Silk fibroin nanocomposites as tissue engineering scaffolds – A systematic review

Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to st...

Full description

Saved in:
Bibliographic Details
Published inBiomedicine & pharmacotherapy Vol. 141; p. 111924
Main Authors Zuluaga-Vélez, Augusto, Quintero-Martinez, Adrián, Orozco, Lina M., Sepúlveda-Arias, Juan C.
Format Journal Article
LanguageEnglish
Published France Elsevier Masson SAS 01.09.2021
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to study the physicochemical and biological performance of silk fibroin nanocomposites. In the last decade, only 51 articles contained either in vitro cell culture models or in vivo tests. The analysis of such works resulted in their classification into the following scaffold types: particles, mats and textiles, films, hydrogels, sponge-like structures, and mixed conformations. From the physicochemical perspective, the inorganic phase imbued in silk fibroin nanocomposites resulted in better stability and mechanical performance. This review revealed that the inorganic phase may be associated with specific biological responses, such as neovascularisation, cell differentiation, cell proliferation, and antimicrobial and immunomodulatory activity. The study of nanocomposites as tissue engineering scaffolds is a highly active area mostly focused on bone and cartilage regeneration with promising results. Nonetheless, there are still many challenges related to their application in other tissues, a better understanding of the interaction between the inorganic and organic phases, and the associated biological response. [Display omitted] •A systematic review on the use of silk fibroin nanocomposites as tissue engineering scaffolds was carried out.•A total of 51 studies were included after exclusion criteria.•The inorganic phase in silk fibroin nanocomposites resulted in better physicochemical stability and biological responses.•Silk fibroin nanocomposites have enormous potential as scaffolds for tissue engineering.
AbstractList Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to study the physicochemical and biological performance of silk fibroin nanocomposites. In the last decade, only 51 articles contained either in vitro cell culture models or in vivo tests. The analysis of such works resulted in their classification into the following scaffold types: particles, mats and textiles, films, hydrogels, sponge-like structures, and mixed conformations. From the physicochemical perspective, the inorganic phase imbued in silk fibroin nanocomposites resulted in better stability and mechanical performance. This review revealed that the inorganic phase may be associated with specific biological responses, such as neovascularisation, cell differentiation, cell proliferation, and antimicrobial and immunomodulatory activity. The study of nanocomposites as tissue engineering scaffolds is a highly active area mostly focused on bone and cartilage regeneration with promising results. Nonetheless, there are still many challenges related to their application in other tissues, a better understanding of the interaction between the inorganic and organic phases, and the associated biological response.
Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to study the physicochemical and biological performance of silk fibroin nanocomposites. In the last decade, only 51 articles contained either in vitro cell culture models or in vivo tests. The analysis of such works resulted in their classification into the following scaffold types: particles, mats and textiles, films, hydrogels, sponge-like structures, and mixed conformations. From the physicochemical perspective, the inorganic phase imbued in silk fibroin nanocomposites resulted in better stability and mechanical performance. This review revealed that the inorganic phase may be associated with specific biological responses, such as neovascularisation, cell differentiation, cell proliferation, and antimicrobial and immunomodulatory activity. The study of nanocomposites as tissue engineering scaffolds is a highly active area mostly focused on bone and cartilage regeneration with promising results. Nonetheless, there are still many challenges related to their application in other tissues, a better understanding of the interaction between the inorganic and organic phases, and the associated biological response. [Display omitted] •A systematic review on the use of silk fibroin nanocomposites as tissue engineering scaffolds was carried out.•A total of 51 studies were included after exclusion criteria.•The inorganic phase in silk fibroin nanocomposites resulted in better physicochemical stability and biological responses.•Silk fibroin nanocomposites have enormous potential as scaffolds for tissue engineering.
ArticleNumber 111924
Author Sepúlveda-Arias, Juan C.
Zuluaga-Vélez, Augusto
Quintero-Martinez, Adrián
Orozco, Lina M.
Author_xml – sequence: 1
  givenname: Augusto
  surname: Zuluaga-Vélez
  fullname: Zuluaga-Vélez, Augusto
  organization: Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
– sequence: 2
  givenname: Adrián
  surname: Quintero-Martinez
  fullname: Quintero-Martinez, Adrián
  organization: Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
– sequence: 3
  givenname: Lina M.
  surname: Orozco
  fullname: Orozco, Lina M.
  organization: Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
– sequence: 4
  givenname: Juan C.
  surname: Sepúlveda-Arias
  fullname: Sepúlveda-Arias, Juan C.
  email: jcsepulv@utp.edu.co
  organization: Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34328093$$D View this record in MEDLINE/PubMed
BookMark eNp9kctuFDEQRS0URCaBP0DISzY9-Nnu3iBFEY9IkVgE1pYf5cFDtz3YPUHZ8Q_8IV-CQ4csWVmybt1bdc8ZOkk5AUIvKdlSQvs3-62N-fDVbBlhdEspHZl4gjZ0lKTrCVEnaEOU5B3njJ2is1r3hBDZ8-EZOuWCs4GMfINubuL0DYdoS44JJ5Oyy_Mh17hAxabiJdZ6BAxpFxNAiWmHqzMh5MlX_PvnL3yB611dYDZLdLjAbYQfz9HTYKYKLx7ec_Tl_bvPlx-7608fri4vrjsnlFg61at-aBvyMADho5e0N9L4QYGwTPWBUWElM0JZaUdjHXVSKDp42gcF1gd-jq5WX5_NXh9KnE2509lE_fcjl502pa01geYgxna8IcRy4WkYvAAvRiUYMYzQsXm9Xr0OJX8_Ql30HKuDaTIJ8rFqJqVirbSRNqlYpa7kWguEx2hK9D0avdcrGn2PRq9o2tirh4SjncE_Dv1j0QRvVwG0zlqPRVcXITnwsYBb2lHx_wl_AN5Hou8
CitedBy_id crossref_primary_10_1039_D3BM01158E
crossref_primary_10_2174_1567201819666220413111439
crossref_primary_10_22159_ijap_2023v15i3_47593
crossref_primary_10_1002_mame_202300422
crossref_primary_10_1002_asia_202400055
crossref_primary_10_1049_bsb2_12036
crossref_primary_10_1111_jcmm_17677
crossref_primary_10_3390_nano13030551
crossref_primary_10_3390_polym15010091
crossref_primary_10_1186_s11671_024_04007_7
crossref_primary_10_3390_jfb13040297
crossref_primary_10_3390_polym14051032
crossref_primary_10_1016_j_heliyon_2022_e10496
crossref_primary_10_1016_j_jddst_2024_105689
crossref_primary_10_3390_biomimetics9030169
crossref_primary_10_3390_ma16072770
crossref_primary_10_1002_mame_202200503
crossref_primary_10_1080_00914037_2023_2299799
crossref_primary_10_1016_j_apmt_2023_102054
crossref_primary_10_1186_s40824_023_00371_0
crossref_primary_10_1002_app_54981
crossref_primary_10_3390_bioengineering11020167
crossref_primary_10_1016_j_ceramint_2023_02_065
crossref_primary_10_1021_acspolymersau_3c00050
crossref_primary_10_1039_D2NR03417D
crossref_primary_10_3389_fphar_2022_1071868
crossref_primary_10_3390_ma16010183
crossref_primary_10_1016_j_mtcomm_2024_109215
crossref_primary_10_2217_nnm_2021_0425
crossref_primary_10_3390_polym13183151
crossref_primary_10_1016_j_ijbiomac_2022_07_140
crossref_primary_10_3389_fbioe_2022_1054379
crossref_primary_10_1016_j_jcis_2022_11_003
Cites_doi 10.1016/j.polymertesting.2017.06.012
10.3390/polym11121933
10.1039/C9RA09710D
10.1039/C5RA12474C
10.1016/j.eurpolymj.2020.109842
10.1016/j.jphotobiol.2019.111677
10.1111/j.1432-1033.2004.04220.x
10.1002/adfm.201200073
10.1002/jbm.b.33267
10.1016/j.msec.2018.09.063
10.1016/j.matlet.2015.05.064
10.1021/bm501667j
10.1016/j.nano.2017.02.016
10.1021/acsbiomaterials.8b00857
10.1038/s41586-018-0278-9
10.1038/nprot.2011.379
10.1016/j.ijbiomac.2019.09.107
10.1016/j.msec.2019.110219
10.3389/fbioe.2020.563203
10.1016/j.msec.2013.08.012
10.3389/fmats.2020.00049
10.1016/j.msec.2017.05.105
10.1016/j.jmbbm.2018.06.041
10.1016/j.actbio.2018.03.058
10.1002/btm2.10221
10.1016/j.ijbiomac.2019.02.050
10.1080/09205063.2017.1403149
10.1007/s13233-014-2114-x
10.1038/s41598-018-20006-y
10.1016/j.bone.2016.06.013
10.1038/srep04375
10.3389/fchem.2020.604398
10.1016/j.msec.2013.04.026
10.1016/j.msec.2018.01.007
10.1016/j.msec.2017.08.006
10.1007/s00249-018-1279-1
10.1021/acsbiomaterials.8b00150
10.1016/j.biomaterials.2015.04.047
10.1016/j.matdes.2018.09.035
10.1016/j.actbio.2017.11.053
10.1007/s10118-015-1710-3
10.3390/ijms18030237
10.1021/acsami.5b00529
10.1016/j.compositesb.2017.12.046
10.1016/j.ijbiomac.2014.01.003
10.1080/00914037.2019.1616201
10.1016/j.actbio.2015.09.005
10.1016/j.biopha.2017.10.110
10.1080/14686996.2020.1748520
10.1016/j.tem.2019.01.001
10.1016/j.addr.2012.09.043
10.1016/j.ijbiomac.2015.02.023
10.1016/j.mtla.2019.100518
10.1038/s41536-019-0083-6
10.1038/nature17042
10.1016/j.ijbiomac.2013.04.004
10.1021/bm500001n
10.1002/mabi.201500013
10.18632/oncotarget.23208
10.1186/1475-925X-6-5
10.1016/j.msec.2015.05.015
10.1039/C7NR03093B
10.1016/j.msec.2017.05.133
10.1074/jbc.M305304200
10.1007/s10856-017-5999-z
10.1080/00914037.2018.1443928
10.1016/j.colsurfb.2018.12.067
10.1016/j.tibtech.2018.04.004
10.2147/CIA.S158513
10.1089/ten.2006.12.3383
10.1016/j.dental.2019.07.024
10.1016/j.biomaterials.2016.01.012
10.1016/j.clay.2019.03.038
10.1002/jbm.a.36390
10.1002/jor.23875
10.1038/s41378-021-00261-2
10.1016/j.msec.2017.09.001
10.1016/j.matchemphys.2020.123187
10.1007/s10616-015-9895-4
10.1016/j.cej.2019.05.163
10.1016/j.msec.2020.110714
10.1038/srep12706
10.1016/j.ijbiomac.2017.12.029
10.1016/j.apmt.2016.09.007
10.1039/C9NJ05592D
10.1016/j.compscitech.2015.11.019
10.1016/j.msec.2012.10.016
10.3390/molecules25030737
10.1016/j.msec.2016.09.039
10.1016/j.apsusc.2018.10.166
10.1016/j.ijbiomac.2016.08.062
10.1002/bab.1285
10.1529/biophysj.106.100339
10.1021/acsami.8b21259
10.1016/j.cobme.2018.02.005
10.1016/j.biomaterials.2013.04.046
10.1016/j.bprint.2019.e00067
10.1016/j.msec.2013.11.023
10.1007/s10856-011-4533-y
10.1016/j.actbio.2014.10.021
10.1371/journal.pone.0213303
10.1016/j.ejpb.2018.02.022
10.5339/gcsp.2013.38
10.1016/j.msec.2019.110255
10.1016/j.scitotenv.2019.135976
10.1080/09205063.2019.1652418
10.1038/s41598-019-49587-y
10.1016/j.msec.2014.04.012
10.1016/j.mseb.2009.10.004
10.1016/j.polymertesting.2020.106698
10.1136/bmj.n71
10.1016/j.jmst.2020.02.030
10.1002/pat.4765
10.1002/1097-0282(2001)62:1<15::AID-BIP30>3.0.CO;2-J
10.1146/annurev-bioeng-122019-121602
10.1016/j.jcis.2016.03.020
10.1016/j.jmb.2012.02.040
10.1007/s11431-018-9508-3
10.1016/j.msec.2015.03.014
10.1007/s40846-017-0295-4
10.1016/j.pmatsci.2020.100686
10.3390/ijms22031499
10.1038/nmat1421
10.1016/j.joms.2010.07.062
10.1039/C5RA14279B
10.1016/j.ijbiomac.2019.06.172
10.1021/nl302810c
10.1016/j.nano.2016.08.026
10.1007/128_2011_287
ContentType Journal Article
Copyright 2021 The Authors
Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Copyright_xml – notice: 2021 The Authors
– notice: Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOA
DOI 10.1016/j.biopha.2021.111924
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1950-6007
EndPage 111924
ExternalDocumentID oai_doaj_org_article_3e49056a00b34d1f8d4ed497420a2019
10_1016_j_biopha_2021_111924
34328093
S075333222100706X
Genre Systematic Review
Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
0SF
1B1
1P~
1RT
1~.
1~5
23N
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABBQC
ABFNM
ABMAC
ABMZM
ABXDB
ABZDS
ACDAQ
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEVXI
AFCTW
AFKWA
AFPKN
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AJUYK
AKRWK
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMT
HVGLF
HZ~
IHE
J1W
KOM
M34
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OD~
OGGZJ
OK1
OO0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEM
SES
SEW
SPT
SSH
SSP
SSZ
T5K
VH1
WUQ
Z5R
~02
~G-
AAXKI
ADVLN
AFJKZ
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c474t-767687533f8e039d516a5ad87e4b276f214b52a47b5b9abc1c54718d16f7ebdf3
IEDL.DBID DOA
ISSN 0753-3322
IngestDate Tue Oct 22 15:05:43 EDT 2024
Fri Oct 25 02:40:59 EDT 2024
Thu Sep 26 21:29:20 EDT 2024
Sat Sep 28 08:27:13 EDT 2024
Sat Jun 29 15:30:30 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Tissue scaffold
Silk fibroin
Nanocomposite
Tissue engineering
Regenerative medicine
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-767687533f8e039d516a5ad87e4b276f214b52a47b5b9abc1c54718d16f7ebdf3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
OpenAccessLink https://doaj.org/article/3e49056a00b34d1f8d4ed497420a2019
PMID 34328093
PQID 2557232891
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_3e49056a00b34d1f8d4ed497420a2019
proquest_miscellaneous_2557232891
crossref_primary_10_1016_j_biopha_2021_111924
pubmed_primary_34328093
elsevier_sciencedirect_doi_10_1016_j_biopha_2021_111924
PublicationCentury 2000
PublicationDate September 2021
2021-Sep
2021-09-00
20210901
2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle Biomedicine & pharmacotherapy
PublicationTitleAlternate Biomed Pharmacother
PublicationYear 2021
Publisher Elsevier Masson SAS
Elsevier
Publisher_xml – name: Elsevier Masson SAS
– name: Elsevier
References Ran, Hu, Sun, Chen, Chen, Shen, Tong (bib30) 2015; 5
Samal, Dash, Shelyakova, Declercq, Uhlarz, Bañobre-López, Dubruel, Cornelissen, Herrmannsdörfer, Rivas, Padeletti, De Smedt, Braeckmans, Kaplan, Dediu (bib52) 2015; 7
Kim, Che, Ha, Ryu (bib80) 2014; 40
Belda Marín, Fitzpatrick, Kaplan, Landoulsi, Guénin, Egles (bib28) 2020; 8
Gobin, Butler, Mathur (bib121) 2006; 12
Jiang, Liu, Liu, Liu, He, Dong (bib97) 2020; 202
Brochado, Telzerow, Bobonis, Banzhaf, Mateus, Selkrig, Huth, Bassler, Zamarreño Beas, Zietek, Ng, Foerster, Ezraty, Py, Barras, Savitski, Bork, Göttig, Typas (bib131) 2018; 559
Hu, Olsen (bib108) 2016; 91
Zafar, Belton, Hanby, Kaplan, Perry (bib9) 2015; 16
Cheng, Davoudi, Xing, Yu, Cheng, Li, Deng, Wang (bib26) 2018; 4
Yan, Oliveira, Oliveira, Reis (bib40) 2015; 103
El-Sherbiny, Yacoub (bib107) 2013; 2013
Costa-Almeida, Reis, Gomes (bib137) 2019; 30
Gholipourmalekabadi, Mozafari, Gholipourmalekabadi, Nazm Bojnordi, Hashemi-soteh, Salimi, Rezaei, Sameni, Samadikuchaksaraei, Ghasemi Hamidabadi (bib71) 2015; 62
Saleem, Rasheed, Yougen (bib25) 2020; 21
Colpankan Gunes, Unalan, Cecen, Ziylan Albayrak, Havitcioglu, Ustun, Ergur (bib63) 2019; 68
Chen, Hu, Ran, Shen, Tong (bib79) 2014; 65
Farokhi, Mottaghitalab, Shokrgozar, Ai, Hadjati, Azami (bib39) 2014; 35
Afjeh-Dana, Naserzadeh, Nazari, Mottaghitalab, Shabani, Aminii, Mehravi, Rostami, Joghataei, Mousavizadeh, Ashtari (bib56) 2019; 129
Brito-Pereira, Correia, Ribeiro, Francesko, Etxebarria, Pérez-Álvarez, Vilas, Martins, Lanceros-Mendez (bib50) 2018; 141
Ruan, Deng, Yan, Huang (bib64) 2018; 97
Hu, Li, Cheng, Du (bib113) 2001; 62
Lee, Park, Kim, Ki, Park, Kim, Park (bib76) 2014; 22
Valarmathi, Sumathi (bib86) 2020; 44
Yang, Kwon, Choi, Jung, Seo, Lee, Cha (bib16) 2014; 15
Simões, Miguel, Ribeiro, Coutinho, Mendonça, Correia (bib129) 2018; 127
Atrian, Kharaziha, Emadi, Alihosseini (bib93) 2019; 174
Dong, Hong, Dai, Wu, Zhu (bib58) 2020; 707
Gore, Naebe, Wang, Kandasubramanian (bib6) 2019; 374
Hadisi, Bakhsheshi-Rad, Walsh, Dehghan, Farzad-Mohajeri, Gholami, Diyanoush, Pagan, Akbari (bib94) 2020; 91
Lefèvre, Rousseau, Pézolet (bib2) 2007; 92
Yan, Silva-Correia, Oliveira, Vilela, Pereira, Sousa, Mano, Oliveira, Oliveira, Reis (bib38) 2015; 12
Wang, Cheng, Ding, Xu, Zheng, Li, Lu, Lu (bib83) 2021; 63
Nguyen, Nguyen, Nguyen, Le, Huynh, Vo, Trinh, Kim, Van Le (bib27) 2019; 11
Ran, Hu, Sun, Chen, Jiang, Shen, Tong (bib32) 2016; 93
Koh, Yeo, Lee, Ong, Han, Tee (bib5) 2018; 86
Brown, Wright (bib130) 2016; 529
Deshpande, Shukla, Sayyad, Salunke, Nisal, Venugopalan (bib136) 2021
Mobika, Rajkumar, Linto Sibi, Nithya Priya (bib89) 2020; 250
Salehi, Koeck, Scheibel (bib12) 2020; 25
Wang, Pathak, Liang, Zhong, Guan, Wan, Miao, Li, Ge (bib33) 2020; 142
Raho, Nguyen, Zhang, Jiang, Sannino, Liu, Pollini, Paladini (bib43) 2020; 107
Liu, Chen, Lai, Zhang, Pan, Chen, Weng (bib82) 2019; 94
Hu, Chen, Guo, Du, Gu, Lin, Yang, Zhang, Lu, Huang, Xu (bib125) 2012; 23
Liu, Zhang, Huang (bib17) 2019; 62
Jiang, Ran, Yan, Zheng, Shen, Tong (bib81) 2018; 29
Kweon, Lee, Chae, Balázsi, Min, Kim, Choi, Kim (bib85) 2011; 69
Patil, Singh (bib45) 2019; 176
Nie, Zhang, Ren, Li, Fu, Cannon, Ji, Wu, Yang (bib78) 2019; 35
Tanasa, Zaharia, Hudita, Radu, Costache, Galateanu (bib51) 2020; 110
Amirikia, Shariatzadeh, Jorsaraei, Mehranjani (bib103) 2018; 47
Melke, Midha, Ghosh, Ito, Hofmann (bib24) 2016; 31
Wen, Sun, Huang, Huang, Su, Wang, Han, Kim, Brugger, Zhang, Zhang (bib15) 2021; 7
Zuluaga-Vélez, Cómbita-Merchán, Buitrago-Sierra, Santa, Aguilar-Fernández, Sepúlveda-Arias (bib138) 2019; 14
Rnjak-Kovacina, DesRochers, Burke, Kaplan (bib116) 2015; 15
Chantawong, Tanaka, Uemura, Shimada, Higuchi, Tajiri, Sakura, Murakami, Nakazawa, Tanaka (bib123) 2017; 28
Rahman, Islam, Islam, Zaman, Ahmed, Biswas, Sharmeen, Rashid, Rahman (bib115) 2019
Zhao (bib114) 2011
Passi, Kumar, Packirisamy (bib55) 2020; 107
He, Zhang, Li, Jia, Chen, Zhou, Zhang, Chen, Zhou (bib8) 2012; 418
Park, Shin, Choi, Rhim, Na, Keun Han (bib22) 2020; 114
Ribeiro, Pina, Canadas, da, Morais, Vilela, Vieira, Cengiz, Reis, Oliveira (bib61) 2019; 1
Sun, Gregory, Tomeh, Zhao (bib23) 2021; 22
Hu, Kaplan (bib1) 2011
Rockwood, Preda, Yücel, Wang, Lovett, Kaplan (bib4) 2011; 6
Hollister (bib104) 2005; 4
Yang, Kim, Lee, Jeon, Ryu (bib88) 2016; 122
Qi, Wang, Wei, Yang, Zheng, Kim, Zhang (bib3) 2017; 18
Guo, Xie, Gao, Wang, Gao, Li, Zhao (bib84) 2018; 109
Nguyen, Han, Sharma, Longbiao, Bhat (bib21) 2020
Jia, Zhou, Yan, Xiong, Guo, Cheng, Zheng (bib36) 2019; 5
Ribeiro, Ferraz, Monteiro, Fernandes, Beppu, Mantione, Sardon (bib44) 2017; 13
Yang, Xiao, Long, Ma, Zhang, Ren, Zhang (bib99) 2018; 8
Wang, Jia, Yang, Zhang, Zhang, Chai (bib124) 2018; 106
Lima, Resende, de Almeida Soares, Anselme, Almeida (bib69) 2013; 33
Teimouri, Ghorbanian, Salavati, Chermahini (bib54) 2015; 157
Janani, Nandi, Mandal (bib122) 2018; 67
Liguori, Russo, Curcio, Bulli, Aran, Della-Morte, Gargiulo, Testa, Cacciatore, Bonaduce, Abete (bib134) 2018; 13
Moses, Saha, Mandal (bib34) 2020; 17
Johari, Madaah Hosseini, Samadikuchaksaraei (bib46) 2018; 82
Cohen-Karni, Jeong, Tsui, Reznor, Mustata, Wanunu, Graham, Marks, Bell, Langer, Kohane (bib59) 2012; 12
Ribeiro, Pina, Costa, Cengiz, García-Fernández, del, Fernández-Gutiérrez, Paiva, Oliveira, San-Román, Oliveira, Reis (bib62) 2019; 11
Shi, Teh, Toh, Goh (bib91) 2013; 34
Das, Sharma, Saharia, Sarma, Sarma, Borthakur, Bora (bib57) 2015; 62
Miroiu, Socol, Visan, Stefan, Craciun, Craciun, Dorcioman, Mihailescu, Sima, Petrescu, Andronie, Stamatin, Moga, Ducu (bib66) 2010; 169
Naebe, Wang, Amini, Khayyam, Hameed, Li, Chen, Fox (bib102) 2015; 4
Warnecke, Stein, Haffner-Luntzer, de Roy, Skaer, Walker, Kessler, Ignatius, Dürselen (bib110) 2018; 86
Farokhi, Mottaghitalab, Fatahi, Khademhosseini, Kaplan (bib128) 2018; 36
Behera, Naskar, Sapru, Bhattacharjee, Dey, Ghosh, Mandal, Kundu (bib31) 2017; 13
Correa-Garhwal, Clarke, Janssen, Crevecoeur, McQuillan, Simpson, Vink, Hayashi (bib11) 2019; 9
Fedič, Žurovec, Sehnal (bib7) 2003; 278
Zhou, He, Wang, Fu, Yu, Wang, Fan (bib74) 2017; 81
Dong, Sun, Zhang, Liu, Zhang, Zhang, Huang, Zhao, Qi, Midgley, Wang, Yang (bib90) 2020; 19
Hashimoto, Nakamura, Tamada, Kurosu, Kameda (bib119) 2020; 2
Page, McKenzie, Bossuyt, Boutron, Hoffmann, Mulrow, Shamseer, Tetzlaff, Akl, Brennan, Chou, Glanville, Grimshaw, Hróbjartsson, Lalu, Li, Loder, Mayo-Wilson, McDonald, McGuinness, Stewart, Thomas, Tricco, Welch, Whiting, Moher (bib29) 2021
Nazari, Heirani‐Tabasi, Hajiabbas, Khalili, Shahsavari Alavijeh, Hatamie, Mahdavi Gorabi, Esmaeili, Tafti (bib42) 2020; 31
Wang, Xu, Zhou, Xu, Leary, Choong, Qian, Brandt, Xie (bib105) 2016; 83
Kundu, Rajkhowa, Kundu, Wang (bib13) 2013; 65
Aliramaji, Zamanian, Mozafari (bib49) 2017; 70
Shi, Abbah, Chuah, Li, Zhang, He, Wong, Goh (bib41) 2017; 9
Johari, Moroni, Samadikuchaksaraei (bib118) 2020; 134
Wang, Chu, He, Shao, Zhou, Qi, Wang, Cui (bib77) 2017; 80
Chen, Deng, Cui, Fang, Zuo, Deng, Li, Wang, Zhao (bib132) 2018; 9
Paşcu, Stokes, McGuinness (bib73) 2013; 33
Ghorbanian, Emadi, Razavi, Shin, Teimouri (bib92) 2013; 58
Hu, Cai, Mo, Chen, Shen, Tong (bib70) 2015; 33
Wang, Fang, Xia, Hou, Nan, Zhao, Wang (bib72) 2020; 10
Ribeiro, Pina, Gheduzzi, Araújo, Reis, Oliveira (bib100) 2020; 7
Felfel, Gupta, Zabidi, Prosser, Scotchford, Sottile, Grant (bib35) 2018; 160
Cammarata (bib19) 2004
Ullah, Chen (bib18) 2020; 20
Hirosawa, Uchida, Kuniyoshi, Murakami, Inoue, Miyagi, Matsuura, Orita, Inage, Suzuki, Takaso, Ohtori (bib106) 2018; 36
Abdeen, Cosgrove, Gersbach, Saha (bib127) 2021; 23
Bhattacharjee, Naskar, Maiti, Bhattacharya, Kundu (bib87) 2016; 5
Lovati, Lopa, Bottagisio, Talò, Canciani, Dellavia, Alessandrino, Biagiotti, Freddi, Segatti, Moretti (bib135) 2020; 8
Iwan, Andryszewski, Wydryszek, Fialkowski (bib101) 2015; 5
Oberg, Ruysschaert, Goormaghtigh (bib111) 2004; 271
Hota, Bera, Kundu, Kundu, Maiti (bib14) 2012; 22
Zhou, Wang, Cao, Hu, Luo, Yang, Cui, Zhou (bib68) 2019; 30
Menard, Menard (bib109) 2015
Bhattacharjee, Naskar, Maiti, Bhattacharya, Kundu (bib65) 2016; 472
Gupta, Mita, Arunkumar, Nagaraju (bib10) 2015; 5
Johari, Madaah Hosseini, Samadikuchaksaraei (bib47) 2017; 79
Teimouri, Ebrahimi, Emadi, Beni, Chermahini (bib53) 2015; 76
Zafar, Mottaghitalab, Shahosseini, Negahdari, Farokhi (bib60) 2020; 9
Johari, Madaah Hosseini, Taromi, Arasteh, Kazemnejad, Samadikuchaksaraei (bib48) 2018; 38
Avani, Damoogh, Mottaghitalab, Karkhaneh, Farokhi (bib95) 2020; 69
Belton, Plowright, Kaplan, Perry (bib112) 2018; 73
Huang, Fan, Zhu, Zhu, Zhang, Li (bib67) 2019; 467–468
Zhang, Chen, Han, Mo, Dong, Zhuo, Feng (bib96) 2019; 136
Bružauskaitė, Bironaitė, Bagdonas, Bernotienė (bib98) 2016; 68
Dziki, Badylak (bib133) 2018; 6
Zhang, Jia, Qiao, Liu, Sun (bib120) 2017; 62
Pittenger, Discher, Péault, Phinney, Hare, Caplan (bib126) 2019; 4
Jiang (bib20) 2007; 6
Abdel-Fattah, Sallam, Diab, Ali (bib37) 2015; 54
George, Shadforth, Chirila, Laurent, Stephenson, Edwards, Madden, Hutmacher, Harkin (bib117) 2013; 33
Ming, Jiang, Wang, Bie, Zuo (bib75) 2015; 51
Johari (10.1016/j.biopha.2021.111924_bib48) 2018; 38
Aliramaji (10.1016/j.biopha.2021.111924_bib49) 2017; 70
Rockwood (10.1016/j.biopha.2021.111924_bib4) 2011; 6
Wang (10.1016/j.biopha.2021.111924_bib124) 2018; 106
Bružauskaitė (10.1016/j.biopha.2021.111924_bib98) 2016; 68
Cammarata (10.1016/j.biopha.2021.111924_bib19) 2004
Abdel-Fattah (10.1016/j.biopha.2021.111924_bib37) 2015; 54
Hadisi (10.1016/j.biopha.2021.111924_bib94) 2020; 91
Behera (10.1016/j.biopha.2021.111924_bib31) 2017; 13
Yan (10.1016/j.biopha.2021.111924_bib40) 2015; 103
Ribeiro (10.1016/j.biopha.2021.111924_bib44) 2017; 13
Raho (10.1016/j.biopha.2021.111924_bib43) 2020; 107
Belton (10.1016/j.biopha.2021.111924_bib112) 2018; 73
Menard (10.1016/j.biopha.2021.111924_bib109) 2015
Dziki (10.1016/j.biopha.2021.111924_bib133) 2018; 6
Nie (10.1016/j.biopha.2021.111924_bib78) 2019; 35
Zhang (10.1016/j.biopha.2021.111924_bib120) 2017; 62
Correa-Garhwal (10.1016/j.biopha.2021.111924_bib11) 2019; 9
Gholipourmalekabadi (10.1016/j.biopha.2021.111924_bib71) 2015; 62
Afjeh-Dana (10.1016/j.biopha.2021.111924_bib56) 2019; 129
Ribeiro (10.1016/j.biopha.2021.111924_bib100) 2020; 7
Huang (10.1016/j.biopha.2021.111924_bib67) 2019; 467–468
Johari (10.1016/j.biopha.2021.111924_bib46) 2018; 82
Rnjak-Kovacina (10.1016/j.biopha.2021.111924_bib116) 2015; 15
Ghorbanian (10.1016/j.biopha.2021.111924_bib92) 2013; 58
Qi (10.1016/j.biopha.2021.111924_bib3) 2017; 18
Ribeiro (10.1016/j.biopha.2021.111924_bib61) 2019; 1
Cohen-Karni (10.1016/j.biopha.2021.111924_bib59) 2012; 12
Bhattacharjee (10.1016/j.biopha.2021.111924_bib65) 2016; 472
Hu (10.1016/j.biopha.2021.111924_bib113) 2001; 62
Liu (10.1016/j.biopha.2021.111924_bib17) 2019; 62
Das (10.1016/j.biopha.2021.111924_bib57) 2015; 62
Gobin (10.1016/j.biopha.2021.111924_bib121) 2006; 12
Colpankan Gunes (10.1016/j.biopha.2021.111924_bib63) 2019; 68
Wang (10.1016/j.biopha.2021.111924_bib72) 2020; 10
Hollister (10.1016/j.biopha.2021.111924_bib104) 2005; 4
Simões (10.1016/j.biopha.2021.111924_bib129) 2018; 127
Johari (10.1016/j.biopha.2021.111924_bib118) 2020; 134
Brochado (10.1016/j.biopha.2021.111924_bib131) 2018; 559
Lefèvre (10.1016/j.biopha.2021.111924_bib2) 2007; 92
Valarmathi (10.1016/j.biopha.2021.111924_bib86) 2020; 44
Zhang (10.1016/j.biopha.2021.111924_bib96) 2019; 136
Moses (10.1016/j.biopha.2021.111924_bib34) 2020; 17
Lovati (10.1016/j.biopha.2021.111924_bib135) 2020; 8
El-Sherbiny (10.1016/j.biopha.2021.111924_bib107) 2013; 2013
Shi (10.1016/j.biopha.2021.111924_bib41) 2017; 9
Samal (10.1016/j.biopha.2021.111924_bib52) 2015; 7
Liu (10.1016/j.biopha.2021.111924_bib82) 2019; 94
Mobika (10.1016/j.biopha.2021.111924_bib89) 2020; 250
Abdeen (10.1016/j.biopha.2021.111924_bib127) 2021; 23
Wang (10.1016/j.biopha.2021.111924_bib105) 2016; 83
Gupta (10.1016/j.biopha.2021.111924_bib10) 2015; 5
Chen (10.1016/j.biopha.2021.111924_bib79) 2014; 65
Deshpande (10.1016/j.biopha.2021.111924_bib136) 2021
Hu (10.1016/j.biopha.2021.111924_bib125) 2012; 23
Cheng (10.1016/j.biopha.2021.111924_bib26) 2018; 4
Jiang (10.1016/j.biopha.2021.111924_bib20) 2007; 6
Jia (10.1016/j.biopha.2021.111924_bib36) 2019; 5
Liguori (10.1016/j.biopha.2021.111924_bib134) 2018; 13
Hu (10.1016/j.biopha.2021.111924_bib108) 2016; 91
Felfel (10.1016/j.biopha.2021.111924_bib35) 2018; 160
Tanasa (10.1016/j.biopha.2021.111924_bib51) 2020; 110
Dong (10.1016/j.biopha.2021.111924_bib58) 2020; 707
Kweon (10.1016/j.biopha.2021.111924_bib85) 2011; 69
Koh (10.1016/j.biopha.2021.111924_bib5) 2018; 86
Iwan (10.1016/j.biopha.2021.111924_bib101) 2015; 5
Amirikia (10.1016/j.biopha.2021.111924_bib103) 2018; 47
Hota (10.1016/j.biopha.2021.111924_bib14) 2012; 22
Paşcu (10.1016/j.biopha.2021.111924_bib73) 2013; 33
Zafar (10.1016/j.biopha.2021.111924_bib60) 2020; 9
Jiang (10.1016/j.biopha.2021.111924_bib81) 2018; 29
Dong (10.1016/j.biopha.2021.111924_bib90) 2020; 19
He (10.1016/j.biopha.2021.111924_bib8) 2012; 418
Atrian (10.1016/j.biopha.2021.111924_bib93) 2019; 174
Zhou (10.1016/j.biopha.2021.111924_bib68) 2019; 30
Chen (10.1016/j.biopha.2021.111924_bib132) 2018; 9
Farokhi (10.1016/j.biopha.2021.111924_bib128) 2018; 36
Park (10.1016/j.biopha.2021.111924_bib22) 2020; 114
Janani (10.1016/j.biopha.2021.111924_bib122) 2018; 67
Brito-Pereira (10.1016/j.biopha.2021.111924_bib50) 2018; 141
Lee (10.1016/j.biopha.2021.111924_bib76) 2014; 22
Ming (10.1016/j.biopha.2021.111924_bib75) 2015; 51
Nazari (10.1016/j.biopha.2021.111924_bib42) 2020; 31
Fedič (10.1016/j.biopha.2021.111924_bib7) 2003; 278
Ran (10.1016/j.biopha.2021.111924_bib32) 2016; 93
Farokhi (10.1016/j.biopha.2021.111924_bib39) 2014; 35
Yang (10.1016/j.biopha.2021.111924_bib88) 2016; 122
Kim (10.1016/j.biopha.2021.111924_bib80) 2014; 40
Wang (10.1016/j.biopha.2021.111924_bib83) 2021; 63
Ran (10.1016/j.biopha.2021.111924_bib30) 2015; 5
Yan (10.1016/j.biopha.2021.111924_bib38) 2015; 12
Ullah (10.1016/j.biopha.2021.111924_bib18) 2020; 20
Pittenger (10.1016/j.biopha.2021.111924_bib126) 2019; 4
Sun (10.1016/j.biopha.2021.111924_bib23) 2021; 22
Guo (10.1016/j.biopha.2021.111924_bib84) 2018; 109
Wen (10.1016/j.biopha.2021.111924_bib15) 2021; 7
Ribeiro (10.1016/j.biopha.2021.111924_bib62) 2019; 11
Chantawong (10.1016/j.biopha.2021.111924_bib123) 2017; 28
Page (10.1016/j.biopha.2021.111924_bib29) 2021
Oberg (10.1016/j.biopha.2021.111924_bib111) 2004; 271
Naebe (10.1016/j.biopha.2021.111924_bib102) 2015; 4
Hashimoto (10.1016/j.biopha.2021.111924_bib119) 2020; 2
Yang (10.1016/j.biopha.2021.111924_bib16) 2014; 15
Bhattacharjee (10.1016/j.biopha.2021.111924_bib87) 2016; 5
Wang (10.1016/j.biopha.2021.111924_bib33) 2020; 142
Zhao (10.1016/j.biopha.2021.111924_bib114) 2011
Hirosawa (10.1016/j.biopha.2021.111924_bib106) 2018; 36
Zafar (10.1016/j.biopha.2021.111924_bib9) 2015; 16
Warnecke (10.1016/j.biopha.2021.111924_bib110) 2018; 86
Rahman (10.1016/j.biopha.2021.111924_bib115) 2019
Teimouri (10.1016/j.biopha.2021.111924_bib53) 2015; 76
Saleem (10.1016/j.biopha.2021.111924_bib25) 2020; 21
Patil (10.1016/j.biopha.2021.111924_bib45) 2019; 176
Johari (10.1016/j.biopha.2021.111924_bib47) 2017; 79
Jiang (10.1016/j.biopha.2021.111924_bib97) 2020; 202
Brown (10.1016/j.biopha.2021.111924_bib130) 2016; 529
Melke (10.1016/j.biopha.2021.111924_bib24) 2016; 31
Yang (10.1016/j.biopha.2021.111924_bib99) 2018; 8
Nguyen (10.1016/j.biopha.2021.111924_bib27) 2019; 11
Gore (10.1016/j.biopha.2021.111924_bib6) 2019; 374
Hu (10.1016/j.biopha.2021.111924_bib70) 2015; 33
Zuluaga-Vélez (10.1016/j.biopha.2021.111924_bib138) 2019; 14
Kundu (10.1016/j.biopha.2021.111924_bib13) 2013; 65
Teimouri (10.1016/j.biopha.2021.111924_bib54) 2015; 157
Costa-Almeida (10.1016/j.biopha.2021.111924_bib137) 2019; 30
Nguyen (10.1016/j.biopha.2021.111924_bib21) 2020
Wang (10.1016/j.biopha.2021.111924_bib77) 2017; 80
Shi (10.1016/j.biopha.2021.111924_bib91) 2013; 34
Avani (10.1016/j.biopha.2021.111924_bib95) 2020; 69
Salehi (10.1016/j.biopha.2021.111924_bib12) 2020; 25
Miroiu (10.1016/j.biopha.2021.111924_bib66) 2010; 169
Belda Marín (10.1016/j.biopha.2021.111924_bib28) 2020; 8
Ruan (10.1016/j.biopha.2021.111924_bib64) 2018; 97
Passi (10.1016/j.biopha.2021.111924_bib55) 2020; 107
Hu (10.1016/j.biopha.2021.111924_bib1) 2011
Zhou (10.1016/j.biopha.2021.111924_bib74) 2017; 81
Lima (10.1016/j.biopha.2021.111924_bib69) 2013; 33
George (10.1016/j.biopha.2021.111924_bib117) 2013; 33
References_xml – volume: 12
  start-page: 227
  year: 2015
  end-page: 241
  ident: bib38
  article-title: Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance
  publication-title: Acta Biomater.
  contributor:
    fullname: Reis
– volume: 65
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib79
  article-title: Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  contributor:
    fullname: Tong
– volume: 4
  start-page: 4375
  year: 2015
  ident: bib102
  article-title: Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites
  publication-title: Sci. Rep.
  contributor:
    fullname: Fox
– volume: 67
  start-page: 167
  year: 2018
  end-page: 182
  ident: bib122
  article-title: Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs
  publication-title: Acta Biomater.
  contributor:
    fullname: Mandal
– volume: 20
  year: 2020
  ident: bib18
  article-title: Fabrication, applications and challenges of natural biomaterials in tissue engineering
  publication-title: Appl. Mater. Today
  contributor:
    fullname: Chen
– volume: 529
  start-page: 336
  year: 2016
  end-page: 343
  ident: bib130
  article-title: Antibacterial drug discovery in the resistance era
  publication-title: Nature
  contributor:
    fullname: Wright
– volume: 114
  year: 2020
  ident: bib22
  article-title: Advanced hybrid nanomaterials for biomedical applications
  publication-title: Prog. Mater. Sci.
  contributor:
    fullname: Keun Han
– volume: 250
  year: 2020
  ident: bib89
  article-title: Fabrication of bioactive hydroxyapatite/silk fibroin/gelatin cross-linked nanocomposite for biomedical application
  publication-title: Mater. Chem. Phys.
  contributor:
    fullname: Nithya Priya
– volume: 92
  start-page: 2885
  year: 2007
  end-page: 2895
  ident: bib2
  article-title: Protein secondary structure and orientation in silk as revealed by raman spectromicroscopy
  publication-title: Biophys. J.
  contributor:
    fullname: Pézolet
– volume: 35
  start-page: 401
  year: 2014
  end-page: 410
  ident: bib39
  article-title: Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Azami
– volume: 11
  start-page: 1933
  year: 2019
  ident: bib27
  article-title: Silk fibroin-based biomaterials for biomedical applications: a review
  publication-title: Polymers
  contributor:
    fullname: Van Le
– volume: 707
  year: 2020
  ident: bib58
  article-title: Engineered bioactive nanoparticles incorporated biofunctionalized ECM/silk proteins based cardiac patches combined with MSCs for the repair of myocardial infarction: in vitro and in vivo evaluations
  publication-title: Sci. Total Environ.
  contributor:
    fullname: Zhu
– volume: 6
  start-page: 51
  year: 2018
  end-page: 57
  ident: bib133
  article-title: Immunomodulatory biomaterials
  publication-title: Curr. Opin. Biomed. Eng.
  contributor:
    fullname: Badylak
– volume: 63
  start-page: 172
  year: 2021
  end-page: 181
  ident: bib83
  article-title: Injectable silk/hydroxyapatite nanocomposite hydrogels with vascularization capacity for bone regeneration
  publication-title: J. Mater. Sci. Technol.
  contributor:
    fullname: Lu
– volume: 17
  year: 2020
  ident: bib34
  article-title: Chondroprotective and osteogenic effects of silk-based bioinks in developing 3D bioprinted osteochondral interface
  publication-title: Bioprinting
  contributor:
    fullname: Mandal
– volume: 202
  year: 2020
  ident: bib97
  article-title: Synthesis of silver@hydroxyapatite nanoparticles based biocomposite and their assessment for viability of osseointegration for rabbit knee joint anterior cruciate ligament rehabilitation
  publication-title: J. Photochem. Photobiol. B Biol.
  contributor:
    fullname: Dong
– volume: 70
  start-page: 736
  year: 2017
  end-page: 744
  ident: bib49
  article-title: Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Mozafari
– volume: 22
  start-page: 1499
  year: 2021
  ident: bib23
  article-title: Silk fibroin as a functional biomaterial for tissue engineering
  publication-title: Int. J. Mol. Sci.
  contributor:
    fullname: Zhao
– volume: 5
  start-page: 244
  year: 2019
  end-page: 261
  ident: bib36
  article-title: Constructing multilayer silk protein/nanosilver biofunctionalized hierarchically structured 3D printed Ti6Al4 V scaffold for repair of infective bone defects
  publication-title: ACS Biomater. Sci. Eng.
  contributor:
    fullname: Zheng
– volume: 129
  start-page: 1034
  year: 2019
  end-page: 1039
  ident: bib56
  article-title: Gold nanorods reinforced silk fibroin nanocomposite for peripheral nerve tissue engineering applications
  publication-title: Int. J. Biol. Macromol.
  contributor:
    fullname: Ashtari
– volume: 374
  start-page: 437
  year: 2019
  end-page: 470
  ident: bib6
  article-title: Progress in silk materials for integrated water treatments: fabrication, modification and applications
  publication-title: Chem. Eng. J.
  contributor:
    fullname: Kandasubramanian
– volume: 4
  start-page: 518
  year: 2005
  end-page: 524
  ident: bib104
  article-title: Porous scaffold design for tissue engineering
  publication-title: Nat. Mater.
  contributor:
    fullname: Hollister
– volume: 25
  start-page: 737
  year: 2020
  ident: bib12
  article-title: Spider silk for tissue engineering applications
  publication-title: Molecules
  contributor:
    fullname: Scheibel
– volume: 8
  year: 2020
  ident: bib28
  article-title: Silk polymers and nanoparticles: a powerful combination for the design of versatile biomaterials
  publication-title: Front. Chem.
  contributor:
    fullname: Egles
– volume: 23
  year: 2021
  ident: bib127
  article-title: Integrating biomaterials and genome editing approaches to advance biomedical science
  publication-title: Annu. Rev. Biomed. Eng.
  contributor:
    fullname: Saha
– volume: 8
  year: 2020
  ident: bib135
  article-title: Peptide-enriched silk fibroin sponge and trabecular titanium composites to enhance bone ingrowth of prosthetic implants in an ovine model of bone gaps
  publication-title: Front. Bioeng. Biotechnol.
  contributor:
    fullname: Moretti
– volume: 136
  start-page: 1247
  year: 2019
  end-page: 1257
  ident: bib96
  article-title: Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  contributor:
    fullname: Feng
– volume: 34
  start-page: 5947
  year: 2013
  end-page: 5957
  ident: bib91
  article-title: Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration
  publication-title: Biomaterials
  contributor:
    fullname: Goh
– volume: 86
  start-page: 151
  year: 2018
  end-page: 172
  ident: bib5
  article-title: Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Tee
– volume: 91
  year: 2020
  ident: bib94
  article-title: In vitro and in vivo evaluation of silk fibroin-hardystonite-gentamicin nanofibrous scaffold for tissue engineering applications
  publication-title: Polym. Test.
  contributor:
    fullname: Akbari
– volume: 15
  start-page: 1390
  year: 2014
  end-page: 1398
  ident: bib16
  article-title: Multifunctional adhesive silk fibroin with blending of RGD-bioconjugated mussel adhesive protein
  publication-title: Biomacromolecules
  contributor:
    fullname: Cha
– volume: 30
  start-page: 1604
  year: 2019
  end-page: 1619
  ident: bib68
  article-title: Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds—a novel approach to corneal tissue engineering
  publication-title: J. Biomater. Sci. Polym. Ed.
  contributor:
    fullname: Zhou
– volume: 467–468
  start-page: 345
  year: 2019
  end-page: 353
  ident: bib67
  article-title: 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration
  publication-title: Appl. Surf. Sci.
  contributor:
    fullname: Li
– start-page: 819
  year: 2019
  end-page: 863
  ident: bib115
  publication-title: Morphological Characterization of Hydrogels
  contributor:
    fullname: Rahman
– volume: 81
  start-page: 291
  year: 2017
  end-page: 302
  ident: bib74
  article-title: Synthesis of silk fibroin-g-PAA composite using H2O2-HRP and characterization of the in situ biomimetic mineralization behavior
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Fan
– volume: 54
  start-page: 158
  year: 2015
  end-page: 168
  ident: bib37
  article-title: Tailoring the properties and functions of phosphate/silk/Ag/chitosan scaffolds
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Ali
– volume: 160
  start-page: 455
  year: 2018
  end-page: 467
  ident: bib35
  article-title: Performance of multiphase scaffolds for bone repair based on two-photon polymerized poly(d,l-lactide-co-ɛ-caprolactone), recombinamers hydrogel and nano-HA
  publication-title: Mater. Des.
  contributor:
    fullname: Grant
– volume: 36
  start-page: 2210
  year: 2018
  end-page: 2217
  ident: bib106
  article-title: Vein wrapping promotes M2 macrophage polarization in a rat chronic constriction injury model
  publication-title: J. Orthop. Res.
  contributor:
    fullname: Ohtori
– volume: 31
  start-page: 248
  year: 2020
  end-page: 259
  ident: bib42
  article-title: Incorporation of two‐dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue engineering
  publication-title: Polym. Adv. Technol.
  contributor:
    fullname: Tafti
– start-page: 1
  year: 2015
  end-page: 33
  ident: bib109
  article-title: Dynamic mechanical analysis in the analysis of polymers and rubbers
  publication-title: Encyclopedia of Polymer Science and Technology
  contributor:
    fullname: Menard
– volume: 13
  start-page: 757
  year: 2018
  end-page: 772
  ident: bib134
  article-title: Oxidative stress, aging, and diseases
  publication-title: Clin. Interv. Aging
  contributor:
    fullname: Abete
– volume: 122
  start-page: 113
  year: 2016
  end-page: 121
  ident: bib88
  article-title: Direct modulus measurement of single composite nanofibers of silk fibroin/hydroxyapatite nanoparticles
  publication-title: Compos. Sci. Technol.
  contributor:
    fullname: Ryu
– volume: 141
  start-page: 70
  year: 2018
  end-page: 75
  ident: bib50
  article-title: Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications
  publication-title: Compos. Part B Eng.
  contributor:
    fullname: Lanceros-Mendez
– volume: 62
  start-page: 15
  year: 2001
  end-page: 21
  ident: bib113
  article-title: β-sheet structure formation of proteins in solid state as revealed by circular dichroism spectroscopy
  publication-title: Biopolymers
  contributor:
    fullname: Du
– volume: 12
  start-page: 5403
  year: 2012
  end-page: 5406
  ident: bib59
  article-title: Nanocomposite gold-silk nanofibers
  publication-title: Nano Lett.
  contributor:
    fullname: Kohane
– volume: 278
  start-page: 35255
  year: 2003
  end-page: 35264
  ident: bib7
  article-title: Correlation between fibroin amino acid sequence and physical silk properties
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Sehnal
– volume: 18
  start-page: 237
  year: 2017
  ident: bib3
  article-title: A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures
  publication-title: Int. J. Mol. Sci.
  contributor:
    fullname: Zhang
– volume: 10
  start-page: 10118
  year: 2020
  end-page: 10128
  ident: bib72
  article-title: Preparation and biological properties of silk fibroin/nano-hydroxyapatite/graphene oxide scaffolds with an oriented channel-like structure
  publication-title: RSC Adv.
  contributor:
    fullname: Wang
– volume: 9
  start-page: 7204
  year: 2018
  end-page: 7218
  ident: bib132
  article-title: Inflammatory responses and inflammation-associated diseases in organs
  publication-title: Oncotarget
  contributor:
    fullname: Zhao
– volume: 2013
  start-page: 38
  year: 2013
  ident: bib107
  article-title: Hydrogel scaffolds for tissue engineering: progress and challenges
  publication-title: Glob. Cardiol. Sci. Pract.
  contributor:
    fullname: Yacoub
– volume: 1
  year: 2019
  ident: bib61
  article-title: In vivo performance of hierarchical HRP-crosslinked silk fibroin/β-TCP scaffolds for osteochondral tissue regeneration
  publication-title: Regen. Med. Front.
  contributor:
    fullname: Oliveira
– volume: 33
  start-page: 4905
  year: 2013
  end-page: 4916
  ident: bib73
  article-title: Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: McGuinness
– volume: 91
  start-page: 30
  year: 2016
  end-page: 38
  ident: bib108
  article-title: The roles of vascular endothelial growth factor in bone repair and regeneration
  publication-title: Bone
  contributor:
    fullname: Olsen
– volume: 4
  start-page: 2704
  year: 2018
  end-page: 2715
  ident: bib26
  article-title: Advanced silk fibroin biomaterials for cartilage regeneration
  publication-title: ACS Biomater. Sci. Eng.
  contributor:
    fullname: Wang
– volume: 35
  start-page: 1397
  year: 2019
  end-page: 1407
  ident: bib78
  article-title: Nano-hydroxyapatite mineralized silk fibroin porous scaffold for tooth extraction site preservation
  publication-title: Dent. Mater.
  contributor:
    fullname: Yang
– volume: 86
  start-page: 314
  year: 2018
  end-page: 324
  ident: bib110
  article-title: Biomechanical, structural and biological characterisation of a new silk fibroin scaffold for meniscal repair
  publication-title: J. Mech. Behav. Biomed. Mater.
  contributor:
    fullname: Dürselen
– volume: 7
  start-page: 35
  year: 2021
  ident: bib15
  article-title: Recent progress in silk fibroin-based flexible electronics
  publication-title: Microsyst. Nanoeng.
  contributor:
    fullname: Zhang
– volume: 6
  start-page: 1612
  year: 2011
  end-page: 1631
  ident: bib4
  article-title: Materials fabrication from Bombyx mori silk fibroin
  publication-title: Nat. Protoc.
  contributor:
    fullname: Kaplan
– volume: 31
  start-page: 1
  year: 2016
  end-page: 16
  ident: bib24
  article-title: Silk fibroin as biomaterial for bone tissue engineering
  publication-title: Acta Biomater.
  contributor:
    fullname: Hofmann
– volume: 69
  start-page: 32
  year: 2020
  end-page: 43
  ident: bib95
  article-title: Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
  contributor:
    fullname: Farokhi
– volume: 58
  start-page: 275
  year: 2013
  end-page: 280
  ident: bib92
  article-title: Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration
  publication-title: Int. J. Biol. Macromol.
  contributor:
    fullname: Teimouri
– volume: 2
  year: 2020
  ident: bib119
  article-title: The influence of thermal treatments on the secondary structure of silk fibroin scaffolds and their interaction with fibroblasts
  publication-title: PeerJ Mater. Sci.
  contributor:
    fullname: Kameda
– volume: 7
  start-page: 6282
  year: 2015
  end-page: 6292
  ident: bib52
  article-title: Biomimetic magnetic silk scaffolds
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Dediu
– volume: 68
  start-page: 217
  year: 2019
  end-page: 228
  ident: bib63
  article-title: Three-dimensional silk impregnated HAp/PHBV nanofibrous scaffolds for bone regeneration
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
  contributor:
    fullname: Ergur
– volume: 559
  start-page: 259
  year: 2018
  end-page: 263
  ident: bib131
  article-title: Species-specific activity of antibacterial drug combinations
  publication-title: Nature
  contributor:
    fullname: Typas
– volume: 14
  year: 2019
  ident: bib138
  article-title: Silk fibroin hydrogels from the Colombian silkworm
  publication-title: PLoS One
  contributor:
    fullname: Sepúlveda-Arias
– volume: 38
  start-page: 99
  year: 2018
  end-page: 105
  ident: bib48
  article-title: Evaluation of bioactivity and biocompatibility of silk fibroin/TiO2 nanocomposite
  publication-title: J. Med. Biol. Eng.
  contributor:
    fullname: Samadikuchaksaraei
– volume: 472
  start-page: 16
  year: 2016
  end-page: 33
  ident: bib65
  article-title: Non-mulberry silk fibroin grafted poly (Є-caprolactone)/nano hydroxyapatite nanofibrous scaffold for dual growth factor delivery to promote bone regeneration
  publication-title: J. Colloid Interface Sci.
  contributor:
    fullname: Kundu
– volume: 40
  start-page: 324
  year: 2014
  end-page: 335
  ident: bib80
  article-title: Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Ryu
– volume: 142
  start-page: 366
  year: 2020
  end-page: 375
  ident: bib33
  article-title: Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications
  publication-title: Int. J. Biol. Macromol.
  contributor:
    fullname: Ge
– volume: 79
  start-page: 783
  year: 2017
  end-page: 792
  ident: bib47
  article-title: Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO2 for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Samadikuchaksaraei
– volume: 107
  year: 2020
  ident: bib55
  article-title: Theranostic nanozyme: silk fibroin based multifunctional nanocomposites to combat oxidative stress
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Packirisamy
– volume: 176
  start-page: 150
  year: 2019
  end-page: 155
  ident: bib45
  article-title: Antibacterial silk fibroin scaffolds with green synthesized silver nanoparticles for osteoblast proliferation and human mesenchymal stem cell differentiation
  publication-title: Colloids Surf. B Biointerfaces
  contributor:
    fullname: Singh
– volume: 5
  start-page: 70127
  year: 2015
  end-page: 70138
  ident: bib101
  article-title: Fabrication of nanocomposites by covalent bonding between noble metal nanoparticles and polymer matrix
  publication-title: RSC Adv.
  contributor:
    fullname: Fialkowski
– volume: 5
  start-page: 12706
  year: 2015
  ident: bib10
  article-title: Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama
  publication-title: Sci. Rep.
  contributor:
    fullname: Nagaraju
– volume: 73
  start-page: 355
  year: 2018
  end-page: 364
  ident: bib112
  article-title: A robust spectroscopic method for the determination of protein conformational composition – application to the annealing of silk
  publication-title: Acta Biomater.
  contributor:
    fullname: Perry
– volume: 109
  start-page: 21
  year: 2018
  end-page: 26
  ident: bib84
  article-title: In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber
  publication-title: Int. J. Biol. Macromol.
  contributor:
    fullname: Zhao
– volume: 418
  start-page: 197
  year: 2012
  end-page: 207
  ident: bib8
  article-title: N-terminal domain of bombyx mori fibroin mediates the assembly of silk in response to pH decrease
  publication-title: J. Mol. Biol.
  contributor:
    fullname: Zhou
– volume: 106
  start-page: 2070
  year: 2018
  end-page: 2077
  ident: bib124
  article-title: Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits
  publication-title: J. Biomed. Mater. Res. Part A
  contributor:
    fullname: Chai
– volume: 68
  start-page: 355
  year: 2016
  end-page: 369
  ident: bib98
  article-title: Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects
  publication-title: Cytotechnology
  contributor:
    fullname: Bernotienė
– volume: 4
  start-page: 22
  year: 2019
  ident: bib126
  article-title: Mesenchymal stem cell perspective: cell biology to clinical progress
  publication-title: npj Regen. Med.
  contributor:
    fullname: Caplan
– volume: 62
  start-page: 66
  year: 2015
  end-page: 75
  ident: bib57
  article-title: In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration
  publication-title: Biomaterials
  contributor:
    fullname: Bora
– volume: 5
  start-page: 76526
  year: 2015
  end-page: 76537
  ident: bib30
  article-title: Comparisons between gelatin-tussah silk fibroin/hydroxyapatite and gelatin-Bombyx mori silk fibroin/hydroxyapatite nano-composites for bone tissue engineering
  publication-title: RSC Adv.
  contributor:
    fullname: Tong
– volume: 29
  start-page: 107
  year: 2018
  end-page: 124
  ident: bib81
  article-title: Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase
  publication-title: J. Biomater. Sci. Polym. Ed.
  contributor:
    fullname: Tong
– start-page: n71
  year: 2021
  ident: bib29
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: BMJ
  contributor:
    fullname: Moher
– start-page: 207
  year: 2011
  end-page: 219
  ident: bib1
  article-title: Silk biomaterials
  publication-title: Comprehensive Biomaterials
  contributor:
    fullname: Kaplan
– volume: 21
  start-page: 242
  year: 2020
  end-page: 266
  ident: bib25
  article-title: Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration
  publication-title: Sci. Technol. Adv. Mater.
  contributor:
    fullname: Yougen
– volume: 103
  start-page: 888
  year: 2015
  end-page: 898
  ident: bib40
  article-title: In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater.
  contributor:
    fullname: Reis
– volume: 6
  start-page: 5
  year: 2007
  ident: bib20
  article-title: Glossary of biotechnology and nanobiotechnology terms
  publication-title: Biomed. Eng. Online
  contributor:
    fullname: Jiang
– volume: 83
  start-page: 127
  year: 2016
  end-page: 141
  ident: bib105
  article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review
  publication-title: Biomaterials
  contributor:
    fullname: Xie
– volume: 51
  start-page: 287
  year: 2015
  end-page: 293
  ident: bib75
  article-title: Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Zuo
– volume: 110
  year: 2020
  ident: bib51
  article-title: Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Galateanu
– volume: 8
  start-page: 1616
  year: 2018
  ident: bib99
  article-title: Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods
  publication-title: Sci. Rep.
  contributor:
    fullname: Zhang
– volume: 13
  start-page: 1745
  year: 2017
  end-page: 1759
  ident: bib31
  article-title: Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: promising platform for bone tissue engineering
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  contributor:
    fullname: Kundu
– volume: 30
  start-page: 147
  year: 2019
  end-page: 149
  ident: bib137
  article-title: Metabolic disease epidemics: emerging challenges in regenerative medicine
  publication-title: Trends Endocrinol. Metab.
  contributor:
    fullname: Gomes
– volume: 80
  start-page: 232
  year: 2017
  end-page: 242
  ident: bib77
  article-title: A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Cui
– volume: 5
  start-page: 52
  year: 2016
  end-page: 67
  ident: bib87
  article-title: Investigating the potential of combined growth factors delivery, from non-mulberry silk fibroin grafted poly(ɛ-caprolactone)/hydroxyapatite nanofibrous scaffold, in bone tissue engineering
  publication-title: Appl. Mater. Today
  contributor:
    fullname: Kundu
– year: 2021
  ident: bib136
  article-title: Silk fibroin and ceramic scaffolds: comparative in vitro studies for bone regeneration
  publication-title: Bioeng. Transl. Med.
  contributor:
    fullname: Venugopalan
– volume: 9
  start-page: 14520
  year: 2017
  end-page: 14532
  ident: bib41
  article-title: Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers
  publication-title: Nanoscale
  contributor:
    fullname: Goh
– volume: 9
  start-page: 13656
  year: 2019
  ident: bib11
  article-title: Spidroins and silk fibers of aquatic spiders
  publication-title: Sci. Rep.
  contributor:
    fullname: Hayashi
– volume: 47
  start-page: 573
  year: 2018
  end-page: 581
  ident: bib103
  article-title: Auto-fluorescence of a silk fibroin-based scaffold and its interference with fluorophores in labeled cells
  publication-title: Eur. Biophys. J.
  contributor:
    fullname: Mehranjani
– volume: 157
  start-page: 85
  year: 2015
  end-page: 88
  ident: bib54
  article-title: Fabrication and characterization of POM/ZrO2/silk fibroin composite scaffolds
  publication-title: Mater. Lett.
  contributor:
    fullname: Chermahini
– volume: 36
  start-page: 907
  year: 2018
  end-page: 922
  ident: bib128
  article-title: Overview of silk fibroin use in wound dressings
  publication-title: Trends Biotechnol.
  contributor:
    fullname: Kaplan
– volume: 11
  start-page: 3781
  year: 2019
  end-page: 3799
  ident: bib62
  article-title: Enzymatically cross-linked silk fibroin-based hierarchical scaffolds for osteochondral regeneration
  publication-title: ACS Appl. Mater. Interfaces
  contributor:
    fullname: Reis
– volume: 65
  start-page: 457
  year: 2013
  end-page: 470
  ident: bib13
  article-title: Silk fibroin biomaterials for tissue regenerations
  publication-title: Adv. Drug Deliv. Rev.
  contributor:
    fullname: Wang
– start-page: 199
  year: 2004
  end-page: 213
  ident: bib19
  article-title: Nanocomposites
  publication-title: Introduction to Nanoscale Science and Technology
  contributor:
    fullname: Cammarata
– volume: 69
  start-page: 1578
  year: 2011
  end-page: 1586
  ident: bib85
  article-title: Development of nano-hydroxyapatite graft with silk fibroin scaffold as a new bone substitute
  publication-title: J. Oral Maxillofac. Surg.
  contributor:
    fullname: Kim
– volume: 9
  year: 2020
  ident: bib60
  article-title: Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells
  publication-title: Materialia
  contributor:
    fullname: Farokhi
– volume: 134
  year: 2020
  ident: bib118
  article-title: Tuning the conformation and mechanical properties of silk fibroin hydrogels
  publication-title: Eur. Polym. J.
  contributor:
    fullname: Samadikuchaksaraei
– volume: 97
  start-page: 600
  year: 2018
  end-page: 606
  ident: bib64
  article-title: Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model
  publication-title: Biomed. Pharmacother.
  contributor:
    fullname: Huang
– volume: 44
  start-page: 4647
  year: 2020
  end-page: 4663
  ident: bib86
  article-title: Biomimetic hydroxyapatite/silkfibre/methylcellulose composites for bone tissue engineering applications
  publication-title: New J. Chem.
  contributor:
    fullname: Sumathi
– start-page: 3
  year: 2020
  end-page: 6
  ident: bib21
  article-title: Chapter 1 – Fiber-reinforced nanocomposites: an introduction
  publication-title: Fiber-Reinforced Nanocomposites: Fundamentals and Applications
  contributor:
    fullname: Bhat
– volume: 13
  start-page: 231
  year: 2017
  end-page: 239
  ident: bib44
  article-title: Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  contributor:
    fullname: Sardon
– volume: 7
  year: 2020
  ident: bib100
  article-title: Hierarchical HRP-crosslinked silk fibroin/ZnSr-TCP scaffolds for osteochondral tissue regeneration: assessment of the mechanical and antibacterial properties
  publication-title: Front. Mater.
  contributor:
    fullname: Oliveira
– volume: 62
  start-page: 441
  year: 2015
  end-page: 450
  ident: bib71
  article-title: In vitro and in vivo evaluations of three-dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds
  publication-title: Biotechnol. Appl. Biochem.
  contributor:
    fullname: Ghasemi Hamidabadi
– volume: 93
  start-page: 87
  year: 2016
  end-page: 97
  ident: bib32
  article-title: A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range
  publication-title: Int. J. Biol. Macromol.
  contributor:
    fullname: Tong
– volume: 62
  start-page: 88
  year: 2017
  end-page: 95
  ident: bib120
  article-title: Silk fibroin microfibers and chitosan modified poly (glycerol sebacate) composite scaffolds for skin tissue engineering
  publication-title: Polym. Test.
  contributor:
    fullname: Sun
– volume: 94
  start-page: 547
  year: 2019
  end-page: 557
  ident: bib82
  article-title: Biomimetic fabrication of new bioceramics-introduced fibrous scaffolds: from physicochemical characteristics to in vitro biological properties
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Weng
– volume: 82
  start-page: 265
  year: 2018
  end-page: 276
  ident: bib46
  article-title: Novel fluoridated silk fibroin/ TiO2 nanocomposite scaffolds for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Samadikuchaksaraei
– volume: 28
  start-page: 191
  year: 2017
  ident: bib123
  article-title: Silk fibroin-pellethane® cardiovascular patches: effect of silk fibroin concentration on vascular remodeling in rat model
  publication-title: J. Mater. Sci. Mater. Med.
  contributor:
    fullname: Tanaka
– volume: 174
  start-page: 90
  year: 2019
  end-page: 99
  ident: bib93
  article-title: Silk-laponite® fibrous membranes for bone tissue engineering
  publication-title: Appl. Clay Sci.
  contributor:
    fullname: Alihosseini
– volume: 16
  start-page: 606
  year: 2015
  end-page: 614
  ident: bib9
  article-title: Functional material features of Bombyx mori silk light versus heavy chain proteins
  publication-title: Biomacromolecules
  contributor:
    fullname: Perry
– volume: 62
  start-page: 919
  year: 2019
  end-page: 930
  ident: bib17
  article-title: Progress in modification of silk fibroin fiber
  publication-title: Sci. China Technol. Sci.
  contributor:
    fullname: Huang
– volume: 169
  start-page: 151
  year: 2010
  end-page: 158
  ident: bib66
  article-title: Composite biocompatible hydroxyapatite–silk fibroin coatings for medical implants obtained by matrix assisted pulsed laser evaporation
  publication-title: Mater. Sci. Eng. B
  contributor:
    fullname: Ducu
– volume: 12
  start-page: 3383
  year: 2006
  end-page: 3394
  ident: bib121
  article-title: Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend
  publication-title: Tissue Eng.
  contributor:
    fullname: Mathur
– volume: 33
  start-page: 668
  year: 2013
  end-page: 674
  ident: bib117
  article-title: Effect of the sterilization method on the properties of Bombyx mori silk fibroin films
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Harkin
– volume: 107
  year: 2020
  ident: bib43
  article-title: Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Paladini
– volume: 33
  start-page: 1661
  year: 2015
  end-page: 1671
  ident: bib70
  article-title: Fabrication and characterization of chitosan-silk fibroin/hydroxyapatite composites via in situ precipitation for bone tissue engineering
  publication-title: Chin. J. Polym. Sci.
  contributor:
    fullname: Tong
– volume: 22
  start-page: 710
  year: 2014
  end-page: 716
  ident: bib76
  article-title: Surface coating of hydroxyapatite on silk nanofiber through biomineralization using ten times concentrated simulated body fluid and the evaluation for bone regeneration
  publication-title: Macromol. Res.
  contributor:
    fullname: Park
– volume: 19
  year: 2020
  ident: bib90
  article-title: Regional and sustained dual-release of growth factors from biomimetic tri-layered scaffolds for the repair of large-scale osteochondral defects
  publication-title: Appl. Mater. Today
  contributor:
    fullname: Yang
– volume: 271
  start-page: 2937
  year: 2004
  end-page: 2948
  ident: bib111
  article-title: The optimization of protein secondary structure determination with infrared and circular dichroism spectra
  publication-title: Eur. J. Biochem.
  contributor:
    fullname: Goormaghtigh
– volume: 33
  start-page: 3389
  year: 2013
  end-page: 3395
  ident: bib69
  article-title: Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  contributor:
    fullname: Almeida
– volume: 22
  start-page: 4493
  year: 2012
  end-page: 4499
  ident: bib14
  article-title: A natural silk fibroin protein-based transparent bio-memristor
  publication-title: Adv. Funct. Mater.
  contributor:
    fullname: Maiti
– volume: 127
  start-page: 130
  year: 2018
  end-page: 141
  ident: bib129
  article-title: Recent advances on antimicrobial wound dressing: a review
  publication-title: Eur. J. Pharm. Biopharm.
  contributor:
    fullname: Correia
– start-page: 187
  year: 2011
  end-page: 213
  ident: bib114
  article-title: Protein structure determination by solid-state NMR
  publication-title: Top. Curr. Chem.
  contributor:
    fullname: Zhao
– volume: 15
  start-page: 861
  year: 2015
  end-page: 874
  ident: bib116
  article-title: The effect of sterilization on silk fibroin biomaterial properties
  publication-title: Macromol. Biosci.
  contributor:
    fullname: Kaplan
– volume: 23
  start-page: 711
  year: 2012
  end-page: 722
  ident: bib125
  article-title: Injectable silk fibroin/polyurethane composite hydrogel for nucleus pulposus replacement
  publication-title: J. Mater. Sci. Mater. Med.
  contributor:
    fullname: Xu
– volume: 76
  start-page: 292
  year: 2015
  end-page: 302
  ident: bib53
  article-title: Nano-composite of silk fibroin–chitosan/nano ZrO2 for tissue engineering applications: fabrication and morphology
  publication-title: Int. J. Biol. Macromol.
  contributor:
    fullname: Chermahini
– volume: 62
  start-page: 88
  year: 2017
  ident: 10.1016/j.biopha.2021.111924_bib120
  article-title: Silk fibroin microfibers and chitosan modified poly (glycerol sebacate) composite scaffolds for skin tissue engineering
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2017.06.012
  contributor:
    fullname: Zhang
– volume: 11
  start-page: 1933
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib27
  article-title: Silk fibroin-based biomaterials for biomedical applications: a review
  publication-title: Polymers
  doi: 10.3390/polym11121933
  contributor:
    fullname: Nguyen
– volume: 20
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib18
  article-title: Fabrication, applications and challenges of natural biomaterials in tissue engineering
  publication-title: Appl. Mater. Today
  contributor:
    fullname: Ullah
– volume: 10
  start-page: 10118
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib72
  article-title: Preparation and biological properties of silk fibroin/nano-hydroxyapatite/graphene oxide scaffolds with an oriented channel-like structure
  publication-title: RSC Adv.
  doi: 10.1039/C9RA09710D
  contributor:
    fullname: Wang
– volume: 5
  start-page: 70127
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib101
  article-title: Fabrication of nanocomposites by covalent bonding between noble metal nanoparticles and polymer matrix
  publication-title: RSC Adv.
  doi: 10.1039/C5RA12474C
  contributor:
    fullname: Iwan
– volume: 134
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib118
  article-title: Tuning the conformation and mechanical properties of silk fibroin hydrogels
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2020.109842
  contributor:
    fullname: Johari
– volume: 202
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib97
  article-title: Synthesis of silver@hydroxyapatite nanoparticles based biocomposite and their assessment for viability of osseointegration for rabbit knee joint anterior cruciate ligament rehabilitation
  publication-title: J. Photochem. Photobiol. B Biol.
  doi: 10.1016/j.jphotobiol.2019.111677
  contributor:
    fullname: Jiang
– volume: 271
  start-page: 2937
  year: 2004
  ident: 10.1016/j.biopha.2021.111924_bib111
  article-title: The optimization of protein secondary structure determination with infrared and circular dichroism spectra
  publication-title: Eur. J. Biochem.
  doi: 10.1111/j.1432-1033.2004.04220.x
  contributor:
    fullname: Oberg
– volume: 22
  start-page: 4493
  year: 2012
  ident: 10.1016/j.biopha.2021.111924_bib14
  article-title: A natural silk fibroin protein-based transparent bio-memristor
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200073
  contributor:
    fullname: Hota
– volume: 103
  start-page: 888
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib40
  article-title: In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds
  publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater.
  doi: 10.1002/jbm.b.33267
  contributor:
    fullname: Yan
– volume: 94
  start-page: 547
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib82
  article-title: Biomimetic fabrication of new bioceramics-introduced fibrous scaffolds: from physicochemical characteristics to in vitro biological properties
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.09.063
  contributor:
    fullname: Liu
– volume: 157
  start-page: 85
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib54
  article-title: Fabrication and characterization of POM/ZrO2/silk fibroin composite scaffolds
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2015.05.064
  contributor:
    fullname: Teimouri
– volume: 16
  start-page: 606
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib9
  article-title: Functional material features of Bombyx mori silk light versus heavy chain proteins
  publication-title: Biomacromolecules
  doi: 10.1021/bm501667j
  contributor:
    fullname: Zafar
– start-page: 819
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib115
  contributor:
    fullname: Rahman
– volume: 13
  start-page: 1745
  year: 2017
  ident: 10.1016/j.biopha.2021.111924_bib31
  article-title: Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: promising platform for bone tissue engineering
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2017.02.016
  contributor:
    fullname: Behera
– volume: 5
  start-page: 244
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib36
  article-title: Constructing multilayer silk protein/nanosilver biofunctionalized hierarchically structured 3D printed Ti6Al4 V scaffold for repair of infective bone defects
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00857
  contributor:
    fullname: Jia
– volume: 559
  start-page: 259
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib131
  article-title: Species-specific activity of antibacterial drug combinations
  publication-title: Nature
  doi: 10.1038/s41586-018-0278-9
  contributor:
    fullname: Brochado
– volume: 6
  start-page: 1612
  year: 2011
  ident: 10.1016/j.biopha.2021.111924_bib4
  article-title: Materials fabrication from Bombyx mori silk fibroin
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2011.379
  contributor:
    fullname: Rockwood
– volume: 142
  start-page: 366
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib33
  article-title: Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.09.107
  contributor:
    fullname: Wang
– volume: 107
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib43
  article-title: Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.110219
  contributor:
    fullname: Raho
– volume: 8
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib135
  article-title: Peptide-enriched silk fibroin sponge and trabecular titanium composites to enhance bone ingrowth of prosthetic implants in an ovine model of bone gaps
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2020.563203
  contributor:
    fullname: Lovati
– volume: 33
  start-page: 4905
  year: 2013
  ident: 10.1016/j.biopha.2021.111924_bib73
  article-title: Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2013.08.012
  contributor:
    fullname: Paşcu
– volume: 7
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib100
  article-title: Hierarchical HRP-crosslinked silk fibroin/ZnSr-TCP scaffolds for osteochondral tissue regeneration: assessment of the mechanical and antibacterial properties
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2020.00049
  contributor:
    fullname: Ribeiro
– volume: 79
  start-page: 783
  year: 2017
  ident: 10.1016/j.biopha.2021.111924_bib47
  article-title: Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO2 for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.05.105
  contributor:
    fullname: Johari
– volume: 86
  start-page: 314
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib110
  article-title: Biomechanical, structural and biological characterisation of a new silk fibroin scaffold for meniscal repair
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.06.041
  contributor:
    fullname: Warnecke
– volume: 73
  start-page: 355
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib112
  article-title: A robust spectroscopic method for the determination of protein conformational composition – application to the annealing of silk
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.03.058
  contributor:
    fullname: Belton
– year: 2021
  ident: 10.1016/j.biopha.2021.111924_bib136
  article-title: Silk fibroin and ceramic scaffolds: comparative in vitro studies for bone regeneration
  publication-title: Bioeng. Transl. Med.
  doi: 10.1002/btm2.10221
  contributor:
    fullname: Deshpande
– volume: 129
  start-page: 1034
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib56
  article-title: Gold nanorods reinforced silk fibroin nanocomposite for peripheral nerve tissue engineering applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.02.050
  contributor:
    fullname: Afjeh-Dana
– volume: 29
  start-page: 107
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib81
  article-title: Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1080/09205063.2017.1403149
  contributor:
    fullname: Jiang
– volume: 22
  start-page: 710
  year: 2014
  ident: 10.1016/j.biopha.2021.111924_bib76
  article-title: Surface coating of hydroxyapatite on silk nanofiber through biomineralization using ten times concentrated simulated body fluid and the evaluation for bone regeneration
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-014-2114-x
  contributor:
    fullname: Lee
– volume: 8
  start-page: 1616
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib99
  article-title: Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-20006-y
  contributor:
    fullname: Yang
– volume: 91
  start-page: 30
  year: 2016
  ident: 10.1016/j.biopha.2021.111924_bib108
  article-title: The roles of vascular endothelial growth factor in bone repair and regeneration
  publication-title: Bone
  doi: 10.1016/j.bone.2016.06.013
  contributor:
    fullname: Hu
– volume: 4
  start-page: 4375
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib102
  article-title: Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites
  publication-title: Sci. Rep.
  doi: 10.1038/srep04375
  contributor:
    fullname: Naebe
– volume: 8
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib28
  article-title: Silk polymers and nanoparticles: a powerful combination for the design of versatile biomaterials
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2020.604398
  contributor:
    fullname: Belda Marín
– volume: 33
  start-page: 3389
  year: 2013
  ident: 10.1016/j.biopha.2021.111924_bib69
  article-title: Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2013.04.026
  contributor:
    fullname: Lima
– volume: 86
  start-page: 151
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib5
  article-title: Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2018.01.007
  contributor:
    fullname: Koh
– volume: 81
  start-page: 291
  year: 2017
  ident: 10.1016/j.biopha.2021.111924_bib74
  article-title: Synthesis of silk fibroin-g-PAA composite using H2O2-HRP and characterization of the in situ biomimetic mineralization behavior
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.08.006
  contributor:
    fullname: Zhou
– volume: 47
  start-page: 573
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib103
  article-title: Auto-fluorescence of a silk fibroin-based scaffold and its interference with fluorophores in labeled cells
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s00249-018-1279-1
  contributor:
    fullname: Amirikia
– volume: 4
  start-page: 2704
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib26
  article-title: Advanced silk fibroin biomaterials for cartilage regeneration
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00150
  contributor:
    fullname: Cheng
– start-page: 199
  year: 2004
  ident: 10.1016/j.biopha.2021.111924_bib19
  article-title: Nanocomposites
  contributor:
    fullname: Cammarata
– volume: 62
  start-page: 66
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib57
  article-title: In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2015.04.047
  contributor:
    fullname: Das
– volume: 160
  start-page: 455
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib35
  article-title: Performance of multiphase scaffolds for bone repair based on two-photon polymerized poly(d,l-lactide-co-ɛ-caprolactone), recombinamers hydrogel and nano-HA
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.09.035
  contributor:
    fullname: Felfel
– volume: 67
  start-page: 167
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib122
  article-title: Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2017.11.053
  contributor:
    fullname: Janani
– volume: 33
  start-page: 1661
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib70
  article-title: Fabrication and characterization of chitosan-silk fibroin/hydroxyapatite composites via in situ precipitation for bone tissue engineering
  publication-title: Chin. J. Polym. Sci.
  doi: 10.1007/s10118-015-1710-3
  contributor:
    fullname: Hu
– volume: 2
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib119
  article-title: The influence of thermal treatments on the secondary structure of silk fibroin scaffolds and their interaction with fibroblasts
  publication-title: PeerJ Mater. Sci.
  contributor:
    fullname: Hashimoto
– volume: 18
  start-page: 237
  year: 2017
  ident: 10.1016/j.biopha.2021.111924_bib3
  article-title: A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18030237
  contributor:
    fullname: Qi
– volume: 7
  start-page: 6282
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib52
  article-title: Biomimetic magnetic silk scaffolds
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b00529
  contributor:
    fullname: Samal
– volume: 141
  start-page: 70
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib50
  article-title: Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2017.12.046
  contributor:
    fullname: Brito-Pereira
– volume: 65
  start-page: 1
  year: 2014
  ident: 10.1016/j.biopha.2021.111924_bib79
  article-title: Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2014.01.003
  contributor:
    fullname: Chen
– volume: 69
  start-page: 32
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib95
  article-title: Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
  doi: 10.1080/00914037.2019.1616201
  contributor:
    fullname: Avani
– volume: 31
  start-page: 1
  year: 2016
  ident: 10.1016/j.biopha.2021.111924_bib24
  article-title: Silk fibroin as biomaterial for bone tissue engineering
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2015.09.005
  contributor:
    fullname: Melke
– volume: 97
  start-page: 600
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib64
  article-title: Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2017.10.110
  contributor:
    fullname: Ruan
– volume: 21
  start-page: 242
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib25
  article-title: Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration
  publication-title: Sci. Technol. Adv. Mater.
  doi: 10.1080/14686996.2020.1748520
  contributor:
    fullname: Saleem
– volume: 30
  start-page: 147
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib137
  article-title: Metabolic disease epidemics: emerging challenges in regenerative medicine
  publication-title: Trends Endocrinol. Metab.
  doi: 10.1016/j.tem.2019.01.001
  contributor:
    fullname: Costa-Almeida
– volume: 65
  start-page: 457
  year: 2013
  ident: 10.1016/j.biopha.2021.111924_bib13
  article-title: Silk fibroin biomaterials for tissue regenerations
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.09.043
  contributor:
    fullname: Kundu
– volume: 76
  start-page: 292
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib53
  article-title: Nano-composite of silk fibroin–chitosan/nano ZrO2 for tissue engineering applications: fabrication and morphology
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2015.02.023
  contributor:
    fullname: Teimouri
– volume: 9
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib60
  article-title: Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells
  publication-title: Materialia
  doi: 10.1016/j.mtla.2019.100518
  contributor:
    fullname: Zafar
– volume: 4
  start-page: 22
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib126
  article-title: Mesenchymal stem cell perspective: cell biology to clinical progress
  publication-title: npj Regen. Med.
  doi: 10.1038/s41536-019-0083-6
  contributor:
    fullname: Pittenger
– volume: 529
  start-page: 336
  year: 2016
  ident: 10.1016/j.biopha.2021.111924_bib130
  article-title: Antibacterial drug discovery in the resistance era
  publication-title: Nature
  doi: 10.1038/nature17042
  contributor:
    fullname: Brown
– volume: 58
  start-page: 275
  year: 2013
  ident: 10.1016/j.biopha.2021.111924_bib92
  article-title: Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2013.04.004
  contributor:
    fullname: Ghorbanian
– volume: 15
  start-page: 1390
  year: 2014
  ident: 10.1016/j.biopha.2021.111924_bib16
  article-title: Multifunctional adhesive silk fibroin with blending of RGD-bioconjugated mussel adhesive protein
  publication-title: Biomacromolecules
  doi: 10.1021/bm500001n
  contributor:
    fullname: Yang
– volume: 15
  start-page: 861
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib116
  article-title: The effect of sterilization on silk fibroin biomaterial properties
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201500013
  contributor:
    fullname: Rnjak-Kovacina
– volume: 9
  start-page: 7204
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib132
  article-title: Inflammatory responses and inflammation-associated diseases in organs
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.23208
  contributor:
    fullname: Chen
– volume: 6
  start-page: 5
  year: 2007
  ident: 10.1016/j.biopha.2021.111924_bib20
  article-title: Glossary of biotechnology and nanobiotechnology terms
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-6-5
  contributor:
    fullname: Jiang
– volume: 54
  start-page: 158
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib37
  article-title: Tailoring the properties and functions of phosphate/silk/Ag/chitosan scaffolds
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.05.015
  contributor:
    fullname: Abdel-Fattah
– volume: 9
  start-page: 14520
  year: 2017
  ident: 10.1016/j.biopha.2021.111924_bib41
  article-title: Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers
  publication-title: Nanoscale
  doi: 10.1039/C7NR03093B
  contributor:
    fullname: Shi
– volume: 80
  start-page: 232
  year: 2017
  ident: 10.1016/j.biopha.2021.111924_bib77
  article-title: A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.05.133
  contributor:
    fullname: Wang
– volume: 278
  start-page: 35255
  year: 2003
  ident: 10.1016/j.biopha.2021.111924_bib7
  article-title: Correlation between fibroin amino acid sequence and physical silk properties
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M305304200
  contributor:
    fullname: Fedič
– volume: 28
  start-page: 191
  year: 2017
  ident: 10.1016/j.biopha.2021.111924_bib123
  article-title: Silk fibroin-pellethane® cardiovascular patches: effect of silk fibroin concentration on vascular remodeling in rat model
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-017-5999-z
  contributor:
    fullname: Chantawong
– volume: 68
  start-page: 217
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib63
  article-title: Three-dimensional silk impregnated HAp/PHBV nanofibrous scaffolds for bone regeneration
  publication-title: Int. J. Polym. Mater. Polym. Biomater.
  doi: 10.1080/00914037.2018.1443928
  contributor:
    fullname: Colpankan Gunes
– volume: 176
  start-page: 150
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib45
  article-title: Antibacterial silk fibroin scaffolds with green synthesized silver nanoparticles for osteoblast proliferation and human mesenchymal stem cell differentiation
  publication-title: Colloids Surf. B Biointerfaces
  doi: 10.1016/j.colsurfb.2018.12.067
  contributor:
    fullname: Patil
– volume: 36
  start-page: 907
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib128
  article-title: Overview of silk fibroin use in wound dressings
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.04.004
  contributor:
    fullname: Farokhi
– volume: 13
  start-page: 757
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib134
  article-title: Oxidative stress, aging, and diseases
  publication-title: Clin. Interv. Aging
  doi: 10.2147/CIA.S158513
  contributor:
    fullname: Liguori
– volume: 12
  start-page: 3383
  year: 2006
  ident: 10.1016/j.biopha.2021.111924_bib121
  article-title: Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend
  publication-title: Tissue Eng.
  doi: 10.1089/ten.2006.12.3383
  contributor:
    fullname: Gobin
– volume: 35
  start-page: 1397
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib78
  article-title: Nano-hydroxyapatite mineralized silk fibroin porous scaffold for tooth extraction site preservation
  publication-title: Dent. Mater.
  doi: 10.1016/j.dental.2019.07.024
  contributor:
    fullname: Nie
– volume: 83
  start-page: 127
  year: 2016
  ident: 10.1016/j.biopha.2021.111924_bib105
  article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.01.012
  contributor:
    fullname: Wang
– volume: 174
  start-page: 90
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib93
  article-title: Silk-laponite® fibrous membranes for bone tissue engineering
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2019.03.038
  contributor:
    fullname: Atrian
– volume: 106
  start-page: 2070
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib124
  article-title: Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits
  publication-title: J. Biomed. Mater. Res. Part A
  doi: 10.1002/jbm.a.36390
  contributor:
    fullname: Wang
– volume: 36
  start-page: 2210
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib106
  article-title: Vein wrapping promotes M2 macrophage polarization in a rat chronic constriction injury model
  publication-title: J. Orthop. Res.
  doi: 10.1002/jor.23875
  contributor:
    fullname: Hirosawa
– volume: 7
  start-page: 35
  year: 2021
  ident: 10.1016/j.biopha.2021.111924_bib15
  article-title: Recent progress in silk fibroin-based flexible electronics
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-021-00261-2
  contributor:
    fullname: Wen
– volume: 82
  start-page: 265
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib46
  article-title: Novel fluoridated silk fibroin/ TiO2 nanocomposite scaffolds for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2017.09.001
  contributor:
    fullname: Johari
– volume: 250
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib89
  article-title: Fabrication of bioactive hydroxyapatite/silk fibroin/gelatin cross-linked nanocomposite for biomedical application
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2020.123187
  contributor:
    fullname: Mobika
– volume: 68
  start-page: 355
  year: 2016
  ident: 10.1016/j.biopha.2021.111924_bib98
  article-title: Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects
  publication-title: Cytotechnology
  doi: 10.1007/s10616-015-9895-4
  contributor:
    fullname: Bružauskaitė
– volume: 374
  start-page: 437
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib6
  article-title: Progress in silk materials for integrated water treatments: fabrication, modification and applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.05.163
  contributor:
    fullname: Gore
– volume: 110
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib51
  article-title: Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2020.110714
  contributor:
    fullname: Tanasa
– volume: 5
  start-page: 12706
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib10
  article-title: Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama
  publication-title: Sci. Rep.
  doi: 10.1038/srep12706
  contributor:
    fullname: Gupta
– volume: 109
  start-page: 21
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib84
  article-title: In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2017.12.029
  contributor:
    fullname: Guo
– volume: 5
  start-page: 52
  year: 2016
  ident: 10.1016/j.biopha.2021.111924_bib87
  article-title: Investigating the potential of combined growth factors delivery, from non-mulberry silk fibroin grafted poly(ɛ-caprolactone)/hydroxyapatite nanofibrous scaffold, in bone tissue engineering
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2016.09.007
  contributor:
    fullname: Bhattacharjee
– volume: 44
  start-page: 4647
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib86
  article-title: Biomimetic hydroxyapatite/silkfibre/methylcellulose composites for bone tissue engineering applications
  publication-title: New J. Chem.
  doi: 10.1039/C9NJ05592D
  contributor:
    fullname: Valarmathi
– volume: 122
  start-page: 113
  year: 2016
  ident: 10.1016/j.biopha.2021.111924_bib88
  article-title: Direct modulus measurement of single composite nanofibers of silk fibroin/hydroxyapatite nanoparticles
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2015.11.019
  contributor:
    fullname: Yang
– volume: 33
  start-page: 668
  year: 2013
  ident: 10.1016/j.biopha.2021.111924_bib117
  article-title: Effect of the sterilization method on the properties of Bombyx mori silk fibroin films
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2012.10.016
  contributor:
    fullname: George
– volume: 25
  start-page: 737
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib12
  article-title: Spider silk for tissue engineering applications
  publication-title: Molecules
  doi: 10.3390/molecules25030737
  contributor:
    fullname: Salehi
– start-page: 207
  year: 2011
  ident: 10.1016/j.biopha.2021.111924_bib1
  article-title: Silk biomaterials
  contributor:
    fullname: Hu
– volume: 70
  start-page: 736
  year: 2017
  ident: 10.1016/j.biopha.2021.111924_bib49
  article-title: Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.09.039
  contributor:
    fullname: Aliramaji
– volume: 1
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib61
  article-title: In vivo performance of hierarchical HRP-crosslinked silk fibroin/β-TCP scaffolds for osteochondral tissue regeneration
  publication-title: Regen. Med. Front.
  contributor:
    fullname: Ribeiro
– volume: 467–468
  start-page: 345
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib67
  article-title: 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.10.166
  contributor:
    fullname: Huang
– volume: 93
  start-page: 87
  year: 2016
  ident: 10.1016/j.biopha.2021.111924_bib32
  article-title: A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2016.08.062
  contributor:
    fullname: Ran
– volume: 62
  start-page: 441
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib71
  article-title: In vitro and in vivo evaluations of three-dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds
  publication-title: Biotechnol. Appl. Biochem.
  doi: 10.1002/bab.1285
  contributor:
    fullname: Gholipourmalekabadi
– volume: 92
  start-page: 2885
  year: 2007
  ident: 10.1016/j.biopha.2021.111924_bib2
  article-title: Protein secondary structure and orientation in silk as revealed by raman spectromicroscopy
  publication-title: Biophys. J.
  doi: 10.1529/biophysj.106.100339
  contributor:
    fullname: Lefèvre
– volume: 11
  start-page: 3781
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib62
  article-title: Enzymatically cross-linked silk fibroin-based hierarchical scaffolds for osteochondral regeneration
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b21259
  contributor:
    fullname: Ribeiro
– volume: 6
  start-page: 51
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib133
  article-title: Immunomodulatory biomaterials
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2018.02.005
  contributor:
    fullname: Dziki
– volume: 34
  start-page: 5947
  year: 2013
  ident: 10.1016/j.biopha.2021.111924_bib91
  article-title: Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2013.04.046
  contributor:
    fullname: Shi
– volume: 17
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib34
  article-title: Chondroprotective and osteogenic effects of silk-based bioinks in developing 3D bioprinted osteochondral interface
  publication-title: Bioprinting
  doi: 10.1016/j.bprint.2019.e00067
  contributor:
    fullname: Moses
– volume: 35
  start-page: 401
  year: 2014
  ident: 10.1016/j.biopha.2021.111924_bib39
  article-title: Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2013.11.023
  contributor:
    fullname: Farokhi
– volume: 23
  start-page: 711
  year: 2012
  ident: 10.1016/j.biopha.2021.111924_bib125
  article-title: Injectable silk fibroin/polyurethane composite hydrogel for nucleus pulposus replacement
  publication-title: J. Mater. Sci. Mater. Med.
  doi: 10.1007/s10856-011-4533-y
  contributor:
    fullname: Hu
– volume: 12
  start-page: 227
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib38
  article-title: Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.10.021
  contributor:
    fullname: Yan
– volume: 14
  issue: 3
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib138
  article-title: Silk fibroin hydrogels from the Colombian silkworm Bombyx mori L: Evaluation of physicochemical properties
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0213303
  contributor:
    fullname: Zuluaga-Vélez
– volume: 127
  start-page: 130
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib129
  article-title: Recent advances on antimicrobial wound dressing: a review
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2018.02.022
  contributor:
    fullname: Simões
– volume: 2013
  start-page: 38
  year: 2013
  ident: 10.1016/j.biopha.2021.111924_bib107
  article-title: Hydrogel scaffolds for tissue engineering: progress and challenges
  publication-title: Glob. Cardiol. Sci. Pract.
  doi: 10.5339/gcsp.2013.38
  contributor:
    fullname: El-Sherbiny
– volume: 107
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib55
  article-title: Theranostic nanozyme: silk fibroin based multifunctional nanocomposites to combat oxidative stress
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.110255
  contributor:
    fullname: Passi
– volume: 707
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib58
  article-title: Engineered bioactive nanoparticles incorporated biofunctionalized ECM/silk proteins based cardiac patches combined with MSCs for the repair of myocardial infarction: in vitro and in vivo evaluations
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135976
  contributor:
    fullname: Dong
– start-page: 3
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib21
  article-title: Chapter 1 – Fiber-reinforced nanocomposites: an introduction
  contributor:
    fullname: Nguyen
– volume: 30
  start-page: 1604
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib68
  article-title: Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds—a novel approach to corneal tissue engineering
  publication-title: J. Biomater. Sci. Polym. Ed.
  doi: 10.1080/09205063.2019.1652418
  contributor:
    fullname: Zhou
– start-page: 1
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib109
  article-title: Dynamic mechanical analysis in the analysis of polymers and rubbers
  contributor:
    fullname: Menard
– volume: 9
  start-page: 13656
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib11
  article-title: Spidroins and silk fibers of aquatic spiders
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-49587-y
  contributor:
    fullname: Correa-Garhwal
– volume: 40
  start-page: 324
  year: 2014
  ident: 10.1016/j.biopha.2021.111924_bib80
  article-title: Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2014.04.012
  contributor:
    fullname: Kim
– volume: 169
  start-page: 151
  year: 2010
  ident: 10.1016/j.biopha.2021.111924_bib66
  article-title: Composite biocompatible hydroxyapatite–silk fibroin coatings for medical implants obtained by matrix assisted pulsed laser evaporation
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/j.mseb.2009.10.004
  contributor:
    fullname: Miroiu
– volume: 91
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib94
  article-title: In vitro and in vivo evaluation of silk fibroin-hardystonite-gentamicin nanofibrous scaffold for tissue engineering applications
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2020.106698
  contributor:
    fullname: Hadisi
– start-page: n71
  year: 2021
  ident: 10.1016/j.biopha.2021.111924_bib29
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: BMJ
  doi: 10.1136/bmj.n71
  contributor:
    fullname: Page
– volume: 63
  start-page: 172
  year: 2021
  ident: 10.1016/j.biopha.2021.111924_bib83
  article-title: Injectable silk/hydroxyapatite nanocomposite hydrogels with vascularization capacity for bone regeneration
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.02.030
  contributor:
    fullname: Wang
– volume: 31
  start-page: 248
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib42
  article-title: Incorporation of two‐dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue engineering
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.4765
  contributor:
    fullname: Nazari
– volume: 62
  start-page: 15
  year: 2001
  ident: 10.1016/j.biopha.2021.111924_bib113
  article-title: β-sheet structure formation of proteins in solid state as revealed by circular dichroism spectroscopy
  publication-title: Biopolymers
  doi: 10.1002/1097-0282(2001)62:1<15::AID-BIP30>3.0.CO;2-J
  contributor:
    fullname: Hu
– volume: 23
  year: 2021
  ident: 10.1016/j.biopha.2021.111924_bib127
  article-title: Integrating biomaterials and genome editing approaches to advance biomedical science
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-122019-121602
  contributor:
    fullname: Abdeen
– volume: 472
  start-page: 16
  year: 2016
  ident: 10.1016/j.biopha.2021.111924_bib65
  article-title: Non-mulberry silk fibroin grafted poly (Є-caprolactone)/nano hydroxyapatite nanofibrous scaffold for dual growth factor delivery to promote bone regeneration
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2016.03.020
  contributor:
    fullname: Bhattacharjee
– volume: 19
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib90
  article-title: Regional and sustained dual-release of growth factors from biomimetic tri-layered scaffolds for the repair of large-scale osteochondral defects
  publication-title: Appl. Mater. Today
  contributor:
    fullname: Dong
– volume: 418
  start-page: 197
  year: 2012
  ident: 10.1016/j.biopha.2021.111924_bib8
  article-title: N-terminal domain of bombyx mori fibroin mediates the assembly of silk in response to pH decrease
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2012.02.040
  contributor:
    fullname: He
– volume: 62
  start-page: 919
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib17
  article-title: Progress in modification of silk fibroin fiber
  publication-title: Sci. China Technol. Sci.
  doi: 10.1007/s11431-018-9508-3
  contributor:
    fullname: Liu
– volume: 51
  start-page: 287
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib75
  article-title: Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2015.03.014
  contributor:
    fullname: Ming
– volume: 38
  start-page: 99
  year: 2018
  ident: 10.1016/j.biopha.2021.111924_bib48
  article-title: Evaluation of bioactivity and biocompatibility of silk fibroin/TiO2 nanocomposite
  publication-title: J. Med. Biol. Eng.
  doi: 10.1007/s40846-017-0295-4
  contributor:
    fullname: Johari
– volume: 114
  year: 2020
  ident: 10.1016/j.biopha.2021.111924_bib22
  article-title: Advanced hybrid nanomaterials for biomedical applications
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2020.100686
  contributor:
    fullname: Park
– volume: 22
  start-page: 1499
  year: 2021
  ident: 10.1016/j.biopha.2021.111924_bib23
  article-title: Silk fibroin as a functional biomaterial for tissue engineering
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22031499
  contributor:
    fullname: Sun
– volume: 4
  start-page: 518
  year: 2005
  ident: 10.1016/j.biopha.2021.111924_bib104
  article-title: Porous scaffold design for tissue engineering
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1421
  contributor:
    fullname: Hollister
– volume: 69
  start-page: 1578
  year: 2011
  ident: 10.1016/j.biopha.2021.111924_bib85
  article-title: Development of nano-hydroxyapatite graft with silk fibroin scaffold as a new bone substitute
  publication-title: J. Oral Maxillofac. Surg.
  doi: 10.1016/j.joms.2010.07.062
  contributor:
    fullname: Kweon
– volume: 5
  start-page: 76526
  year: 2015
  ident: 10.1016/j.biopha.2021.111924_bib30
  article-title: Comparisons between gelatin-tussah silk fibroin/hydroxyapatite and gelatin-Bombyx mori silk fibroin/hydroxyapatite nano-composites for bone tissue engineering
  publication-title: RSC Adv.
  doi: 10.1039/C5RA14279B
  contributor:
    fullname: Ran
– volume: 136
  start-page: 1247
  year: 2019
  ident: 10.1016/j.biopha.2021.111924_bib96
  article-title: Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.06.172
  contributor:
    fullname: Zhang
– volume: 12
  start-page: 5403
  year: 2012
  ident: 10.1016/j.biopha.2021.111924_bib59
  article-title: Nanocomposite gold-silk nanofibers
  publication-title: Nano Lett.
  doi: 10.1021/nl302810c
  contributor:
    fullname: Cohen-Karni
– volume: 13
  start-page: 231
  year: 2017
  ident: 10.1016/j.biopha.2021.111924_bib44
  article-title: Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration
  publication-title: Nanomed. Nanotechnol. Biol. Med.
  doi: 10.1016/j.nano.2016.08.026
  contributor:
    fullname: Ribeiro
– start-page: 187
  year: 2011
  ident: 10.1016/j.biopha.2021.111924_bib114
  article-title: Protein structure determination by solid-state NMR
  publication-title: Top. Curr. Chem.
  doi: 10.1007/128_2011_287
  contributor:
    fullname: Zhao
SSID ssj0005638
Score 2.5073686
SecondaryResourceType review_article
Snippet Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its...
SourceID doaj
proquest
crossref
pubmed
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 111924
SubjectTerms Animals
Anti-Infective Agents - administration & dosage
Anti-Infective Agents - chemical synthesis
Biocompatible Materials - administration & dosage
Biocompatible Materials - chemical synthesis
Cell Proliferation - drug effects
Cell Proliferation - physiology
Fibroins - administration & dosage
Fibroins - chemical synthesis
Humans
Immunologic Factors - administration & dosage
Immunologic Factors - chemical synthesis
Nanocomposite
Nanocomposites - administration & dosage
Nanocomposites - chemistry
Neovascularization, Physiologic - drug effects
Neovascularization, Physiologic - physiology
Regenerative medicine
Silk fibroin
Tissue engineering
Tissue Engineering - methods
Tissue scaffold
Tissue Scaffolds - chemistry
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhh9JLadLXtmlRoeQUdy1b1uOYhoZQSAlsAnsTkiUVt8EO8eaQS-h_6D_ML-mMZWe7h1Lo0UJYsr7xPJiZT4R8KLm1LPqQRQHuG2fFkCSEqNVbVkvLRK6xOfn0qzi54F-W1XKLHE29MFhWOer-pNMHbT2OzMfTnF81zXwBxq4sMVGAif5cLLGDHcwfyPTHuz_KPMRwmzVOznD21D431Hi5pkNSpgIMHeoOXfAN8zSw-G9Yqb95oYM1On5KnoxuJD1MO90hW6HdJY9Ox0T5Ltk_S5TUtwf0fN1h1R_QfXq2Jqu-fUYWi-byB40QNHdNS1vbdlhkjpVcoae2p6sBGBrWtIW0r22M3aXv6f3PX_SQrsmgaWqEeU4ujj-fH51k40ULWc0lX2VSQNCBpxlVyEvtKyZsZb2SgbtCilgw7qrCcukqp62rWV2hTfNMRBmcj-ULst12bXhFKPe1LmqlVbScWxkhQKp0ZEqFKijn2Yxk0_maq8SnYaZCs-8m4WEQD5PwmJFPCMLDXGTDHga6629mFAdTBq4BaJvnruSeReV58BwipSK34ODoGZEThGZDuOBVzT-Wfz8hbuC_w2SKbUN30xsIxSR4o0rDJ71MovCwSWzWVbkuX__3um_IY3xKxWx7ZHt1fRPegvezcu8G8f4NP40BrA
  priority: 102
  providerName: Elsevier
Title Silk fibroin nanocomposites as tissue engineering scaffolds – A systematic review
URI https://dx.doi.org/10.1016/j.biopha.2021.111924
https://www.ncbi.nlm.nih.gov/pubmed/34328093
https://search.proquest.com/docview/2557232891
https://doaj.org/article/3e49056a00b34d1f8d4ed497420a2019
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BkRAXBOVr-VgZCfXUQBw7sX1cKqoF1KVSW2nFxbJjW1qokqrZHnpB_Af-Ib-EcZx06QH1wjFRlEzmTTJv5JlngDeMG0OD81mokL5xWvSLhFi1OkNrYWiVqzicfLCo5if807Jc_rXVV-wJS_LAyXHvmOcKk7TJc8u4o0E67h1HFlzkBpNXGt3L1VhMjc0dVb-HNeZDljGM2XForu_ssqs2SjFh2U_jH0MV_FpS6rX7r-Wmf3HPPgftP4D7A3kks2T0Q7jlm224ezAsj2_DzmESor7cJcebuapul-yQw41E9eUjODpanX4nAUvldtWQxjRtbC2P_Vu-I6Yj6x4O4jdihaSrTQjtqevI75-_yIxsJKBJGn95DCf7H4735tmwvUJWc8HXmaiw1EAHsSB9zpQraWVK46Tw3BaiCgXltiwMF7a0ytia1mXMZI5WQXjrAnsCW03b-GdAuKtVUUslg-HciIBlUakCldKXXlpHJ5CN_tVnSUVDj-1l33TCQ0c8dMJjAu8jCFfXRg3s_gRGhh4iQ98UGRMQI4R6oBOJJuCtVjc8_vWIuMavLS6hmMa3F53GAkwgB5UKX-lpCoUrI-OIrswVe_4_jH8B96JBqZvtJWytzy_8K6Q_azuF229_0CncmX38PF9M-7jHo8Xe8svXP0nUA7s
link.rule.ids 315,783,787,867,2109,4509,24128,27936,27937,45597,45691
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBZpAm0vJU3_tk1bFUpOMWvZsiUdNyFh02SXwG5gb0KypOA22CHeHHLrO_QN-yQdWXbMHkqhV1m2ZH0jzQwz8wmhrylVijhjI5eD-UZJ0gYJwWs1ihRMkTwWvjh5Ns-nV_TbKlttoeO-FsanVXZnfzjT29O6axl3qzm-LcvxApRdmvpAgQ_0x_nqCdoBa0DA7tyZnJ1P50OmR95eaO37R_6FvoKuTfPSZe15mRLQdf74EAnd0FAtkf-GovqbIdoqpNNd9KKzJPEkTPYl2rLVHno662Lle-jgMrBSPxzi5VBk1RziA3w58FU_vEKLRXnzAzvwm-uywpWqap9n7pO5bINVg9ctNtgOzIW4KZRz9Y1p8O-fv_AED3zQONTCvEZXpyfL42nU3bUQFZTRdcRy8Dv8gjpu41SYjOQqU4YzS3XCcpcQqrNEUaYzLZQuSJF5tWZI7pjVxqVv0HZVV_YdwtQUIim44E5RqpgDHykTjnBuM8u1ISMU9esrbwOlhuxzzb7LgIf0eMiAxwgdeRAe-3pC7LahvruWnUTI1FIBQKs41ik1xHFDraHgLCWxAhtHjBDrIZQb8gWfKv8x_JcecQlbz8dTVGXr-0aCN8bAIOUCfultEIXHSfp6XR6L9P1_j_sZPZsuZxfy4mx-_gE9909Cbts-2l7f3duPYAyt9adO2P8AN8kF7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silk+fibroin+nanocomposites+as+tissue+engineering+scaffolds+-+A+systematic+review&rft.jtitle=Biomedicine+%26+pharmacotherapy&rft.au=Zuluaga-V%C3%A9lez%2C+Augusto&rft.au=Quintero-Martinez%2C+Adri%C3%A1n&rft.au=Orozco%2C+Lina+M&rft.au=Sep%C3%BAlveda-Arias%2C+Juan+C&rft.date=2021-09-01&rft.eissn=1950-6007&rft.volume=141&rft.spage=111924&rft.epage=111924&rft_id=info:doi/10.1016%2Fj.biopha.2021.111924&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0753-3322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0753-3322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0753-3322&client=summon