference: StajkovićODelićDJošićDKuzmanovićDRasulićNKnežević-VukčevićJImprovement of common bean growth by coinoculation with Rhizobium and plant growth-promoting bacteriaRom Biotechnol Lett20111659195926
– reference: PandyaMRajputMRajkumarSExploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiataMicrobiol201584808910.1134/S0026261715010105
– reference: PankajKMishraSMishraGSelvakumarSKGuptaHSEnhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1Acta Agric Scand B Soil Plant Sci20095918919610.1080/09064710802040558
– reference: DayoubENaudinCPivaGShirtliffeSJFustecJCorre-HellouGTraits affecting early season nitrogen uptake in nine legume speciesHeliyon20173e0024410.1016/j.heliyon.2017.e00244282291305312646
– reference: RodriguesACAntunesJELCostaAFOliveiraJPFigueiredoMVBInterrelationship of Bradyrhizobium sp. and plant growth-promoting bacteria in cowpea: survival and symbiotic performanceJ Microbiol201351495510.1007/s12275-013-2335-223456712
– reference: KumarRChandraRInfluence of PGPR and PSB on Rhizobium leguminosarum bv. viciae strain competition and symbiotic performance in lentilWorld J Agric Sci20084297301
– reference: ViechtbauerWConducting meta-analyses in R with the metafor packageJ Statist Software20103614810.18637/jss.v036.i03
– reference: Abdel-FattahIEl-NahrawySEl-MansouryMAInteraction effect of skipping irrigation and coinoculation with Bradyrhizobium and some strains of Bacillus bacteria on growth dynamics of cowpea (Vignaunguiculata L.) its yield and water productivityEgypt J Soil Sci20206016718110.21608/ejss.2020.24792.1344
– reference: SrinivasanMHollFBPetersenDJNodulation of Phaseolus vulgaris by Rhizobium etli is enhanced by the presence of BacillusCan J Microbiol1997431810.1139/m97-001
– reference: ParmarNDadarwalKRStimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteriaJ App Microbiol199986364410.1046/j.1365-2672.1999.00634.x
– reference: RadhakrishnanRHashemAAbd-AllahEFBacillus: a biological tool for crop improvement through bio-molecular changes in adverse environmentsFront Physiol2017866710.3389/fphys.2017.00667289321995592640
– reference: AlagawadiARGaurACAssociative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpeaPlant Soil198810524124610.1007/BF02376788
– reference: VesseyJKBussTJBacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: controlled-environment studiesCan J Plant Sci20028228229010.4141/P01-047
– reference: SainiRDudejaSSGiriRKumarVIsolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern IndiaJ Basic Microbiol201555748110.1002/jobm.20130017325590871
– reference: MahakaviTBaskaranLRajeshMGaneshKSEfficient of biofertilizers on growth and yield characteristics of groundnut Arachis hypogaea LJ Environm Treat Techn20142158161
– reference: AraújoASFCarneiroRFVBezerraAACAraújoFFCo-inoculação rizóbio e Bacillus subtilis em feijão-caupi e leucena: efeito sobre a nodulação, a fixação de N2 e o crescimento das plantasCiênc Rural20104018218510.1590/S0103-84782009005000249
– reference: FAOSTAT (2021) Retrieved from Database. http://faostat.fao.org/beta/en/#data). Available on 15 July 2021
– reference: QureshiMAShakirMAIqbalAAkhtarNKhanACoinoculation of phosphate solubilizing bacteria and rhizobia for improving growth and yield of mungbean (Vigna radiata L.)J Anim Plant Sci201121491497
– reference: SinghGSekhonHSSharmaPEffect of irrigation and biofertilizer on water use, nodulation, growth and yield of chickpea (Cicer arietinum L.)Arch Agronomy Soil Sci20115771572610.1080/03650340.2010.493880
– reference: de JensenCEPercichJAGrahamPHIntegrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in MinnesotaField Crop Res20027410711510.1016/S0378-4290(01)00200-3
– reference: AraújoFAraújoASouzaMInoculação do feijão-caupi com rizobactérias promotoras de crescimento e desempenho na produção de biomassaPesq Agropec Pernambucana201217535810.12661/pap.2012.010
– reference: RodriguesACAntunesJELMedeirosVVBarrosBGFFigueiredoMVBResposta da co-inoculação de bactérias promotoras de crescimento em plantas e Bradyrhizobium sp. em caupiBioSci J201228196202
– reference: OliveiraLBGTeixeira-FilhoMCMGalindoFSNogueiraTARBarco-NetoMBuzettiSForms and types of coinoculation in the soybean crop in Cerrado regionRev Ciênc Agrar20194292493210.19084/rca.15828
– reference: Alves-NetoAJLanaMCLorenzettiEHenkemeierNPSchimiloskiSRitterGConventional inoculants and biological protector, coinoculation and nitrogen fertilization in soybeanSci Agrar20201918719510.18188/sap.v19i2.23522
– reference: DuttaSMorangPKumarNKumarBDTwo rhizobacterial strains, individually and in interactions with Rhizobium sp., enhance fusarial wilt control, growth, and yield in pigeon peaJ Microbiol20145277878410.1007/s12275-014-3496-325224506
– reference: MassoudAMAbou-ZeidMYHassanESAEl-FikiSFInfluence of phosphate dissolving and nitrogen fixing bacteria on faba bean under different levels of phosphorus fertilizationJ Agric Sci Mansoura Univ20083379918007
– reference: KaschukGKuyperTWLeffelaarPAHungriaMGillerKEAre the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?Soil Biol Biochem2009411233124410.1016/j.soilbio.2009.03.005
– reference: FerreiraLDVMCarvalhoFAndradeJFCOliveiraDPMedeirosFHVMoreiraFMDSCoinoculation of selected nodule endophytic rhizobacterial strains with Rhizobium tropici promotes plant growth and controls damping off in common beanPedosphere2020309810810.1016/S1002-0160(19)60825-8
– reference: KumarAJhaMNSinghDPathakDRajawatMVSProspecting catabolic diversity of microbial strains for developing microbial consortia and their synergistic effect on Lentil (Lens esculenta) growth, yield and iron biofortificationArch Microbiol20212034913492810.1007/s00203-021-02446-934251477
– reference: SinghNSinghGAggarwalNEconomic analysis of application of phosphorus, single and dual inoculation of Rhizobium and plant growth promoting rhizobacteria in lentil (Lens culinaris Medikus)J Appl Nat Sci201791008101110.31018/jans.v9i2.1312
– reference: AraújoFFBonifácioABavarescoLGMendesLWAraújoASFBacillus subtilis changes the root architecture of soybean grown on nutrient-poor substrateRhizosphere20211810034810.1016/j.rhisph.2021.100348
– reference: SubramanianPKimKKrishnamoorthyRSundaramSSaTEndophytic bacteria improve nodule function and plant nitrogen in soybean on coinoculation with Bradyrhizobium japonicum MN110Plant Growth Regul20157632733210.1007/s10725-014-9993-x
– reference: Mel'nikovaNNBulavenkoLVKurdishIKTitovaLVKots' SYa, Formation and function of the Legume-Rhizobium symbiosis of soybean plants while introducing bacterial strains from the genera Azotobacter and BacillusAppl Biochem Microbiol20023836837210.1023/A:1016291207590
– reference: SantoyoGGuzmán-GuzmánPParra-CotaFISantos-VillalobosSdlOrozco-MosquedaMdCGlickBRPlant growth stimulation by microbial consortiaAgronomy202111221910.3390/agronomy11020219
– reference: MathivananSChidambaramAASundramoorthyPBaskaranLKalaikandhanREffect of combined inoculations of plant growth promoting rhizobacteria (PGPR) on the growth and yield of groundnut (Arachis hypogaea L.)Int J Curr Microbiol Appl Sci2014310101020
– reference: SindhuSSGuptaSKSunejaSDadarwalKREnhancement of green gram nodulation and growth by Bacillus speciesBiol Plant20024511712010.1023/A:1015117027863
– reference: SibponkrungSKondoTTanakaKTittabutrPBoonkerdNYoshidaKTeaumroongNCoinoculation of Bacillus velezensis strain S141 and Bradyrhizobium strains promotes nodule growth and nitrogen fixationMicroorganisms2020867810.3390/microorganismos80506787284691
– reference: FerreiraLDVMCarvalhoFDAndradeJFCMoreiraFMDSGrowth promotion of common bean and genetic diversity of bacteria from Amazon pasturelandSci Agric20187546146910.1590/1678-992X-2017-0049
– reference: HafezASEEWernerHADGenetic biodiversity of common bean nodulating rhizobia and studying their symbiotic effectiveness combined with strains of genus Azotobacter, Bacillus or Pseudomonas in EgyptRes J Agric Biol Sci20073184194
– reference: LiDMAlexanderMCoinoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobiaPlant Soil198810821121910.1007/BF02375651
– reference: YuttavanichakulWLawongsaPWongkaewSTeaumroongNBoonkerdNNomuraNTittabutrPImprovement of peanut rhizobial inoculant by incorporation of plant growth promoting rhizobacteria (PGPR) as biocontrol against the seed borne fungus, Aspergillus nigerBiol Control201263879710.1016/j.biocontrol.2012.06.008
– volume: 32
  start-page: 809
  year: 2013
  ident: 800_CR122
  publication-title: J Plant Growth Regul
  doi: 10.1007/s00344-013-9347-3
– volume: 35
  start-page: 713
  year: 2011
  ident: 800_CR70
  publication-title: Rev Bras Ciênc Solo
  doi: 10.1590/S0100-06832011000300006
– volume: 57
  start-page: 67
  year: 2006
  ident: 800_CR96
  publication-title: Eur J Soil Sci
  doi: 10.1111/j.1365-2389.2006.00771.x
– volume: 80
  start-page: 28
  year: 2003
  ident: 800_CR87
  publication-title: Trop Agric-London Then Trinidad
– volume: 31
  start-page: 47
  year: 2012
  ident: 800_CR19
  publication-title: Soil Environm
– volume: 9
  start-page: 1247
  year: 2018
  ident: 800_CR120
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01247
– volume: 42
  start-page: 924
  year: 2019
  ident: 800_CR111
  publication-title: Rev Ciênc Agrar
  doi: 10.19084/rca.15828
– volume: 3
  start-page: e00244
  year: 2017
  ident: 800_CR121
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2017.e00244
– volume: 41
  start-page: 1233
  year: 2009
  ident: 800_CR2
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.03.005
– volume: 40
  start-page: 182
  year: 2010
  ident: 800_CR66
  publication-title: Ciênc Rural
  doi: 10.1590/S0103-84782009005000249
– volume: 31
  start-page: 157
  year: 2007
  ident: 800_CR35
  publication-title: J Plant Nutr
  doi: 10.1080/01904160701742097
– volume: 28
  start-page: 196
  year: 2012
  ident: 800_CR71
  publication-title: BioSci J
– volume: 163
  start-page: 103913
  year: 2021
  ident: 800_CR14
  publication-title: Appl Soil Ecol
  doi: 10.1016/j.apsoil.2021.103913
– volume: 17
  start-page: 53
  year: 2012
  ident: 800_CR67
  publication-title: Pesq Agropec Pernambucana
  doi: 10.12661/pap.2012.010
– volume: 41
  start-page: 1760
  year: 2009
  ident: 800_CR9
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.05.008
– volume: 19
  start-page: 205
  year: 2009
  ident: 800_CR37
  publication-title: J Anim Plant Sci
– volume: 33
  start-page: 7991
  year: 2008
  ident: 800_CR21
  publication-title: J Agric Sci Mansoura Univ
– volume: 219
  start-page: 26
  year: 2019
  ident: 800_CR15
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2018.10.011
– volume: 52
  start-page: 154
  year: 2016
  ident: 800_CR50
  publication-title: Exp Agric
  doi: 10.1017/s0014479715000010
– volume: 28
  start-page: 2541
  year: 2012
  ident: 800_CR101
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-012-1062-x
– volume: 2
  start-page: 158
  year: 2014
  ident: 800_CR77
  publication-title: J Environm Treat Techn
– volume: 34
  start-page: 1633
  year: 1999
  ident: 800_CR99
  publication-title: Pesq Agropec Bras
  doi: 10.1590/S0100-204X1999000900014
– volume: 29
  start-page: 331
  year: 2007
  ident: 800_CR69
  publication-title: Acta Sci Agron
  doi: 10.4025/actasciagron.v29i3.277
– volume: 74
  start-page: 107
  year: 2002
  ident: 800_CR23
  publication-title: Field Crop Res
  doi: 10.1016/S0378-4290(01)00200-3
– volume: 3
  start-page: 637196
  year: 2021
  ident: 800_CR11
  publication-title: Front Agron
  doi: 10.3389/fagro.2021.637196
– volume: 17
  start-page: 100309
  year: 2021
  ident: 800_CR79
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2021.100309
– volume: 60
  start-page: 167
  year: 2020
  ident: 800_CR85
  publication-title: Egypt J Soil Sci
  doi: 10.21608/ejss.2020.24792.1344
– volume: 28
  start-page: 407
  year: 2006
  ident: 800_CR68
  publication-title: Acta Sci Agron
  doi: 10.4025/actasciagron.v28i3.964
– volume: 18
  start-page: 100348
  year: 2021
  ident: 800_CR100
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2021.100348
– volume: 5
  start-page: 2742
  year: 2011
  ident: 800_CR94
  publication-title: Adv Environ Biol
– volume: 40
  start-page: 182
  year: 2008
  ident: 800_CR31
  publication-title: Appl Soil Ecol
  doi: 10.1038/s41598-018-21921-w
– volume: 30
  start-page: 98
  year: 2020
  ident: 800_CR30
  publication-title: Pedosphere
  doi: 10.1016/S1002-0160(19)60825-8
– start-page: 43
  volume-title: New and future developments in microbial biotechnology and bioengineering
  year: 2019
  ident: 800_CR16
  doi: 10.1016/B978-0-444-64191-5.00003-1
– volume: 373
  start-page: 641
  year: 2013
  ident: 800_CR98
  publication-title: Plant Soil
  doi: 10.1007/s11104-013-1825-7
– volume: 10
  start-page: 571
  year: 2021
  ident: 800_CR22
  publication-title: Plant
  doi: 10.3390/plants10030571
– volume: 163
  start-page: 421
  year: 2000
  ident: 800_CR124
  publication-title: J Plant Nutr Soil Sc
  doi: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-RLal,2017
– volume: 19
  start-page: 187
  year: 2020
  ident: 800_CR97
  publication-title: Sci Agrar
  doi: 10.18188/sap.v19i2.23522
– volume: 53
  start-page: 249
  year: 2015
  ident: 800_CR56
  publication-title: Ann Agric Sci
  doi: 10.21608/assjm.2015.109816
– volume: 51
  start-page: 49
  year: 2013
  ident: 800_CR72
  publication-title: J Microbiol
  doi: 10.1007/s12275-013-2335-2
– volume: 52
  start-page: 778
  year: 2014
  ident: 800_CR93
  publication-title: J Microbiol
  doi: 10.1007/s12275-014-3496-3
– volume: 86
  start-page: 36
  year: 1999
  ident: 800_CR36
  publication-title: J App Microbiol
  doi: 10.1046/j.1365-2672.1999.00634.x
– year: 2021
  ident: 800_CR42
  publication-title: J Plant Nutr
  doi: 10.1080/01904167.2021.1943435
– volume: 170
  start-page: 283
  year: 2007
  ident: 800_CR48
  publication-title: J Soil Sci Plant Nutr
  doi: 10.1002/jpln.200620602
– volume: 34
  start-page: 7325
  year: 2009
  ident: 800_CR74
  publication-title: J Soil Sci Agric Eng
  doi: 10.21608/jssae.2009.103835
– volume: 6
  start-page: 1909
  year: 2018
  ident: 800_CR86
  publication-title: Int J Chem Stud
  doi: 10.20546/ijcmas.2019.810.061
– volume: 42
  start-page: 125
  year: 2010
  ident: 800_CR3
  publication-title: Soil Biol Biochem
  doi: 10.1016/j.soilbio.2009.10.017
– volume: 8
  start-page: 865
  year: 2018
  ident: 800_CR76
  publication-title: Middle East J Appl Sci
– volume: 36
  start-page: 1
  year: 2010
  ident: 800_CR119
  publication-title: J Statist Software
  doi: 10.18637/jss.v036.i03
– volume: 45
  start-page: 98
  year: 2002
  ident: 800_CR24
  publication-title: Annu Rep Bean Improv Coop
– volume: 17
  start-page: 513
  year: 2018
  ident: 800_CR44
  publication-title: Environ Eng Manag J
  doi: 10.30638/eemj.2018.051
– volume: 55
  start-page: 315
  year: 2007
  ident: 800_CR47
  publication-title: Acta Agron Hung
  doi: 10.1556/AAgr.55.2007.3.7
– volume: 16
  start-page: 5919
  year: 2011
  ident: 800_CR64
  publication-title: Rom Biotechnol Lett
– volume: 33
  start-page: 2104
  year: 2010
  ident: 800_CR52
  publication-title: J Plant Nutr
  doi: 10.1080/01904167.2010.519084
– volume: 76
  start-page: 327
  year: 2015
  ident: 800_CR115
  publication-title: Plant Growth Regul
  doi: 10.1007/s10725-014-9993-x
– volume: 5
  start-page: 148
  year: 2010
  ident: 800_CR45
  publication-title: Int J Agric Res
  doi: 10.3923/ijar.2010.148.156
– volume: 20
  start-page: 1923
  year: 2020
  ident: 800_CR110
  publication-title: J Soil Sci Plant Nutr
  doi: 10.1007/s42729-020-00263-5
– volume: 63
  start-page: 429
  year: 2015
  ident: 800_CR38
  publication-title: J Indian Soc Soil Sci
  doi: 10.5958/0974-0228.2015.00057.2
– volume: 4
  start-page: 297
  year: 2008
  ident: 800_CR81
  publication-title: World J Agric Sci
– volume: 9
  start-page: 269
  year: 2018
  ident: 800_CR73
  publication-title: J Plant Prod
  doi: 10.21608/jpp.2018.35470
– volume: 84
  start-page: 80
  year: 2015
  ident: 800_CR88
  publication-title: Microbiol
  doi: 10.1134/S0026261715010105
– volume: 3
  start-page: 595
  year: 2013
  ident: 800_CR92
  publication-title: Agron
  doi: 10.3390/agronomy3040595
– volume: 59
  start-page: 189
  year: 2009
  ident: 800_CR113
  publication-title: Acta Agric Scand B Soil Plant Sci
  doi: 10.1080/09064710802040558
– volume: 10
  start-page: 24
  year: 2020
  ident: 800_CR10
  publication-title: Life
  doi: 10.3390/life10030024
– start-page: 347
  volume-title: Designs and analysis of ecological experiments
  year: 2001
  ident: 800_CR118
  doi: 10.1093/oso/9780195131871.003.0018
– volume: 8
  start-page: 141
  year: 2017
  ident: 800_CR59
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2017.00141
– volume: 47
  start-page: 51
  year: 2007
  ident: 800_CR43
  publication-title: Indian J Microbiol
  doi: 10.1007/s12088-007-0010-1
– volume: 169
  start-page: 609
  year: 2014
  ident: 800_CR108
  publication-title: Microbiol Res
  doi: 10.1016/j.micres.2013.10.001
– volume: 23
  start-page: 435
  year: 2007
  ident: 800_CR26
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-006-9244-z
– volume: 63
  start-page: e20190493
  year: 2020
  ident: 800_CR55
  publication-title: Braz Arch Biol Technol
  doi: 10.1590/1678-4324-solo-2020190493
– volume: 43
  start-page: 1
  year: 1997
  ident: 800_CR63
  publication-title: Can J Microbiol
  doi: 10.1139/m97-001
– volume: 55
  start-page: 74
  year: 2015
  ident: 800_CR39
  publication-title: J Basic Microbiol
  doi: 10.1002/jobm.201300173
– volume: 47
  start-page: 971
  year: 2011
  ident: 800_CR84
  publication-title: Biol Fert Soil
  doi: 10.1007/s00374-011-0573-1
– volume: 11
  start-page: 15012
  year: 2012
  ident: 800_CR91
  publication-title: Afr J Biotec
  doi: 10.5897/AJB11.3438
– volume: 9
  start-page: 1008
  year: 2017
  ident: 800_CR41
  publication-title: J Appl Nat Sci
  doi: 10.31018/jans.v9i2.1312
– ident: 800_CR5
– volume: 45
  start-page: 117
  year: 2002
  ident: 800_CR90
  publication-title: Biol Plant
  doi: 10.1023/A:1015117027863
– volume: 21
  start-page: 491
  year: 2011
  ident: 800_CR89
  publication-title: J Anim Plant Sci
– volume: 39
  start-page: 877
  year: 2014
  ident: 800_CR28
  publication-title: J Biosci
  doi: 10.1007/s12038-014-9470-8
– volume: 43
  start-page: 605
  year: 2012
  ident: 800_CR46
  publication-title: Comm Soil Sci Plant Anal
  doi: 10.1080/00103624.2012.639110
– volume: 75
  start-page: 461
  year: 2018
  ident: 800_CR53
  publication-title: Sci Agric
  doi: 10.1590/1678-992X-2017-0049
– volume: 40
  start-page: 867
  year: 2021
  ident: 800_CR17
  publication-title: J Plant Growth Reg
  doi: 10.1007/s00344-020-10146-9
– volume: 42
  start-page: 1006
  year: 1996
  ident: 800_CR18
  publication-title: Can J Microbiol
  doi: 10.1139/m96-129
– year: 2021
  ident: 800_CR8
  publication-title: Plant Soil
  doi: 10.1007/s11104-021-05167-6
– volume: 8
  start-page: 678
  year: 2020
  ident: 800_CR114
  publication-title: Microorganisms
  doi: 10.3390/microorganismos8050678
– ident: 800_CR6
  doi: 10.1007/978-3-319-55804-2_12
– volume: 57
  start-page: 715
  year: 2011
  ident: 800_CR40
  publication-title: Arch Agronomy Soil Sci
  doi: 10.1080/03650340.2010.493880
– volume: 82
  start-page: 282
  year: 2002
  ident: 800_CR65
  publication-title: Can J Plant Sci
  doi: 10.4141/P01-047
– volume: 34
  start-page: 1
  year: 2010
  ident: 800_CR80
  publication-title: Turk J Biol
  doi: 10.3906/biy-0809-12
– volume: 195
  start-page: 21
  year: 2016
  ident: 800_CR12
  publication-title: Field Crop Res
  doi: 10.1016/j.fcr.2016.05.010
– volume: 15
  start-page: 903
  year: 2005
  ident: 800_CR116
  publication-title: J Microbiol Biotec
– volume: 47
  start-page: 1058
  year: 2001
  ident: 800_CR51
  publication-title: Can J Microbiol
  doi: 10.1139/w01-107
– volume: 9
  start-page: 274
  year: 2017
  ident: 800_CR105
  publication-title: Not Sci Biol
  doi: 10.15835/nsb9210081
– volume: 43
  start-page: 1774
  year: 2003
  ident: 800_CR102
  publication-title: Crop Sci
  doi: 10.2135/cropsci2003.1774
– volume: 35
  start-page: 8
  year: 2007
  ident: 800_CR25
  publication-title: Phytoparasitica
  doi: 10.1007/BF02981055
– volume: 119
  start-page: 341
  year: 2007
  ident: 800_CR61
  publication-title: Eur J Plant Pathol
  doi: 10.1007/s10658-007-9154-4
– volume: 11
  start-page: 219
  issue: 2
  year: 2021
  ident: 800_CR33
  publication-title: Agronomy
  doi: 10.3390/agronomy11020219
– volume: 38
  start-page: 368
  year: 2002
  ident: 800_CR109
  publication-title: Appl Biochem Microbiol
  doi: 10.1023/A:1016291207590
– volume: 82
  start-page: 291
  year: 2002
  ident: 800_CR104
  publication-title: Can J Plant Sci
  doi: 10.4141/P01-048
– volume: 129
  start-page: 1133
  year: 2020
  ident: 800_CR32
  publication-title: J Appl Microbiol
  doi: 10.1111/jam.14754
– volume: 80
  start-page: 1150
  year: 1999
  ident: 800_CR117
  publication-title: Ecol
  doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2
– volume: 7
  start-page: 3858
  year: 2013
  ident: 800_CR20
  publication-title: Afr J Microbiol Res
  doi: 10.5897/AJMR2013.5917
– volume: 3
  start-page: 184
  year: 2007
  ident: 800_CR62
  publication-title: Res J Agric Biol Sci
– volume: 9
  start-page: e39291211360
  year: 2020
  ident: 800_CR112
  publication-title: Res Soc Dev
  doi: 10.33448/rsd-v9i12.11360
– volume: 63
  start-page: 87
  year: 2012
  ident: 800_CR27
  publication-title: Biol Control
  doi: 10.1016/j.biocontrol.2012.06.008
– volume: 105
  start-page: 241
  year: 1988
  ident: 800_CR34
  publication-title: Plant Soil
  doi: 10.1007/BF02376788
– volume: 2
  start-page: 13
  year: 2016
  ident: 800_CR60
  publication-title: Rhizosphere
  doi: 10.1016/j.rhisph.2016.09.002
– volume: 108
  start-page: 211
  year: 1988
  ident: 800_CR106
  publication-title: Plant Soil
  doi: 10.1007/BF02375651
– volume: 23
  start-page: 13401
  year: 2018
  ident: 800_CR107
  publication-title: Rom Biotechnol Lett
– volume: 3
  start-page: 1010
  year: 2014
  ident: 800_CR78
  publication-title: Int J Curr Microbiol Appl Sci
– volume: 63
  start-page: 70
  year: 2014
  ident: 800_CR49
  publication-title: Eur J Soil Biol
  doi: 10.1016/j.ejsobi.2014.05.001
– volume: 129
  start-page: 1
  year: 2015
  ident: 800_CR7
  publication-title: Adv Agron
  doi: 10.1016/bs.agron.2014.09.001
– volume: 9
  start-page: 1473
  year: 2018
  ident: 800_CR126
  publication-title: Front Plant Sci
  doi: 10.3389/fpls.2018.01473
– volume-title: The global economy of pulses
  year: 2019
  ident: 800_CR1
  doi: 10.4060/I7108EN
– volume: 76
  start-page: 1
  year: 2012
  ident: 800_CR125
  publication-title: Environm Exp Bot
  doi: 10.1016/j.envexpbot.2011.10.002
– volume: 3
  start-page: 337
  year: 2009
  ident: 800_CR75
  publication-title: Adv Environ Biol
– volume: 8
  start-page: 667
  year: 2017
  ident: 800_CR123
  publication-title: Front Physiol
  doi: 10.3389/fphys.2017.00667
– volume: 13
  start-page: 5571
  year: 2018
  ident: 800_CR103
  publication-title: Rev Bras Ciênc Agrár
  doi: 10.5039/agraria.v13i4a5571
– volume: 8
  start-page: e7905
  year: 2020
  ident: 800_CR13
  publication-title: PeerJ
  doi: 10.7717/peerj.7905
– volume: 25
  start-page: 753
  year: 2009
  ident: 800_CR83
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-009-9963-z
– ident: 800_CR4
– volume-title: Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities
  year: 2007
  ident: 800_CR58
  doi: 10.1007/978-1-4020-5760-1_82
– volume: 203
  start-page: 4913
  year: 2021
  ident: 800_CR82
  publication-title: Arch Microbiol
  doi: 10.1007/s00203-021-02446-9
– volume: 3
  start-page: 184
  year: 2007
  ident: 800_CR57
  publication-title: Res J Agric Biol Sci
– volume: 99
  start-page: 4544
  year: 2008
  ident: 800_CR95
  publication-title: Bioresour Technol
  doi: 10.1016/j.biortech.2007.06.057
– volume: 285
  start-page: 44
  year: 2018
  ident: 800_CR29
  publication-title: J Biotechnol
  doi: 10.1016/j.jbiotec.2018.07.044
– volume: 24
  start-page: 1187
  year: 2008
  ident: 800_CR54
  publication-title: World J Microbiol Biotechnol
  doi: 10.1007/s11274-007-9591-4
SSID ssj0025042
Score 2.4109588
SecondaryResourceType review_article
Snippet Coinoculation of symbiotic N 2 -fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly...
Coinoculation of symbiotic N -fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved...
Abstract Coinoculation of symbiotic N2-fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly...
Coinoculation of symbiotic N2-fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2027
SubjectTerms Agricultural practices
Bacilli
Bacillus
Beans
Biomedical and Life Sciences
Broad beans
Chickpeas
Cowpeas
Crop production
Crop yield
Edible Grain
Environmental Microbiology - Research Paper
Fabaceae - microbiology
Food Microbiology
Grain
Inoculation
Legumes
Life Sciences
Medical Microbiology
Meta-analysis
Microbial Ecology
Microbial Genetics and Genomics
Microbiology
Mycology
Nitrogen fixation
Nitrogenase
Nodulation
Peas
Pigeonpeas
Plant growth
Planting
Productivity
Rhizobium
Seeds
Soybeans
Symbiosis
Vegetables
Title Coinoculation impact on plant growth promotion: a review and meta-analysis on coinoculation of rhizobia and plant growth-promoting bacilli in grain legumes
URI https://link.springer.com/article/10.1007/s42770-022-00800-7
https://www.ncbi.nlm.nih.gov/pubmed/35896777
https://www.proquest.com/docview/2738587531
https://www.proquest.com/docview/2696006680
https://pubmed.ncbi.nlm.nih.gov/PMC9679103
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5RAEN_0I5q-GL_FVrMmvp00HCws59vl0trYaIxptW9kd1muRA6alku0_4r_rLMf7EFPjfaFEFhmITOzOzPM_Aah1yIokkgGuc_HNPIJZXCWFNynYgIMT1kYMo32-TE5OiXvz-Kzjc3dXtbSsuX74vq3dSW34SpcA76qKtn_4KwjChfgHPgLR-AwHP-Jx7OmrBthG3C5gsdatYau29EcPOz2XGVgmVY9pq7Z1qqoePlCtsxnDpVEJaT36YEZeaky8rip2xpQ9S3Vej7iTKiYjQqczFW_iVEl58uursRBJ7HrUgdUekgVi3IFAuXWfQbe9lKv0O8qICwrt21Ml7ZoUeVgmv_7Kl2lapxX8KWUpW6bpJqVgagrA_pgUeYm1czE4781ZsShrMrvIPPgfsh-5CMMb2SRdJHPG7HTVfiuv6yrvTgybY72pbkG27RPSBD39wIDXGxlnvQX9sBAGFgjIQwMVM3aBmRyTq5ISFVDH3hnbZL7g8HA7ouFFskoTicJtX1shrDfnz7M4BYYc9Em2gZqyvrfnh5__nrs4glxoHtDuY-zNWG6MnTtBXbQ3W62oQm25letpwffyBHQptfJfXTP-kx4ahTgAdqQ9UN0x3RR_fEI_RyoATZqgOFMCyw2AoudGrzFDBslwCDVeKAE6qmBEuCmwJ0S6OF9mislwFYJcFljrQTYKsFjdHp4cDI78m3PEV8QSlqfpjKnBZFxEaWE8xzMbyGKJOSSBpOIcKEw82ResJyNGS1gQUu5jGMR5HEoxmARPkFbdVPLZwiPBc8jkfMwZpwkYEoD3YIRkstUJLmMPDTu2JAJC8iv-sJUmYMS11zMgIuZ5mJGPTRyz1wYOJq_jt7ruJtZ9b7KDH4Vhb3XQ6_cbdhU1J9CVstmCWOSSaKckTTw0FMjDG66Too8RAdi4gYowPrhnbo818D1VqA99KYTqNVr_fkrnt96ol20s1o39tBWe7mUL8CHaPlLq0u_ADmbJOk
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coinoculation+impact+on+plant+growth+promotion%3A+a+review+and+meta-analysis+on+coinoculation+of+rhizobia+and+plant+growth-promoting+bacilli+in+grain+legumes&rft.jtitle=Brazilian+journal+of+microbiology&rft.au=Kaschuk%2C+Glaciela&rft.au=Auler%2C+Andr%C3%A9+Carlos&rft.au=Vieira%2C+Crislaine+Emidio&rft.au=Dakora%2C+Felix+Dapore&rft.date=2022-12-01&rft.pub=Springer+International+Publishing&rft.issn=1517-8382&rft.eissn=1678-4405&rft.volume=53&rft.issue=4&rft.spage=2027&rft.epage=2037&rft_id=info:doi/10.1007%2Fs42770-022-00800-7&rft_id=info%3Apmid%2F35896777&rft.externalDocID=PMC9679103
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1517-8382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1517-8382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1517-8382&client=summon