Flavor-dependent Neutrino Angular Distribution in Core-collapse Supernovae

According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron lepton number carried by neutrinos. To facilitat...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 839; no. 2; pp. 132 - 141
Main Authors Tamborra, Irene, Hüdepohl, Lorenz, Raffelt, Georg G., Janka, Hans-Thomas
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 20.04.2017
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron lepton number carried by neutrinos. To facilitate further investigations of this subject, we study the energy and angle distributions of the neutrino radiation field computed with the Vertex neutrino-transport code for several spherically symmetric (1D) supernova simulations (of progenitor masses 11.2, 15, and 25 M ) and explain how to extract this information from additional models of the Garching group. Beginning in the decoupling region ("neutrino sphere"), the distributions are more and more forward peaked in the radial direction with an angular spread that is largest for e, smaller for , and smallest for x, where x = or τ. While the energy-integrated e minus angle distribution has a dip in the forward direction, it does not turn negative in any of our investigated cases.
AbstractList According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron lepton number carried by neutrinos. To facilitate further investigations of this subject, we study the energy and angle distributions of the neutrino radiation field computed with the Vertex neutrino-transport code for several spherically symmetric (1D) supernova simulations (of progenitor masses 11.2, 15, and 25 M ⊙ ) and explain how to extract this information from additional models of the Garching group. Beginning in the decoupling region (“neutrino sphere”), the distributions are more and more forward peaked in the radial direction with an angular spread that is largest for ν e , smaller for , and smallest for ν x , where x  =  μ or τ . While the energy-integrated ν e minus angle distribution has a dip in the forward direction, it does not turn negative in any of our investigated cases.
According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron lepton number carried by neutrinos. To facilitate further investigations of this subject, we study the energy and angle distributions of the neutrino radiation field computed with the Vertex neutrino-transport code for several spherically symmetric (1D) supernova simulations (of progenitor masses 11.2, 15, and 25 M {sub ⊙}) and explain how to extract this information from additional models of the Garching group. Beginning in the decoupling region (“neutrino sphere”), the distributions are more and more forward peaked in the radial direction with an angular spread that is largest for ν {sub e}, smaller for ν-bar {sub e}, and smallest for ν {sub x}, where x = μ or τ. While the energy-integrated ν {sub e} minus ν-bar {sub e} angle distribution has a dip in the forward direction, it does not turn negative in any of our investigated cases.
According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron lepton number carried by neutrinos. To facilitate further investigations of this subject, we study the energy and angle distributions of the neutrino radiation field computed with the Vertex neutrino-transport code for several spherically symmetric (1D) supernova simulations (of progenitor masses 11.2, 15, and 25 M ⊙) and explain how to extract this information from additional models of the Garching group. Beginning in the decoupling region (“neutrino sphere”), the distributions are more and more forward peaked in the radial direction with an angular spread that is largest for ν e , smaller for \({\bar{\nu }}_{e}\), and smallest for ν x , where x = μ or τ. While the energy-integrated ν e minus \({\bar{\nu }}_{e}\) angle distribution has a dip in the forward direction, it does not turn negative in any of our investigated cases.
According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron lepton number carried by neutrinos. To facilitate further investigations of this subject, we study the energy and angle distributions of the neutrino radiation field computed with the Vertex neutrino-transport code for several spherically symmetric (1D) supernova simulations (of progenitor masses 11.2, 15, and 25 M ) and explain how to extract this information from additional models of the Garching group. Beginning in the decoupling region ("neutrino sphere"), the distributions are more and more forward peaked in the radial direction with an angular spread that is largest for e, smaller for , and smallest for x, where x = or τ. While the energy-integrated e minus angle distribution has a dip in the forward direction, it does not turn negative in any of our investigated cases.
Author Raffelt, Georg G.
Tamborra, Irene
Janka, Hans-Thomas
Hüdepohl, Lorenz
Author_xml – sequence: 1
  givenname: Irene
  orcidid: 0000-0001-7449-104X
  surname: Tamborra
  fullname: Tamborra, Irene
  organization: Niels Bohr International Academy , Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark
– sequence: 2
  givenname: Lorenz
  surname: Hüdepohl
  fullname: Hüdepohl, Lorenz
  organization: Max Planck Computing and Data Facility (MPCDF) , Gießenbachstr. 2, Garching, Germany
– sequence: 3
  givenname: Georg G.
  surname: Raffelt
  fullname: Raffelt, Georg G.
  organization: Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) , Föhringer Ring 6, München, Germany
– sequence: 4
  givenname: Hans-Thomas
  orcidid: 0000-0002-0831-3330
  surname: Janka
  fullname: Janka, Hans-Thomas
  organization: Max-Planck-Institut für Astrophysik , Karl-Schwarzschild-Str. 1, Garching, Germany
BackLink https://www.osti.gov/biblio/22872766$$D View this record in Osti.gov
BookMark eNp9kEtL5UAQhRtR8OrM3mVA3Jkx_Ug_lnId54GMCxVm11SSivYldsfujjD_3oQrCoMzq6KK7xxOnQOy64NHQo5o9YVroc5ozXUpeK3OACRQvUNWb6ddsqqqSpSSq9_75CClzbIyY1bk5-UAzyGWHY7oO_S5-IVTjs6H4tzfTwPE4sKl-dBM2QVfOF-sQ8SyDcMAY8LiZhox-vAM-Ins9TAk_Pw6D8nd5dfb9ffy6vrbj_X5VdkKJXKpBK0FZbTXXNcCEHrTYydbLUA1VLDaGOgVmkarqpGcGdkYI0yvNQPRYcUPyfHWN6TsbGpdxvahDd5jmy1jWjEl5Ts1xvA0Ycp2E6bo52CWcVlrqeqazZTcUm0MKUXs7WwHy6c5ghssrezSrl2qtEuVdtvuLKz-Eo7RPUL88z_JyVbiwvgeBsaN1dxYZilnduz6mTv9gPun7QtNcJid
CitedBy_id crossref_primary_10_1103_PhysRevD_107_123024
crossref_primary_10_1103_PhysRevD_108_083040
crossref_primary_10_1088_1475_7516_2024_02_038
crossref_primary_10_1103_PhysRevD_108_123024
crossref_primary_10_1088_1475_7516_2024_09_021
crossref_primary_10_1103_PhysRevD_104_023011
crossref_primary_10_1103_PhysRevD_101_023018
crossref_primary_10_1146_annurev_nucl_102920_050505
crossref_primary_10_1007_s11214_018_0468_7
crossref_primary_10_1103_PhysRevD_109_023012
crossref_primary_10_1088_1475_7516_2018_05_066
crossref_primary_10_1103_PhysRevD_106_083005
crossref_primary_10_1103_PhysRevD_98_123001
crossref_primary_10_3847_1538_4357_abd54e
crossref_primary_10_1088_1475_7516_2019_09_002
crossref_primary_10_1103_PhysRevD_103_063033
crossref_primary_10_1103_PhysRevD_102_103017
crossref_primary_10_3390_universe10060238
crossref_primary_10_1103_PhysRevD_103_123025
crossref_primary_10_1103_PhysRevD_109_103017
crossref_primary_10_1103_PhysRevD_109_103011
crossref_primary_10_1103_PhysRevLett_133_121002
crossref_primary_10_1103_PhysRevLett_128_121102
crossref_primary_10_1016_j_physletb_2019_135088
crossref_primary_10_1103_PhysRevD_108_063003
crossref_primary_10_3390_universe8020094
crossref_primary_10_1088_1475_7516_2018_04_057
crossref_primary_10_1103_PhysRevD_107_063025
crossref_primary_10_1103_PhysRevD_98_103001
crossref_primary_10_1088_1475_7516_2025_03_052
crossref_primary_10_1103_PhysRevD_98_043016
crossref_primary_10_1103_PhysRevD_103_083013
crossref_primary_10_1103_PhysRevResearch_2_012046
crossref_primary_10_1088_1475_7516_2020_01_010
crossref_primary_10_1007_JHEP11_2020_135
crossref_primary_10_1103_PhysRevD_107_083016
crossref_primary_10_1103_PhysRevD_99_123014
crossref_primary_10_1103_PhysRevD_103_123012
crossref_primary_10_1007_JHEP12_2024_169
crossref_primary_10_1088_1475_7516_2024_11_060
crossref_primary_10_1088_1361_6471_aaa90a
crossref_primary_10_3103_S002713492470098X
crossref_primary_10_3847_2041_8213_ab775b
crossref_primary_10_1103_PhysRevD_108_043006
crossref_primary_10_1103_PhysRevD_109_123008
crossref_primary_10_1103_PhysRevLett_126_071102
crossref_primary_10_1103_PhysRevLett_122_091101
crossref_primary_10_1007_s41115_020_00010_8
crossref_primary_10_3847_1538_4357_ab4cf2
crossref_primary_10_1103_PhysRevD_101_043009
crossref_primary_10_1103_PhysRevD_96_043016
crossref_primary_10_1088_1475_7516_2021_01_014
crossref_primary_10_1093_mnras_sty2578
crossref_primary_10_1103_PhysRevD_102_063018
crossref_primary_10_1103_PhysRevD_103_123008
crossref_primary_10_3847_1538_4357_ad6c42
crossref_primary_10_1103_PhysRevD_104_083025
crossref_primary_10_1103_PhysRevD_100_063018
crossref_primary_10_1103_PhysRevD_100_043004
crossref_primary_10_1103_PhysRevD_107_103034
crossref_primary_10_1103_PhysRevD_103_063013
crossref_primary_10_1103_PhysRevD_105_083024
crossref_primary_10_1103_PhysRevD_108_103032
crossref_primary_10_3847_1538_4357_ab4bcc
crossref_primary_10_1103_PhysRevD_104_103023
crossref_primary_10_1103_PhysRevD_106_123013
crossref_primary_10_1103_PhysRevD_106_103029
crossref_primary_10_3847_1538_4357_ab38ba
crossref_primary_10_1103_PhysRevD_109_103009
crossref_primary_10_1103_PhysRevD_97_043011
crossref_primary_10_1103_PhysRevD_108_023006
crossref_primary_10_1088_1475_7516_2018_08_010
crossref_primary_10_1103_PhysRevD_97_023024
crossref_primary_10_3847_1538_4357_aaaec7
crossref_primary_10_1088_1475_7516_2020_06_048
crossref_primary_10_1103_PhysRevD_110_015007
crossref_primary_10_3847_1538_4357_ac88cd
crossref_primary_10_1103_PhysRevD_101_063001
crossref_primary_10_1103_RevModPhys_96_025004
crossref_primary_10_1103_PhysRevD_101_043016
crossref_primary_10_3847_1538_4365_ac2aa4
crossref_primary_10_1103_PhysRevD_96_123015
crossref_primary_10_1103_PhysRevD_97_023019
crossref_primary_10_1103_PhysRevLett_126_061302
crossref_primary_10_1016_j_physletb_2019_02_002
crossref_primary_10_1103_PhysRevD_103_063002
crossref_primary_10_1103_PhysRevD_105_023020
crossref_primary_10_1103_PhysRevD_106_043031
Cites_doi 10.1086/192237
10.1146/annurev-nucl-102711-094901
10.1086/375130
10.1393/ncr/i2016-10120-8
10.1103/PhysRevLett.116.081101
10.1103/PhysRevD.90.045032
10.1051/0004-6361:20052840
10.1088/1475-7516/2017/02/019
10.1146/annurev-nucl-102115-044747
10.1088/0004-637X/786/2/83
10.1086/368015
10.1086/375701
10.1146/annurev-nucl-102711-095006
10.1088/0004-637X/792/2/96
10.1088/2041-8205/807/2/L31
10.1051/0004-6361:20053783
10.1051/0004-6361:20021398
10.1086/591440
10.1103/PhysRevLett.90.241102
10.1103/PhysRevLett.108.261104
10.1051/0004-6361/201117611
10.1103/RevModPhys.74.1015
10.1103/RevModPhys.85.245
10.1086/427203
10.1103/PhysRevD.85.113007
10.1103/PhysRevLett.108.231102
10.1103/PhysRevD.74.105014
10.1088/2041-8205/808/2/L42
10.1016/0375-9474(91)90452-C
10.1103/PhysRevLett.104.251101
10.1103/PhysRevD.79.105003
10.1103/PhysRevD.86.125031
10.1146/annurev.nucl.012809.104524
10.1103/PhysRevLett.118.021101
10.1088/0004-637X/728/1/8
10.1016/j.nuclphysb.2016.02.012
10.1088/0067-0049/189/1/104
10.1051/0004-6361:20020563
10.1086/323379
10.1088/2041-8205/801/2/L24
10.1088/0067-0049/216/1/5
10.1093/ptep/pts067
10.3847/0004-637X/831/1/98
10.1103/PhysRevD.72.045003
10.1103/PhysRevLett.108.061101
10.1088/1475-7516/2016/03/042
10.1103/PhysRevLett.100.011101
ContentType Journal Article
Copyright 2017. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Apr 20, 2017
Copyright_xml – notice: 2017. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Apr 20, 2017
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OTOTI
DOI 10.3847/1538-4357/aa6a18
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList CrossRef

Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Flavor-dependent Neutrino Angular Distribution in Core-collapse Supernovae
EISSN 1538-4357
ExternalDocumentID 22872766
10_3847_1538_4357_aa6a18
apjaa6a18
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AALHV
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ABPTK
OTOTI
ID FETCH-LOGICAL-c474t-74154121f83854aeaf9fed6c84a7b142599af7e9b870b63296b9949f882a4de03
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Fri May 19 01:45:08 EDT 2023
Wed Aug 13 03:17:55 EDT 2025
Tue Jul 01 04:08:57 EDT 2025
Thu Apr 24 23:13:49 EDT 2025
Wed Aug 21 03:33:08 EDT 2024
Thu Jan 07 13:53:42 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-74154121f83854aeaf9fed6c84a7b142599af7e9b870b63296b9949f882a4de03
Notes AAS04351
High-Energy Phenomena and Fundamental Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7449-104X
0000-0002-0831-3330
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/aa6a18/pdf
PQID 2365867552
PQPubID 4562441
PageCount 10
ParticipantIDs proquest_journals_2365867552
crossref_primary_10_3847_1538_4357_aa6a18
iop_journals_10_3847_1538_4357_aa6a18
osti_scitechconnect_22872766
crossref_citationtrail_10_3847_1538_4357_aa6a18
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-04-20
PublicationDateYYYYMMDD 2017-04-20
PublicationDate_xml – month: 04
  year: 2017
  text: 2017-04-20
  day: 20
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
– name: United States
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2017
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Nagakura (apjaa6a18bib31) 2017
Tamborra (apjaa6a18bib44) 2014a; 792
Lattimer (apjaa6a18bib21) 1991; 535
Scholberg (apjaa6a18bib41) 2012; 62
Dasgupta (apjaa6a18bib8) 2017; 1702
Takiwaki (apjaa6a18bib43) 2014; 786
Hüdepohl (apjaa6a18bib12) 2013
Sawyer (apjaa6a18bib38) 2005; 72
Wu (apjaa6a18bib50) 2017
Buras (apjaa6a18bib3) 2006; 447
Tamborra (apjaa6a18bib46) 2014b; 90
Janka (apjaa6a18bib17) 2016; 66
Cherry (apjaa6a18bib7) 2012; 108
Ott (apjaa6a18bib32) 2008; 685
Dimmelmeier (apjaa6a18bib9) 2002; 388
Müller (apjaa6a18bib30) 2012; 537
Woosley (apjaa6a18bib49) 1995; 101
Hüdepohl (apjaa6a18bib13) 2010; 104
Rampp (apjaa6a18bib34) 2002; 396
Langanke (apjaa6a18bib20) 2003; 90
Burrows (apjaa6a18bib4) 2013; 85
Sawyer (apjaa6a18bib40) 2016; 116
Janka (apjaa6a18bib16) 2012; 2012
Melson (apjaa6a18bib26) 2015b; 801
Sawyer (apjaa6a18bib39) 2009; 79
Lentz (apjaa6a18bib22) 2015; 807
Müller (apjaa6a18bib29) 2010; 189
Mirizzi (apjaa6a18bib27) 2012; 108
Buras (apjaa6a18bib2) 2003; 587
Langanke (apjaa6a18bib19) 2008; 100
Sumiyoshi (apjaa6a18bib42) 2015; 216
Sarikas (apjaa6a18bib36) 2012a; 108
Liebendörfer (apjaa6a18bib23) 2005; 620
Chakraborty (apjaa6a18bib5) 2016a; 908
Roberts (apjaa6a18bib35) 2016; 831
Tamborra (apjaa6a18bib45) 2012; 86
Keil (apjaa6a18bib18) 2003; 590
Duan (apjaa6a18bib11) 2010; 60
Marek (apjaa6a18bib24) 2006; 445
Melson (apjaa6a18bib25) 2015a; 808
Raffelt (apjaa6a18bib33) 2001; 561
Izaguirre (apjaa6a18bib14) 2017; 118
Thompson (apjaa6a18bib47) 2003; 592
Woosley (apjaa6a18bib48) 2002; 74
Janka (apjaa6a18bib15) 2012; 62
Chakraborty (apjaa6a18bib6) 2016b; 1603
Mirizzi (apjaa6a18bib28) 2016; 39
Duan (apjaa6a18bib10) 2006; 74
Sarikas (apjaa6a18bib37) 2012b; 85
Brandt (apjaa6a18bib1) 2011; 728
References_xml – volume: 101
  start-page: 181
  year: 1995
  ident: apjaa6a18bib49
  publication-title: ApJS
  doi: 10.1086/192237
– volume: 62
  start-page: 407
  year: 2012
  ident: apjaa6a18bib15
  publication-title: ARNPS
  doi: 10.1146/annurev-nucl-102711-094901
– volume: 590
  start-page: 971
  year: 2003
  ident: apjaa6a18bib18
  publication-title: ApJ
  doi: 10.1086/375130
– volume: 39
  start-page: 1
  year: 2016
  ident: apjaa6a18bib28
  publication-title: NCimR
  doi: 10.1393/ncr/i2016-10120-8
– volume: 116
  start-page: 081101
  year: 2016
  ident: apjaa6a18bib40
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.116.081101
– volume: 90
  year: 2014b
  ident: apjaa6a18bib46
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.90.045032
– volume: 445
  start-page: 273
  year: 2006
  ident: apjaa6a18bib24
  publication-title: A&A
  doi: 10.1051/0004-6361:20052840
– volume: 1702
  start-page: 019
  year: 2017
  ident: apjaa6a18bib8
  publication-title: JCAP
  doi: 10.1088/1475-7516/2017/02/019
– volume: 66
  start-page: 341
  year: 2016
  ident: apjaa6a18bib17
  publication-title: ARNPS
  doi: 10.1146/annurev-nucl-102115-044747
– year: 2017
  ident: apjaa6a18bib50
– volume: 786
  start-page: 83
  year: 2014
  ident: apjaa6a18bib43
  publication-title: ApJ
  doi: 10.1088/0004-637X/786/2/83
– volume: 587
  start-page: 320
  year: 2003
  ident: apjaa6a18bib2
  publication-title: ApJ
  doi: 10.1086/368015
– volume: 592
  start-page: 434
  year: 2003
  ident: apjaa6a18bib47
  publication-title: ApJ
  doi: 10.1086/375701
– volume: 62
  start-page: 81
  year: 2012
  ident: apjaa6a18bib41
  publication-title: ARNPS
  doi: 10.1146/annurev-nucl-102711-095006
– volume: 792
  start-page: 96
  year: 2014a
  ident: apjaa6a18bib44
  publication-title: ApJ
  doi: 10.1088/0004-637X/792/2/96
– volume: 807
  start-page: L31
  year: 2015
  ident: apjaa6a18bib22
  publication-title: ApJL
  doi: 10.1088/2041-8205/807/2/L31
– year: 2013
  ident: apjaa6a18bib12
– volume: 447
  start-page: 1049
  year: 2006
  ident: apjaa6a18bib3
  publication-title: A&A
  doi: 10.1051/0004-6361:20053783
– volume: 396
  start-page: 361
  year: 2002
  ident: apjaa6a18bib34
  publication-title: A&A
  doi: 10.1051/0004-6361:20021398
– volume: 685
  start-page: 1069
  year: 2008
  ident: apjaa6a18bib32
  publication-title: ApJ
  doi: 10.1086/591440
– volume: 90
  year: 2003
  ident: apjaa6a18bib20
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.90.241102
– volume: 108
  start-page: 261104
  year: 2012
  ident: apjaa6a18bib7
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.108.261104
– volume: 537
  start-page: A63
  year: 2012
  ident: apjaa6a18bib30
  publication-title: A&A
  doi: 10.1051/0004-6361/201117611
– volume: 74
  start-page: 1015
  year: 2002
  ident: apjaa6a18bib48
  publication-title: RvMP
  doi: 10.1103/RevModPhys.74.1015
– volume: 85
  start-page: 245
  year: 2013
  ident: apjaa6a18bib4
  publication-title: RvMP
  doi: 10.1103/RevModPhys.85.245
– volume: 620
  start-page: 840
  year: 2005
  ident: apjaa6a18bib23
  publication-title: ApJ
  doi: 10.1086/427203
– volume: 85
  year: 2012b
  ident: apjaa6a18bib37
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.85.113007
– volume: 108
  year: 2012
  ident: apjaa6a18bib27
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.108.231102
– volume: 74
  start-page: 105014
  year: 2006
  ident: apjaa6a18bib10
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.74.105014
– volume: 808
  start-page: L42
  year: 2015a
  ident: apjaa6a18bib25
  publication-title: ApJL
  doi: 10.1088/2041-8205/808/2/L42
– volume: 535
  start-page: 331
  year: 1991
  ident: apjaa6a18bib21
  publication-title: NuPhA
  doi: 10.1016/0375-9474(91)90452-C
– volume: 104
  year: 2010
  ident: apjaa6a18bib13
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.104.251101
– volume: 79
  start-page: 105003
  year: 2009
  ident: apjaa6a18bib39
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.79.105003
– year: 2017
  ident: apjaa6a18bib31
– volume: 86
  year: 2012
  ident: apjaa6a18bib45
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.86.125031
– volume: 60
  start-page: 569
  year: 2010
  ident: apjaa6a18bib11
  publication-title: ARNPS
  doi: 10.1146/annurev.nucl.012809.104524
– volume: 118
  start-page: 021101
  year: 2017
  ident: apjaa6a18bib14
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.118.021101
– volume: 728
  start-page: 8
  year: 2011
  ident: apjaa6a18bib1
  publication-title: ApJ
  doi: 10.1088/0004-637X/728/1/8
– volume: 908
  start-page: 366
  year: 2016a
  ident: apjaa6a18bib5
  publication-title: NuPhB
  doi: 10.1016/j.nuclphysb.2016.02.012
– volume: 189
  start-page: 104
  year: 2010
  ident: apjaa6a18bib29
  publication-title: ApJS
  doi: 10.1088/0067-0049/189/1/104
– volume: 388
  start-page: 917
  year: 2002
  ident: apjaa6a18bib9
  publication-title: A&A
  doi: 10.1051/0004-6361:20020563
– volume: 561
  start-page: 890
  year: 2001
  ident: apjaa6a18bib33
  publication-title: ApJ
  doi: 10.1086/323379
– volume: 801
  start-page: L24
  year: 2015b
  ident: apjaa6a18bib26
  publication-title: ApJL
  doi: 10.1088/2041-8205/801/2/L24
– volume: 216
  start-page: 5
  year: 2015
  ident: apjaa6a18bib42
  publication-title: ApJS
  doi: 10.1088/0067-0049/216/1/5
– volume: 2012
  start-page: 01A309
  year: 2012
  ident: apjaa6a18bib16
  publication-title: PTEP
  doi: 10.1093/ptep/pts067
– volume: 831
  start-page: 98
  year: 2016
  ident: apjaa6a18bib35
  publication-title: ApJ
  doi: 10.3847/0004-637X/831/1/98
– volume: 72
  start-page: 045003
  year: 2005
  ident: apjaa6a18bib38
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.72.045003
– volume: 108
  year: 2012a
  ident: apjaa6a18bib36
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.108.061101
– volume: 1603
  start-page: 042
  year: 2016b
  ident: apjaa6a18bib6
  publication-title: JCAP
  doi: 10.1088/1475-7516/2016/03/042
– volume: 100
  year: 2008
  ident: apjaa6a18bib19
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.100.011101
SSID ssj0004299
Score 2.574347
Snippet According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 132
SubjectTerms ANGULAR DISTRIBUTION
Astrophysics
ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
Computer simulation
COMPUTERIZED SIMULATION
Decoupling
ELECTRONS
Flavor (particle physics)
FLAVOR MODEL
HYDRODYNAMICS
LEPTON NUMBER
Leptons
MASS
NEUTRINOS
Radiation
Stellar evolution
Supernova
SUPERNOVAE
supernovae: general
SYMMETRY
Title Flavor-dependent Neutrino Angular Distribution in Core-collapse Supernovae
URI https://iopscience.iop.org/article/10.3847/1538-4357/aa6a18
https://www.proquest.com/docview/2365867552
https://www.osti.gov/biblio/22872766
Volume 839
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA_bRPDFj6ns6hx5UMGH3NubpGmDT5e5yxi4DXR4H4SQNieg29rS2yvoX-9J07uxKUN8KYGetsnJ-fidNDmHkNdeIsxILcYmygGTqVMs99IzAcBBK-6gDxQ_HqvDM3m0SBcb5P3VWZi6GUz_GJsxUXBkYdBvgbZ00usoevlsYq2y03yT3BM5Os5weu_k9PpQJNcD9pVMiWwR_1H-9Q03fNImfhftc40a9od97p3O_BH5uu5u3GtyPl51xbj8dSuT43-O5zF5OIBROoukT8gGVNtkZ7YMy-P15U_6lvbtuPqx3Cb3T2PrKTmaX9gfdcvWNXQ7egwhr39V01kVqtu39ENIyTtU06LfKrpft8B6sWuWQD-tGmhDQVZ4Rs7mB5_3D9lQloGVMpMdCxhETvnU5yJPpQXrtQenylzaLCwppVpbn4Eu0BQUSnCtCq2l9ojlrXSQiOdkq6or2CFUWi5VojNX2kImOPocHCiRcO2SacH1iEzWE2PKIWd5KJ1xYTB2CcwzgXkmMM9E5o3Iu6snmpiv4w7aNzgnZlDa5R10ezfobPPdIK403GAobxrnR2Q3iIvBmQ6Zd8uwRansDMdolGdK4e21GF2_hAvEfhitpfzFP3bjJXnAA6ZAeebJLtnq2hW8QkTUFXu95OP1RHz5DT0aAr0
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RIhAXBAXUpaX4AEgczGZtx4mPq5ZVKbBUgoq9WU48lopKEmXTSvx7xkmWqgJV3CzFcazxfLyx43kAr4IimJE6yk20R65Sr3keVOASUaDRwmOfKH5e6uMzdbJKVyPPaX8Xpm5G1_-OmkOh4EGE0b4l-dJpb6MU5bOpc9rN8mnjwxbcTSWFGlLoL_L79cVIYUb8q7iW2Wo4p_znKDfi0hZ9m3x0TVb2l4_uA8_iETwcESObD_N7DHew2oHd-TruYdc_f7E3rG8PWxTrHbh3OrSewMniwl3VLd8Q3XZsibH4flWzeRUp6Ft2FOvmjpRX7Lxih3WLvNeNZo3s62WDbWRNxadwtnj_7fCYj9wJvFSZ6ngECmomZiGXeaocumACel3mymVx3yc1xoUMTUH2WmgpjC6MUSYQ4HbKYyKfwXZVV7gLTDmhdGIyX7pCJSSsHD1qmQjjk1khzASmG8nZciwsHvktLiwlGFHWNsraRlnbQdYTePvnjWYoqnFL39e0GHa0rPUt_Q5u9HPND0vgzwpL-bYlFZnAflxPS-oVy-OW8T-isrOCUkaRaU2PN-t8PYiQBNAopUrF8_-cxku4f3q0sJ8-LD_uwQMRMQDpnkj2YbtrL_EFIZiuOOi19De4jeZu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flavor-dependent+Neutrino+Angular+Distribution+in+Core-collapse+Supernovae&rft.jtitle=The+Astrophysical+journal&rft.au=Tamborra%2C+Irene&rft.au=H%C3%BCdepohl%2C+Lorenz&rft.au=Raffelt%2C+Georg+G.&rft.au=Janka%2C+Hans-Thomas&rft.date=2017-04-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=839&rft.issue=2&rft.spage=132&rft_id=info:doi/10.3847%2F1538-4357%2Faa6a18&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_aa6a18
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon