Coinoculation impact on plant growth promotion: a review and meta-analysis on coinoculation of rhizobia and plant growth-promoting bacilli in grain legumes
Coinoculation of symbiotic N 2 -fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung b...
Saved in:
Published in | Brazilian journal of microbiology Vol. 53; no. 4; pp. 2027 - 2037 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coinoculation of symbiotic N
2
-fixing rhizobia and plant growth-promoting
Bacillus
on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung bean, pea, pigeon pea, soybean, and urad bean to verify the magnitude of additive effects of coinoculation in relation to single inoculation of rhizobia on plant growth and yield of grain legumes. Coinoculation of rhizobia and bacilli on legume seeds and/or soil during sowing significantly increased nodulation, nitrogenase activity, plant N and P contents, and shoot and root biomass, as well as the grain yield of most grain legumes studied. There were however a few instances where coinoculation decreased plant growth parameters. Therefore, coinoculation of rhizobia and
Bacillus
has the potential to increase the growth and productivity of grain legumes, and can be recommended as an environmental-friendly agricultural practice for increased crop yields. |
---|---|
AbstractList | Coinoculation of symbiotic N
2
-fixing rhizobia and plant growth-promoting
Bacillus
on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung bean, pea, pigeon pea, soybean, and urad bean to verify the magnitude of additive effects of coinoculation in relation to single inoculation of rhizobia on plant growth and yield of grain legumes. Coinoculation of rhizobia and bacilli on legume seeds and/or soil during sowing significantly increased nodulation, nitrogenase activity, plant N and P contents, and shoot and root biomass, as well as the grain yield of most grain legumes studied. There were however a few instances where coinoculation decreased plant growth parameters. Therefore, coinoculation of rhizobia and
Bacillus
has the potential to increase the growth and productivity of grain legumes, and can be recommended as an environmental-friendly agricultural practice for increased crop yields. Coinoculation of symbiotic N2-fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung bean, pea, pigeon pea, soybean, and urad bean to verify the magnitude of additive effects of coinoculation in relation to single inoculation of rhizobia on plant growth and yield of grain legumes. Coinoculation of rhizobia and bacilli on legume seeds and/or soil during sowing significantly increased nodulation, nitrogenase activity, plant N and P contents, and shoot and root biomass, as well as the grain yield of most grain legumes studied. There were however a few instances where coinoculation decreased plant growth parameters. Therefore, coinoculation of rhizobia and Bacillus has the potential to increase the growth and productivity of grain legumes, and can be recommended as an environmental-friendly agricultural practice for increased crop yields.Coinoculation of symbiotic N2-fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung bean, pea, pigeon pea, soybean, and urad bean to verify the magnitude of additive effects of coinoculation in relation to single inoculation of rhizobia on plant growth and yield of grain legumes. Coinoculation of rhizobia and bacilli on legume seeds and/or soil during sowing significantly increased nodulation, nitrogenase activity, plant N and P contents, and shoot and root biomass, as well as the grain yield of most grain legumes studied. There were however a few instances where coinoculation decreased plant growth parameters. Therefore, coinoculation of rhizobia and Bacillus has the potential to increase the growth and productivity of grain legumes, and can be recommended as an environmental-friendly agricultural practice for increased crop yields. Coinoculation of symbiotic N -fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung bean, pea, pigeon pea, soybean, and urad bean to verify the magnitude of additive effects of coinoculation in relation to single inoculation of rhizobia on plant growth and yield of grain legumes. Coinoculation of rhizobia and bacilli on legume seeds and/or soil during sowing significantly increased nodulation, nitrogenase activity, plant N and P contents, and shoot and root biomass, as well as the grain yield of most grain legumes studied. There were however a few instances where coinoculation decreased plant growth parameters. Therefore, coinoculation of rhizobia and Bacillus has the potential to increase the growth and productivity of grain legumes, and can be recommended as an environmental-friendly agricultural practice for increased crop yields. Abstract Coinoculation of symbiotic N2-fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved data on coinoculation of rhizobia and bacilli on 11 grain legume crops: chickpea, common bean, cowpea, faba bean, groundnut, lentil, mung bean, pea, pigeon pea, soybean, and urad bean to verify the magnitude of additive effects of coinoculation in relation to single inoculation of rhizobia on plant growth and yield of grain legumes. Coinoculation of rhizobia and bacilli on legume seeds and/or soil during sowing significantly increased nodulation, nitrogenase activity, plant N and P contents, and shoot and root biomass, as well as the grain yield of most grain legumes studied. There were however a few instances where coinoculation decreased plant growth parameters. Therefore, coinoculation of rhizobia and Bacillus has the potential to increase the growth and productivity of grain legumes, and can be recommended as an environmental-friendly agricultural practice for increased crop yields. |
Author | Kaschuk, Glaciela Vieira, Crislaine Emidio Auler, André Carlos Jaiswal, Sanjay K. da Cruz, Sonia Purin Dakora, Felix Dapore |
Author_xml | – sequence: 1 givenname: Glaciela orcidid: 0000-0002-8993-6563 surname: Kaschuk fullname: Kaschuk, Glaciela email: glaciela.kaschuk@ufpr.br organization: Post-Graduation in Soil Science, Federal University of Paraná – sequence: 2 givenname: André Carlos orcidid: 0000-0002-2700-6512 surname: Auler fullname: Auler, André Carlos organization: Post-Graduation in Soil Science, Federal University of Paraná – sequence: 3 givenname: Crislaine Emidio orcidid: 0000-0003-3503-7228 surname: Vieira fullname: Vieira, Crislaine Emidio organization: Post-Graduation in Soil Science, Federal University of Paraná – sequence: 4 givenname: Felix Dapore orcidid: 0000-0002-9070-6896 surname: Dakora fullname: Dakora, Felix Dapore organization: Department of Chemistry, Tshwane University of Technology – sequence: 5 givenname: Sanjay K. orcidid: 0000-0003-2745-9949 surname: Jaiswal fullname: Jaiswal, Sanjay K. organization: Department of Chemistry, Tshwane University of Technology – sequence: 6 givenname: Sonia Purin orcidid: 0000-0002-7805-2789 surname: da Cruz fullname: da Cruz, Sonia Purin organization: Federal University of Santa Catarina |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35896777$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1u1TAQhS1URH_gBVggS2zYGCa2EzsskNBV-ZEqsYG15ThOrqvEDnbSqrwKL1vn3ltou-jGtjTfOToznlN05IO3CL0u4H0BID4kToUAApQSAAlAxDN0UlRCEs6hPMrvshBEMkmP0WlKlwC0BE5foGNWyroSQpygv5vgfDDLoGcXPHbjpM2M82satJ9xH8P1vMVTDGNYgY9Y42ivnL3G2rd4tLMm2uvhJrm0qswDt9DhuHV_QuP0Dr_vSQ6evseNNm4YHHY-13Q-B9svo00v0fNOD8m-Otxn6NeX85-bb-Tix9fvm88XxHDBZyKkbUXHbdkxyZumBSqN6SraWAE1443JPVPbdrrVhRZdzQrZ2LI00JbUFLxgZ-jT3ndamtG2xvo56kFN0Y063qignXpY8W6r-nCl8gzrAlg2eHcwiOH3YtOsRpeMHXK7NixJ0aquAKpKQkbfPkIvwxLzBDMlmCylKNma6M39RP-i3P1bBuQeMDGkFG2njJt3Q88B3aAKUOuKqP2KqLwiarciapXSR9I79ydFbC9KGfa9jf9jP6G6BQ7B0tU |
CitedBy_id | crossref_primary_10_1017_S0014479723000285 crossref_primary_10_1007_s13199_024_01003_4 crossref_primary_10_1155_ioa_9491715 crossref_primary_10_1134_S2079086424600140 crossref_primary_10_1111_pce_15023 crossref_primary_10_1007_s40003_023_00692_5 crossref_primary_10_1007_s43621_024_00502_0 crossref_primary_10_1016_j_sajb_2024_07_015 crossref_primary_10_1007_s42729_024_02012_4 |
Cites_doi | 10.1007/s00344-013-9347-3 10.1590/S0100-06832011000300006 10.1111/j.1365-2389.2006.00771.x 10.3389/fpls.2018.01247 10.19084/rca.15828 10.1016/j.heliyon.2017.e00244 10.1016/j.soilbio.2009.03.005 10.1590/S0103-84782009005000249 10.1080/01904160701742097 10.1016/j.apsoil.2021.103913 10.12661/pap.2012.010 10.1016/j.soilbio.2009.05.008 10.1016/j.micres.2018.10.011 10.1017/s0014479715000010 10.1007/s11274-012-1062-x 10.1590/S0100-204X1999000900014 10.4025/actasciagron.v29i3.277 10.1016/S0378-4290(01)00200-3 10.3389/fagro.2021.637196 10.1016/j.rhisph.2021.100309 10.21608/ejss.2020.24792.1344 10.4025/actasciagron.v28i3.964 10.1016/j.rhisph.2021.100348 10.1038/s41598-018-21921-w 10.1016/S1002-0160(19)60825-8 10.1016/B978-0-444-64191-5.00003-1 10.1007/s11104-013-1825-7 10.3390/plants10030571 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-RLal,2017 10.18188/sap.v19i2.23522 10.21608/assjm.2015.109816 10.1007/s12275-013-2335-2 10.1007/s12275-014-3496-3 10.1046/j.1365-2672.1999.00634.x 10.1080/01904167.2021.1943435 10.1002/jpln.200620602 10.21608/jssae.2009.103835 10.20546/ijcmas.2019.810.061 10.1016/j.soilbio.2009.10.017 10.18637/jss.v036.i03 10.30638/eemj.2018.051 10.1556/AAgr.55.2007.3.7 10.1080/01904167.2010.519084 10.1007/s10725-014-9993-x 10.3923/ijar.2010.148.156 10.1007/s42729-020-00263-5 10.5958/0974-0228.2015.00057.2 10.21608/jpp.2018.35470 10.1134/S0026261715010105 10.3390/agronomy3040595 10.1080/09064710802040558 10.3390/life10030024 10.1093/oso/9780195131871.003.0018 10.3389/fpls.2017.00141 10.1007/s12088-007-0010-1 10.1016/j.micres.2013.10.001 10.1007/s11274-006-9244-z 10.1590/1678-4324-solo-2020190493 10.1139/m97-001 10.1002/jobm.201300173 10.1007/s00374-011-0573-1 10.5897/AJB11.3438 10.31018/jans.v9i2.1312 10.1023/A:1015117027863 10.1007/s12038-014-9470-8 10.1080/00103624.2012.639110 10.1590/1678-992X-2017-0049 10.1007/s00344-020-10146-9 10.1139/m96-129 10.1007/s11104-021-05167-6 10.3390/microorganismos8050678 10.1007/978-3-319-55804-2_12 10.1080/03650340.2010.493880 10.4141/P01-047 10.3906/biy-0809-12 10.1016/j.fcr.2016.05.010 10.1139/w01-107 10.15835/nsb9210081 10.2135/cropsci2003.1774 10.1007/BF02981055 10.1007/s10658-007-9154-4 10.3390/agronomy11020219 10.1023/A:1016291207590 10.4141/P01-048 10.1111/jam.14754 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 10.5897/AJMR2013.5917 10.33448/rsd-v9i12.11360 10.1016/j.biocontrol.2012.06.008 10.1007/BF02376788 10.1016/j.rhisph.2016.09.002 10.1007/BF02375651 10.1016/j.ejsobi.2014.05.001 10.1016/bs.agron.2014.09.001 10.3389/fpls.2018.01473 10.4060/I7108EN 10.1016/j.envexpbot.2011.10.002 10.3389/fphys.2017.00667 10.5039/agraria.v13i4a5571 10.7717/peerj.7905 10.1007/s11274-009-9963-z 10.1007/978-1-4020-5760-1_82 10.1007/s00203-021-02446-9 10.1016/j.biortech.2007.06.057 10.1016/j.jbiotec.2018.07.044 10.1007/s11274-007-9591-4 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia 2022 2022. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia 2022. |
Copyright_xml | – notice: The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia 2022 – notice: 2022. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia. – notice: The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia 2022. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7U9 C1K H94 K9. M7N 7X8 5PM |
DOI | 10.1007/s42770-022-00800-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Virology and AIDS Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE AIDS and Cancer Research Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1678-4405 |
EndPage | 2037 |
ExternalDocumentID | PMC9679103 35896777 10_1007_s42770_022_00800_7 |
Genre | Meta-Analysis Journal Article Review |
GroupedDBID | 0R~ 0SF 23N 2WC 3V. 406 457 53G 5GY 5VS 6I. 6J9 7X7 7XC 88E 88I 8FE 8FH 8FI 8FJ AACDK AACTN AAEDW AAFTH AAHBH AAHNG AAJBT AALRI AASML AATNV AAUYE AAXUO ABAKF ABECU ABFTV ABJNI ABKCH ABMAC ABMQK ABTEG ABTKH ABTMW ABUWG ABXHO ACAOD ACDTI ACGFO ACGFS ACGOD ACHSB ACOKC ACPIV ACPRK ACZOJ ADBBV ADFRT ADKNI ADTPH ADURQ ADVLN ADYFF AEFQL AEMSY AENEX AESKC AEUYN AEXQZ AFBBN AFKRA AFQWF AFRAH AGDGC AGHFR AGMZJ AGQEE AHMBA AIGIU AILAN AITGF AITUG AJZVZ AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMRAJ AMTXH AMXSW AMYLF AOIJS APOWU ATCPS AXYYD AZFZN AZQEC BAWUL BBNVY BCNDV BENPR BGNMA BHPHI BPHCQ BVXVI C1A CCPQU CLZPN CS3 CSCUP DIK DPUIP DU5 DWQXO E3Z EBLON EBS EJD FDB FIGPU FNLPD FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE IKXTQ IPNFZ IWAJR JZLTJ KOV KQ8 LK8 LLZTM M1P M2P M41 M4Y M7P M~E NCXOZ NPVJJ NQJWS NU0 O9- OK1 P2P PATMY PQQKQ PROAC PSQYO PT4 PYCSY RIG RNS ROL RPM RSC RSV SCD SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW SSZ TR2 UKHRP UOJIU UTJUX VEKWB VFIZW XSB ZMTXR AAYWO AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ACVFH ADCNI AEUPX AEZWR AFDZB AFHIU AFOHR AFPUW AHPBZ AHWEU AIGII AIXLP AKBMS AKYEP ATHPR AYFIA CITATION OVT PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7U9 ABRTQ C1K H94 K9. M7N 7X8 5PM |
ID | FETCH-LOGICAL-c474t-78ed7f4e5f384bbd028ccf62be70934bc0422edfada1a7f9318be55c0d52c1413 |
ISSN | 1517-8382 1678-4405 |
IngestDate | Thu Aug 21 18:36:43 EDT 2025 Fri Jul 11 00:02:10 EDT 2025 Fri Jul 25 10:51:39 EDT 2025 Wed Feb 19 02:24:20 EST 2025 Tue Jul 01 00:06:46 EDT 2025 Thu Apr 24 23:01:23 EDT 2025 Fri Feb 21 02:44:24 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Biological nitrogen fixation Root growth Grain yield Nodule Plant nutrient content |
Language | English |
License | 2022. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c474t-78ed7f4e5f384bbd028ccf62be70934bc0422edfada1a7f9318be55c0d52c1413 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-3 ObjectType-Evidence Based Healthcare-1 ObjectType-Feature-1 ObjectType-Review-3 content type line 23 Responsible Editor: Luc F.M. Rouws |
ORCID | 0000-0003-2745-9949 0000-0002-7805-2789 0000-0002-8993-6563 0000-0003-3503-7228 0000-0002-9070-6896 0000-0002-2700-6512 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/9679103 |
PMID | 35896777 |
PQID | 2738587531 |
PQPubID | 1536339 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9679103 proquest_miscellaneous_2696006680 proquest_journals_2738587531 pubmed_primary_35896777 crossref_citationtrail_10_1007_s42770_022_00800_7 crossref_primary_10_1007_s42770_022_00800_7 springer_journals_10_1007_s42770_022_00800_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-01 |
PublicationDateYYYYMMDD | 2022-12-01 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Brazil – name: São Paulo |
PublicationTitle | Brazilian journal of microbiology |
PublicationTitleAbbrev | Braz J Microbiol |
PublicationTitleAlternate | Braz J Microbiol |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | de JensenCEPercichJAGrahamPHThe effect of Bacillus subtilis and Rhizobium inoculation of dry bean seed on root rot severity and yield in MinnesotaAnnu Rep Bean Improv Coop2002459899 QureshiMAShakirMAIqbalAAkhtarNKhanACoinoculation of phosphate solubilizing bacteria and rhizobia for improving growth and yield of mungbean (Vigna radiata L.)J Anim Plant Sci201121491497 BenjellounIAlamiITEl KhadirMDouiraAUdupaSMCoinoculation of Mesorhizobium ciceri with either Bacillus sp. or Enterobacteraerogenes on chickpea improves growth and productivity in phosphate-deficient soils in dry areas of a Mediterranean RegionPlant20211057110.3390/plants10030571 ShamseldinAHafezEEAbdelsalamHWernerDGenetic biodiversity of common bean nodulating rhizobia and studying their symbiotic effectiveness combined with strains of genus Azotobacter, Bacillus or Pseudomonas in EgyptRes J Agric Biol Sci20073184194 Abdel-FattahIEl-NahrawySEl-MansouryMAInteraction effect of skipping irrigation and coinoculation with Bradyrhizobium and some strains of Bacillus bacteria on growth dynamics of cowpea (Vignaunguiculata L.) its yield and water productivityEgypt J Soil Sci20206016718110.21608/ejss.2020.24792.1344 AlemnehAAZhouYRyderMHDentonMDMechanisms in plant growth-promoting rhizobacteria that enhance legume–rhizobial symbiosesJ Appl Microbiol20201291133115610.1111/jam.1475432592603 AungTTBuranabanyatBPiromyouPLongtonglangATittabutrPBoonkerdNTeaumroongNEnhanced soybean biomass by coinoculation of Bradyrhizobium japonicum and plant growth promoting rhizobacteria and its effects on microbial community structuresAfr J Microbiol Res201373858387310.5897/AJMR2013.5917 Armenta-BojórquezADRoblero-RamírezHRCamacho-BáezJRMundo-OcampoMGarcia-GutierrezCArmenta-MedinaAOrganic versus synthetic fertilisation of beans (Phaseolus vulgaris L.) in MexicoExp Agric20165215416210.1017/s0014479715000010 Alves-NetoAJLanaMCLorenzettiEHenkemeierNPSchimiloskiSRitterGConventional inoculants and biological protector, coinoculation and nitrogen fertilization in soybeanSci Agrar20201918719510.18188/sap.v19i2.23522 KaschukGLeffelaarPAGillerKEAlbertonOHungriaMKuyperTWResponses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbiosesSoil Biol Biochem20104212512710.1016/j.soilbio.2009.10.017 PreyangaRAnandhamRKrishnamoorthyRSenthilkumarMGopalNOVellaikumarAMeenaSGroundnut (Arachis hypogaea) nodule Rhizobium and passenger endophytic bacterial cultivable diversity and their impact on plant growth promotionRhizosphere20211710030910.1016/j.rhisph.2021.100309 World Vegetable Center - WVC, International mungbean improvement network, 2021. Retrieved from https://avrdc.org/intl-mungbean-network/. Available on 15 July 2021 TsigieATilakKVBRSaxenaAKField response of legumes to inoculation with plant growth-promoting rhizobacteriaBiol Fert Soil20114797197410.1007/s00374-011-0573-1 PacentchukFGomesJMLimaVAMendesMCSandiniIEJadoskiSOEffect of coinoculation of plant growth promoting bacteria on soybean cropRes Soc Dev20209e3929121136010.33448/rsd-v9i12.11360 VermaJYadavJImplication of microbial consortium on biomass and yield of chickpea under sustainable agricultureEnviron Eng Manag J20181751352210.30638/eemj.2018.051 AraújoASFCarneiroRFVBezerraAACAraújoFFCo-inoculação rizóbio e Bacillus subtilis em feijão-caupi e leucena: efeito sobre a nodulação, a fixação de N2 e o crescimento das plantasCiênc Rural20104018218510.1590/S0103-84782009005000249 RodriguesACAntunesJELMedeirosVVBarrosBGFFigueiredoMVBResposta da co-inoculação de bactérias promotoras de crescimento em plantas e Bradyrhizobium sp. em caupiBioSci J201228196202 MorettiLGCrusciolCACBossolaniJWMomessoJWGarciaAKuramaeEEHungriaMBacterial consortium and microbial metabolites increase grain quality and soybean yieldJ Soil Sci Plant Nutr2020201923193410.1007/s42729-020-00263-5 Abd-El-KhairHHaggagKHEl-NasrHISField application of Trichoderma harzianum and Bacillus subtilis combined with Rhizobium for controlling Fusarium root rot in faba bean in organic farmingMiddle East J Appl Sci20188865873 WaniPKhanMZaidiACoinoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpeaActa Agron Hung20075531532310.1556/AAgr.55.2007.3.7 KumarRChandraRInfluence of PGPR and PSB on Rhizobium leguminosarum bv. viciae strain competition and symbiotic performance in lentilWorld J Agric Sci20084297301 BaiYZhouXSmithDLEnhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicumCrop Sci2003431774178110.2135/cropsci2003.1774 FerreiraLDVMCarvalhoFDAndradeJFCMoreiraFMDSGrowth promotion of common bean and genetic diversity of bacteria from Amazon pasturelandSci Agric20187546146910.1590/1678-992X-2017-0049 GharibAAShaheinMMRagabAAInfluence of Rhizobium inoculation combined with Azotobacterchrococcum and Bacillusmegaterium var phosphaticum on growth, nodulation, yield and quality of two snap been (Phaseolusvulgaris l.) cultivarsAnn Agric Sci20155324926110.21608/assjm.2015.109816 Mel'nikovaNNBulavenkoLVKurdishIKTitovaLVKots' SYa, Formation and function of the Legume-Rhizobium symbiosis of soybean plants while introducing bacterial strains from the genera Azotobacter and BacillusAppl Biochem Microbiol20023836837210.1023/A:1016291207590 WaniPAKhanMSZaidiASynergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpeaJ Soil Sci Plant Nutr200717028328710.1002/jpln.200620602 FigueiredoMVBBurityHAMartinezCRChanwayCPAlleviation of water stress effects in common bean (Phaseolus vulgaris L) by coi-noculation Paenibacillus X Rhizobium tropiciAppl Soil Ecol20084018218810.1038/s41598-018-21921-w VermaJPYadavJTiwariKNApplication of Rhizobium sp. BHURC01 and plant growth promoting rhizobacteria on nodulation, plant biomass and yields of chickpea (Cicer arietinum L.)Int J Agric Res2010514815610.3923/ijar.2010.148.156 SinghNSinghGAggarwalNEconomic analysis of application of phosphorus, single and dual inoculation of Rhizobium and plant growth promoting rhizobacteria in lentil (Lens culinaris Medikus)J Appl Nat Sci201791008101110.31018/jans.v9i2.1312 OliveiraLBGTeixeira-FilhoMCMGalindoFSNogueiraTARBarco-NetoMBuzettiSForms and types of coinoculation in the soybean crop in Cerrado regionRev Ciênc Agrar20194292493210.19084/rca.15828 SilvaVNSilvaLESFMartínezCRBurityHAFigueiredoMVBEstirpes de Paenibacillus promotoras de nodulação específica na simbiose em Bradyrhizobium em caupiActa Sci Agron20072933133810.4025/actasciagron.v29i3.277 QureshiMAShakirMANaveedMAhmadMJGrowth and yield response of chickpea to coinoculation with Mesorhizobium ciceri and Bacillus megateriumJ Anim Plant Sci200919205211 RajendranGSingFDesaiAJArchanaGEnhanced growth and nodulation of pigeon pea by coinoculation of Bacillus strains with Rhizobium sppBioresour Technol2008994544455010.1016/j.biortech.2007.06.05717826983 QureshiMAIqbalAAkhtarNShakirMAKhanACoinoculation of phosphate solubilizing bacteria and rhizobia in the presence of L-tryptophan for the promotion of mash bean (Vigna mungo L.)Soil Environm2012314754 BarnawalDMajiDBhartiNChanotiyaCSKalraAACC Deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stressJ Plant Growth Regul20133280982210.1007/s00344-013-9347-3 MarinkovićJBjelićDTintorBMiladinovićJĐurićVĐordevićVEffects of soybean coinoculation with plant growth promoting rhizobacteria in field trialRom Biotechnol Lett2018231340113408 MathivananSChidambaramAASundramoorthyPBaskaranLKalaikandhanREffect of combined inoculations of plant growth promoting rhizobacteria (PGPR) on the growth and yield of groundnut (Arachis hypogaea L.)Int J Curr Microbiol Appl Sci2014310101020 RawalVNavarroDKThe global economy of pulses2019RomeFAO10.4060/I7108EN SrinivasanMHollFBPetersenDJInfluence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic conditionsCan J Microbiol1996421006101410.1139/m96-129 SiddiquiZABaghelGAkhtarMSBiocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentilWorld J Microbiol Biotechnol20072343544110.1007/s11274-006-9244-z GurevitchJHedgesLVScheneirSMGurevitchJMeta-analysis: combining the results of independent experimentsDesigns and analysis of ecological experiments20012OxfordOxford University Press347369 SantoyoGGuzmán-GuzmánPParra-CotaFISantos-VillalobosSdlOrozco-MosquedaMdCGlickBRPlant growth stimulation by microbial consortiaAgronomy202111221910.3390/agronomy11020219 CamachoMSantamariaCTempranoFRodriguez-NavarroDNDazaACoinoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris LCan J Microbiol2001471058106210.1139/w01-10711766056 ElkocaEKantarFSahinFInfluence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpeaJ Plant Nutr20073115717110.1080/01904160701742097 TilakKVBRRanganayakiNManoharachariCSynergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan)Eur J Soil Sci200657677110.1111/j.1365-2389.2006.00771.x de JensenCEPercichJAGrahamPHIntegrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in MinnesotaField Crop Res20027410711510.1016/S0378-4290(01)00200-3 SinghGSekhonHSSharmaPEffect of irrigation and biofertilizer on water use, nodulation, growth and yield of chickpea (Cicer arietinum L.)Arch Agronomy Soil Sci20115771572610.1080/03650340.2010.493880 GuptaASaxenaAKGopalMTilakKVBREffects of coinoculation of plant growth promoting rhizobacteria and Bradyrhizobium sp.(vigna) on growth and yield of green gram [Vigna radiata (L.) Wilczek]Trop Agric-London Then Trinidad20038028350041-3216/2003/010028-08 AtienoMHerrmannLOkaleboRLesueurDEfficiency of different formulations of Bradyrhizobiu S Dutta (800_CR93) 2014; 52 G Singh (800_CR40) 2011; 57 V Rawal (800_CR1) 2019 J Yadav (800_CR49) 2014; 63 AD Armenta-Bojórquez (800_CR50) 2016; 52 WJ Bullied (800_CR104) 2002; 82 O Masciarelli (800_CR108) 2014; 169 ASEE Hafez (800_CR57) 2007; 3 800_CR4 M Pandya (800_CR88) 2015; 84 800_CR5 M Camacho (800_CR51) 2001; 47 CE de Jensen (800_CR23) 2002; 74 AA Gharib (800_CR56) 2015; 53 PA Wani (800_CR48) 2007; 170 A Kumar (800_CR82) 2021; 203 SM Sousa (800_CR17) 2021; 40 E Elkoca (800_CR35) 2007; 31 J Verma (800_CR44) 2018; 17 A Gupta (800_CR87) 2003; 80 T Mahakavi (800_CR77) 2014; 2 P Subramanian (800_CR115) 2015; 76 MA El-Howeity (800_CR74) 2009; 34 G Kaschuk (800_CR2) 2009; 41 LG Moretti (800_CR110) 2020; 20 DM Zeffa (800_CR13) 2020; 8 AR Schwartz (800_CR92) 2013; 3 GM Braga-Junior (800_CR103) 2018; 13 M Srinivasan (800_CR63) 1997; 43 800_CR6 AG Osman (800_CR94) 2011; 5 G Kaschuk (800_CR3) 2010; 42 JP Verma (800_CR46) 2012; 43 N Sivaramaiah (800_CR43) 2007; 47 W Janati (800_CR11) 2021; 3 EF Abd-Allah (800_CR25) 2007; 35 LBG Oliveira (800_CR111) 2019; 42 I Abdel-Fattah (800_CR85) 2020; 60 D Barnawal (800_CR122) 2013; 32 G Kaschuk (800_CR12) 2016; 195 Y Kuzyakov (800_CR124) 2000; 163 PK Mishra (800_CR83) 2009; 25 Y Bai (800_CR102) 2003; 43 MS Akhtar (800_CR80) 2010; 34 RM Iličić (800_CR105) 2017; 9 R Kumar (800_CR81) 2008; 4 J Marinković (800_CR107) 2018; 23 LDVM Ferreira (800_CR30) 2020; 30 P Kumar (800_CR60) 2016; 2 N Parmar (800_CR36) 1999; 86 R Remans (800_CR61) 2007; 119 AA Alemneh (800_CR32) 2020; 129 G Kaschuk (800_CR125) 2012; 76 A Tsigie (800_CR84) 2011; 47 N Singh (800_CR41) 2017; 9 MA Qureshi (800_CR89) 2011; 21 AC Rodrigues (800_CR72) 2013; 51 G Rajendran (800_CR95) 2008; 99 R Saini (800_CR39) 2015; 55 M Tariq (800_CR91) 2012; 11 M Rana (800_CR38) 2015; 63 F Pacentchuk (800_CR112) 2020; 9 O Stajković (800_CR64) 2011; 16 LV Hedges (800_CR117) 1999; 80 VN Silva (800_CR68) 2006; 28 BN Aloo (800_CR15) 2019; 219 V Gangaraddi (800_CR86) 2018; 6 DM Li (800_CR106) 1988; 108 JD Cardoso (800_CR9) 2009; 41 J Gurevitch (800_CR118) 2001 TT Aung (800_CR20) 2013; 7 F Araújo (800_CR67) 2012; 17 H Abd-El-Khair (800_CR76) 2018; 8 MB Peoples (800_CR8) 2021 ASF Araújo (800_CR66) 2010; 40 P Wani (800_CR47) 2007; 55 E Dayoub (800_CR121) 2017; 3 M Abbas (800_CR73) 2018; 9 N Karanja (800_CR58) 2007 K Pankaj (800_CR113) 2009; 59 S Mathivanan (800_CR78) 2014; 3 M Atieno (800_CR101) 2012; 28 WP Buhian (800_CR120) 2018; 9 R Backer (800_CR126) 2018; 9 M Srinivasan (800_CR18) 1996; 42 CE de Jensen (800_CR24) 2002; 45 AR Alagawadi (800_CR34) 1988; 105 AJ Alves-Neto (800_CR97) 2020; 19 JP Verma (800_CR45) 2010; 5 KVBR Tilak (800_CR96) 2006; 57 A Shamseldin (800_CR62) 2007; 3 R Preyanga (800_CR79) 2021; 17 JZ Barbosa (800_CR14) 2021; 163 AME Rugheim (800_CR75) 2009; 3 E Elkoca (800_CR52) 2010; 33 VN Silva (800_CR69) 2007; 29 SL Dwivedi (800_CR7) 2015; 129 Z Singh (800_CR42) 2021 AM Massoud (800_CR21) 2008; 33 LDVM Ferreira (800_CR53) 2018; 75 MA Qureshi (800_CR19) 2012; 31 VV Gabre (800_CR55) 2020; 63 P Poonguzhali (800_CR116) 2005; 15 MA Qureshi (800_CR37) 2009; 19 R Radhakrishnan (800_CR123) 2017; 8 S Sibponkrung (800_CR114) 2020; 8 JK Vessey (800_CR65) 2002; 82 D Fira (800_CR29) 2018; 285 MS Figueredo (800_CR28) 2014; 39 W Viechtbauer (800_CR119) 2010; 36 W Yuttavanichakul (800_CR27) 2012; 63 MVB Figueiredo (800_CR54) 2008; 24 FFD Araújo (800_CR99) 1999; 34 ZA Siddiqui (800_CR26) 2007; 23 NN Mel'nikova (800_CR109) 2002; 38 H Korir (800_CR59) 2017; 8 S Tiwari (800_CR16) 2019 SS Sindhu (800_CR90) 2002; 45 MVB Figueiredo (800_CR31) 2008; 40 I Benjelloun (800_CR22) 2021; 10 E Menéndez (800_CR10) 2020; 10 G Santoyo (800_CR33) 2021; 11 ASTD Lima (800_CR70) 2011; 35 K Annapurna (800_CR98) 2013; 373 AC Rodrigues (800_CR71) 2012; 28 FF Araújo (800_CR100) 2021; 18 |
References_xml | – reference: GurevitchJHedgesLVScheneirSMGurevitchJMeta-analysis: combining the results of independent experimentsDesigns and analysis of ecological experiments20012OxfordOxford University Press347369 – reference: World Vegetable Center - WVC, International mungbean improvement network, 2021. Retrieved from https://avrdc.org/intl-mungbean-network/. Available on 15 July 2021 – reference: LimaASTDBarretoMDCSAraújoJMSeldinLBurityHAFigueiredoMDVBSinergismo Bacillus, Brevibacillus e, ou, Paenibacillus na simbiose Bradyrhizobium-caupiRev Bras Ciênc Solo20113571372110.1590/S0100-06832011000300006 – reference: Abd-AllahEFEl-DidamonyGEffect of seed treatment of Arachis hypogaea with Bacillus subtilis on nodulation in biocontrol of southern blight (Sclerotium rolfsii) diseasePhytoparasitica20073581210.1007/BF02981055 – reference: ElkocaETuranMDonmezMFEffects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris l. cv. ‘elkoca-05’)J Plant Nutr2010332104211910.1080/01904167.2010.519084 – reference: GangaraddiVBrahmaprakashGEvaluation of selected microbial consortium formulations on growth of green gram (Vignaradiata L.)Int J Chem Stud201861909191310.20546/ijcmas.2019.810.061 – reference: MorettiLGCrusciolCACBossolaniJWMomessoJWGarciaAKuramaeEEHungriaMBacterial consortium and microbial metabolites increase grain quality and soybean yieldJ Soil Sci Plant Nutr2020201923193410.1007/s42729-020-00263-5 – reference: KuzyakovYDomanskiGCarbon input by plants into the soil. ReviewJ Plant Nutr Soil Sc200016342143110.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-RLal,2017 – reference: MenéndezEPaçoAIs the application of plant probiotic bacterial consortia always beneficial for plants? Exploring synergies between rhizobial and non-rhizobial bacteria and their effects on agro-economically valuable cropsLife2020102410.3390/life100300247151578 – reference: AlemnehAAZhouYRyderMHDentonMDMechanisms in plant growth-promoting rhizobacteria that enhance legume–rhizobial symbiosesJ Appl Microbiol20201291133115610.1111/jam.1475432592603 – reference: AbbasMHarounSMowfyAAghaMCoinoculation effect of rhizobia and endophytic bacteria on Vicia faba growth and metabolismJ Plant Prod2018926927210.21608/jpp.2018.35470 – reference: MishraPKMishraSSelvakumarGBishtJKKunduSGuptaHSCoinoculation of Bacillus thuringeinsis-KR1 with Rhizobium leguminosarum enhances plant growth and nodulation of pea (Pisum sativum L.) and lentil (Lens culinaris L.)World J Microbiol Biotechnol20092575376110.1007/s11274-009-9963-z – reference: BaiYZhouXSmithDLEnhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicumCrop Sci2003431774178110.2135/cropsci2003.1774 – reference: de JensenCEPercichJAGrahamPHThe effect of Bacillus subtilis and Rhizobium inoculation of dry bean seed on root rot severity and yield in MinnesotaAnnu Rep Bean Improv Coop2002459899 – reference: BulliedWJBussTJVesseyJKBacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: field studiesCan J Plant Sci20028229129810.4141/P01-048 – reference: JanatiWBenmridBElhaissoufiWZeroualYNasielskiJBargazAWill phosphate bio-solubilization stimulate biological nitrogen fixation in grain legumes?Front Agron2021363719610.3389/fagro.2021.637196 – reference: MasciarelliOLlanesALunaVA new PGPR co-inoculated with Bradyrhizobium japonicum enhances soybean nodulationMicrobiol Res201416960961510.1016/j.micres.2013.10.00124280513 – reference: AnnapurnaKRamadossDBosePVithalkumarLIn situ localization of Paenibacillus polymyxa HKA-15 in roots and root nodules of soybean (Glycine max. L.)Plant Soil201337364164810.1007/s11104-013-1825-7 – reference: BarbosaJZHungriaMSenaJVSPoggereGdos ReisARCorrêaRSMeta-analysis reveals benefits of coinoculation of soybean with Azospirillumbrasilense and Bradyrhizobium spp. in BrazilAppl Soil Ecol202116310391310.1016/j.apsoil.2021.103913 – reference: GabreVVVenancioWSMoraesBAFurmamFGGalvãoCWGonçalvesDRPEttoRMMultiple effect of different plant growth promoting microorganisms on beans (Phaseolusvulgaris L.) cropBraz Arch Biol Technol202063e2019049310.1590/1678-4324-solo-2020190493 – reference: AtienoMHerrmannLOkaleboRLesueurDEfficiency of different formulations of Bradyrhizobium japonicum and effect of coinoculation of Bacillus subtilis with two different strains of Bradyrhizobium japonicumWorld J Microbiol Biotechnol2012282541255010.1007/s11274-012-1062-x22806160 – reference: BackerRRokemJSIlangumaranGLamontJPraslickovaDRicciESubramanianSSmithDLPlant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agricultureFront Plant Sci20189147310.3389/fpls.2018.01473304056526206271 – reference: SchwartzAROrtizIMaymonMHerboldCWFujishigeNAVijanderanJAVillellaWHanamotoKDienerASandersERMasonDAHirschAMBacillus simplex—A little known PGPB with anti-fungal activity—alters pea legume root architecture and nodule morphology when coinoculated with Rhizobium leguminosarum bv. viciaeAgron2013359562010.3390/agronomy3040595 – reference: PacentchukFGomesJMLimaVAMendesMCSandiniIEJadoskiSOEffect of coinoculation of plant growth promoting bacteria on soybean cropRes Soc Dev20209e3929121136010.33448/rsd-v9i12.11360 – reference: RawalVNavarroDKThe global economy of pulses2019RomeFAO10.4060/I7108EN – reference: YadavJVermaJPEffect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields of chickpea (Cicer arietinum L.)Eur J Soil Biol201463707710.1016/j.ejsobi.2014.05.001 – reference: SousaSMOliveiraCAAndradeDLCarvalhoCGRibeiroVPPastinaMMMarrielIELanaUHPGomesEATropical Bacillus strains inoculation enhances maize root surface area, dry weight, nutrient uptake and grain yieldJ Plant Growth Reg20214086787710.1007/s00344-020-10146-9 – reference: KorirHMungaiNWThuitaMHambaYMassoCCoinoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soilFront Plant Sci2017814110.3389/fpls.2017.00141282240005293795 – reference: Braga-JuniorGMChagasLFBAmaralLROMillerLOJuniorAFCEficiência da inoculação por Bacillus subtilis sobre biomassa e produtividade de sojaRev Bras Ciênc Agrár201813557110.5039/agraria.v13i4a5571 – reference: KumarPPandeyPDubeyRCMaheshwariDKBacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studiesRhizosphere20162132310.1016/j.rhisph.2016.09.002 – reference: BuhianWPBensmihenSMini-review: nod factor regulation of phytohormone signaling and homeostasis during rhizobia-legume symbiosisFront Plant Sci20189124710.3389/fpls.2018.01247303196656166096 – reference: SinghZSinghGAggarwalNVirkHKSharma P (2021) Symbiotic efficiency vis-à-vis chickpea performance as affected by seed inoculation with Mesorhizobium, phosphorus-solubilizing bacteria, and phosphorus applicationJ Plant Nutr202110.1080/01904167.2021.1943435 – reference: WaniPAKhanMSZaidiASynergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpeaJ Soil Sci Plant Nutr200717028328710.1002/jpln.200620602 – reference: BarnawalDMajiDBhartiNChanotiyaCSKalraAACC Deaminase-containing Bacillus subtilis reduces stress ethylene-induced damage and improves mycorrhizal colonization and rhizobial nodulation in Trigonella foenum-graecum under drought stressJ Plant Growth Regul20133280982210.1007/s00344-013-9347-3 – reference: VermaJPYadavJTiwariKNApplication of Rhizobium sp. BHURC01 and plant growth promoting rhizobacteria on nodulation, plant biomass and yields of chickpea (Cicer arietinum L.)Int J Agric Res2010514815610.3923/ijar.2010.148.156 – reference: TilakKVBRRanganayakiNManoharachariCSynergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan)Eur J Soil Sci200657677110.1111/j.1365-2389.2006.00771.x – reference: TiwariSPrasadVLataCSinghJSSinghDPBacillus: plant growth promoting bacteria for sustainable agriculture and environmentNew and future developments in microbial biotechnology and bioengineering2019LondonElsevier435510.1016/B978-0-444-64191-5.00003-1 – reference: WaniPKhanMZaidiACoinoculation of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth, yield and nutrient uptake in chickpeaActa Agron Hung20075531532310.1556/AAgr.55.2007.3.7 – reference: CamachoMSantamariaCTempranoFRodriguez-NavarroDNDazaACoinoculation with Bacillus sp. CECT 450 improves nodulation in Phaseolus vulgaris LCan J Microbiol2001471058106210.1139/w01-10711766056 – reference: AkhtarMSShakeelUSiddiquiZABiocontrol of Fusarium wilt by Bacillus pumilus, Pseudomonas alcaligenes and Rhizobium sp. on lentilTurk J Biol2010341710.3906/biy-0809-12 – reference: QureshiMAIqbalAAkhtarNShakirMAKhanACoinoculation of phosphate solubilizing bacteria and rhizobia in the presence of L-tryptophan for the promotion of mash bean (Vigna mungo L.)Soil Environm2012314754 – reference: SrinivasanMHollFBPetersenDJInfluence of indoleacetic-acid-producing Bacillus isolates on the nodulation of Phaseolus vulgaris by Rhizobium etli under gnotobiotic conditionsCan J Microbiol1996421006101410.1139/m96-129 – reference: HedgesLVGurevitchJCurtisPSThe meta-analysis of response ratios in experimental ecologyEcol1999801150115610.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – reference: ShamseldinAHafezEEAbdelsalamHWernerDGenetic biodiversity of common bean nodulating rhizobia and studying their symbiotic effectiveness combined with strains of genus Azotobacter, Bacillus or Pseudomonas in EgyptRes J Agric Biol Sci20073184194 – reference: SiddiquiZABaghelGAkhtarMSBiocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentilWorld J Microbiol Biotechnol20072343544110.1007/s11274-006-9244-z – reference: FiraDDimkićIBerićTLozoJStankovićSBiological control of plant pathogens by Bacillus speciesJ Biotechnol2018285445510.1016/j.jbiotec.2018.07.04430172784 – reference: GharibAAShaheinMMRagabAAInfluence of Rhizobium inoculation combined with Azotobacterchrococcum and Bacillusmegaterium var phosphaticum on growth, nodulation, yield and quality of two snap been (Phaseolusvulgaris l.) cultivarsAnn Agric Sci20155324926110.21608/assjm.2015.109816 – reference: KaschukGYinXHungriaMLeffelaarPAGillerKEKuyperTWPhotosynthetic adaptation of soybean due to varying effectiveness of N2 fixation by two distinct Bradyrhizobium japonicum strainsEnvironm Exp Bot2012761610.1016/j.envexpbot.2011.10.002 – reference: RanaMChandraRPareekNCoinoculation effect of endophytic bacteria with Mesorhizobium sp. in chickpea (Cicer arietinum L.) on nodulation, yields, nutrient uptake and soil biological propertiesJ Indian Soc Soil Sci20156342943510.5958/0974-0228.2015.00057.2 – reference: OsmanAGRugheimAMEElsoniEMEffects of biofertilization on nodulation, nitrogen and phosphorus content and yield of pigeon pea (Cajanus cajan)Adv Environ Biol2011527422749 – reference: VermaJYadavJImplication of microbial consortium on biomass and yield of chickpea under sustainable agricultureEnviron Eng Manag J20181751352210.30638/eemj.2018.051 – reference: Armenta-BojórquezADRoblero-RamírezHRCamacho-BáezJRMundo-OcampoMGarcia-GutierrezCArmenta-MedinaAOrganic versus synthetic fertilisation of beans (Phaseolus vulgaris L.) in MexicoExp Agric20165215416210.1017/s0014479715000010 – reference: RugheimAMEAbdelganiMEEffects of Rhizobium and Bacillus megaterium var. phosphaticum strains and chemical fertilizers on symbiotic properties and yield of faba bean (Vicia faba L.)Adv Environ Biol20093337346 – reference: Abd-El-KhairHHaggagKHEl-NasrHISField application of Trichoderma harzianum and Bacillus subtilis combined with Rhizobium for controlling Fusarium root rot in faba bean in organic farmingMiddle East J Appl Sci20188865873 – reference: AungTTBuranabanyatBPiromyouPLongtonglangATittabutrPBoonkerdNTeaumroongNEnhanced soybean biomass by coinoculation of Bradyrhizobium japonicum and plant growth promoting rhizobacteria and its effects on microbial community structuresAfr J Microbiol Res201373858387310.5897/AJMR2013.5917 – reference: SilvaVNSilvaLESFMartínezCRBurityHAFigueiredoMVBEstirpes de Paenibacillus promotoras de nodulação específica na simbiose em Bradyrhizobium em caupiActa Sci Agron20072933133810.4025/actasciagron.v29i3.277 – reference: ZeffaDMFantinLHKoltunAde OliveiraALMNunesMPBACanteriMGGonçalvesLSAEffects of plant growth-promoting rhizobacteria on coinoculation with Bradyrhizobium in soybean crop: a meta-analysis of studies from 1987 to 2018PeerJ20208e790510.7717/peerj.7905319422486955106 – reference: KaschukGLeffelaarPAGillerKEAlbertonOHungriaMKuyperTWResponses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbiosesSoil Biol Biochem20104212512710.1016/j.soilbio.2009.10.017 – reference: RemansRCroonenborghsAGutierrezRTMichielsJVanderleydenJEffects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutritionEur J Plant Pathol200711934135110.1007/s10658-007-9154-4 – reference: GuptaASaxenaAKGopalMTilakKVBREffects of coinoculation of plant growth promoting rhizobacteria and Bradyrhizobium sp.(vigna) on growth and yield of green gram [Vigna radiata (L.) Wilczek]Trop Agric-London Then Trinidad20038028350041-3216/2003/010028-08 – reference: SivaramaiahNMalikDKSindhuSImprovement in symbiotic efficiency of chickpea (Cicer arietinum) by coinoculation of Bacillus strains with Mesorhizobium sp. cicerIndian J Microbiol200747515610.1007/s12088-007-0010-1231006403450223 – reference: TariqMHameedSYasmeenTAliANon-rhizobial bacteria for improved nodulation and grain yield of mung bean [Vignaradiata (L.) Wilczek]Afr J Biotec201211150121501910.5897/AJB11.3438 – reference: PreyangaRAnandhamRKrishnamoorthyRSenthilkumarMGopalNOVellaikumarAMeenaSGroundnut (Arachis hypogaea) nodule Rhizobium and passenger endophytic bacterial cultivable diversity and their impact on plant growth promotionRhizosphere20211710030910.1016/j.rhisph.2021.100309 – reference: PoonguzhaliPSelvarajSMadhaiyanMThangarajuMRyuJChungKSaTEffects of co-cultures, containing N-fixer and P-solubilizer, on the growth and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) and blackgram (Vigna mungo L.)J Microbiol Biotec200515903908 – reference: PeoplesMBGillerKEJensenESHerridgeDFQuantifying country-to-global scale nitrogen fixation for grain legumes: I. Reliance on nitrogen fixation of soybean, groundnut and pulsesPlant Soil202110.1007/s11104-021-05167-6 – reference: KaschukGNogueiraMADe LucaMJHungriaMResponse of determinate and indeterminate soybean cultivars to basal and topdressing N fertilization compared to sole inoculation with BradyrhizobiumField Crop Res2016195212710.1016/j.fcr.2016.05.010 – reference: SilvaVNFigueiredoMDVBAtuação de rizóbios com rizobactéria promotora de crescimento em plantas na cultura do caupi (Vigna unguiculata [L.] Walp.)Acta Sci Agron20062840741210.4025/actasciagron.v28i3.964 – reference: FigueiredoMVBBurityHAMartinezCRChanwayCPAlleviation of water stress effects in common bean (Phaseolus vulgaris L) by coi-noculation Paenibacillus X Rhizobium tropiciAppl Soil Ecol20084018218810.1038/s41598-018-21921-w – reference: MarinkovićJBjelićDTintorBMiladinovićJĐurićVĐordevićVEffects of soybean coinoculation with plant growth promoting rhizobacteria in field trialRom Biotechnol Lett2018231340113408 – reference: CardosoJDGomesDFGoesKCGPFonsecaNSDorigoOFHungriaMAndradeDSRelationship between total nodulation and nodulation at the root crown of peanut, soybean and common bean plantsSoil Biol Biochem2009411760176310.1016/j.soilbio.2009.05.008 – reference: IličićRMPivićRNDinićZSLatkovićDSVlajićSAJošićDLJThe enhancement of soybean growth and yield in a field trial through introduction of mixtures of Bradyrhizobiumjaponicum, Bacillus sp. and PseudomonaschlororaphisNot Sci Biol2017927427910.15835/nsb9210081 – reference: El-HoweityMAAbdallaAAAbo-KoraHAEl-ShinnawiMMResponse of faba bean plants to inoculation with Rhizobium leguminosarium and other rhizobacteria under three nitrogen leves in newly reclaimed soilJ Soil Sci Agric Eng2009347325734510.21608/jssae.2009.103835 – reference: FigueiredoMVBMartinezCRBurityHAChanwayCPPlant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.)World J Microbiol Biotechnol2008241187119310.1007/s11274-007-9591-4 – reference: FigueredoMSTonelliMLTaurianTAngeliniJIbañezFValettiLMuñozVAnzuayMSLudueñaLFabraAInterrelationships between Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA 6144 in the induced systemic resistance against Sclerotium rolfsii and symbiosis on peanut plantsJ Biosci20143987788510.1007/s12038-014-9470-825431416 – reference: ElkocaEKantarFSahinFInfluence of nitrogen fixing and phosphorus solubilizing bacteria on the nodulation, plant growth, and yield of chickpeaJ Plant Nutr20073115717110.1080/01904160701742097 – reference: QureshiMAShakirMANaveedMAhmadMJGrowth and yield response of chickpea to coinoculation with Mesorhizobium ciceri and Bacillus megateriumJ Anim Plant Sci200919205211 – reference: VermaJPYadavJTiwariKNEnhancement of nodulation and yield of chickpea by coinoculation of indigenous Mesorhizobium spp. and plant growth–promoting rhizobacteria in Eastern Uttar PradeshComm Soil Sci Plant Anal20124360562110.1080/00103624.2012.639110 – reference: AlooBNMakumbaBAMbegaERThe potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainabilityMicrobiol Res2019219263910.1016/j.micres.2018.10.01130642464 – reference: KaranjaNMutuaGKimenjuJBationoAWaswaBKiharaJKimetuJEvaluating the effect of Bacillus and Rhizobium bi-inoculant on nodulation and nematode control in Phaseolus vulgaris LAdvances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities2007DordrechtSpringer10.1007/978-1-4020-5760-1_82 – reference: DwivediSLSahrawatKLUpadhyayaHDMengoniAGalardiniMBazzicalupoMBiondiEGHungríaMKaschukGBlairMWOrtizRAdvances in host plant and rhizobium genomics to enhance symbiotic nitrogen fixation in grain legumesAdv Agron2015129111610.1016/bs.agron.2014.09.001 – reference: AraújoFFDHungriaMNodulação e rendimento de soja co-infectada com Bacillus subtilis e Bradyrhizobium japonicum/Bradyrhizobium elkaniiPesq Agropec Bras1999341633164310.1590/S0100-204X1999000900014 – reference: TsigieATilakKVBRSaxenaAKField response of legumes to inoculation with plant growth-promoting rhizobacteriaBiol Fert Soil20114797197410.1007/s00374-011-0573-1 – reference: Kaschuk G, Hungria M (2017) Diversity and importance of diazotrophic bacteria to agricultural sustainability in the tropics. In: Diversity and benefits of microorganisms from the tropics. Springer, Cham. p. 269–292. https://doi.org/10.1007/978-3-319-55804-2_12 – reference: BenjellounIAlamiITEl KhadirMDouiraAUdupaSMCoinoculation of Mesorhizobium ciceri with either Bacillus sp. or Enterobacteraerogenes on chickpea improves growth and productivity in phosphate-deficient soils in dry areas of a Mediterranean RegionPlant20211057110.3390/plants10030571 – reference: RajendranGSingFDesaiAJArchanaGEnhanced growth and nodulation of pigeon pea by coinoculation of Bacillus strains with Rhizobium sppBioresour Technol2008994544455010.1016/j.biortech.2007.06.05717826983 – reference: StajkovićODelićDJošićDKuzmanovićDRasulićNKnežević-VukčevićJImprovement of common bean growth by coinoculation with Rhizobium and plant growth-promoting bacteriaRom Biotechnol Lett20111659195926 – reference: PandyaMRajputMRajkumarSExploring plant growth promoting potential of non rhizobial root nodules endophytes of Vigna radiataMicrobiol201584808910.1134/S0026261715010105 – reference: PankajKMishraSMishraGSelvakumarSKGuptaHSEnhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1Acta Agric Scand B Soil Plant Sci20095918919610.1080/09064710802040558 – reference: DayoubENaudinCPivaGShirtliffeSJFustecJCorre-HellouGTraits affecting early season nitrogen uptake in nine legume speciesHeliyon20173e0024410.1016/j.heliyon.2017.e00244282291305312646 – reference: RodriguesACAntunesJELCostaAFOliveiraJPFigueiredoMVBInterrelationship of Bradyrhizobium sp. and plant growth-promoting bacteria in cowpea: survival and symbiotic performanceJ Microbiol201351495510.1007/s12275-013-2335-223456712 – reference: KumarRChandraRInfluence of PGPR and PSB on Rhizobium leguminosarum bv. viciae strain competition and symbiotic performance in lentilWorld J Agric Sci20084297301 – reference: ViechtbauerWConducting meta-analyses in R with the metafor packageJ Statist Software20103614810.18637/jss.v036.i03 – reference: Abdel-FattahIEl-NahrawySEl-MansouryMAInteraction effect of skipping irrigation and coinoculation with Bradyrhizobium and some strains of Bacillus bacteria on growth dynamics of cowpea (Vignaunguiculata L.) its yield and water productivityEgypt J Soil Sci20206016718110.21608/ejss.2020.24792.1344 – reference: SrinivasanMHollFBPetersenDJNodulation of Phaseolus vulgaris by Rhizobium etli is enhanced by the presence of BacillusCan J Microbiol1997431810.1139/m97-001 – reference: ParmarNDadarwalKRStimulation of nitrogen fixation and induction of flavonoid-like compounds by rhizobacteriaJ App Microbiol199986364410.1046/j.1365-2672.1999.00634.x – reference: RadhakrishnanRHashemAAbd-AllahEFBacillus: a biological tool for crop improvement through bio-molecular changes in adverse environmentsFront Physiol2017866710.3389/fphys.2017.00667289321995592640 – reference: AlagawadiARGaurACAssociative effect of Rhizobium and phosphate-solubilizing bacteria on the yield and nutrient uptake of chickpeaPlant Soil198810524124610.1007/BF02376788 – reference: VesseyJKBussTJBacillus cereus UW85 inoculation effects on growth, nodulation, and N accumulation in grain legumes: controlled-environment studiesCan J Plant Sci20028228229010.4141/P01-047 – reference: SainiRDudejaSSGiriRKumarVIsolation, characterization, and evaluation of bacterial root and nodule endophytes from chickpea cultivated in Northern IndiaJ Basic Microbiol201555748110.1002/jobm.20130017325590871 – reference: MahakaviTBaskaranLRajeshMGaneshKSEfficient of biofertilizers on growth and yield characteristics of groundnut Arachis hypogaea LJ Environm Treat Techn20142158161 – reference: AraújoASFCarneiroRFVBezerraAACAraújoFFCo-inoculação rizóbio e Bacillus subtilis em feijão-caupi e leucena: efeito sobre a nodulação, a fixação de N2 e o crescimento das plantasCiênc Rural20104018218510.1590/S0103-84782009005000249 – reference: FAOSTAT (2021) Retrieved from Database. http://faostat.fao.org/beta/en/#data). Available on 15 July 2021 – reference: QureshiMAShakirMAIqbalAAkhtarNKhanACoinoculation of phosphate solubilizing bacteria and rhizobia for improving growth and yield of mungbean (Vigna radiata L.)J Anim Plant Sci201121491497 – reference: SinghGSekhonHSSharmaPEffect of irrigation and biofertilizer on water use, nodulation, growth and yield of chickpea (Cicer arietinum L.)Arch Agronomy Soil Sci20115771572610.1080/03650340.2010.493880 – reference: de JensenCEPercichJAGrahamPHIntegrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in MinnesotaField Crop Res20027410711510.1016/S0378-4290(01)00200-3 – reference: AraújoFAraújoASouzaMInoculação do feijão-caupi com rizobactérias promotoras de crescimento e desempenho na produção de biomassaPesq Agropec Pernambucana201217535810.12661/pap.2012.010 – reference: RodriguesACAntunesJELMedeirosVVBarrosBGFFigueiredoMVBResposta da co-inoculação de bactérias promotoras de crescimento em plantas e Bradyrhizobium sp. em caupiBioSci J201228196202 – reference: OliveiraLBGTeixeira-FilhoMCMGalindoFSNogueiraTARBarco-NetoMBuzettiSForms and types of coinoculation in the soybean crop in Cerrado regionRev Ciênc Agrar20194292493210.19084/rca.15828 – reference: Alves-NetoAJLanaMCLorenzettiEHenkemeierNPSchimiloskiSRitterGConventional inoculants and biological protector, coinoculation and nitrogen fertilization in soybeanSci Agrar20201918719510.18188/sap.v19i2.23522 – reference: DuttaSMorangPKumarNKumarBDTwo rhizobacterial strains, individually and in interactions with Rhizobium sp., enhance fusarial wilt control, growth, and yield in pigeon peaJ Microbiol20145277878410.1007/s12275-014-3496-325224506 – reference: MassoudAMAbou-ZeidMYHassanESAEl-FikiSFInfluence of phosphate dissolving and nitrogen fixing bacteria on faba bean under different levels of phosphorus fertilizationJ Agric Sci Mansoura Univ20083379918007 – reference: KaschukGKuyperTWLeffelaarPAHungriaMGillerKEAre the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses?Soil Biol Biochem2009411233124410.1016/j.soilbio.2009.03.005 – reference: FerreiraLDVMCarvalhoFAndradeJFCOliveiraDPMedeirosFHVMoreiraFMDSCoinoculation of selected nodule endophytic rhizobacterial strains with Rhizobium tropici promotes plant growth and controls damping off in common beanPedosphere2020309810810.1016/S1002-0160(19)60825-8 – reference: KumarAJhaMNSinghDPathakDRajawatMVSProspecting catabolic diversity of microbial strains for developing microbial consortia and their synergistic effect on Lentil (Lens esculenta) growth, yield and iron biofortificationArch Microbiol20212034913492810.1007/s00203-021-02446-934251477 – reference: SinghNSinghGAggarwalNEconomic analysis of application of phosphorus, single and dual inoculation of Rhizobium and plant growth promoting rhizobacteria in lentil (Lens culinaris Medikus)J Appl Nat Sci201791008101110.31018/jans.v9i2.1312 – reference: AraújoFFBonifácioABavarescoLGMendesLWAraújoASFBacillus subtilis changes the root architecture of soybean grown on nutrient-poor substrateRhizosphere20211810034810.1016/j.rhisph.2021.100348 – reference: SubramanianPKimKKrishnamoorthyRSundaramSSaTEndophytic bacteria improve nodule function and plant nitrogen in soybean on coinoculation with Bradyrhizobium japonicum MN110Plant Growth Regul20157632733210.1007/s10725-014-9993-x – reference: Mel'nikovaNNBulavenkoLVKurdishIKTitovaLVKots' SYa, Formation and function of the Legume-Rhizobium symbiosis of soybean plants while introducing bacterial strains from the genera Azotobacter and BacillusAppl Biochem Microbiol20023836837210.1023/A:1016291207590 – reference: SantoyoGGuzmán-GuzmánPParra-CotaFISantos-VillalobosSdlOrozco-MosquedaMdCGlickBRPlant growth stimulation by microbial consortiaAgronomy202111221910.3390/agronomy11020219 – reference: MathivananSChidambaramAASundramoorthyPBaskaranLKalaikandhanREffect of combined inoculations of plant growth promoting rhizobacteria (PGPR) on the growth and yield of groundnut (Arachis hypogaea L.)Int J Curr Microbiol Appl Sci2014310101020 – reference: SindhuSSGuptaSKSunejaSDadarwalKREnhancement of green gram nodulation and growth by Bacillus speciesBiol Plant20024511712010.1023/A:1015117027863 – reference: SibponkrungSKondoTTanakaKTittabutrPBoonkerdNYoshidaKTeaumroongNCoinoculation of Bacillus velezensis strain S141 and Bradyrhizobium strains promotes nodule growth and nitrogen fixationMicroorganisms2020867810.3390/microorganismos80506787284691 – reference: FerreiraLDVMCarvalhoFDAndradeJFCMoreiraFMDSGrowth promotion of common bean and genetic diversity of bacteria from Amazon pasturelandSci Agric20187546146910.1590/1678-992X-2017-0049 – reference: HafezASEEWernerHADGenetic biodiversity of common bean nodulating rhizobia and studying their symbiotic effectiveness combined with strains of genus Azotobacter, Bacillus or Pseudomonas in EgyptRes J Agric Biol Sci20073184194 – reference: LiDMAlexanderMCoinoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobiaPlant Soil198810821121910.1007/BF02375651 – reference: YuttavanichakulWLawongsaPWongkaewSTeaumroongNBoonkerdNNomuraNTittabutrPImprovement of peanut rhizobial inoculant by incorporation of plant growth promoting rhizobacteria (PGPR) as biocontrol against the seed borne fungus, Aspergillus nigerBiol Control201263879710.1016/j.biocontrol.2012.06.008 – volume: 32 start-page: 809 year: 2013 ident: 800_CR122 publication-title: J Plant Growth Regul doi: 10.1007/s00344-013-9347-3 – volume: 35 start-page: 713 year: 2011 ident: 800_CR70 publication-title: Rev Bras Ciênc Solo doi: 10.1590/S0100-06832011000300006 – volume: 57 start-page: 67 year: 2006 ident: 800_CR96 publication-title: Eur J Soil Sci doi: 10.1111/j.1365-2389.2006.00771.x – volume: 80 start-page: 28 year: 2003 ident: 800_CR87 publication-title: Trop Agric-London Then Trinidad – volume: 31 start-page: 47 year: 2012 ident: 800_CR19 publication-title: Soil Environm – volume: 9 start-page: 1247 year: 2018 ident: 800_CR120 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01247 – volume: 42 start-page: 924 year: 2019 ident: 800_CR111 publication-title: Rev Ciênc Agrar doi: 10.19084/rca.15828 – volume: 3 start-page: e00244 year: 2017 ident: 800_CR121 publication-title: Heliyon doi: 10.1016/j.heliyon.2017.e00244 – volume: 41 start-page: 1233 year: 2009 ident: 800_CR2 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.03.005 – volume: 40 start-page: 182 year: 2010 ident: 800_CR66 publication-title: Ciênc Rural doi: 10.1590/S0103-84782009005000249 – volume: 31 start-page: 157 year: 2007 ident: 800_CR35 publication-title: J Plant Nutr doi: 10.1080/01904160701742097 – volume: 28 start-page: 196 year: 2012 ident: 800_CR71 publication-title: BioSci J – volume: 163 start-page: 103913 year: 2021 ident: 800_CR14 publication-title: Appl Soil Ecol doi: 10.1016/j.apsoil.2021.103913 – volume: 17 start-page: 53 year: 2012 ident: 800_CR67 publication-title: Pesq Agropec Pernambucana doi: 10.12661/pap.2012.010 – volume: 41 start-page: 1760 year: 2009 ident: 800_CR9 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.05.008 – volume: 19 start-page: 205 year: 2009 ident: 800_CR37 publication-title: J Anim Plant Sci – volume: 33 start-page: 7991 year: 2008 ident: 800_CR21 publication-title: J Agric Sci Mansoura Univ – volume: 219 start-page: 26 year: 2019 ident: 800_CR15 publication-title: Microbiol Res doi: 10.1016/j.micres.2018.10.011 – volume: 52 start-page: 154 year: 2016 ident: 800_CR50 publication-title: Exp Agric doi: 10.1017/s0014479715000010 – volume: 28 start-page: 2541 year: 2012 ident: 800_CR101 publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-012-1062-x – volume: 2 start-page: 158 year: 2014 ident: 800_CR77 publication-title: J Environm Treat Techn – volume: 34 start-page: 1633 year: 1999 ident: 800_CR99 publication-title: Pesq Agropec Bras doi: 10.1590/S0100-204X1999000900014 – volume: 29 start-page: 331 year: 2007 ident: 800_CR69 publication-title: Acta Sci Agron doi: 10.4025/actasciagron.v29i3.277 – volume: 74 start-page: 107 year: 2002 ident: 800_CR23 publication-title: Field Crop Res doi: 10.1016/S0378-4290(01)00200-3 – volume: 3 start-page: 637196 year: 2021 ident: 800_CR11 publication-title: Front Agron doi: 10.3389/fagro.2021.637196 – volume: 17 start-page: 100309 year: 2021 ident: 800_CR79 publication-title: Rhizosphere doi: 10.1016/j.rhisph.2021.100309 – volume: 60 start-page: 167 year: 2020 ident: 800_CR85 publication-title: Egypt J Soil Sci doi: 10.21608/ejss.2020.24792.1344 – volume: 28 start-page: 407 year: 2006 ident: 800_CR68 publication-title: Acta Sci Agron doi: 10.4025/actasciagron.v28i3.964 – volume: 18 start-page: 100348 year: 2021 ident: 800_CR100 publication-title: Rhizosphere doi: 10.1016/j.rhisph.2021.100348 – volume: 5 start-page: 2742 year: 2011 ident: 800_CR94 publication-title: Adv Environ Biol – volume: 40 start-page: 182 year: 2008 ident: 800_CR31 publication-title: Appl Soil Ecol doi: 10.1038/s41598-018-21921-w – volume: 30 start-page: 98 year: 2020 ident: 800_CR30 publication-title: Pedosphere doi: 10.1016/S1002-0160(19)60825-8 – start-page: 43 volume-title: New and future developments in microbial biotechnology and bioengineering year: 2019 ident: 800_CR16 doi: 10.1016/B978-0-444-64191-5.00003-1 – volume: 373 start-page: 641 year: 2013 ident: 800_CR98 publication-title: Plant Soil doi: 10.1007/s11104-013-1825-7 – volume: 10 start-page: 571 year: 2021 ident: 800_CR22 publication-title: Plant doi: 10.3390/plants10030571 – volume: 163 start-page: 421 year: 2000 ident: 800_CR124 publication-title: J Plant Nutr Soil Sc doi: 10.1002/1522-2624(200008)163:4<421::AID-JPLN421>3.0.CO;2-RLal,2017 – volume: 19 start-page: 187 year: 2020 ident: 800_CR97 publication-title: Sci Agrar doi: 10.18188/sap.v19i2.23522 – volume: 53 start-page: 249 year: 2015 ident: 800_CR56 publication-title: Ann Agric Sci doi: 10.21608/assjm.2015.109816 – volume: 51 start-page: 49 year: 2013 ident: 800_CR72 publication-title: J Microbiol doi: 10.1007/s12275-013-2335-2 – volume: 52 start-page: 778 year: 2014 ident: 800_CR93 publication-title: J Microbiol doi: 10.1007/s12275-014-3496-3 – volume: 86 start-page: 36 year: 1999 ident: 800_CR36 publication-title: J App Microbiol doi: 10.1046/j.1365-2672.1999.00634.x – year: 2021 ident: 800_CR42 publication-title: J Plant Nutr doi: 10.1080/01904167.2021.1943435 – volume: 170 start-page: 283 year: 2007 ident: 800_CR48 publication-title: J Soil Sci Plant Nutr doi: 10.1002/jpln.200620602 – volume: 34 start-page: 7325 year: 2009 ident: 800_CR74 publication-title: J Soil Sci Agric Eng doi: 10.21608/jssae.2009.103835 – volume: 6 start-page: 1909 year: 2018 ident: 800_CR86 publication-title: Int J Chem Stud doi: 10.20546/ijcmas.2019.810.061 – volume: 42 start-page: 125 year: 2010 ident: 800_CR3 publication-title: Soil Biol Biochem doi: 10.1016/j.soilbio.2009.10.017 – volume: 8 start-page: 865 year: 2018 ident: 800_CR76 publication-title: Middle East J Appl Sci – volume: 36 start-page: 1 year: 2010 ident: 800_CR119 publication-title: J Statist Software doi: 10.18637/jss.v036.i03 – volume: 45 start-page: 98 year: 2002 ident: 800_CR24 publication-title: Annu Rep Bean Improv Coop – volume: 17 start-page: 513 year: 2018 ident: 800_CR44 publication-title: Environ Eng Manag J doi: 10.30638/eemj.2018.051 – volume: 55 start-page: 315 year: 2007 ident: 800_CR47 publication-title: Acta Agron Hung doi: 10.1556/AAgr.55.2007.3.7 – volume: 16 start-page: 5919 year: 2011 ident: 800_CR64 publication-title: Rom Biotechnol Lett – volume: 33 start-page: 2104 year: 2010 ident: 800_CR52 publication-title: J Plant Nutr doi: 10.1080/01904167.2010.519084 – volume: 76 start-page: 327 year: 2015 ident: 800_CR115 publication-title: Plant Growth Regul doi: 10.1007/s10725-014-9993-x – volume: 5 start-page: 148 year: 2010 ident: 800_CR45 publication-title: Int J Agric Res doi: 10.3923/ijar.2010.148.156 – volume: 20 start-page: 1923 year: 2020 ident: 800_CR110 publication-title: J Soil Sci Plant Nutr doi: 10.1007/s42729-020-00263-5 – volume: 63 start-page: 429 year: 2015 ident: 800_CR38 publication-title: J Indian Soc Soil Sci doi: 10.5958/0974-0228.2015.00057.2 – volume: 4 start-page: 297 year: 2008 ident: 800_CR81 publication-title: World J Agric Sci – volume: 9 start-page: 269 year: 2018 ident: 800_CR73 publication-title: J Plant Prod doi: 10.21608/jpp.2018.35470 – volume: 84 start-page: 80 year: 2015 ident: 800_CR88 publication-title: Microbiol doi: 10.1134/S0026261715010105 – volume: 3 start-page: 595 year: 2013 ident: 800_CR92 publication-title: Agron doi: 10.3390/agronomy3040595 – volume: 59 start-page: 189 year: 2009 ident: 800_CR113 publication-title: Acta Agric Scand B Soil Plant Sci doi: 10.1080/09064710802040558 – volume: 10 start-page: 24 year: 2020 ident: 800_CR10 publication-title: Life doi: 10.3390/life10030024 – start-page: 347 volume-title: Designs and analysis of ecological experiments year: 2001 ident: 800_CR118 doi: 10.1093/oso/9780195131871.003.0018 – volume: 8 start-page: 141 year: 2017 ident: 800_CR59 publication-title: Front Plant Sci doi: 10.3389/fpls.2017.00141 – volume: 47 start-page: 51 year: 2007 ident: 800_CR43 publication-title: Indian J Microbiol doi: 10.1007/s12088-007-0010-1 – volume: 169 start-page: 609 year: 2014 ident: 800_CR108 publication-title: Microbiol Res doi: 10.1016/j.micres.2013.10.001 – volume: 23 start-page: 435 year: 2007 ident: 800_CR26 publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-006-9244-z – volume: 63 start-page: e20190493 year: 2020 ident: 800_CR55 publication-title: Braz Arch Biol Technol doi: 10.1590/1678-4324-solo-2020190493 – volume: 43 start-page: 1 year: 1997 ident: 800_CR63 publication-title: Can J Microbiol doi: 10.1139/m97-001 – volume: 55 start-page: 74 year: 2015 ident: 800_CR39 publication-title: J Basic Microbiol doi: 10.1002/jobm.201300173 – volume: 47 start-page: 971 year: 2011 ident: 800_CR84 publication-title: Biol Fert Soil doi: 10.1007/s00374-011-0573-1 – volume: 11 start-page: 15012 year: 2012 ident: 800_CR91 publication-title: Afr J Biotec doi: 10.5897/AJB11.3438 – volume: 9 start-page: 1008 year: 2017 ident: 800_CR41 publication-title: J Appl Nat Sci doi: 10.31018/jans.v9i2.1312 – ident: 800_CR5 – volume: 45 start-page: 117 year: 2002 ident: 800_CR90 publication-title: Biol Plant doi: 10.1023/A:1015117027863 – volume: 21 start-page: 491 year: 2011 ident: 800_CR89 publication-title: J Anim Plant Sci – volume: 39 start-page: 877 year: 2014 ident: 800_CR28 publication-title: J Biosci doi: 10.1007/s12038-014-9470-8 – volume: 43 start-page: 605 year: 2012 ident: 800_CR46 publication-title: Comm Soil Sci Plant Anal doi: 10.1080/00103624.2012.639110 – volume: 75 start-page: 461 year: 2018 ident: 800_CR53 publication-title: Sci Agric doi: 10.1590/1678-992X-2017-0049 – volume: 40 start-page: 867 year: 2021 ident: 800_CR17 publication-title: J Plant Growth Reg doi: 10.1007/s00344-020-10146-9 – volume: 42 start-page: 1006 year: 1996 ident: 800_CR18 publication-title: Can J Microbiol doi: 10.1139/m96-129 – year: 2021 ident: 800_CR8 publication-title: Plant Soil doi: 10.1007/s11104-021-05167-6 – volume: 8 start-page: 678 year: 2020 ident: 800_CR114 publication-title: Microorganisms doi: 10.3390/microorganismos8050678 – ident: 800_CR6 doi: 10.1007/978-3-319-55804-2_12 – volume: 57 start-page: 715 year: 2011 ident: 800_CR40 publication-title: Arch Agronomy Soil Sci doi: 10.1080/03650340.2010.493880 – volume: 82 start-page: 282 year: 2002 ident: 800_CR65 publication-title: Can J Plant Sci doi: 10.4141/P01-047 – volume: 34 start-page: 1 year: 2010 ident: 800_CR80 publication-title: Turk J Biol doi: 10.3906/biy-0809-12 – volume: 195 start-page: 21 year: 2016 ident: 800_CR12 publication-title: Field Crop Res doi: 10.1016/j.fcr.2016.05.010 – volume: 15 start-page: 903 year: 2005 ident: 800_CR116 publication-title: J Microbiol Biotec – volume: 47 start-page: 1058 year: 2001 ident: 800_CR51 publication-title: Can J Microbiol doi: 10.1139/w01-107 – volume: 9 start-page: 274 year: 2017 ident: 800_CR105 publication-title: Not Sci Biol doi: 10.15835/nsb9210081 – volume: 43 start-page: 1774 year: 2003 ident: 800_CR102 publication-title: Crop Sci doi: 10.2135/cropsci2003.1774 – volume: 35 start-page: 8 year: 2007 ident: 800_CR25 publication-title: Phytoparasitica doi: 10.1007/BF02981055 – volume: 119 start-page: 341 year: 2007 ident: 800_CR61 publication-title: Eur J Plant Pathol doi: 10.1007/s10658-007-9154-4 – volume: 11 start-page: 219 issue: 2 year: 2021 ident: 800_CR33 publication-title: Agronomy doi: 10.3390/agronomy11020219 – volume: 38 start-page: 368 year: 2002 ident: 800_CR109 publication-title: Appl Biochem Microbiol doi: 10.1023/A:1016291207590 – volume: 82 start-page: 291 year: 2002 ident: 800_CR104 publication-title: Can J Plant Sci doi: 10.4141/P01-048 – volume: 129 start-page: 1133 year: 2020 ident: 800_CR32 publication-title: J Appl Microbiol doi: 10.1111/jam.14754 – volume: 80 start-page: 1150 year: 1999 ident: 800_CR117 publication-title: Ecol doi: 10.1890/0012-9658(1999)080[1150:TMAORR]2.0.CO;2 – volume: 7 start-page: 3858 year: 2013 ident: 800_CR20 publication-title: Afr J Microbiol Res doi: 10.5897/AJMR2013.5917 – volume: 3 start-page: 184 year: 2007 ident: 800_CR62 publication-title: Res J Agric Biol Sci – volume: 9 start-page: e39291211360 year: 2020 ident: 800_CR112 publication-title: Res Soc Dev doi: 10.33448/rsd-v9i12.11360 – volume: 63 start-page: 87 year: 2012 ident: 800_CR27 publication-title: Biol Control doi: 10.1016/j.biocontrol.2012.06.008 – volume: 105 start-page: 241 year: 1988 ident: 800_CR34 publication-title: Plant Soil doi: 10.1007/BF02376788 – volume: 2 start-page: 13 year: 2016 ident: 800_CR60 publication-title: Rhizosphere doi: 10.1016/j.rhisph.2016.09.002 – volume: 108 start-page: 211 year: 1988 ident: 800_CR106 publication-title: Plant Soil doi: 10.1007/BF02375651 – volume: 23 start-page: 13401 year: 2018 ident: 800_CR107 publication-title: Rom Biotechnol Lett – volume: 3 start-page: 1010 year: 2014 ident: 800_CR78 publication-title: Int J Curr Microbiol Appl Sci – volume: 63 start-page: 70 year: 2014 ident: 800_CR49 publication-title: Eur J Soil Biol doi: 10.1016/j.ejsobi.2014.05.001 – volume: 129 start-page: 1 year: 2015 ident: 800_CR7 publication-title: Adv Agron doi: 10.1016/bs.agron.2014.09.001 – volume: 9 start-page: 1473 year: 2018 ident: 800_CR126 publication-title: Front Plant Sci doi: 10.3389/fpls.2018.01473 – volume-title: The global economy of pulses year: 2019 ident: 800_CR1 doi: 10.4060/I7108EN – volume: 76 start-page: 1 year: 2012 ident: 800_CR125 publication-title: Environm Exp Bot doi: 10.1016/j.envexpbot.2011.10.002 – volume: 3 start-page: 337 year: 2009 ident: 800_CR75 publication-title: Adv Environ Biol – volume: 8 start-page: 667 year: 2017 ident: 800_CR123 publication-title: Front Physiol doi: 10.3389/fphys.2017.00667 – volume: 13 start-page: 5571 year: 2018 ident: 800_CR103 publication-title: Rev Bras Ciênc Agrár doi: 10.5039/agraria.v13i4a5571 – volume: 8 start-page: e7905 year: 2020 ident: 800_CR13 publication-title: PeerJ doi: 10.7717/peerj.7905 – volume: 25 start-page: 753 year: 2009 ident: 800_CR83 publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-009-9963-z – ident: 800_CR4 – volume-title: Advances in integrated soil fertility management in sub-Saharan Africa: challenges and opportunities year: 2007 ident: 800_CR58 doi: 10.1007/978-1-4020-5760-1_82 – volume: 203 start-page: 4913 year: 2021 ident: 800_CR82 publication-title: Arch Microbiol doi: 10.1007/s00203-021-02446-9 – volume: 3 start-page: 184 year: 2007 ident: 800_CR57 publication-title: Res J Agric Biol Sci – volume: 99 start-page: 4544 year: 2008 ident: 800_CR95 publication-title: Bioresour Technol doi: 10.1016/j.biortech.2007.06.057 – volume: 285 start-page: 44 year: 2018 ident: 800_CR29 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2018.07.044 – volume: 24 start-page: 1187 year: 2008 ident: 800_CR54 publication-title: World J Microbiol Biotechnol doi: 10.1007/s11274-007-9591-4 |
SSID | ssj0025042 |
Score | 2.4109588 |
SecondaryResourceType | review_article |
Snippet | Coinoculation of symbiotic N
2
-fixing rhizobia and plant growth-promoting
Bacillus
on legume seeds can increase crop productivity. We collected highly... Coinoculation of symbiotic N -fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved... Abstract Coinoculation of symbiotic N2-fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly... Coinoculation of symbiotic N2-fixing rhizobia and plant growth-promoting Bacillus on legume seeds can increase crop productivity. We collected highly resolved... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2027 |
SubjectTerms | Agricultural practices Bacilli Bacillus Beans Biomedical and Life Sciences Broad beans Chickpeas Cowpeas Crop production Crop yield Edible Grain Environmental Microbiology - Research Paper Fabaceae - microbiology Food Microbiology Grain Inoculation Legumes Life Sciences Medical Microbiology Meta-analysis Microbial Ecology Microbial Genetics and Genomics Microbiology Mycology Nitrogen fixation Nitrogenase Nodulation Peas Pigeonpeas Plant growth Planting Productivity Rhizobium Seeds Soybeans Symbiosis Vegetables |
Title | Coinoculation impact on plant growth promotion: a review and meta-analysis on coinoculation of rhizobia and plant growth-promoting bacilli in grain legumes |
URI | https://link.springer.com/article/10.1007/s42770-022-00800-7 https://www.ncbi.nlm.nih.gov/pubmed/35896777 https://www.proquest.com/docview/2738587531 https://www.proquest.com/docview/2696006680 https://pubmed.ncbi.nlm.nih.gov/PMC9679103 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db5RAEN_0I5q-GL_FVrMmvp00HCws59vl0trYaIxptW9kd1muRA6alku0_4r_rLMf7EFPjfaFEFhmITOzOzPM_Aah1yIokkgGuc_HNPIJZXCWFNynYgIMT1kYMo32-TE5OiXvz-Kzjc3dXtbSsuX74vq3dSW34SpcA76qKtn_4KwjChfgHPgLR-AwHP-Jx7OmrBthG3C5gsdatYau29EcPOz2XGVgmVY9pq7Z1qqoePlCtsxnDpVEJaT36YEZeaky8rip2xpQ9S3Vej7iTKiYjQqczFW_iVEl58uursRBJ7HrUgdUekgVi3IFAuXWfQbe9lKv0O8qICwrt21Ml7ZoUeVgmv_7Kl2lapxX8KWUpW6bpJqVgagrA_pgUeYm1czE4781ZsShrMrvIPPgfsh-5CMMb2SRdJHPG7HTVfiuv6yrvTgybY72pbkG27RPSBD39wIDXGxlnvQX9sBAGFgjIQwMVM3aBmRyTq5ISFVDH3hnbZL7g8HA7ouFFskoTicJtX1shrDfnz7M4BYYc9Em2gZqyvrfnh5__nrs4glxoHtDuY-zNWG6MnTtBXbQ3W62oQm25letpwffyBHQptfJfXTP-kx4ahTgAdqQ9UN0x3RR_fEI_RyoATZqgOFMCyw2AoudGrzFDBslwCDVeKAE6qmBEuCmwJ0S6OF9mislwFYJcFljrQTYKsFjdHp4cDI78m3PEV8QSlqfpjKnBZFxEaWE8xzMbyGKJOSSBpOIcKEw82ResJyNGS1gQUu5jGMR5HEoxmARPkFbdVPLZwiPBc8jkfMwZpwkYEoD3YIRkstUJLmMPDTu2JAJC8iv-sJUmYMS11zMgIuZ5mJGPTRyz1wYOJq_jt7ruJtZ9b7KDH4Vhb3XQ6_cbdhU1J9CVstmCWOSSaKckTTw0FMjDG66Too8RAdi4gYowPrhnbo818D1VqA99KYTqNVr_fkrnt96ol20s1o39tBWe7mUL8CHaPlLq0u_ADmbJOk |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Coinoculation+impact+on+plant+growth+promotion%3A+a+review+and+meta-analysis+on+coinoculation+of+rhizobia+and+plant+growth-promoting+bacilli+in+grain+legumes&rft.jtitle=Brazilian+journal+of+microbiology&rft.au=Kaschuk%2C+Glaciela&rft.au=Auler%2C+Andr%C3%A9+Carlos&rft.au=Vieira%2C+Crislaine+Emidio&rft.au=Dakora%2C+Felix+Dapore&rft.date=2022-12-01&rft.pub=Springer+International+Publishing&rft.issn=1517-8382&rft.eissn=1678-4405&rft.volume=53&rft.issue=4&rft.spage=2027&rft.epage=2037&rft_id=info:doi/10.1007%2Fs42770-022-00800-7&rft_id=info%3Apmid%2F35896777&rft.externalDocID=PMC9679103 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1517-8382&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1517-8382&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1517-8382&client=summon |