Silk fibroin nanocomposites as tissue engineering scaffolds – A systematic review
Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to st...
Saved in:
Published in | Biomedicine & pharmacotherapy Vol. 141; p. 111924 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
France
Elsevier Masson SAS
01.09.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to study the physicochemical and biological performance of silk fibroin nanocomposites. In the last decade, only 51 articles contained either in vitro cell culture models or in vivo tests. The analysis of such works resulted in their classification into the following scaffold types: particles, mats and textiles, films, hydrogels, sponge-like structures, and mixed conformations. From the physicochemical perspective, the inorganic phase imbued in silk fibroin nanocomposites resulted in better stability and mechanical performance. This review revealed that the inorganic phase may be associated with specific biological responses, such as neovascularisation, cell differentiation, cell proliferation, and antimicrobial and immunomodulatory activity. The study of nanocomposites as tissue engineering scaffolds is a highly active area mostly focused on bone and cartilage regeneration with promising results. Nonetheless, there are still many challenges related to their application in other tissues, a better understanding of the interaction between the inorganic and organic phases, and the associated biological response.
[Display omitted]
•A systematic review on the use of silk fibroin nanocomposites as tissue engineering scaffolds was carried out.•A total of 51 studies were included after exclusion criteria.•The inorganic phase in silk fibroin nanocomposites resulted in better physicochemical stability and biological responses.•Silk fibroin nanocomposites have enormous potential as scaffolds for tissue engineering. |
---|---|
AbstractList | Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to study the physicochemical and biological performance of silk fibroin nanocomposites. In the last decade, only 51 articles contained either in vitro cell culture models or in vivo tests. The analysis of such works resulted in their classification into the following scaffold types: particles, mats and textiles, films, hydrogels, sponge-like structures, and mixed conformations. From the physicochemical perspective, the inorganic phase imbued in silk fibroin nanocomposites resulted in better stability and mechanical performance. This review revealed that the inorganic phase may be associated with specific biological responses, such as neovascularisation, cell differentiation, cell proliferation, and antimicrobial and immunomodulatory activity. The study of nanocomposites as tissue engineering scaffolds is a highly active area mostly focused on bone and cartilage regeneration with promising results. Nonetheless, there are still many challenges related to their application in other tissues, a better understanding of the interaction between the inorganic and organic phases, and the associated biological response. Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its benefits by adding inorganic phases that interact with silk fibroin in different ways. A systematic review was performed in four databases to study the physicochemical and biological performance of silk fibroin nanocomposites. In the last decade, only 51 articles contained either in vitro cell culture models or in vivo tests. The analysis of such works resulted in their classification into the following scaffold types: particles, mats and textiles, films, hydrogels, sponge-like structures, and mixed conformations. From the physicochemical perspective, the inorganic phase imbued in silk fibroin nanocomposites resulted in better stability and mechanical performance. This review revealed that the inorganic phase may be associated with specific biological responses, such as neovascularisation, cell differentiation, cell proliferation, and antimicrobial and immunomodulatory activity. The study of nanocomposites as tissue engineering scaffolds is a highly active area mostly focused on bone and cartilage regeneration with promising results. Nonetheless, there are still many challenges related to their application in other tissues, a better understanding of the interaction between the inorganic and organic phases, and the associated biological response. [Display omitted] •A systematic review on the use of silk fibroin nanocomposites as tissue engineering scaffolds was carried out.•A total of 51 studies were included after exclusion criteria.•The inorganic phase in silk fibroin nanocomposites resulted in better physicochemical stability and biological responses.•Silk fibroin nanocomposites have enormous potential as scaffolds for tissue engineering. |
ArticleNumber | 111924 |
Author | Sepúlveda-Arias, Juan C. Zuluaga-Vélez, Augusto Quintero-Martinez, Adrián Orozco, Lina M. |
Author_xml | – sequence: 1 givenname: Augusto surname: Zuluaga-Vélez fullname: Zuluaga-Vélez, Augusto organization: Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia – sequence: 2 givenname: Adrián surname: Quintero-Martinez fullname: Quintero-Martinez, Adrián organization: Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia – sequence: 3 givenname: Lina M. surname: Orozco fullname: Orozco, Lina M. organization: Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia – sequence: 4 givenname: Juan C. surname: Sepúlveda-Arias fullname: Sepúlveda-Arias, Juan C. email: jcsepulv@utp.edu.co organization: Grupo Infección e Inmunidad, Facultad de Ciencias de la Salud, Universidad Tecnológica de Pereira, Pereira, Colombia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34328093$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctuFDEQRS0URCaBP0DISzY9-Nnu3iBFEY9IkVgE1pYf5cFDtz3YPUHZ8Q_8IV-CQ4csWVmybt1bdc8ZOkk5AUIvKdlSQvs3-62N-fDVbBlhdEspHZl4gjZ0lKTrCVEnaEOU5B3njJ2is1r3hBDZ8-EZOuWCs4GMfINubuL0DYdoS44JJ5Oyy_Mh17hAxabiJdZ6BAxpFxNAiWmHqzMh5MlX_PvnL3yB611dYDZLdLjAbYQfz9HTYKYKLx7ec_Tl_bvPlx-7608fri4vrjsnlFg61at-aBvyMADho5e0N9L4QYGwTPWBUWElM0JZaUdjHXVSKDp42gcF1gd-jq5WX5_NXh9KnE2509lE_fcjl502pa01geYgxna8IcRy4WkYvAAvRiUYMYzQsXm9Xr0OJX8_Ql30HKuDaTIJ8rFqJqVirbSRNqlYpa7kWguEx2hK9D0avdcrGn2PRq9o2tirh4SjncE_Dv1j0QRvVwG0zlqPRVcXITnwsYBb2lHx_wl_AN5Hou8 |
CitedBy_id | crossref_primary_10_1039_D3BM01158E crossref_primary_10_2174_1567201819666220413111439 crossref_primary_10_22159_ijap_2023v15i3_47593 crossref_primary_10_1002_mame_202300422 crossref_primary_10_1002_asia_202400055 crossref_primary_10_1049_bsb2_12036 crossref_primary_10_1111_jcmm_17677 crossref_primary_10_3390_nano13030551 crossref_primary_10_3390_polym15010091 crossref_primary_10_1186_s11671_024_04007_7 crossref_primary_10_3390_jfb13040297 crossref_primary_10_3390_polym14051032 crossref_primary_10_1016_j_heliyon_2022_e10496 crossref_primary_10_1016_j_jddst_2024_105689 crossref_primary_10_3390_biomimetics9030169 crossref_primary_10_3390_ma16072770 crossref_primary_10_1002_mame_202200503 crossref_primary_10_1080_00914037_2023_2299799 crossref_primary_10_1016_j_apmt_2023_102054 crossref_primary_10_1186_s40824_023_00371_0 crossref_primary_10_1002_app_54981 crossref_primary_10_3390_bioengineering11020167 crossref_primary_10_1016_j_ceramint_2023_02_065 crossref_primary_10_1021_acspolymersau_3c00050 crossref_primary_10_1039_D2NR03417D crossref_primary_10_3389_fphar_2022_1071868 crossref_primary_10_3390_ma16010183 crossref_primary_10_1016_j_mtcomm_2024_109215 crossref_primary_10_2217_nnm_2021_0425 crossref_primary_10_3390_polym13183151 crossref_primary_10_1016_j_ijbiomac_2022_07_140 crossref_primary_10_3389_fbioe_2022_1054379 crossref_primary_10_1016_j_jcis_2022_11_003 |
Cites_doi | 10.1016/j.polymertesting.2017.06.012 10.3390/polym11121933 10.1039/C9RA09710D 10.1039/C5RA12474C 10.1016/j.eurpolymj.2020.109842 10.1016/j.jphotobiol.2019.111677 10.1111/j.1432-1033.2004.04220.x 10.1002/adfm.201200073 10.1002/jbm.b.33267 10.1016/j.msec.2018.09.063 10.1016/j.matlet.2015.05.064 10.1021/bm501667j 10.1016/j.nano.2017.02.016 10.1021/acsbiomaterials.8b00857 10.1038/s41586-018-0278-9 10.1038/nprot.2011.379 10.1016/j.ijbiomac.2019.09.107 10.1016/j.msec.2019.110219 10.3389/fbioe.2020.563203 10.1016/j.msec.2013.08.012 10.3389/fmats.2020.00049 10.1016/j.msec.2017.05.105 10.1016/j.jmbbm.2018.06.041 10.1016/j.actbio.2018.03.058 10.1002/btm2.10221 10.1016/j.ijbiomac.2019.02.050 10.1080/09205063.2017.1403149 10.1007/s13233-014-2114-x 10.1038/s41598-018-20006-y 10.1016/j.bone.2016.06.013 10.1038/srep04375 10.3389/fchem.2020.604398 10.1016/j.msec.2013.04.026 10.1016/j.msec.2018.01.007 10.1016/j.msec.2017.08.006 10.1007/s00249-018-1279-1 10.1021/acsbiomaterials.8b00150 10.1016/j.biomaterials.2015.04.047 10.1016/j.matdes.2018.09.035 10.1016/j.actbio.2017.11.053 10.1007/s10118-015-1710-3 10.3390/ijms18030237 10.1021/acsami.5b00529 10.1016/j.compositesb.2017.12.046 10.1016/j.ijbiomac.2014.01.003 10.1080/00914037.2019.1616201 10.1016/j.actbio.2015.09.005 10.1016/j.biopha.2017.10.110 10.1080/14686996.2020.1748520 10.1016/j.tem.2019.01.001 10.1016/j.addr.2012.09.043 10.1016/j.ijbiomac.2015.02.023 10.1016/j.mtla.2019.100518 10.1038/s41536-019-0083-6 10.1038/nature17042 10.1016/j.ijbiomac.2013.04.004 10.1021/bm500001n 10.1002/mabi.201500013 10.18632/oncotarget.23208 10.1186/1475-925X-6-5 10.1016/j.msec.2015.05.015 10.1039/C7NR03093B 10.1016/j.msec.2017.05.133 10.1074/jbc.M305304200 10.1007/s10856-017-5999-z 10.1080/00914037.2018.1443928 10.1016/j.colsurfb.2018.12.067 10.1016/j.tibtech.2018.04.004 10.2147/CIA.S158513 10.1089/ten.2006.12.3383 10.1016/j.dental.2019.07.024 10.1016/j.biomaterials.2016.01.012 10.1016/j.clay.2019.03.038 10.1002/jbm.a.36390 10.1002/jor.23875 10.1038/s41378-021-00261-2 10.1016/j.msec.2017.09.001 10.1016/j.matchemphys.2020.123187 10.1007/s10616-015-9895-4 10.1016/j.cej.2019.05.163 10.1016/j.msec.2020.110714 10.1038/srep12706 10.1016/j.ijbiomac.2017.12.029 10.1016/j.apmt.2016.09.007 10.1039/C9NJ05592D 10.1016/j.compscitech.2015.11.019 10.1016/j.msec.2012.10.016 10.3390/molecules25030737 10.1016/j.msec.2016.09.039 10.1016/j.apsusc.2018.10.166 10.1016/j.ijbiomac.2016.08.062 10.1002/bab.1285 10.1529/biophysj.106.100339 10.1021/acsami.8b21259 10.1016/j.cobme.2018.02.005 10.1016/j.biomaterials.2013.04.046 10.1016/j.bprint.2019.e00067 10.1016/j.msec.2013.11.023 10.1007/s10856-011-4533-y 10.1016/j.actbio.2014.10.021 10.1371/journal.pone.0213303 10.1016/j.ejpb.2018.02.022 10.5339/gcsp.2013.38 10.1016/j.msec.2019.110255 10.1016/j.scitotenv.2019.135976 10.1080/09205063.2019.1652418 10.1038/s41598-019-49587-y 10.1016/j.msec.2014.04.012 10.1016/j.mseb.2009.10.004 10.1016/j.polymertesting.2020.106698 10.1136/bmj.n71 10.1016/j.jmst.2020.02.030 10.1002/pat.4765 10.1002/1097-0282(2001)62:1<15::AID-BIP30>3.0.CO;2-J 10.1146/annurev-bioeng-122019-121602 10.1016/j.jcis.2016.03.020 10.1016/j.jmb.2012.02.040 10.1007/s11431-018-9508-3 10.1016/j.msec.2015.03.014 10.1007/s40846-017-0295-4 10.1016/j.pmatsci.2020.100686 10.3390/ijms22031499 10.1038/nmat1421 10.1016/j.joms.2010.07.062 10.1039/C5RA14279B 10.1016/j.ijbiomac.2019.06.172 10.1021/nl302810c 10.1016/j.nano.2016.08.026 10.1007/128_2011_287 |
ContentType | Journal Article |
Copyright | 2021 The Authors Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved. |
Copyright_xml | – notice: 2021 The Authors – notice: Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved. |
DBID | 6I. AAFTH CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 DOA |
DOI | 10.1016/j.biopha.2021.111924 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1950-6007 |
EndPage | 111924 |
ExternalDocumentID | oai_doaj_org_article_3e49056a00b34d1f8d4ed497420a2019 10_1016_j_biopha_2021_111924 34328093 S075333222100706X |
Genre | Systematic Review Journal Article |
GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 0SF 1B1 1P~ 1RT 1~. 1~5 23N 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABBQC ABFNM ABMAC ABMZM ABXDB ABZDS ACDAQ ACIUM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEVXI AFCTW AFKWA AFPKN AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJOXV AJRQY AJUYK AKRWK ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMT HVGLF HZ~ IHE J1W KOM M34 M41 MO0 N9A NCXOZ O-L O9- OAUVE OD~ OGGZJ OK1 OO0 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEM SES SEW SPT SSH SSP SSZ T5K VH1 WUQ Z5R ~02 ~G- AAXKI ADVLN AFJKZ CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c474t-767687533f8e039d516a5ad87e4b276f214b52a47b5b9abc1c54718d16f7ebdf3 |
IEDL.DBID | DOA |
ISSN | 0753-3322 |
IngestDate | Tue Oct 22 15:05:43 EDT 2024 Fri Oct 25 02:40:59 EDT 2024 Thu Sep 26 21:29:20 EDT 2024 Sat Sep 28 08:27:13 EDT 2024 Sat Jun 29 15:30:30 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Tissue scaffold Silk fibroin Nanocomposite Tissue engineering Regenerative medicine |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-767687533f8e039d516a5ad87e4b276f214b52a47b5b9abc1c54718d16f7ebdf3 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/3e49056a00b34d1f8d4ed497420a2019 |
PMID | 34328093 |
PQID | 2557232891 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3e49056a00b34d1f8d4ed497420a2019 proquest_miscellaneous_2557232891 crossref_primary_10_1016_j_biopha_2021_111924 pubmed_primary_34328093 elsevier_sciencedirect_doi_10_1016_j_biopha_2021_111924 |
PublicationCentury | 2000 |
PublicationDate | September 2021 2021-Sep 2021-09-00 20210901 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
PublicationDecade | 2020 |
PublicationPlace | France |
PublicationPlace_xml | – name: France |
PublicationTitle | Biomedicine & pharmacotherapy |
PublicationTitleAlternate | Biomed Pharmacother |
PublicationYear | 2021 |
Publisher | Elsevier Masson SAS Elsevier |
Publisher_xml | – name: Elsevier Masson SAS – name: Elsevier |
References | Ran, Hu, Sun, Chen, Chen, Shen, Tong (bib30) 2015; 5 Samal, Dash, Shelyakova, Declercq, Uhlarz, Bañobre-López, Dubruel, Cornelissen, Herrmannsdörfer, Rivas, Padeletti, De Smedt, Braeckmans, Kaplan, Dediu (bib52) 2015; 7 Kim, Che, Ha, Ryu (bib80) 2014; 40 Belda Marín, Fitzpatrick, Kaplan, Landoulsi, Guénin, Egles (bib28) 2020; 8 Gobin, Butler, Mathur (bib121) 2006; 12 Jiang, Liu, Liu, Liu, He, Dong (bib97) 2020; 202 Brochado, Telzerow, Bobonis, Banzhaf, Mateus, Selkrig, Huth, Bassler, Zamarreño Beas, Zietek, Ng, Foerster, Ezraty, Py, Barras, Savitski, Bork, Göttig, Typas (bib131) 2018; 559 Hu, Olsen (bib108) 2016; 91 Zafar, Belton, Hanby, Kaplan, Perry (bib9) 2015; 16 Cheng, Davoudi, Xing, Yu, Cheng, Li, Deng, Wang (bib26) 2018; 4 Yan, Oliveira, Oliveira, Reis (bib40) 2015; 103 El-Sherbiny, Yacoub (bib107) 2013; 2013 Costa-Almeida, Reis, Gomes (bib137) 2019; 30 Gholipourmalekabadi, Mozafari, Gholipourmalekabadi, Nazm Bojnordi, Hashemi-soteh, Salimi, Rezaei, Sameni, Samadikuchaksaraei, Ghasemi Hamidabadi (bib71) 2015; 62 Saleem, Rasheed, Yougen (bib25) 2020; 21 Colpankan Gunes, Unalan, Cecen, Ziylan Albayrak, Havitcioglu, Ustun, Ergur (bib63) 2019; 68 Chen, Hu, Ran, Shen, Tong (bib79) 2014; 65 Farokhi, Mottaghitalab, Shokrgozar, Ai, Hadjati, Azami (bib39) 2014; 35 Afjeh-Dana, Naserzadeh, Nazari, Mottaghitalab, Shabani, Aminii, Mehravi, Rostami, Joghataei, Mousavizadeh, Ashtari (bib56) 2019; 129 Brito-Pereira, Correia, Ribeiro, Francesko, Etxebarria, Pérez-Álvarez, Vilas, Martins, Lanceros-Mendez (bib50) 2018; 141 Ruan, Deng, Yan, Huang (bib64) 2018; 97 Hu, Li, Cheng, Du (bib113) 2001; 62 Lee, Park, Kim, Ki, Park, Kim, Park (bib76) 2014; 22 Valarmathi, Sumathi (bib86) 2020; 44 Yang, Kwon, Choi, Jung, Seo, Lee, Cha (bib16) 2014; 15 Simões, Miguel, Ribeiro, Coutinho, Mendonça, Correia (bib129) 2018; 127 Atrian, Kharaziha, Emadi, Alihosseini (bib93) 2019; 174 Dong, Hong, Dai, Wu, Zhu (bib58) 2020; 707 Gore, Naebe, Wang, Kandasubramanian (bib6) 2019; 374 Hadisi, Bakhsheshi-Rad, Walsh, Dehghan, Farzad-Mohajeri, Gholami, Diyanoush, Pagan, Akbari (bib94) 2020; 91 Lefèvre, Rousseau, Pézolet (bib2) 2007; 92 Yan, Silva-Correia, Oliveira, Vilela, Pereira, Sousa, Mano, Oliveira, Oliveira, Reis (bib38) 2015; 12 Wang, Cheng, Ding, Xu, Zheng, Li, Lu, Lu (bib83) 2021; 63 Nguyen, Nguyen, Nguyen, Le, Huynh, Vo, Trinh, Kim, Van Le (bib27) 2019; 11 Ran, Hu, Sun, Chen, Jiang, Shen, Tong (bib32) 2016; 93 Koh, Yeo, Lee, Ong, Han, Tee (bib5) 2018; 86 Brown, Wright (bib130) 2016; 529 Deshpande, Shukla, Sayyad, Salunke, Nisal, Venugopalan (bib136) 2021 Mobika, Rajkumar, Linto Sibi, Nithya Priya (bib89) 2020; 250 Salehi, Koeck, Scheibel (bib12) 2020; 25 Wang, Pathak, Liang, Zhong, Guan, Wan, Miao, Li, Ge (bib33) 2020; 142 Raho, Nguyen, Zhang, Jiang, Sannino, Liu, Pollini, Paladini (bib43) 2020; 107 Liu, Chen, Lai, Zhang, Pan, Chen, Weng (bib82) 2019; 94 Hu, Chen, Guo, Du, Gu, Lin, Yang, Zhang, Lu, Huang, Xu (bib125) 2012; 23 Liu, Zhang, Huang (bib17) 2019; 62 Jiang, Ran, Yan, Zheng, Shen, Tong (bib81) 2018; 29 Kweon, Lee, Chae, Balázsi, Min, Kim, Choi, Kim (bib85) 2011; 69 Patil, Singh (bib45) 2019; 176 Nie, Zhang, Ren, Li, Fu, Cannon, Ji, Wu, Yang (bib78) 2019; 35 Tanasa, Zaharia, Hudita, Radu, Costache, Galateanu (bib51) 2020; 110 Amirikia, Shariatzadeh, Jorsaraei, Mehranjani (bib103) 2018; 47 Melke, Midha, Ghosh, Ito, Hofmann (bib24) 2016; 31 Wen, Sun, Huang, Huang, Su, Wang, Han, Kim, Brugger, Zhang, Zhang (bib15) 2021; 7 Zuluaga-Vélez, Cómbita-Merchán, Buitrago-Sierra, Santa, Aguilar-Fernández, Sepúlveda-Arias (bib138) 2019; 14 Rnjak-Kovacina, DesRochers, Burke, Kaplan (bib116) 2015; 15 Chantawong, Tanaka, Uemura, Shimada, Higuchi, Tajiri, Sakura, Murakami, Nakazawa, Tanaka (bib123) 2017; 28 Rahman, Islam, Islam, Zaman, Ahmed, Biswas, Sharmeen, Rashid, Rahman (bib115) 2019 Zhao (bib114) 2011 Passi, Kumar, Packirisamy (bib55) 2020; 107 He, Zhang, Li, Jia, Chen, Zhou, Zhang, Chen, Zhou (bib8) 2012; 418 Park, Shin, Choi, Rhim, Na, Keun Han (bib22) 2020; 114 Ribeiro, Pina, Canadas, da, Morais, Vilela, Vieira, Cengiz, Reis, Oliveira (bib61) 2019; 1 Sun, Gregory, Tomeh, Zhao (bib23) 2021; 22 Hu, Kaplan (bib1) 2011 Rockwood, Preda, Yücel, Wang, Lovett, Kaplan (bib4) 2011; 6 Hollister (bib104) 2005; 4 Yang, Kim, Lee, Jeon, Ryu (bib88) 2016; 122 Qi, Wang, Wei, Yang, Zheng, Kim, Zhang (bib3) 2017; 18 Guo, Xie, Gao, Wang, Gao, Li, Zhao (bib84) 2018; 109 Nguyen, Han, Sharma, Longbiao, Bhat (bib21) 2020 Jia, Zhou, Yan, Xiong, Guo, Cheng, Zheng (bib36) 2019; 5 Ribeiro, Ferraz, Monteiro, Fernandes, Beppu, Mantione, Sardon (bib44) 2017; 13 Yang, Xiao, Long, Ma, Zhang, Ren, Zhang (bib99) 2018; 8 Wang, Jia, Yang, Zhang, Zhang, Chai (bib124) 2018; 106 Lima, Resende, de Almeida Soares, Anselme, Almeida (bib69) 2013; 33 Teimouri, Ghorbanian, Salavati, Chermahini (bib54) 2015; 157 Janani, Nandi, Mandal (bib122) 2018; 67 Liguori, Russo, Curcio, Bulli, Aran, Della-Morte, Gargiulo, Testa, Cacciatore, Bonaduce, Abete (bib134) 2018; 13 Moses, Saha, Mandal (bib34) 2020; 17 Johari, Madaah Hosseini, Samadikuchaksaraei (bib46) 2018; 82 Cohen-Karni, Jeong, Tsui, Reznor, Mustata, Wanunu, Graham, Marks, Bell, Langer, Kohane (bib59) 2012; 12 Ribeiro, Pina, Costa, Cengiz, García-Fernández, del, Fernández-Gutiérrez, Paiva, Oliveira, San-Román, Oliveira, Reis (bib62) 2019; 11 Shi, Teh, Toh, Goh (bib91) 2013; 34 Das, Sharma, Saharia, Sarma, Sarma, Borthakur, Bora (bib57) 2015; 62 Miroiu, Socol, Visan, Stefan, Craciun, Craciun, Dorcioman, Mihailescu, Sima, Petrescu, Andronie, Stamatin, Moga, Ducu (bib66) 2010; 169 Naebe, Wang, Amini, Khayyam, Hameed, Li, Chen, Fox (bib102) 2015; 4 Warnecke, Stein, Haffner-Luntzer, de Roy, Skaer, Walker, Kessler, Ignatius, Dürselen (bib110) 2018; 86 Farokhi, Mottaghitalab, Fatahi, Khademhosseini, Kaplan (bib128) 2018; 36 Behera, Naskar, Sapru, Bhattacharjee, Dey, Ghosh, Mandal, Kundu (bib31) 2017; 13 Correa-Garhwal, Clarke, Janssen, Crevecoeur, McQuillan, Simpson, Vink, Hayashi (bib11) 2019; 9 Fedič, Žurovec, Sehnal (bib7) 2003; 278 Zhou, He, Wang, Fu, Yu, Wang, Fan (bib74) 2017; 81 Dong, Sun, Zhang, Liu, Zhang, Zhang, Huang, Zhao, Qi, Midgley, Wang, Yang (bib90) 2020; 19 Hashimoto, Nakamura, Tamada, Kurosu, Kameda (bib119) 2020; 2 Page, McKenzie, Bossuyt, Boutron, Hoffmann, Mulrow, Shamseer, Tetzlaff, Akl, Brennan, Chou, Glanville, Grimshaw, Hróbjartsson, Lalu, Li, Loder, Mayo-Wilson, McDonald, McGuinness, Stewart, Thomas, Tricco, Welch, Whiting, Moher (bib29) 2021 Nazari, Heirani‐Tabasi, Hajiabbas, Khalili, Shahsavari Alavijeh, Hatamie, Mahdavi Gorabi, Esmaeili, Tafti (bib42) 2020; 31 Wang, Xu, Zhou, Xu, Leary, Choong, Qian, Brandt, Xie (bib105) 2016; 83 Kundu, Rajkhowa, Kundu, Wang (bib13) 2013; 65 Aliramaji, Zamanian, Mozafari (bib49) 2017; 70 Shi, Abbah, Chuah, Li, Zhang, He, Wong, Goh (bib41) 2017; 9 Johari, Moroni, Samadikuchaksaraei (bib118) 2020; 134 Wang, Chu, He, Shao, Zhou, Qi, Wang, Cui (bib77) 2017; 80 Chen, Deng, Cui, Fang, Zuo, Deng, Li, Wang, Zhao (bib132) 2018; 9 Paşcu, Stokes, McGuinness (bib73) 2013; 33 Ghorbanian, Emadi, Razavi, Shin, Teimouri (bib92) 2013; 58 Hu, Cai, Mo, Chen, Shen, Tong (bib70) 2015; 33 Wang, Fang, Xia, Hou, Nan, Zhao, Wang (bib72) 2020; 10 Ribeiro, Pina, Gheduzzi, Araújo, Reis, Oliveira (bib100) 2020; 7 Felfel, Gupta, Zabidi, Prosser, Scotchford, Sottile, Grant (bib35) 2018; 160 Cammarata (bib19) 2004 Ullah, Chen (bib18) 2020; 20 Hirosawa, Uchida, Kuniyoshi, Murakami, Inoue, Miyagi, Matsuura, Orita, Inage, Suzuki, Takaso, Ohtori (bib106) 2018; 36 Abdeen, Cosgrove, Gersbach, Saha (bib127) 2021; 23 Bhattacharjee, Naskar, Maiti, Bhattacharya, Kundu (bib87) 2016; 5 Lovati, Lopa, Bottagisio, Talò, Canciani, Dellavia, Alessandrino, Biagiotti, Freddi, Segatti, Moretti (bib135) 2020; 8 Iwan, Andryszewski, Wydryszek, Fialkowski (bib101) 2015; 5 Oberg, Ruysschaert, Goormaghtigh (bib111) 2004; 271 Hota, Bera, Kundu, Kundu, Maiti (bib14) 2012; 22 Zhou, Wang, Cao, Hu, Luo, Yang, Cui, Zhou (bib68) 2019; 30 Menard, Menard (bib109) 2015 Bhattacharjee, Naskar, Maiti, Bhattacharya, Kundu (bib65) 2016; 472 Gupta, Mita, Arunkumar, Nagaraju (bib10) 2015; 5 Johari, Madaah Hosseini, Samadikuchaksaraei (bib47) 2017; 79 Teimouri, Ebrahimi, Emadi, Beni, Chermahini (bib53) 2015; 76 Zafar, Mottaghitalab, Shahosseini, Negahdari, Farokhi (bib60) 2020; 9 Johari, Madaah Hosseini, Taromi, Arasteh, Kazemnejad, Samadikuchaksaraei (bib48) 2018; 38 Avani, Damoogh, Mottaghitalab, Karkhaneh, Farokhi (bib95) 2020; 69 Belton, Plowright, Kaplan, Perry (bib112) 2018; 73 Huang, Fan, Zhu, Zhu, Zhang, Li (bib67) 2019; 467–468 Zhang, Chen, Han, Mo, Dong, Zhuo, Feng (bib96) 2019; 136 Bružauskaitė, Bironaitė, Bagdonas, Bernotienė (bib98) 2016; 68 Dziki, Badylak (bib133) 2018; 6 Zhang, Jia, Qiao, Liu, Sun (bib120) 2017; 62 Pittenger, Discher, Péault, Phinney, Hare, Caplan (bib126) 2019; 4 Jiang (bib20) 2007; 6 Abdel-Fattah, Sallam, Diab, Ali (bib37) 2015; 54 George, Shadforth, Chirila, Laurent, Stephenson, Edwards, Madden, Hutmacher, Harkin (bib117) 2013; 33 Ming, Jiang, Wang, Bie, Zuo (bib75) 2015; 51 Johari (10.1016/j.biopha.2021.111924_bib48) 2018; 38 Aliramaji (10.1016/j.biopha.2021.111924_bib49) 2017; 70 Rockwood (10.1016/j.biopha.2021.111924_bib4) 2011; 6 Wang (10.1016/j.biopha.2021.111924_bib124) 2018; 106 Bružauskaitė (10.1016/j.biopha.2021.111924_bib98) 2016; 68 Cammarata (10.1016/j.biopha.2021.111924_bib19) 2004 Abdel-Fattah (10.1016/j.biopha.2021.111924_bib37) 2015; 54 Hadisi (10.1016/j.biopha.2021.111924_bib94) 2020; 91 Behera (10.1016/j.biopha.2021.111924_bib31) 2017; 13 Yan (10.1016/j.biopha.2021.111924_bib40) 2015; 103 Ribeiro (10.1016/j.biopha.2021.111924_bib44) 2017; 13 Raho (10.1016/j.biopha.2021.111924_bib43) 2020; 107 Belton (10.1016/j.biopha.2021.111924_bib112) 2018; 73 Menard (10.1016/j.biopha.2021.111924_bib109) 2015 Dziki (10.1016/j.biopha.2021.111924_bib133) 2018; 6 Nie (10.1016/j.biopha.2021.111924_bib78) 2019; 35 Zhang (10.1016/j.biopha.2021.111924_bib120) 2017; 62 Correa-Garhwal (10.1016/j.biopha.2021.111924_bib11) 2019; 9 Gholipourmalekabadi (10.1016/j.biopha.2021.111924_bib71) 2015; 62 Afjeh-Dana (10.1016/j.biopha.2021.111924_bib56) 2019; 129 Ribeiro (10.1016/j.biopha.2021.111924_bib100) 2020; 7 Huang (10.1016/j.biopha.2021.111924_bib67) 2019; 467–468 Johari (10.1016/j.biopha.2021.111924_bib46) 2018; 82 Rnjak-Kovacina (10.1016/j.biopha.2021.111924_bib116) 2015; 15 Ghorbanian (10.1016/j.biopha.2021.111924_bib92) 2013; 58 Qi (10.1016/j.biopha.2021.111924_bib3) 2017; 18 Ribeiro (10.1016/j.biopha.2021.111924_bib61) 2019; 1 Cohen-Karni (10.1016/j.biopha.2021.111924_bib59) 2012; 12 Bhattacharjee (10.1016/j.biopha.2021.111924_bib65) 2016; 472 Hu (10.1016/j.biopha.2021.111924_bib113) 2001; 62 Liu (10.1016/j.biopha.2021.111924_bib17) 2019; 62 Das (10.1016/j.biopha.2021.111924_bib57) 2015; 62 Gobin (10.1016/j.biopha.2021.111924_bib121) 2006; 12 Colpankan Gunes (10.1016/j.biopha.2021.111924_bib63) 2019; 68 Wang (10.1016/j.biopha.2021.111924_bib72) 2020; 10 Hollister (10.1016/j.biopha.2021.111924_bib104) 2005; 4 Simões (10.1016/j.biopha.2021.111924_bib129) 2018; 127 Johari (10.1016/j.biopha.2021.111924_bib118) 2020; 134 Brochado (10.1016/j.biopha.2021.111924_bib131) 2018; 559 Lefèvre (10.1016/j.biopha.2021.111924_bib2) 2007; 92 Valarmathi (10.1016/j.biopha.2021.111924_bib86) 2020; 44 Zhang (10.1016/j.biopha.2021.111924_bib96) 2019; 136 Moses (10.1016/j.biopha.2021.111924_bib34) 2020; 17 Lovati (10.1016/j.biopha.2021.111924_bib135) 2020; 8 El-Sherbiny (10.1016/j.biopha.2021.111924_bib107) 2013; 2013 Shi (10.1016/j.biopha.2021.111924_bib41) 2017; 9 Samal (10.1016/j.biopha.2021.111924_bib52) 2015; 7 Liu (10.1016/j.biopha.2021.111924_bib82) 2019; 94 Mobika (10.1016/j.biopha.2021.111924_bib89) 2020; 250 Abdeen (10.1016/j.biopha.2021.111924_bib127) 2021; 23 Wang (10.1016/j.biopha.2021.111924_bib105) 2016; 83 Gupta (10.1016/j.biopha.2021.111924_bib10) 2015; 5 Chen (10.1016/j.biopha.2021.111924_bib79) 2014; 65 Deshpande (10.1016/j.biopha.2021.111924_bib136) 2021 Hu (10.1016/j.biopha.2021.111924_bib125) 2012; 23 Cheng (10.1016/j.biopha.2021.111924_bib26) 2018; 4 Jiang (10.1016/j.biopha.2021.111924_bib20) 2007; 6 Jia (10.1016/j.biopha.2021.111924_bib36) 2019; 5 Liguori (10.1016/j.biopha.2021.111924_bib134) 2018; 13 Hu (10.1016/j.biopha.2021.111924_bib108) 2016; 91 Felfel (10.1016/j.biopha.2021.111924_bib35) 2018; 160 Tanasa (10.1016/j.biopha.2021.111924_bib51) 2020; 110 Dong (10.1016/j.biopha.2021.111924_bib58) 2020; 707 Kweon (10.1016/j.biopha.2021.111924_bib85) 2011; 69 Koh (10.1016/j.biopha.2021.111924_bib5) 2018; 86 Iwan (10.1016/j.biopha.2021.111924_bib101) 2015; 5 Amirikia (10.1016/j.biopha.2021.111924_bib103) 2018; 47 Hota (10.1016/j.biopha.2021.111924_bib14) 2012; 22 Paşcu (10.1016/j.biopha.2021.111924_bib73) 2013; 33 Zafar (10.1016/j.biopha.2021.111924_bib60) 2020; 9 Jiang (10.1016/j.biopha.2021.111924_bib81) 2018; 29 Dong (10.1016/j.biopha.2021.111924_bib90) 2020; 19 He (10.1016/j.biopha.2021.111924_bib8) 2012; 418 Atrian (10.1016/j.biopha.2021.111924_bib93) 2019; 174 Zhou (10.1016/j.biopha.2021.111924_bib68) 2019; 30 Chen (10.1016/j.biopha.2021.111924_bib132) 2018; 9 Farokhi (10.1016/j.biopha.2021.111924_bib128) 2018; 36 Park (10.1016/j.biopha.2021.111924_bib22) 2020; 114 Janani (10.1016/j.biopha.2021.111924_bib122) 2018; 67 Brito-Pereira (10.1016/j.biopha.2021.111924_bib50) 2018; 141 Lee (10.1016/j.biopha.2021.111924_bib76) 2014; 22 Ming (10.1016/j.biopha.2021.111924_bib75) 2015; 51 Nazari (10.1016/j.biopha.2021.111924_bib42) 2020; 31 Fedič (10.1016/j.biopha.2021.111924_bib7) 2003; 278 Ran (10.1016/j.biopha.2021.111924_bib32) 2016; 93 Farokhi (10.1016/j.biopha.2021.111924_bib39) 2014; 35 Yang (10.1016/j.biopha.2021.111924_bib88) 2016; 122 Kim (10.1016/j.biopha.2021.111924_bib80) 2014; 40 Wang (10.1016/j.biopha.2021.111924_bib83) 2021; 63 Ran (10.1016/j.biopha.2021.111924_bib30) 2015; 5 Yan (10.1016/j.biopha.2021.111924_bib38) 2015; 12 Ullah (10.1016/j.biopha.2021.111924_bib18) 2020; 20 Pittenger (10.1016/j.biopha.2021.111924_bib126) 2019; 4 Sun (10.1016/j.biopha.2021.111924_bib23) 2021; 22 Guo (10.1016/j.biopha.2021.111924_bib84) 2018; 109 Wen (10.1016/j.biopha.2021.111924_bib15) 2021; 7 Ribeiro (10.1016/j.biopha.2021.111924_bib62) 2019; 11 Chantawong (10.1016/j.biopha.2021.111924_bib123) 2017; 28 Page (10.1016/j.biopha.2021.111924_bib29) 2021 Oberg (10.1016/j.biopha.2021.111924_bib111) 2004; 271 Naebe (10.1016/j.biopha.2021.111924_bib102) 2015; 4 Hashimoto (10.1016/j.biopha.2021.111924_bib119) 2020; 2 Yang (10.1016/j.biopha.2021.111924_bib16) 2014; 15 Bhattacharjee (10.1016/j.biopha.2021.111924_bib87) 2016; 5 Wang (10.1016/j.biopha.2021.111924_bib33) 2020; 142 Zhao (10.1016/j.biopha.2021.111924_bib114) 2011 Hirosawa (10.1016/j.biopha.2021.111924_bib106) 2018; 36 Zafar (10.1016/j.biopha.2021.111924_bib9) 2015; 16 Warnecke (10.1016/j.biopha.2021.111924_bib110) 2018; 86 Rahman (10.1016/j.biopha.2021.111924_bib115) 2019 Teimouri (10.1016/j.biopha.2021.111924_bib53) 2015; 76 Saleem (10.1016/j.biopha.2021.111924_bib25) 2020; 21 Patil (10.1016/j.biopha.2021.111924_bib45) 2019; 176 Johari (10.1016/j.biopha.2021.111924_bib47) 2017; 79 Jiang (10.1016/j.biopha.2021.111924_bib97) 2020; 202 Brown (10.1016/j.biopha.2021.111924_bib130) 2016; 529 Melke (10.1016/j.biopha.2021.111924_bib24) 2016; 31 Yang (10.1016/j.biopha.2021.111924_bib99) 2018; 8 Nguyen (10.1016/j.biopha.2021.111924_bib27) 2019; 11 Gore (10.1016/j.biopha.2021.111924_bib6) 2019; 374 Hu (10.1016/j.biopha.2021.111924_bib70) 2015; 33 Zuluaga-Vélez (10.1016/j.biopha.2021.111924_bib138) 2019; 14 Kundu (10.1016/j.biopha.2021.111924_bib13) 2013; 65 Teimouri (10.1016/j.biopha.2021.111924_bib54) 2015; 157 Costa-Almeida (10.1016/j.biopha.2021.111924_bib137) 2019; 30 Nguyen (10.1016/j.biopha.2021.111924_bib21) 2020 Wang (10.1016/j.biopha.2021.111924_bib77) 2017; 80 Shi (10.1016/j.biopha.2021.111924_bib91) 2013; 34 Avani (10.1016/j.biopha.2021.111924_bib95) 2020; 69 Salehi (10.1016/j.biopha.2021.111924_bib12) 2020; 25 Miroiu (10.1016/j.biopha.2021.111924_bib66) 2010; 169 Belda Marín (10.1016/j.biopha.2021.111924_bib28) 2020; 8 Ruan (10.1016/j.biopha.2021.111924_bib64) 2018; 97 Passi (10.1016/j.biopha.2021.111924_bib55) 2020; 107 Hu (10.1016/j.biopha.2021.111924_bib1) 2011 Zhou (10.1016/j.biopha.2021.111924_bib74) 2017; 81 Lima (10.1016/j.biopha.2021.111924_bib69) 2013; 33 George (10.1016/j.biopha.2021.111924_bib117) 2013; 33 |
References_xml | – volume: 12 start-page: 227 year: 2015 end-page: 241 ident: bib38 article-title: Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance publication-title: Acta Biomater. contributor: fullname: Reis – volume: 65 start-page: 1 year: 2014 end-page: 7 ident: bib79 article-title: Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering publication-title: Int. J. Biol. Macromol. contributor: fullname: Tong – volume: 4 start-page: 4375 year: 2015 ident: bib102 article-title: Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites publication-title: Sci. Rep. contributor: fullname: Fox – volume: 67 start-page: 167 year: 2018 end-page: 182 ident: bib122 article-title: Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs publication-title: Acta Biomater. contributor: fullname: Mandal – volume: 20 year: 2020 ident: bib18 article-title: Fabrication, applications and challenges of natural biomaterials in tissue engineering publication-title: Appl. Mater. Today contributor: fullname: Chen – volume: 529 start-page: 336 year: 2016 end-page: 343 ident: bib130 article-title: Antibacterial drug discovery in the resistance era publication-title: Nature contributor: fullname: Wright – volume: 114 year: 2020 ident: bib22 article-title: Advanced hybrid nanomaterials for biomedical applications publication-title: Prog. Mater. Sci. contributor: fullname: Keun Han – volume: 250 year: 2020 ident: bib89 article-title: Fabrication of bioactive hydroxyapatite/silk fibroin/gelatin cross-linked nanocomposite for biomedical application publication-title: Mater. Chem. Phys. contributor: fullname: Nithya Priya – volume: 92 start-page: 2885 year: 2007 end-page: 2895 ident: bib2 article-title: Protein secondary structure and orientation in silk as revealed by raman spectromicroscopy publication-title: Biophys. J. contributor: fullname: Pézolet – volume: 35 start-page: 401 year: 2014 end-page: 410 ident: bib39 article-title: Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor publication-title: Mater. Sci. Eng. C contributor: fullname: Azami – volume: 11 start-page: 1933 year: 2019 ident: bib27 article-title: Silk fibroin-based biomaterials for biomedical applications: a review publication-title: Polymers contributor: fullname: Van Le – volume: 707 year: 2020 ident: bib58 article-title: Engineered bioactive nanoparticles incorporated biofunctionalized ECM/silk proteins based cardiac patches combined with MSCs for the repair of myocardial infarction: in vitro and in vivo evaluations publication-title: Sci. Total Environ. contributor: fullname: Zhu – volume: 6 start-page: 51 year: 2018 end-page: 57 ident: bib133 article-title: Immunomodulatory biomaterials publication-title: Curr. Opin. Biomed. Eng. contributor: fullname: Badylak – volume: 63 start-page: 172 year: 2021 end-page: 181 ident: bib83 article-title: Injectable silk/hydroxyapatite nanocomposite hydrogels with vascularization capacity for bone regeneration publication-title: J. Mater. Sci. Technol. contributor: fullname: Lu – volume: 17 year: 2020 ident: bib34 article-title: Chondroprotective and osteogenic effects of silk-based bioinks in developing 3D bioprinted osteochondral interface publication-title: Bioprinting contributor: fullname: Mandal – volume: 202 year: 2020 ident: bib97 article-title: Synthesis of silver@hydroxyapatite nanoparticles based biocomposite and their assessment for viability of osseointegration for rabbit knee joint anterior cruciate ligament rehabilitation publication-title: J. Photochem. Photobiol. B Biol. contributor: fullname: Dong – volume: 70 start-page: 736 year: 2017 end-page: 744 ident: bib49 article-title: Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications publication-title: Mater. Sci. Eng. C contributor: fullname: Mozafari – volume: 22 start-page: 1499 year: 2021 ident: bib23 article-title: Silk fibroin as a functional biomaterial for tissue engineering publication-title: Int. J. Mol. Sci. contributor: fullname: Zhao – volume: 5 start-page: 244 year: 2019 end-page: 261 ident: bib36 article-title: Constructing multilayer silk protein/nanosilver biofunctionalized hierarchically structured 3D printed Ti6Al4 V scaffold for repair of infective bone defects publication-title: ACS Biomater. Sci. Eng. contributor: fullname: Zheng – volume: 129 start-page: 1034 year: 2019 end-page: 1039 ident: bib56 article-title: Gold nanorods reinforced silk fibroin nanocomposite for peripheral nerve tissue engineering applications publication-title: Int. J. Biol. Macromol. contributor: fullname: Ashtari – volume: 374 start-page: 437 year: 2019 end-page: 470 ident: bib6 article-title: Progress in silk materials for integrated water treatments: fabrication, modification and applications publication-title: Chem. Eng. J. contributor: fullname: Kandasubramanian – volume: 4 start-page: 518 year: 2005 end-page: 524 ident: bib104 article-title: Porous scaffold design for tissue engineering publication-title: Nat. Mater. contributor: fullname: Hollister – volume: 25 start-page: 737 year: 2020 ident: bib12 article-title: Spider silk for tissue engineering applications publication-title: Molecules contributor: fullname: Scheibel – volume: 8 year: 2020 ident: bib28 article-title: Silk polymers and nanoparticles: a powerful combination for the design of versatile biomaterials publication-title: Front. Chem. contributor: fullname: Egles – volume: 23 year: 2021 ident: bib127 article-title: Integrating biomaterials and genome editing approaches to advance biomedical science publication-title: Annu. Rev. Biomed. Eng. contributor: fullname: Saha – volume: 8 year: 2020 ident: bib135 article-title: Peptide-enriched silk fibroin sponge and trabecular titanium composites to enhance bone ingrowth of prosthetic implants in an ovine model of bone gaps publication-title: Front. Bioeng. Biotechnol. contributor: fullname: Moretti – volume: 136 start-page: 1247 year: 2019 end-page: 1257 ident: bib96 article-title: Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering publication-title: Int. J. Biol. Macromol. contributor: fullname: Feng – volume: 34 start-page: 5947 year: 2013 end-page: 5957 ident: bib91 article-title: Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration publication-title: Biomaterials contributor: fullname: Goh – volume: 86 start-page: 151 year: 2018 end-page: 172 ident: bib5 article-title: Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing publication-title: Mater. Sci. Eng. C contributor: fullname: Tee – volume: 91 year: 2020 ident: bib94 article-title: In vitro and in vivo evaluation of silk fibroin-hardystonite-gentamicin nanofibrous scaffold for tissue engineering applications publication-title: Polym. Test. contributor: fullname: Akbari – volume: 15 start-page: 1390 year: 2014 end-page: 1398 ident: bib16 article-title: Multifunctional adhesive silk fibroin with blending of RGD-bioconjugated mussel adhesive protein publication-title: Biomacromolecules contributor: fullname: Cha – volume: 30 start-page: 1604 year: 2019 end-page: 1619 ident: bib68 article-title: Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds—a novel approach to corneal tissue engineering publication-title: J. Biomater. Sci. Polym. Ed. contributor: fullname: Zhou – volume: 467–468 start-page: 345 year: 2019 end-page: 353 ident: bib67 article-title: 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration publication-title: Appl. Surf. Sci. contributor: fullname: Li – start-page: 819 year: 2019 end-page: 863 ident: bib115 publication-title: Morphological Characterization of Hydrogels contributor: fullname: Rahman – volume: 81 start-page: 291 year: 2017 end-page: 302 ident: bib74 article-title: Synthesis of silk fibroin-g-PAA composite using H2O2-HRP and characterization of the in situ biomimetic mineralization behavior publication-title: Mater. Sci. Eng. C contributor: fullname: Fan – volume: 54 start-page: 158 year: 2015 end-page: 168 ident: bib37 article-title: Tailoring the properties and functions of phosphate/silk/Ag/chitosan scaffolds publication-title: Mater. Sci. Eng. C contributor: fullname: Ali – volume: 160 start-page: 455 year: 2018 end-page: 467 ident: bib35 article-title: Performance of multiphase scaffolds for bone repair based on two-photon polymerized poly(d,l-lactide-co-ɛ-caprolactone), recombinamers hydrogel and nano-HA publication-title: Mater. Des. contributor: fullname: Grant – volume: 36 start-page: 2210 year: 2018 end-page: 2217 ident: bib106 article-title: Vein wrapping promotes M2 macrophage polarization in a rat chronic constriction injury model publication-title: J. Orthop. Res. contributor: fullname: Ohtori – volume: 31 start-page: 248 year: 2020 end-page: 259 ident: bib42 article-title: Incorporation of two‐dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue engineering publication-title: Polym. Adv. Technol. contributor: fullname: Tafti – start-page: 1 year: 2015 end-page: 33 ident: bib109 article-title: Dynamic mechanical analysis in the analysis of polymers and rubbers publication-title: Encyclopedia of Polymer Science and Technology contributor: fullname: Menard – volume: 13 start-page: 757 year: 2018 end-page: 772 ident: bib134 article-title: Oxidative stress, aging, and diseases publication-title: Clin. Interv. Aging contributor: fullname: Abete – volume: 122 start-page: 113 year: 2016 end-page: 121 ident: bib88 article-title: Direct modulus measurement of single composite nanofibers of silk fibroin/hydroxyapatite nanoparticles publication-title: Compos. Sci. Technol. contributor: fullname: Ryu – volume: 141 start-page: 70 year: 2018 end-page: 75 ident: bib50 article-title: Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications publication-title: Compos. Part B Eng. contributor: fullname: Lanceros-Mendez – volume: 62 start-page: 15 year: 2001 end-page: 21 ident: bib113 article-title: β-sheet structure formation of proteins in solid state as revealed by circular dichroism spectroscopy publication-title: Biopolymers contributor: fullname: Du – volume: 12 start-page: 5403 year: 2012 end-page: 5406 ident: bib59 article-title: Nanocomposite gold-silk nanofibers publication-title: Nano Lett. contributor: fullname: Kohane – volume: 278 start-page: 35255 year: 2003 end-page: 35264 ident: bib7 article-title: Correlation between fibroin amino acid sequence and physical silk properties publication-title: J. Biol. Chem. contributor: fullname: Sehnal – volume: 18 start-page: 237 year: 2017 ident: bib3 article-title: A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures publication-title: Int. J. Mol. Sci. contributor: fullname: Zhang – volume: 10 start-page: 10118 year: 2020 end-page: 10128 ident: bib72 article-title: Preparation and biological properties of silk fibroin/nano-hydroxyapatite/graphene oxide scaffolds with an oriented channel-like structure publication-title: RSC Adv. contributor: fullname: Wang – volume: 9 start-page: 7204 year: 2018 end-page: 7218 ident: bib132 article-title: Inflammatory responses and inflammation-associated diseases in organs publication-title: Oncotarget contributor: fullname: Zhao – volume: 2013 start-page: 38 year: 2013 ident: bib107 article-title: Hydrogel scaffolds for tissue engineering: progress and challenges publication-title: Glob. Cardiol. Sci. Pract. contributor: fullname: Yacoub – volume: 1 year: 2019 ident: bib61 article-title: In vivo performance of hierarchical HRP-crosslinked silk fibroin/β-TCP scaffolds for osteochondral tissue regeneration publication-title: Regen. Med. Front. contributor: fullname: Oliveira – volume: 33 start-page: 4905 year: 2013 end-page: 4916 ident: bib73 article-title: Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering publication-title: Mater. Sci. Eng. C contributor: fullname: McGuinness – volume: 91 start-page: 30 year: 2016 end-page: 38 ident: bib108 article-title: The roles of vascular endothelial growth factor in bone repair and regeneration publication-title: Bone contributor: fullname: Olsen – volume: 4 start-page: 2704 year: 2018 end-page: 2715 ident: bib26 article-title: Advanced silk fibroin biomaterials for cartilage regeneration publication-title: ACS Biomater. Sci. Eng. contributor: fullname: Wang – volume: 35 start-page: 1397 year: 2019 end-page: 1407 ident: bib78 article-title: Nano-hydroxyapatite mineralized silk fibroin porous scaffold for tooth extraction site preservation publication-title: Dent. Mater. contributor: fullname: Yang – volume: 86 start-page: 314 year: 2018 end-page: 324 ident: bib110 article-title: Biomechanical, structural and biological characterisation of a new silk fibroin scaffold for meniscal repair publication-title: J. Mech. Behav. Biomed. Mater. contributor: fullname: Dürselen – volume: 7 start-page: 35 year: 2021 ident: bib15 article-title: Recent progress in silk fibroin-based flexible electronics publication-title: Microsyst. Nanoeng. contributor: fullname: Zhang – volume: 6 start-page: 1612 year: 2011 end-page: 1631 ident: bib4 article-title: Materials fabrication from Bombyx mori silk fibroin publication-title: Nat. Protoc. contributor: fullname: Kaplan – volume: 31 start-page: 1 year: 2016 end-page: 16 ident: bib24 article-title: Silk fibroin as biomaterial for bone tissue engineering publication-title: Acta Biomater. contributor: fullname: Hofmann – volume: 69 start-page: 32 year: 2020 end-page: 43 ident: bib95 article-title: Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering publication-title: Int. J. Polym. Mater. Polym. Biomater. contributor: fullname: Farokhi – volume: 58 start-page: 275 year: 2013 end-page: 280 ident: bib92 article-title: Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration publication-title: Int. J. Biol. Macromol. contributor: fullname: Teimouri – volume: 2 year: 2020 ident: bib119 article-title: The influence of thermal treatments on the secondary structure of silk fibroin scaffolds and their interaction with fibroblasts publication-title: PeerJ Mater. Sci. contributor: fullname: Kameda – volume: 7 start-page: 6282 year: 2015 end-page: 6292 ident: bib52 article-title: Biomimetic magnetic silk scaffolds publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Dediu – volume: 68 start-page: 217 year: 2019 end-page: 228 ident: bib63 article-title: Three-dimensional silk impregnated HAp/PHBV nanofibrous scaffolds for bone regeneration publication-title: Int. J. Polym. Mater. Polym. Biomater. contributor: fullname: Ergur – volume: 559 start-page: 259 year: 2018 end-page: 263 ident: bib131 article-title: Species-specific activity of antibacterial drug combinations publication-title: Nature contributor: fullname: Typas – volume: 14 year: 2019 ident: bib138 article-title: Silk fibroin hydrogels from the Colombian silkworm publication-title: PLoS One contributor: fullname: Sepúlveda-Arias – volume: 38 start-page: 99 year: 2018 end-page: 105 ident: bib48 article-title: Evaluation of bioactivity and biocompatibility of silk fibroin/TiO2 nanocomposite publication-title: J. Med. Biol. Eng. contributor: fullname: Samadikuchaksaraei – volume: 472 start-page: 16 year: 2016 end-page: 33 ident: bib65 article-title: Non-mulberry silk fibroin grafted poly (Є-caprolactone)/nano hydroxyapatite nanofibrous scaffold for dual growth factor delivery to promote bone regeneration publication-title: J. Colloid Interface Sci. contributor: fullname: Kundu – volume: 40 start-page: 324 year: 2014 end-page: 335 ident: bib80 article-title: Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles publication-title: Mater. Sci. Eng. C contributor: fullname: Ryu – volume: 142 start-page: 366 year: 2020 end-page: 375 ident: bib33 article-title: Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications publication-title: Int. J. Biol. Macromol. contributor: fullname: Ge – volume: 79 start-page: 783 year: 2017 end-page: 792 ident: bib47 article-title: Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO2 for bone tissue engineering publication-title: Mater. Sci. Eng. C contributor: fullname: Samadikuchaksaraei – volume: 107 year: 2020 ident: bib55 article-title: Theranostic nanozyme: silk fibroin based multifunctional nanocomposites to combat oxidative stress publication-title: Mater. Sci. Eng. C contributor: fullname: Packirisamy – volume: 176 start-page: 150 year: 2019 end-page: 155 ident: bib45 article-title: Antibacterial silk fibroin scaffolds with green synthesized silver nanoparticles for osteoblast proliferation and human mesenchymal stem cell differentiation publication-title: Colloids Surf. B Biointerfaces contributor: fullname: Singh – volume: 5 start-page: 70127 year: 2015 end-page: 70138 ident: bib101 article-title: Fabrication of nanocomposites by covalent bonding between noble metal nanoparticles and polymer matrix publication-title: RSC Adv. contributor: fullname: Fialkowski – volume: 5 start-page: 12706 year: 2015 ident: bib10 article-title: Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama publication-title: Sci. Rep. contributor: fullname: Nagaraju – volume: 73 start-page: 355 year: 2018 end-page: 364 ident: bib112 article-title: A robust spectroscopic method for the determination of protein conformational composition – application to the annealing of silk publication-title: Acta Biomater. contributor: fullname: Perry – volume: 109 start-page: 21 year: 2018 end-page: 26 ident: bib84 article-title: In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber publication-title: Int. J. Biol. Macromol. contributor: fullname: Zhao – volume: 418 start-page: 197 year: 2012 end-page: 207 ident: bib8 article-title: N-terminal domain of bombyx mori fibroin mediates the assembly of silk in response to pH decrease publication-title: J. Mol. Biol. contributor: fullname: Zhou – volume: 106 start-page: 2070 year: 2018 end-page: 2077 ident: bib124 article-title: Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits publication-title: J. Biomed. Mater. Res. Part A contributor: fullname: Chai – volume: 68 start-page: 355 year: 2016 end-page: 369 ident: bib98 article-title: Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects publication-title: Cytotechnology contributor: fullname: Bernotienė – volume: 4 start-page: 22 year: 2019 ident: bib126 article-title: Mesenchymal stem cell perspective: cell biology to clinical progress publication-title: npj Regen. Med. contributor: fullname: Caplan – volume: 62 start-page: 66 year: 2015 end-page: 75 ident: bib57 article-title: In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration publication-title: Biomaterials contributor: fullname: Bora – volume: 5 start-page: 76526 year: 2015 end-page: 76537 ident: bib30 article-title: Comparisons between gelatin-tussah silk fibroin/hydroxyapatite and gelatin-Bombyx mori silk fibroin/hydroxyapatite nano-composites for bone tissue engineering publication-title: RSC Adv. contributor: fullname: Tong – volume: 29 start-page: 107 year: 2018 end-page: 124 ident: bib81 article-title: Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase publication-title: J. Biomater. Sci. Polym. Ed. contributor: fullname: Tong – start-page: n71 year: 2021 ident: bib29 article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews publication-title: BMJ contributor: fullname: Moher – start-page: 207 year: 2011 end-page: 219 ident: bib1 article-title: Silk biomaterials publication-title: Comprehensive Biomaterials contributor: fullname: Kaplan – volume: 21 start-page: 242 year: 2020 end-page: 266 ident: bib25 article-title: Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration publication-title: Sci. Technol. Adv. Mater. contributor: fullname: Yougen – volume: 103 start-page: 888 year: 2015 end-page: 898 ident: bib40 article-title: In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. contributor: fullname: Reis – volume: 6 start-page: 5 year: 2007 ident: bib20 article-title: Glossary of biotechnology and nanobiotechnology terms publication-title: Biomed. Eng. Online contributor: fullname: Jiang – volume: 83 start-page: 127 year: 2016 end-page: 141 ident: bib105 article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review publication-title: Biomaterials contributor: fullname: Xie – volume: 51 start-page: 287 year: 2015 end-page: 293 ident: bib75 article-title: Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth publication-title: Mater. Sci. Eng. C contributor: fullname: Zuo – volume: 110 year: 2020 ident: bib51 article-title: Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles publication-title: Mater. Sci. Eng. C contributor: fullname: Galateanu – volume: 8 start-page: 1616 year: 2018 ident: bib99 article-title: Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods publication-title: Sci. Rep. contributor: fullname: Zhang – volume: 13 start-page: 1745 year: 2017 end-page: 1759 ident: bib31 article-title: Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: promising platform for bone tissue engineering publication-title: Nanomed. Nanotechnol. Biol. Med. contributor: fullname: Kundu – volume: 30 start-page: 147 year: 2019 end-page: 149 ident: bib137 article-title: Metabolic disease epidemics: emerging challenges in regenerative medicine publication-title: Trends Endocrinol. Metab. contributor: fullname: Gomes – volume: 80 start-page: 232 year: 2017 end-page: 242 ident: bib77 article-title: A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering publication-title: Mater. Sci. Eng. C contributor: fullname: Cui – volume: 5 start-page: 52 year: 2016 end-page: 67 ident: bib87 article-title: Investigating the potential of combined growth factors delivery, from non-mulberry silk fibroin grafted poly(ɛ-caprolactone)/hydroxyapatite nanofibrous scaffold, in bone tissue engineering publication-title: Appl. Mater. Today contributor: fullname: Kundu – year: 2021 ident: bib136 article-title: Silk fibroin and ceramic scaffolds: comparative in vitro studies for bone regeneration publication-title: Bioeng. Transl. Med. contributor: fullname: Venugopalan – volume: 9 start-page: 14520 year: 2017 end-page: 14532 ident: bib41 article-title: Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers publication-title: Nanoscale contributor: fullname: Goh – volume: 9 start-page: 13656 year: 2019 ident: bib11 article-title: Spidroins and silk fibers of aquatic spiders publication-title: Sci. Rep. contributor: fullname: Hayashi – volume: 47 start-page: 573 year: 2018 end-page: 581 ident: bib103 article-title: Auto-fluorescence of a silk fibroin-based scaffold and its interference with fluorophores in labeled cells publication-title: Eur. Biophys. J. contributor: fullname: Mehranjani – volume: 157 start-page: 85 year: 2015 end-page: 88 ident: bib54 article-title: Fabrication and characterization of POM/ZrO2/silk fibroin composite scaffolds publication-title: Mater. Lett. contributor: fullname: Chermahini – volume: 36 start-page: 907 year: 2018 end-page: 922 ident: bib128 article-title: Overview of silk fibroin use in wound dressings publication-title: Trends Biotechnol. contributor: fullname: Kaplan – volume: 11 start-page: 3781 year: 2019 end-page: 3799 ident: bib62 article-title: Enzymatically cross-linked silk fibroin-based hierarchical scaffolds for osteochondral regeneration publication-title: ACS Appl. Mater. Interfaces contributor: fullname: Reis – volume: 65 start-page: 457 year: 2013 end-page: 470 ident: bib13 article-title: Silk fibroin biomaterials for tissue regenerations publication-title: Adv. Drug Deliv. Rev. contributor: fullname: Wang – start-page: 199 year: 2004 end-page: 213 ident: bib19 article-title: Nanocomposites publication-title: Introduction to Nanoscale Science and Technology contributor: fullname: Cammarata – volume: 69 start-page: 1578 year: 2011 end-page: 1586 ident: bib85 article-title: Development of nano-hydroxyapatite graft with silk fibroin scaffold as a new bone substitute publication-title: J. Oral Maxillofac. Surg. contributor: fullname: Kim – volume: 9 year: 2020 ident: bib60 article-title: Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells publication-title: Materialia contributor: fullname: Farokhi – volume: 134 year: 2020 ident: bib118 article-title: Tuning the conformation and mechanical properties of silk fibroin hydrogels publication-title: Eur. Polym. J. contributor: fullname: Samadikuchaksaraei – volume: 97 start-page: 600 year: 2018 end-page: 606 ident: bib64 article-title: Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model publication-title: Biomed. Pharmacother. contributor: fullname: Huang – volume: 44 start-page: 4647 year: 2020 end-page: 4663 ident: bib86 article-title: Biomimetic hydroxyapatite/silkfibre/methylcellulose composites for bone tissue engineering applications publication-title: New J. Chem. contributor: fullname: Sumathi – start-page: 3 year: 2020 end-page: 6 ident: bib21 article-title: Chapter 1 – Fiber-reinforced nanocomposites: an introduction publication-title: Fiber-Reinforced Nanocomposites: Fundamentals and Applications contributor: fullname: Bhat – volume: 13 start-page: 231 year: 2017 end-page: 239 ident: bib44 article-title: Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration publication-title: Nanomed. Nanotechnol. Biol. Med. contributor: fullname: Sardon – volume: 7 year: 2020 ident: bib100 article-title: Hierarchical HRP-crosslinked silk fibroin/ZnSr-TCP scaffolds for osteochondral tissue regeneration: assessment of the mechanical and antibacterial properties publication-title: Front. Mater. contributor: fullname: Oliveira – volume: 62 start-page: 441 year: 2015 end-page: 450 ident: bib71 article-title: In vitro and in vivo evaluations of three-dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds publication-title: Biotechnol. Appl. Biochem. contributor: fullname: Ghasemi Hamidabadi – volume: 93 start-page: 87 year: 2016 end-page: 97 ident: bib32 article-title: A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range publication-title: Int. J. Biol. Macromol. contributor: fullname: Tong – volume: 62 start-page: 88 year: 2017 end-page: 95 ident: bib120 article-title: Silk fibroin microfibers and chitosan modified poly (glycerol sebacate) composite scaffolds for skin tissue engineering publication-title: Polym. Test. contributor: fullname: Sun – volume: 94 start-page: 547 year: 2019 end-page: 557 ident: bib82 article-title: Biomimetic fabrication of new bioceramics-introduced fibrous scaffolds: from physicochemical characteristics to in vitro biological properties publication-title: Mater. Sci. Eng. C contributor: fullname: Weng – volume: 82 start-page: 265 year: 2018 end-page: 276 ident: bib46 article-title: Novel fluoridated silk fibroin/ TiO2 nanocomposite scaffolds for bone tissue engineering publication-title: Mater. Sci. Eng. C contributor: fullname: Samadikuchaksaraei – volume: 28 start-page: 191 year: 2017 ident: bib123 article-title: Silk fibroin-pellethane® cardiovascular patches: effect of silk fibroin concentration on vascular remodeling in rat model publication-title: J. Mater. Sci. Mater. Med. contributor: fullname: Tanaka – volume: 174 start-page: 90 year: 2019 end-page: 99 ident: bib93 article-title: Silk-laponite® fibrous membranes for bone tissue engineering publication-title: Appl. Clay Sci. contributor: fullname: Alihosseini – volume: 16 start-page: 606 year: 2015 end-page: 614 ident: bib9 article-title: Functional material features of Bombyx mori silk light versus heavy chain proteins publication-title: Biomacromolecules contributor: fullname: Perry – volume: 62 start-page: 919 year: 2019 end-page: 930 ident: bib17 article-title: Progress in modification of silk fibroin fiber publication-title: Sci. China Technol. Sci. contributor: fullname: Huang – volume: 169 start-page: 151 year: 2010 end-page: 158 ident: bib66 article-title: Composite biocompatible hydroxyapatite–silk fibroin coatings for medical implants obtained by matrix assisted pulsed laser evaporation publication-title: Mater. Sci. Eng. B contributor: fullname: Ducu – volume: 12 start-page: 3383 year: 2006 end-page: 3394 ident: bib121 article-title: Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend publication-title: Tissue Eng. contributor: fullname: Mathur – volume: 33 start-page: 668 year: 2013 end-page: 674 ident: bib117 article-title: Effect of the sterilization method on the properties of Bombyx mori silk fibroin films publication-title: Mater. Sci. Eng. C contributor: fullname: Harkin – volume: 107 year: 2020 ident: bib43 article-title: Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications publication-title: Mater. Sci. Eng. C contributor: fullname: Paladini – volume: 33 start-page: 1661 year: 2015 end-page: 1671 ident: bib70 article-title: Fabrication and characterization of chitosan-silk fibroin/hydroxyapatite composites via in situ precipitation for bone tissue engineering publication-title: Chin. J. Polym. Sci. contributor: fullname: Tong – volume: 22 start-page: 710 year: 2014 end-page: 716 ident: bib76 article-title: Surface coating of hydroxyapatite on silk nanofiber through biomineralization using ten times concentrated simulated body fluid and the evaluation for bone regeneration publication-title: Macromol. Res. contributor: fullname: Park – volume: 19 year: 2020 ident: bib90 article-title: Regional and sustained dual-release of growth factors from biomimetic tri-layered scaffolds for the repair of large-scale osteochondral defects publication-title: Appl. Mater. Today contributor: fullname: Yang – volume: 271 start-page: 2937 year: 2004 end-page: 2948 ident: bib111 article-title: The optimization of protein secondary structure determination with infrared and circular dichroism spectra publication-title: Eur. J. Biochem. contributor: fullname: Goormaghtigh – volume: 33 start-page: 3389 year: 2013 end-page: 3395 ident: bib69 article-title: Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering publication-title: Mater. Sci. Eng. C contributor: fullname: Almeida – volume: 22 start-page: 4493 year: 2012 end-page: 4499 ident: bib14 article-title: A natural silk fibroin protein-based transparent bio-memristor publication-title: Adv. Funct. Mater. contributor: fullname: Maiti – volume: 127 start-page: 130 year: 2018 end-page: 141 ident: bib129 article-title: Recent advances on antimicrobial wound dressing: a review publication-title: Eur. J. Pharm. Biopharm. contributor: fullname: Correia – start-page: 187 year: 2011 end-page: 213 ident: bib114 article-title: Protein structure determination by solid-state NMR publication-title: Top. Curr. Chem. contributor: fullname: Zhao – volume: 15 start-page: 861 year: 2015 end-page: 874 ident: bib116 article-title: The effect of sterilization on silk fibroin biomaterial properties publication-title: Macromol. Biosci. contributor: fullname: Kaplan – volume: 23 start-page: 711 year: 2012 end-page: 722 ident: bib125 article-title: Injectable silk fibroin/polyurethane composite hydrogel for nucleus pulposus replacement publication-title: J. Mater. Sci. Mater. Med. contributor: fullname: Xu – volume: 76 start-page: 292 year: 2015 end-page: 302 ident: bib53 article-title: Nano-composite of silk fibroin–chitosan/nano ZrO2 for tissue engineering applications: fabrication and morphology publication-title: Int. J. Biol. Macromol. contributor: fullname: Chermahini – volume: 62 start-page: 88 year: 2017 ident: 10.1016/j.biopha.2021.111924_bib120 article-title: Silk fibroin microfibers and chitosan modified poly (glycerol sebacate) composite scaffolds for skin tissue engineering publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2017.06.012 contributor: fullname: Zhang – volume: 11 start-page: 1933 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib27 article-title: Silk fibroin-based biomaterials for biomedical applications: a review publication-title: Polymers doi: 10.3390/polym11121933 contributor: fullname: Nguyen – volume: 20 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib18 article-title: Fabrication, applications and challenges of natural biomaterials in tissue engineering publication-title: Appl. Mater. Today contributor: fullname: Ullah – volume: 10 start-page: 10118 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib72 article-title: Preparation and biological properties of silk fibroin/nano-hydroxyapatite/graphene oxide scaffolds with an oriented channel-like structure publication-title: RSC Adv. doi: 10.1039/C9RA09710D contributor: fullname: Wang – volume: 5 start-page: 70127 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib101 article-title: Fabrication of nanocomposites by covalent bonding between noble metal nanoparticles and polymer matrix publication-title: RSC Adv. doi: 10.1039/C5RA12474C contributor: fullname: Iwan – volume: 134 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib118 article-title: Tuning the conformation and mechanical properties of silk fibroin hydrogels publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2020.109842 contributor: fullname: Johari – volume: 202 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib97 article-title: Synthesis of silver@hydroxyapatite nanoparticles based biocomposite and their assessment for viability of osseointegration for rabbit knee joint anterior cruciate ligament rehabilitation publication-title: J. Photochem. Photobiol. B Biol. doi: 10.1016/j.jphotobiol.2019.111677 contributor: fullname: Jiang – volume: 271 start-page: 2937 year: 2004 ident: 10.1016/j.biopha.2021.111924_bib111 article-title: The optimization of protein secondary structure determination with infrared and circular dichroism spectra publication-title: Eur. J. Biochem. doi: 10.1111/j.1432-1033.2004.04220.x contributor: fullname: Oberg – volume: 22 start-page: 4493 year: 2012 ident: 10.1016/j.biopha.2021.111924_bib14 article-title: A natural silk fibroin protein-based transparent bio-memristor publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200073 contributor: fullname: Hota – volume: 103 start-page: 888 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib40 article-title: In vitro evaluation of the biological performance of macro/micro-porous silk fibroin and silk-nano calcium phosphate scaffolds publication-title: J. Biomed. Mater. Res. Part B Appl. Biomater. doi: 10.1002/jbm.b.33267 contributor: fullname: Yan – volume: 94 start-page: 547 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib82 article-title: Biomimetic fabrication of new bioceramics-introduced fibrous scaffolds: from physicochemical characteristics to in vitro biological properties publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.09.063 contributor: fullname: Liu – volume: 157 start-page: 85 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib54 article-title: Fabrication and characterization of POM/ZrO2/silk fibroin composite scaffolds publication-title: Mater. Lett. doi: 10.1016/j.matlet.2015.05.064 contributor: fullname: Teimouri – volume: 16 start-page: 606 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib9 article-title: Functional material features of Bombyx mori silk light versus heavy chain proteins publication-title: Biomacromolecules doi: 10.1021/bm501667j contributor: fullname: Zafar – start-page: 819 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib115 contributor: fullname: Rahman – volume: 13 start-page: 1745 year: 2017 ident: 10.1016/j.biopha.2021.111924_bib31 article-title: Hydroxyapatite reinforced inherent RGD containing silk fibroin composite scaffolds: promising platform for bone tissue engineering publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2017.02.016 contributor: fullname: Behera – volume: 5 start-page: 244 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib36 article-title: Constructing multilayer silk protein/nanosilver biofunctionalized hierarchically structured 3D printed Ti6Al4 V scaffold for repair of infective bone defects publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b00857 contributor: fullname: Jia – volume: 559 start-page: 259 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib131 article-title: Species-specific activity of antibacterial drug combinations publication-title: Nature doi: 10.1038/s41586-018-0278-9 contributor: fullname: Brochado – volume: 6 start-page: 1612 year: 2011 ident: 10.1016/j.biopha.2021.111924_bib4 article-title: Materials fabrication from Bombyx mori silk fibroin publication-title: Nat. Protoc. doi: 10.1038/nprot.2011.379 contributor: fullname: Rockwood – volume: 142 start-page: 366 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib33 article-title: Fabrication and characterization of strontium-hydroxyapatite/silk fibroin biocomposite nanospheres for bone-tissue engineering applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.09.107 contributor: fullname: Wang – volume: 107 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib43 article-title: Photo-assisted green synthesis of silver doped silk fibroin/carboxymethyl cellulose nanocomposite hydrogels for biomedical applications publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.110219 contributor: fullname: Raho – volume: 8 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib135 article-title: Peptide-enriched silk fibroin sponge and trabecular titanium composites to enhance bone ingrowth of prosthetic implants in an ovine model of bone gaps publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.563203 contributor: fullname: Lovati – volume: 33 start-page: 4905 year: 2013 ident: 10.1016/j.biopha.2021.111924_bib73 article-title: Electrospun composites of PHBV, silk fibroin and nano-hydroxyapatite for bone tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2013.08.012 contributor: fullname: Paşcu – volume: 7 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib100 article-title: Hierarchical HRP-crosslinked silk fibroin/ZnSr-TCP scaffolds for osteochondral tissue regeneration: assessment of the mechanical and antibacterial properties publication-title: Front. Mater. doi: 10.3389/fmats.2020.00049 contributor: fullname: Ribeiro – volume: 79 start-page: 783 year: 2017 ident: 10.1016/j.biopha.2021.111924_bib47 article-title: Optimized composition of nanocomposite scaffolds formed from silk fibroin and nano-TiO2 for bone tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.05.105 contributor: fullname: Johari – volume: 86 start-page: 314 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib110 article-title: Biomechanical, structural and biological characterisation of a new silk fibroin scaffold for meniscal repair publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2018.06.041 contributor: fullname: Warnecke – volume: 73 start-page: 355 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib112 article-title: A robust spectroscopic method for the determination of protein conformational composition – application to the annealing of silk publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.03.058 contributor: fullname: Belton – year: 2021 ident: 10.1016/j.biopha.2021.111924_bib136 article-title: Silk fibroin and ceramic scaffolds: comparative in vitro studies for bone regeneration publication-title: Bioeng. Transl. Med. doi: 10.1002/btm2.10221 contributor: fullname: Deshpande – volume: 129 start-page: 1034 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib56 article-title: Gold nanorods reinforced silk fibroin nanocomposite for peripheral nerve tissue engineering applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.02.050 contributor: fullname: Afjeh-Dana – volume: 29 start-page: 107 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib81 article-title: Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1080/09205063.2017.1403149 contributor: fullname: Jiang – volume: 22 start-page: 710 year: 2014 ident: 10.1016/j.biopha.2021.111924_bib76 article-title: Surface coating of hydroxyapatite on silk nanofiber through biomineralization using ten times concentrated simulated body fluid and the evaluation for bone regeneration publication-title: Macromol. Res. doi: 10.1007/s13233-014-2114-x contributor: fullname: Lee – volume: 8 start-page: 1616 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib99 article-title: Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods publication-title: Sci. Rep. doi: 10.1038/s41598-018-20006-y contributor: fullname: Yang – volume: 91 start-page: 30 year: 2016 ident: 10.1016/j.biopha.2021.111924_bib108 article-title: The roles of vascular endothelial growth factor in bone repair and regeneration publication-title: Bone doi: 10.1016/j.bone.2016.06.013 contributor: fullname: Hu – volume: 4 start-page: 4375 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib102 article-title: Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites publication-title: Sci. Rep. doi: 10.1038/srep04375 contributor: fullname: Naebe – volume: 8 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib28 article-title: Silk polymers and nanoparticles: a powerful combination for the design of versatile biomaterials publication-title: Front. Chem. doi: 10.3389/fchem.2020.604398 contributor: fullname: Belda Marín – volume: 33 start-page: 3389 year: 2013 ident: 10.1016/j.biopha.2021.111924_bib69 article-title: Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2013.04.026 contributor: fullname: Lima – volume: 86 start-page: 151 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib5 article-title: Advancing the frontiers of silk fibroin protein-based materials for futuristic electronics and clinical wound-healing publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2018.01.007 contributor: fullname: Koh – volume: 81 start-page: 291 year: 2017 ident: 10.1016/j.biopha.2021.111924_bib74 article-title: Synthesis of silk fibroin-g-PAA composite using H2O2-HRP and characterization of the in situ biomimetic mineralization behavior publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.08.006 contributor: fullname: Zhou – volume: 47 start-page: 573 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib103 article-title: Auto-fluorescence of a silk fibroin-based scaffold and its interference with fluorophores in labeled cells publication-title: Eur. Biophys. J. doi: 10.1007/s00249-018-1279-1 contributor: fullname: Amirikia – volume: 4 start-page: 2704 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib26 article-title: Advanced silk fibroin biomaterials for cartilage regeneration publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b00150 contributor: fullname: Cheng – start-page: 199 year: 2004 ident: 10.1016/j.biopha.2021.111924_bib19 article-title: Nanocomposites contributor: fullname: Cammarata – volume: 62 start-page: 66 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib57 article-title: In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.04.047 contributor: fullname: Das – volume: 160 start-page: 455 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib35 article-title: Performance of multiphase scaffolds for bone repair based on two-photon polymerized poly(d,l-lactide-co-ɛ-caprolactone), recombinamers hydrogel and nano-HA publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.09.035 contributor: fullname: Felfel – volume: 67 start-page: 167 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib122 article-title: Functional hepatocyte clusters on bioactive blend silk matrices towards generating bioartificial liver constructs publication-title: Acta Biomater. doi: 10.1016/j.actbio.2017.11.053 contributor: fullname: Janani – volume: 33 start-page: 1661 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib70 article-title: Fabrication and characterization of chitosan-silk fibroin/hydroxyapatite composites via in situ precipitation for bone tissue engineering publication-title: Chin. J. Polym. Sci. doi: 10.1007/s10118-015-1710-3 contributor: fullname: Hu – volume: 2 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib119 article-title: The influence of thermal treatments on the secondary structure of silk fibroin scaffolds and their interaction with fibroblasts publication-title: PeerJ Mater. Sci. contributor: fullname: Hashimoto – volume: 18 start-page: 237 year: 2017 ident: 10.1016/j.biopha.2021.111924_bib3 article-title: A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms18030237 contributor: fullname: Qi – volume: 7 start-page: 6282 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib52 article-title: Biomimetic magnetic silk scaffolds publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b00529 contributor: fullname: Samal – volume: 141 start-page: 70 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib50 article-title: Silk fibroin-magnetic hybrid composite electrospun fibers for tissue engineering applications publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2017.12.046 contributor: fullname: Brito-Pereira – volume: 65 start-page: 1 year: 2014 ident: 10.1016/j.biopha.2021.111924_bib79 article-title: Preparation and evaluation of collagen-silk fibroin/hydroxyapatite nanocomposites for bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2014.01.003 contributor: fullname: Chen – volume: 69 start-page: 32 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib95 article-title: Vancomycin loaded halloysite nanotubes embedded in silk fibroin hydrogel applicable for bone tissue engineering publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2019.1616201 contributor: fullname: Avani – volume: 31 start-page: 1 year: 2016 ident: 10.1016/j.biopha.2021.111924_bib24 article-title: Silk fibroin as biomaterial for bone tissue engineering publication-title: Acta Biomater. doi: 10.1016/j.actbio.2015.09.005 contributor: fullname: Melke – volume: 97 start-page: 600 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib64 article-title: Composite scaffolds loaded with bone mesenchymal stem cells promote the repair of radial bone defects in rabbit model publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2017.10.110 contributor: fullname: Ruan – volume: 21 start-page: 242 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib25 article-title: Silk fibroin/hydroxyapatite scaffold: a highly compatible material for bone regeneration publication-title: Sci. Technol. Adv. Mater. doi: 10.1080/14686996.2020.1748520 contributor: fullname: Saleem – volume: 30 start-page: 147 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib137 article-title: Metabolic disease epidemics: emerging challenges in regenerative medicine publication-title: Trends Endocrinol. Metab. doi: 10.1016/j.tem.2019.01.001 contributor: fullname: Costa-Almeida – volume: 65 start-page: 457 year: 2013 ident: 10.1016/j.biopha.2021.111924_bib13 article-title: Silk fibroin biomaterials for tissue regenerations publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.09.043 contributor: fullname: Kundu – volume: 76 start-page: 292 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib53 article-title: Nano-composite of silk fibroin–chitosan/nano ZrO2 for tissue engineering applications: fabrication and morphology publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2015.02.023 contributor: fullname: Teimouri – volume: 9 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib60 article-title: Silk fibroin/alumina nanoparticle scaffold using for osteogenic differentiation of rabbit adipose-derived stem cells publication-title: Materialia doi: 10.1016/j.mtla.2019.100518 contributor: fullname: Zafar – volume: 4 start-page: 22 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib126 article-title: Mesenchymal stem cell perspective: cell biology to clinical progress publication-title: npj Regen. Med. doi: 10.1038/s41536-019-0083-6 contributor: fullname: Pittenger – volume: 529 start-page: 336 year: 2016 ident: 10.1016/j.biopha.2021.111924_bib130 article-title: Antibacterial drug discovery in the resistance era publication-title: Nature doi: 10.1038/nature17042 contributor: fullname: Brown – volume: 58 start-page: 275 year: 2013 ident: 10.1016/j.biopha.2021.111924_bib92 article-title: Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2013.04.004 contributor: fullname: Ghorbanian – volume: 15 start-page: 1390 year: 2014 ident: 10.1016/j.biopha.2021.111924_bib16 article-title: Multifunctional adhesive silk fibroin with blending of RGD-bioconjugated mussel adhesive protein publication-title: Biomacromolecules doi: 10.1021/bm500001n contributor: fullname: Yang – volume: 15 start-page: 861 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib116 article-title: The effect of sterilization on silk fibroin biomaterial properties publication-title: Macromol. Biosci. doi: 10.1002/mabi.201500013 contributor: fullname: Rnjak-Kovacina – volume: 9 start-page: 7204 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib132 article-title: Inflammatory responses and inflammation-associated diseases in organs publication-title: Oncotarget doi: 10.18632/oncotarget.23208 contributor: fullname: Chen – volume: 6 start-page: 5 year: 2007 ident: 10.1016/j.biopha.2021.111924_bib20 article-title: Glossary of biotechnology and nanobiotechnology terms publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-6-5 contributor: fullname: Jiang – volume: 54 start-page: 158 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib37 article-title: Tailoring the properties and functions of phosphate/silk/Ag/chitosan scaffolds publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.05.015 contributor: fullname: Abdel-Fattah – volume: 9 start-page: 14520 year: 2017 ident: 10.1016/j.biopha.2021.111924_bib41 article-title: Yolk shell nanocomposite particles as bioactive bone fillers and growth factor carriers publication-title: Nanoscale doi: 10.1039/C7NR03093B contributor: fullname: Shi – volume: 80 start-page: 232 year: 2017 ident: 10.1016/j.biopha.2021.111924_bib77 article-title: A graded graphene oxide-hydroxyapatite/silk fibroin biomimetic scaffold for bone tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.05.133 contributor: fullname: Wang – volume: 278 start-page: 35255 year: 2003 ident: 10.1016/j.biopha.2021.111924_bib7 article-title: Correlation between fibroin amino acid sequence and physical silk properties publication-title: J. Biol. Chem. doi: 10.1074/jbc.M305304200 contributor: fullname: Fedič – volume: 28 start-page: 191 year: 2017 ident: 10.1016/j.biopha.2021.111924_bib123 article-title: Silk fibroin-pellethane® cardiovascular patches: effect of silk fibroin concentration on vascular remodeling in rat model publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-017-5999-z contributor: fullname: Chantawong – volume: 68 start-page: 217 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib63 article-title: Three-dimensional silk impregnated HAp/PHBV nanofibrous scaffolds for bone regeneration publication-title: Int. J. Polym. Mater. Polym. Biomater. doi: 10.1080/00914037.2018.1443928 contributor: fullname: Colpankan Gunes – volume: 176 start-page: 150 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib45 article-title: Antibacterial silk fibroin scaffolds with green synthesized silver nanoparticles for osteoblast proliferation and human mesenchymal stem cell differentiation publication-title: Colloids Surf. B Biointerfaces doi: 10.1016/j.colsurfb.2018.12.067 contributor: fullname: Patil – volume: 36 start-page: 907 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib128 article-title: Overview of silk fibroin use in wound dressings publication-title: Trends Biotechnol. doi: 10.1016/j.tibtech.2018.04.004 contributor: fullname: Farokhi – volume: 13 start-page: 757 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib134 article-title: Oxidative stress, aging, and diseases publication-title: Clin. Interv. Aging doi: 10.2147/CIA.S158513 contributor: fullname: Liguori – volume: 12 start-page: 3383 year: 2006 ident: 10.1016/j.biopha.2021.111924_bib121 article-title: Repair and regeneration of the abdominal wall musculofascial defect using silk fibroin-chitosan blend publication-title: Tissue Eng. doi: 10.1089/ten.2006.12.3383 contributor: fullname: Gobin – volume: 35 start-page: 1397 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib78 article-title: Nano-hydroxyapatite mineralized silk fibroin porous scaffold for tooth extraction site preservation publication-title: Dent. Mater. doi: 10.1016/j.dental.2019.07.024 contributor: fullname: Nie – volume: 83 start-page: 127 year: 2016 ident: 10.1016/j.biopha.2021.111924_bib105 article-title: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.01.012 contributor: fullname: Wang – volume: 174 start-page: 90 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib93 article-title: Silk-laponite® fibrous membranes for bone tissue engineering publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2019.03.038 contributor: fullname: Atrian – volume: 106 start-page: 2070 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib124 article-title: Silk fibroin enhances peripheral nerve regeneration by improving vascularization within nerve conduits publication-title: J. Biomed. Mater. Res. Part A doi: 10.1002/jbm.a.36390 contributor: fullname: Wang – volume: 36 start-page: 2210 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib106 article-title: Vein wrapping promotes M2 macrophage polarization in a rat chronic constriction injury model publication-title: J. Orthop. Res. doi: 10.1002/jor.23875 contributor: fullname: Hirosawa – volume: 7 start-page: 35 year: 2021 ident: 10.1016/j.biopha.2021.111924_bib15 article-title: Recent progress in silk fibroin-based flexible electronics publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-021-00261-2 contributor: fullname: Wen – volume: 82 start-page: 265 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib46 article-title: Novel fluoridated silk fibroin/ TiO2 nanocomposite scaffolds for bone tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2017.09.001 contributor: fullname: Johari – volume: 250 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib89 article-title: Fabrication of bioactive hydroxyapatite/silk fibroin/gelatin cross-linked nanocomposite for biomedical application publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2020.123187 contributor: fullname: Mobika – volume: 68 start-page: 355 year: 2016 ident: 10.1016/j.biopha.2021.111924_bib98 article-title: Scaffolds and cells for tissue regeneration: different scaffold pore sizes—different cell effects publication-title: Cytotechnology doi: 10.1007/s10616-015-9895-4 contributor: fullname: Bružauskaitė – volume: 374 start-page: 437 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib6 article-title: Progress in silk materials for integrated water treatments: fabrication, modification and applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.05.163 contributor: fullname: Gore – volume: 110 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib51 article-title: Impact of the magnetic field on 3T3-E1 preosteoblasts inside SMART silk fibroin-based scaffolds decorated with magnetic nanoparticles publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.110714 contributor: fullname: Tanasa – volume: 5 start-page: 12706 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib10 article-title: Molecular architecture of silk fibroin of Indian golden silkmoth, Antheraea assama publication-title: Sci. Rep. doi: 10.1038/srep12706 contributor: fullname: Gupta – volume: 109 start-page: 21 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib84 article-title: In situ biomineralization by silkworm feeding with ion precursors for the improved mechanical properties of silk fiber publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2017.12.029 contributor: fullname: Guo – volume: 5 start-page: 52 year: 2016 ident: 10.1016/j.biopha.2021.111924_bib87 article-title: Investigating the potential of combined growth factors delivery, from non-mulberry silk fibroin grafted poly(ɛ-caprolactone)/hydroxyapatite nanofibrous scaffold, in bone tissue engineering publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2016.09.007 contributor: fullname: Bhattacharjee – volume: 44 start-page: 4647 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib86 article-title: Biomimetic hydroxyapatite/silkfibre/methylcellulose composites for bone tissue engineering applications publication-title: New J. Chem. doi: 10.1039/C9NJ05592D contributor: fullname: Valarmathi – volume: 122 start-page: 113 year: 2016 ident: 10.1016/j.biopha.2021.111924_bib88 article-title: Direct modulus measurement of single composite nanofibers of silk fibroin/hydroxyapatite nanoparticles publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2015.11.019 contributor: fullname: Yang – volume: 33 start-page: 668 year: 2013 ident: 10.1016/j.biopha.2021.111924_bib117 article-title: Effect of the sterilization method on the properties of Bombyx mori silk fibroin films publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2012.10.016 contributor: fullname: George – volume: 25 start-page: 737 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib12 article-title: Spider silk for tissue engineering applications publication-title: Molecules doi: 10.3390/molecules25030737 contributor: fullname: Salehi – start-page: 207 year: 2011 ident: 10.1016/j.biopha.2021.111924_bib1 article-title: Silk biomaterials contributor: fullname: Hu – volume: 70 start-page: 736 year: 2017 ident: 10.1016/j.biopha.2021.111924_bib49 article-title: Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.09.039 contributor: fullname: Aliramaji – volume: 1 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib61 article-title: In vivo performance of hierarchical HRP-crosslinked silk fibroin/β-TCP scaffolds for osteochondral tissue regeneration publication-title: Regen. Med. Front. contributor: fullname: Ribeiro – volume: 467–468 start-page: 345 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib67 article-title: 3D-printed scaffolds of biomineralized hydroxyapatite nanocomposite on silk fibroin for improving bone regeneration publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.10.166 contributor: fullname: Huang – volume: 93 start-page: 87 year: 2016 ident: 10.1016/j.biopha.2021.111924_bib32 article-title: A novel chitosan-tussah silk fibroin/nano-hydroxyapatite composite bone scaffold platform with tunable mechanical strength in a wide range publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2016.08.062 contributor: fullname: Ran – volume: 62 start-page: 441 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib71 article-title: In vitro and in vivo evaluations of three-dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds publication-title: Biotechnol. Appl. Biochem. doi: 10.1002/bab.1285 contributor: fullname: Gholipourmalekabadi – volume: 92 start-page: 2885 year: 2007 ident: 10.1016/j.biopha.2021.111924_bib2 article-title: Protein secondary structure and orientation in silk as revealed by raman spectromicroscopy publication-title: Biophys. J. doi: 10.1529/biophysj.106.100339 contributor: fullname: Lefèvre – volume: 11 start-page: 3781 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib62 article-title: Enzymatically cross-linked silk fibroin-based hierarchical scaffolds for osteochondral regeneration publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b21259 contributor: fullname: Ribeiro – volume: 6 start-page: 51 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib133 article-title: Immunomodulatory biomaterials publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2018.02.005 contributor: fullname: Dziki – volume: 34 start-page: 5947 year: 2013 ident: 10.1016/j.biopha.2021.111924_bib91 article-title: Variation of the effect of calcium phosphate enhancement of implanted silk fibroin ligament bone integration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2013.04.046 contributor: fullname: Shi – volume: 17 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib34 article-title: Chondroprotective and osteogenic effects of silk-based bioinks in developing 3D bioprinted osteochondral interface publication-title: Bioprinting doi: 10.1016/j.bprint.2019.e00067 contributor: fullname: Moses – volume: 35 start-page: 401 year: 2014 ident: 10.1016/j.biopha.2021.111924_bib39 article-title: Bio-hybrid silk fibroin/calcium phosphate/PLGA nanocomposite scaffold to control the delivery of vascular endothelial growth factor publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2013.11.023 contributor: fullname: Farokhi – volume: 23 start-page: 711 year: 2012 ident: 10.1016/j.biopha.2021.111924_bib125 article-title: Injectable silk fibroin/polyurethane composite hydrogel for nucleus pulposus replacement publication-title: J. Mater. Sci. Mater. Med. doi: 10.1007/s10856-011-4533-y contributor: fullname: Hu – volume: 12 start-page: 227 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib38 article-title: Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: In vitro and in vivo assessment of biological performance publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.10.021 contributor: fullname: Yan – volume: 14 issue: 3 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib138 article-title: Silk fibroin hydrogels from the Colombian silkworm Bombyx mori L: Evaluation of physicochemical properties publication-title: PLoS One doi: 10.1371/journal.pone.0213303 contributor: fullname: Zuluaga-Vélez – volume: 127 start-page: 130 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib129 article-title: Recent advances on antimicrobial wound dressing: a review publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2018.02.022 contributor: fullname: Simões – volume: 2013 start-page: 38 year: 2013 ident: 10.1016/j.biopha.2021.111924_bib107 article-title: Hydrogel scaffolds for tissue engineering: progress and challenges publication-title: Glob. Cardiol. Sci. Pract. doi: 10.5339/gcsp.2013.38 contributor: fullname: El-Sherbiny – volume: 107 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib55 article-title: Theranostic nanozyme: silk fibroin based multifunctional nanocomposites to combat oxidative stress publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.110255 contributor: fullname: Passi – volume: 707 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib58 article-title: Engineered bioactive nanoparticles incorporated biofunctionalized ECM/silk proteins based cardiac patches combined with MSCs for the repair of myocardial infarction: in vitro and in vivo evaluations publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135976 contributor: fullname: Dong – start-page: 3 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib21 article-title: Chapter 1 – Fiber-reinforced nanocomposites: an introduction contributor: fullname: Nguyen – volume: 30 start-page: 1604 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib68 article-title: Genipin-crosslinked polyvinyl alcohol/silk fibroin/nano-hydroxyapatite hydrogel for fabrication of artificial cornea scaffolds—a novel approach to corneal tissue engineering publication-title: J. Biomater. Sci. Polym. Ed. doi: 10.1080/09205063.2019.1652418 contributor: fullname: Zhou – start-page: 1 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib109 article-title: Dynamic mechanical analysis in the analysis of polymers and rubbers contributor: fullname: Menard – volume: 9 start-page: 13656 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib11 article-title: Spidroins and silk fibers of aquatic spiders publication-title: Sci. Rep. doi: 10.1038/s41598-019-49587-y contributor: fullname: Correa-Garhwal – volume: 40 start-page: 324 year: 2014 ident: 10.1016/j.biopha.2021.111924_bib80 article-title: Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2014.04.012 contributor: fullname: Kim – volume: 169 start-page: 151 year: 2010 ident: 10.1016/j.biopha.2021.111924_bib66 article-title: Composite biocompatible hydroxyapatite–silk fibroin coatings for medical implants obtained by matrix assisted pulsed laser evaporation publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2009.10.004 contributor: fullname: Miroiu – volume: 91 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib94 article-title: In vitro and in vivo evaluation of silk fibroin-hardystonite-gentamicin nanofibrous scaffold for tissue engineering applications publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2020.106698 contributor: fullname: Hadisi – start-page: n71 year: 2021 ident: 10.1016/j.biopha.2021.111924_bib29 article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews publication-title: BMJ doi: 10.1136/bmj.n71 contributor: fullname: Page – volume: 63 start-page: 172 year: 2021 ident: 10.1016/j.biopha.2021.111924_bib83 article-title: Injectable silk/hydroxyapatite nanocomposite hydrogels with vascularization capacity for bone regeneration publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.02.030 contributor: fullname: Wang – volume: 31 start-page: 248 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib42 article-title: Incorporation of two‐dimensional nanomaterials into silk fibroin nanofibers for cardiac tissue engineering publication-title: Polym. Adv. Technol. doi: 10.1002/pat.4765 contributor: fullname: Nazari – volume: 62 start-page: 15 year: 2001 ident: 10.1016/j.biopha.2021.111924_bib113 article-title: β-sheet structure formation of proteins in solid state as revealed by circular dichroism spectroscopy publication-title: Biopolymers doi: 10.1002/1097-0282(2001)62:1<15::AID-BIP30>3.0.CO;2-J contributor: fullname: Hu – volume: 23 year: 2021 ident: 10.1016/j.biopha.2021.111924_bib127 article-title: Integrating biomaterials and genome editing approaches to advance biomedical science publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-122019-121602 contributor: fullname: Abdeen – volume: 472 start-page: 16 year: 2016 ident: 10.1016/j.biopha.2021.111924_bib65 article-title: Non-mulberry silk fibroin grafted poly (Є-caprolactone)/nano hydroxyapatite nanofibrous scaffold for dual growth factor delivery to promote bone regeneration publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2016.03.020 contributor: fullname: Bhattacharjee – volume: 19 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib90 article-title: Regional and sustained dual-release of growth factors from biomimetic tri-layered scaffolds for the repair of large-scale osteochondral defects publication-title: Appl. Mater. Today contributor: fullname: Dong – volume: 418 start-page: 197 year: 2012 ident: 10.1016/j.biopha.2021.111924_bib8 article-title: N-terminal domain of bombyx mori fibroin mediates the assembly of silk in response to pH decrease publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2012.02.040 contributor: fullname: He – volume: 62 start-page: 919 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib17 article-title: Progress in modification of silk fibroin fiber publication-title: Sci. China Technol. Sci. doi: 10.1007/s11431-018-9508-3 contributor: fullname: Liu – volume: 51 start-page: 287 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib75 article-title: Silk fibroin/sodium alginate fibrous hydrogels regulated hydroxyapatite crystal growth publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2015.03.014 contributor: fullname: Ming – volume: 38 start-page: 99 year: 2018 ident: 10.1016/j.biopha.2021.111924_bib48 article-title: Evaluation of bioactivity and biocompatibility of silk fibroin/TiO2 nanocomposite publication-title: J. Med. Biol. Eng. doi: 10.1007/s40846-017-0295-4 contributor: fullname: Johari – volume: 114 year: 2020 ident: 10.1016/j.biopha.2021.111924_bib22 article-title: Advanced hybrid nanomaterials for biomedical applications publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2020.100686 contributor: fullname: Park – volume: 22 start-page: 1499 year: 2021 ident: 10.1016/j.biopha.2021.111924_bib23 article-title: Silk fibroin as a functional biomaterial for tissue engineering publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms22031499 contributor: fullname: Sun – volume: 4 start-page: 518 year: 2005 ident: 10.1016/j.biopha.2021.111924_bib104 article-title: Porous scaffold design for tissue engineering publication-title: Nat. Mater. doi: 10.1038/nmat1421 contributor: fullname: Hollister – volume: 69 start-page: 1578 year: 2011 ident: 10.1016/j.biopha.2021.111924_bib85 article-title: Development of nano-hydroxyapatite graft with silk fibroin scaffold as a new bone substitute publication-title: J. Oral Maxillofac. Surg. doi: 10.1016/j.joms.2010.07.062 contributor: fullname: Kweon – volume: 5 start-page: 76526 year: 2015 ident: 10.1016/j.biopha.2021.111924_bib30 article-title: Comparisons between gelatin-tussah silk fibroin/hydroxyapatite and gelatin-Bombyx mori silk fibroin/hydroxyapatite nano-composites for bone tissue engineering publication-title: RSC Adv. doi: 10.1039/C5RA14279B contributor: fullname: Ran – volume: 136 start-page: 1247 year: 2019 ident: 10.1016/j.biopha.2021.111924_bib96 article-title: Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.06.172 contributor: fullname: Zhang – volume: 12 start-page: 5403 year: 2012 ident: 10.1016/j.biopha.2021.111924_bib59 article-title: Nanocomposite gold-silk nanofibers publication-title: Nano Lett. doi: 10.1021/nl302810c contributor: fullname: Cohen-Karni – volume: 13 start-page: 231 year: 2017 ident: 10.1016/j.biopha.2021.111924_bib44 article-title: Antibacterial silk fibroin/nanohydroxyapatite hydrogels with silver and gold nanoparticles for bone regeneration publication-title: Nanomed. Nanotechnol. Biol. Med. doi: 10.1016/j.nano.2016.08.026 contributor: fullname: Ribeiro – start-page: 187 year: 2011 ident: 10.1016/j.biopha.2021.111924_bib114 article-title: Protein structure determination by solid-state NMR publication-title: Top. Curr. Chem. doi: 10.1007/128_2011_287 contributor: fullname: Zhao |
SSID | ssj0005638 |
Score | 2.5073686 |
SecondaryResourceType | review_article |
Snippet | Silk fibroin is a protein with intrinsic characteristics that make it a good candidate as a scaffold for tissue engineering. Recent works have enhanced its... |
SourceID | doaj proquest crossref pubmed elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 111924 |
SubjectTerms | Animals Anti-Infective Agents - administration & dosage Anti-Infective Agents - chemical synthesis Biocompatible Materials - administration & dosage Biocompatible Materials - chemical synthesis Cell Proliferation - drug effects Cell Proliferation - physiology Fibroins - administration & dosage Fibroins - chemical synthesis Humans Immunologic Factors - administration & dosage Immunologic Factors - chemical synthesis Nanocomposite Nanocomposites - administration & dosage Nanocomposites - chemistry Neovascularization, Physiologic - drug effects Neovascularization, Physiologic - physiology Regenerative medicine Silk fibroin Tissue engineering Tissue Engineering - methods Tissue scaffold Tissue Scaffolds - chemistry |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhh9JLadLXtmlRoeQUdy1b1uOYhoZQSAlsAnsTkiUVt8EO8eaQS-h_6D_ML-mMZWe7h1Lo0UJYsr7xPJiZT4R8KLm1LPqQRQHuG2fFkCSEqNVbVkvLRK6xOfn0qzi54F-W1XKLHE29MFhWOer-pNMHbT2OzMfTnF81zXwBxq4sMVGAif5cLLGDHcwfyPTHuz_KPMRwmzVOznD21D431Hi5pkNSpgIMHeoOXfAN8zSw-G9Yqb95oYM1On5KnoxuJD1MO90hW6HdJY9Ox0T5Ltk_S5TUtwf0fN1h1R_QfXq2Jqu-fUYWi-byB40QNHdNS1vbdlhkjpVcoae2p6sBGBrWtIW0r22M3aXv6f3PX_SQrsmgaWqEeU4ujj-fH51k40ULWc0lX2VSQNCBpxlVyEvtKyZsZb2SgbtCilgw7qrCcukqp62rWV2hTfNMRBmcj-ULst12bXhFKPe1LmqlVbScWxkhQKp0ZEqFKijn2Yxk0_maq8SnYaZCs-8m4WEQD5PwmJFPCMLDXGTDHga6629mFAdTBq4BaJvnruSeReV58BwipSK34ODoGZEThGZDuOBVzT-Wfz8hbuC_w2SKbUN30xsIxSR4o0rDJ71MovCwSWzWVbkuX__3um_IY3xKxWx7ZHt1fRPegvezcu8G8f4NP40BrA priority: 102 providerName: Elsevier |
Title | Silk fibroin nanocomposites as tissue engineering scaffolds – A systematic review |
URI | https://dx.doi.org/10.1016/j.biopha.2021.111924 https://www.ncbi.nlm.nih.gov/pubmed/34328093 https://search.proquest.com/docview/2557232891 https://doaj.org/article/3e49056a00b34d1f8d4ed497420a2019 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BkRAXBOVr-VgZCfXUQBw7sX1cKqoF1KVSW2nFxbJjW1qokqrZHnpB_Af-Ib-EcZx06QH1wjFRlEzmTTJv5JlngDeMG0OD81mokL5xWvSLhFi1OkNrYWiVqzicfLCo5if807Jc_rXVV-wJS_LAyXHvmOcKk7TJc8u4o0E67h1HFlzkBpNXGt3L1VhMjc0dVb-HNeZDljGM2XForu_ssqs2SjFh2U_jH0MV_FpS6rX7r-Wmf3HPPgftP4D7A3kks2T0Q7jlm224ezAsj2_DzmESor7cJcebuapul-yQw41E9eUjODpanX4nAUvldtWQxjRtbC2P_Vu-I6Yj6x4O4jdihaSrTQjtqevI75-_yIxsJKBJGn95DCf7H4735tmwvUJWc8HXmaiw1EAHsSB9zpQraWVK46Tw3BaiCgXltiwMF7a0ytia1mXMZI5WQXjrAnsCW03b-GdAuKtVUUslg-HciIBlUakCldKXXlpHJ5CN_tVnSUVDj-1l33TCQ0c8dMJjAu8jCFfXRg3s_gRGhh4iQ98UGRMQI4R6oBOJJuCtVjc8_vWIuMavLS6hmMa3F53GAkwgB5UKX-lpCoUrI-OIrswVe_4_jH8B96JBqZvtJWytzy_8K6Q_azuF229_0CncmX38PF9M-7jHo8Xe8svXP0nUA7s |
link.rule.ids | 315,783,787,867,2109,4509,24128,27936,27937,45597,45691 |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBZpAm0vJU3_tk1bFUpOMWvZsiUdNyFh02SXwG5gb0KypOA22CHeHHLrO_QN-yQdWXbMHkqhV1m2ZH0jzQwz8wmhrylVijhjI5eD-UZJ0gYJwWs1ihRMkTwWvjh5Ns-nV_TbKlttoeO-FsanVXZnfzjT29O6axl3qzm-LcvxApRdmvpAgQ_0x_nqCdoBa0DA7tyZnJ1P50OmR95eaO37R_6FvoKuTfPSZe15mRLQdf74EAnd0FAtkf-GovqbIdoqpNNd9KKzJPEkTPYl2rLVHno662Lle-jgMrBSPxzi5VBk1RziA3w58FU_vEKLRXnzAzvwm-uywpWqap9n7pO5bINVg9ctNtgOzIW4KZRz9Y1p8O-fv_AED3zQONTCvEZXpyfL42nU3bUQFZTRdcRy8Dv8gjpu41SYjOQqU4YzS3XCcpcQqrNEUaYzLZQuSJF5tWZI7pjVxqVv0HZVV_YdwtQUIim44E5RqpgDHykTjnBuM8u1ISMU9esrbwOlhuxzzb7LgIf0eMiAxwgdeRAe-3pC7LahvruWnUTI1FIBQKs41ik1xHFDraHgLCWxAhtHjBDrIZQb8gWfKv8x_JcecQlbz8dTVGXr-0aCN8bAIOUCfultEIXHSfp6XR6L9P1_j_sZPZsuZxfy4mx-_gE9909Cbts-2l7f3duPYAyt9adO2P8AN8kF7g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Silk+fibroin+nanocomposites+as+tissue+engineering+scaffolds+-+A+systematic+review&rft.jtitle=Biomedicine+%26+pharmacotherapy&rft.au=Zuluaga-V%C3%A9lez%2C+Augusto&rft.au=Quintero-Martinez%2C+Adri%C3%A1n&rft.au=Orozco%2C+Lina+M&rft.au=Sep%C3%BAlveda-Arias%2C+Juan+C&rft.date=2021-09-01&rft.eissn=1950-6007&rft.volume=141&rft.spage=111924&rft.epage=111924&rft_id=info:doi/10.1016%2Fj.biopha.2021.111924&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0753-3322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0753-3322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0753-3322&client=summon |