Flavor-dependent Neutrino Angular Distribution in Core-collapse Supernovae
According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron lepton number carried by neutrinos. To facilitat...
Saved in:
Published in | The Astrophysical journal Vol. 839; no. 2; pp. 132 - 141 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
20.04.2017
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron lepton number carried by neutrinos. To facilitate further investigations of this subject, we study the energy and angle distributions of the neutrino radiation field computed with the Vertex neutrino-transport code for several spherically symmetric (1D) supernova simulations (of progenitor masses 11.2, 15, and 25 M ) and explain how to extract this information from additional models of the Garching group. Beginning in the decoupling region ("neutrino sphere"), the distributions are more and more forward peaked in the radial direction with an angular spread that is largest for e, smaller for , and smallest for x, where x = or τ. While the energy-integrated e minus angle distribution has a dip in the forward direction, it does not turn negative in any of our investigated cases. |
---|---|
AbstractList | According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron lepton number carried by neutrinos. To facilitate further investigations of this subject, we study the energy and angle distributions of the neutrino radiation field computed with the
Vertex
neutrino-transport code for several spherically symmetric (1D) supernova simulations (of progenitor masses 11.2, 15, and 25
M
⊙
) and explain how to extract this information from additional models of the Garching group. Beginning in the decoupling region (“neutrino sphere”), the distributions are more and more forward peaked in the radial direction with an angular spread that is largest for
ν
e
, smaller for
, and smallest for
ν
x
, where
x
=
μ
or
τ
. While the energy-integrated
ν
e
minus
angle distribution has a dip in the forward direction, it does not turn negative in any of our investigated cases. According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron lepton number carried by neutrinos. To facilitate further investigations of this subject, we study the energy and angle distributions of the neutrino radiation field computed with the Vertex neutrino-transport code for several spherically symmetric (1D) supernova simulations (of progenitor masses 11.2, 15, and 25 M {sub ⊙}) and explain how to extract this information from additional models of the Garching group. Beginning in the decoupling region (“neutrino sphere”), the distributions are more and more forward peaked in the radial direction with an angular spread that is largest for ν {sub e}, smaller for ν-bar {sub e}, and smallest for ν {sub x}, where x = μ or τ. While the energy-integrated ν {sub e} minus ν-bar {sub e} angle distribution has a dip in the forward direction, it does not turn negative in any of our investigated cases. According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron lepton number carried by neutrinos. To facilitate further investigations of this subject, we study the energy and angle distributions of the neutrino radiation field computed with the Vertex neutrino-transport code for several spherically symmetric (1D) supernova simulations (of progenitor masses 11.2, 15, and 25 M ⊙) and explain how to extract this information from additional models of the Garching group. Beginning in the decoupling region (“neutrino sphere”), the distributions are more and more forward peaked in the radial direction with an angular spread that is largest for ν e , smaller for \({\bar{\nu }}_{e}\), and smallest for ν x , where x = μ or τ. While the energy-integrated ν e minus \({\bar{\nu }}_{e}\) angle distribution has a dip in the forward direction, it does not turn negative in any of our investigated cases. According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular distribution of the local neutrino radiation field, notably on the angular intensity of the electron lepton number carried by neutrinos. To facilitate further investigations of this subject, we study the energy and angle distributions of the neutrino radiation field computed with the Vertex neutrino-transport code for several spherically symmetric (1D) supernova simulations (of progenitor masses 11.2, 15, and 25 M ) and explain how to extract this information from additional models of the Garching group. Beginning in the decoupling region ("neutrino sphere"), the distributions are more and more forward peaked in the radial direction with an angular spread that is largest for e, smaller for , and smallest for x, where x = or τ. While the energy-integrated e minus angle distribution has a dip in the forward direction, it does not turn negative in any of our investigated cases. |
Author | Raffelt, Georg G. Tamborra, Irene Janka, Hans-Thomas Hüdepohl, Lorenz |
Author_xml | – sequence: 1 givenname: Irene orcidid: 0000-0001-7449-104X surname: Tamborra fullname: Tamborra, Irene organization: Niels Bohr International Academy , Niels Bohr Institute, Blegdamsvej 17, Copenhagen, Denmark – sequence: 2 givenname: Lorenz surname: Hüdepohl fullname: Hüdepohl, Lorenz organization: Max Planck Computing and Data Facility (MPCDF) , Gießenbachstr. 2, Garching, Germany – sequence: 3 givenname: Georg G. surname: Raffelt fullname: Raffelt, Georg G. organization: Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) , Föhringer Ring 6, München, Germany – sequence: 4 givenname: Hans-Thomas orcidid: 0000-0002-0831-3330 surname: Janka fullname: Janka, Hans-Thomas organization: Max-Planck-Institut für Astrophysik , Karl-Schwarzschild-Str. 1, Garching, Germany |
BackLink | https://www.osti.gov/biblio/22872766$$D View this record in Osti.gov |
BookMark | eNp9kEtL5UAQhRtR8OrM3mVA3Jkx_Ug_lnId54GMCxVm11SSivYldsfujjD_3oQrCoMzq6KK7xxOnQOy64NHQo5o9YVroc5ozXUpeK3OACRQvUNWb6ddsqqqSpSSq9_75CClzbIyY1bk5-UAzyGWHY7oO_S5-IVTjs6H4tzfTwPE4sKl-dBM2QVfOF-sQ8SyDcMAY8LiZhox-vAM-Ins9TAk_Pw6D8nd5dfb9ffy6vrbj_X5VdkKJXKpBK0FZbTXXNcCEHrTYydbLUA1VLDaGOgVmkarqpGcGdkYI0yvNQPRYcUPyfHWN6TsbGpdxvahDd5jmy1jWjEl5Ts1xvA0Ycp2E6bo52CWcVlrqeqazZTcUm0MKUXs7WwHy6c5ghssrezSrl2qtEuVdtvuLKz-Eo7RPUL88z_JyVbiwvgeBsaN1dxYZilnduz6mTv9gPun7QtNcJid |
CitedBy_id | crossref_primary_10_1103_PhysRevD_107_123024 crossref_primary_10_1103_PhysRevD_108_083040 crossref_primary_10_1088_1475_7516_2024_02_038 crossref_primary_10_1103_PhysRevD_108_123024 crossref_primary_10_1088_1475_7516_2024_09_021 crossref_primary_10_1103_PhysRevD_104_023011 crossref_primary_10_1103_PhysRevD_101_023018 crossref_primary_10_1146_annurev_nucl_102920_050505 crossref_primary_10_1007_s11214_018_0468_7 crossref_primary_10_1103_PhysRevD_109_023012 crossref_primary_10_1088_1475_7516_2018_05_066 crossref_primary_10_1103_PhysRevD_106_083005 crossref_primary_10_1103_PhysRevD_98_123001 crossref_primary_10_3847_1538_4357_abd54e crossref_primary_10_1088_1475_7516_2019_09_002 crossref_primary_10_1103_PhysRevD_103_063033 crossref_primary_10_1103_PhysRevD_102_103017 crossref_primary_10_3390_universe10060238 crossref_primary_10_1103_PhysRevD_103_123025 crossref_primary_10_1103_PhysRevD_109_103017 crossref_primary_10_1103_PhysRevD_109_103011 crossref_primary_10_1103_PhysRevLett_133_121002 crossref_primary_10_1103_PhysRevLett_128_121102 crossref_primary_10_1016_j_physletb_2019_135088 crossref_primary_10_1103_PhysRevD_108_063003 crossref_primary_10_3390_universe8020094 crossref_primary_10_1088_1475_7516_2018_04_057 crossref_primary_10_1103_PhysRevD_107_063025 crossref_primary_10_1103_PhysRevD_98_103001 crossref_primary_10_1088_1475_7516_2025_03_052 crossref_primary_10_1103_PhysRevD_98_043016 crossref_primary_10_1103_PhysRevD_103_083013 crossref_primary_10_1103_PhysRevResearch_2_012046 crossref_primary_10_1088_1475_7516_2020_01_010 crossref_primary_10_1007_JHEP11_2020_135 crossref_primary_10_1103_PhysRevD_107_083016 crossref_primary_10_1103_PhysRevD_99_123014 crossref_primary_10_1103_PhysRevD_103_123012 crossref_primary_10_1007_JHEP12_2024_169 crossref_primary_10_1088_1475_7516_2024_11_060 crossref_primary_10_1088_1361_6471_aaa90a crossref_primary_10_3103_S002713492470098X crossref_primary_10_3847_2041_8213_ab775b crossref_primary_10_1103_PhysRevD_108_043006 crossref_primary_10_1103_PhysRevD_109_123008 crossref_primary_10_1103_PhysRevLett_126_071102 crossref_primary_10_1103_PhysRevLett_122_091101 crossref_primary_10_1007_s41115_020_00010_8 crossref_primary_10_3847_1538_4357_ab4cf2 crossref_primary_10_1103_PhysRevD_101_043009 crossref_primary_10_1103_PhysRevD_96_043016 crossref_primary_10_1088_1475_7516_2021_01_014 crossref_primary_10_1093_mnras_sty2578 crossref_primary_10_1103_PhysRevD_102_063018 crossref_primary_10_1103_PhysRevD_103_123008 crossref_primary_10_3847_1538_4357_ad6c42 crossref_primary_10_1103_PhysRevD_104_083025 crossref_primary_10_1103_PhysRevD_100_063018 crossref_primary_10_1103_PhysRevD_100_043004 crossref_primary_10_1103_PhysRevD_107_103034 crossref_primary_10_1103_PhysRevD_103_063013 crossref_primary_10_1103_PhysRevD_105_083024 crossref_primary_10_1103_PhysRevD_108_103032 crossref_primary_10_3847_1538_4357_ab4bcc crossref_primary_10_1103_PhysRevD_104_103023 crossref_primary_10_1103_PhysRevD_106_123013 crossref_primary_10_1103_PhysRevD_106_103029 crossref_primary_10_3847_1538_4357_ab38ba crossref_primary_10_1103_PhysRevD_109_103009 crossref_primary_10_1103_PhysRevD_97_043011 crossref_primary_10_1103_PhysRevD_108_023006 crossref_primary_10_1088_1475_7516_2018_08_010 crossref_primary_10_1103_PhysRevD_97_023024 crossref_primary_10_3847_1538_4357_aaaec7 crossref_primary_10_1088_1475_7516_2020_06_048 crossref_primary_10_1103_PhysRevD_110_015007 crossref_primary_10_3847_1538_4357_ac88cd crossref_primary_10_1103_PhysRevD_101_063001 crossref_primary_10_1103_RevModPhys_96_025004 crossref_primary_10_1103_PhysRevD_101_043016 crossref_primary_10_3847_1538_4365_ac2aa4 crossref_primary_10_1103_PhysRevD_96_123015 crossref_primary_10_1103_PhysRevD_97_023019 crossref_primary_10_1103_PhysRevLett_126_061302 crossref_primary_10_1016_j_physletb_2019_02_002 crossref_primary_10_1103_PhysRevD_103_063002 crossref_primary_10_1103_PhysRevD_105_023020 crossref_primary_10_1103_PhysRevD_106_043031 |
Cites_doi | 10.1086/192237 10.1146/annurev-nucl-102711-094901 10.1086/375130 10.1393/ncr/i2016-10120-8 10.1103/PhysRevLett.116.081101 10.1103/PhysRevD.90.045032 10.1051/0004-6361:20052840 10.1088/1475-7516/2017/02/019 10.1146/annurev-nucl-102115-044747 10.1088/0004-637X/786/2/83 10.1086/368015 10.1086/375701 10.1146/annurev-nucl-102711-095006 10.1088/0004-637X/792/2/96 10.1088/2041-8205/807/2/L31 10.1051/0004-6361:20053783 10.1051/0004-6361:20021398 10.1086/591440 10.1103/PhysRevLett.90.241102 10.1103/PhysRevLett.108.261104 10.1051/0004-6361/201117611 10.1103/RevModPhys.74.1015 10.1103/RevModPhys.85.245 10.1086/427203 10.1103/PhysRevD.85.113007 10.1103/PhysRevLett.108.231102 10.1103/PhysRevD.74.105014 10.1088/2041-8205/808/2/L42 10.1016/0375-9474(91)90452-C 10.1103/PhysRevLett.104.251101 10.1103/PhysRevD.79.105003 10.1103/PhysRevD.86.125031 10.1146/annurev.nucl.012809.104524 10.1103/PhysRevLett.118.021101 10.1088/0004-637X/728/1/8 10.1016/j.nuclphysb.2016.02.012 10.1088/0067-0049/189/1/104 10.1051/0004-6361:20020563 10.1086/323379 10.1088/2041-8205/801/2/L24 10.1088/0067-0049/216/1/5 10.1093/ptep/pts067 10.3847/0004-637X/831/1/98 10.1103/PhysRevD.72.045003 10.1103/PhysRevLett.108.061101 10.1088/1475-7516/2016/03/042 10.1103/PhysRevLett.100.011101 |
ContentType | Journal Article |
Copyright | 2017. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Apr 20, 2017 |
Copyright_xml | – notice: 2017. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Apr 20, 2017 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M OTOTI |
DOI | 10.3847/1538-4357/aa6a18 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Flavor-dependent Neutrino Angular Distribution in Core-collapse Supernovae |
EISSN | 1538-4357 |
ExternalDocumentID | 22872766 10_3847_1538_4357_aa6a18 apjaa6a18 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M ABPTK OTOTI |
ID | FETCH-LOGICAL-c474t-74154121f83854aeaf9fed6c84a7b142599af7e9b870b63296b9949f882a4de03 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Fri May 19 01:45:08 EDT 2023 Wed Aug 13 03:17:55 EDT 2025 Tue Jul 01 04:08:57 EDT 2025 Thu Apr 24 23:13:49 EDT 2025 Wed Aug 21 03:33:08 EDT 2024 Thu Jan 07 13:53:42 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-74154121f83854aeaf9fed6c84a7b142599af7e9b870b63296b9949f882a4de03 |
Notes | AAS04351 High-Energy Phenomena and Fundamental Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7449-104X 0000-0002-0831-3330 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/aa6a18/pdf |
PQID | 2365867552 |
PQPubID | 4562441 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2365867552 crossref_primary_10_3847_1538_4357_aa6a18 iop_journals_10_3847_1538_4357_aa6a18 osti_scitechconnect_22872766 crossref_citationtrail_10_3847_1538_4357_aa6a18 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-04-20 |
PublicationDateYYYYMMDD | 2017-04-20 |
PublicationDate_xml | – month: 04 year: 2017 text: 2017-04-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2017 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Nagakura (apjaa6a18bib31) 2017 Tamborra (apjaa6a18bib44) 2014a; 792 Lattimer (apjaa6a18bib21) 1991; 535 Scholberg (apjaa6a18bib41) 2012; 62 Dasgupta (apjaa6a18bib8) 2017; 1702 Takiwaki (apjaa6a18bib43) 2014; 786 Hüdepohl (apjaa6a18bib12) 2013 Sawyer (apjaa6a18bib38) 2005; 72 Wu (apjaa6a18bib50) 2017 Buras (apjaa6a18bib3) 2006; 447 Tamborra (apjaa6a18bib46) 2014b; 90 Janka (apjaa6a18bib17) 2016; 66 Cherry (apjaa6a18bib7) 2012; 108 Ott (apjaa6a18bib32) 2008; 685 Dimmelmeier (apjaa6a18bib9) 2002; 388 Müller (apjaa6a18bib30) 2012; 537 Woosley (apjaa6a18bib49) 1995; 101 Hüdepohl (apjaa6a18bib13) 2010; 104 Rampp (apjaa6a18bib34) 2002; 396 Langanke (apjaa6a18bib20) 2003; 90 Burrows (apjaa6a18bib4) 2013; 85 Sawyer (apjaa6a18bib40) 2016; 116 Janka (apjaa6a18bib16) 2012; 2012 Melson (apjaa6a18bib26) 2015b; 801 Sawyer (apjaa6a18bib39) 2009; 79 Lentz (apjaa6a18bib22) 2015; 807 Müller (apjaa6a18bib29) 2010; 189 Mirizzi (apjaa6a18bib27) 2012; 108 Buras (apjaa6a18bib2) 2003; 587 Langanke (apjaa6a18bib19) 2008; 100 Sumiyoshi (apjaa6a18bib42) 2015; 216 Sarikas (apjaa6a18bib36) 2012a; 108 Liebendörfer (apjaa6a18bib23) 2005; 620 Chakraborty (apjaa6a18bib5) 2016a; 908 Roberts (apjaa6a18bib35) 2016; 831 Tamborra (apjaa6a18bib45) 2012; 86 Keil (apjaa6a18bib18) 2003; 590 Duan (apjaa6a18bib11) 2010; 60 Marek (apjaa6a18bib24) 2006; 445 Melson (apjaa6a18bib25) 2015a; 808 Raffelt (apjaa6a18bib33) 2001; 561 Izaguirre (apjaa6a18bib14) 2017; 118 Thompson (apjaa6a18bib47) 2003; 592 Woosley (apjaa6a18bib48) 2002; 74 Janka (apjaa6a18bib15) 2012; 62 Chakraborty (apjaa6a18bib6) 2016b; 1603 Mirizzi (apjaa6a18bib28) 2016; 39 Duan (apjaa6a18bib10) 2006; 74 Sarikas (apjaa6a18bib37) 2012b; 85 Brandt (apjaa6a18bib1) 2011; 728 |
References_xml | – volume: 101 start-page: 181 year: 1995 ident: apjaa6a18bib49 publication-title: ApJS doi: 10.1086/192237 – volume: 62 start-page: 407 year: 2012 ident: apjaa6a18bib15 publication-title: ARNPS doi: 10.1146/annurev-nucl-102711-094901 – volume: 590 start-page: 971 year: 2003 ident: apjaa6a18bib18 publication-title: ApJ doi: 10.1086/375130 – volume: 39 start-page: 1 year: 2016 ident: apjaa6a18bib28 publication-title: NCimR doi: 10.1393/ncr/i2016-10120-8 – volume: 116 start-page: 081101 year: 2016 ident: apjaa6a18bib40 publication-title: PhRvL doi: 10.1103/PhysRevLett.116.081101 – volume: 90 year: 2014b ident: apjaa6a18bib46 publication-title: PhRvD doi: 10.1103/PhysRevD.90.045032 – volume: 445 start-page: 273 year: 2006 ident: apjaa6a18bib24 publication-title: A&A doi: 10.1051/0004-6361:20052840 – volume: 1702 start-page: 019 year: 2017 ident: apjaa6a18bib8 publication-title: JCAP doi: 10.1088/1475-7516/2017/02/019 – volume: 66 start-page: 341 year: 2016 ident: apjaa6a18bib17 publication-title: ARNPS doi: 10.1146/annurev-nucl-102115-044747 – year: 2017 ident: apjaa6a18bib50 – volume: 786 start-page: 83 year: 2014 ident: apjaa6a18bib43 publication-title: ApJ doi: 10.1088/0004-637X/786/2/83 – volume: 587 start-page: 320 year: 2003 ident: apjaa6a18bib2 publication-title: ApJ doi: 10.1086/368015 – volume: 592 start-page: 434 year: 2003 ident: apjaa6a18bib47 publication-title: ApJ doi: 10.1086/375701 – volume: 62 start-page: 81 year: 2012 ident: apjaa6a18bib41 publication-title: ARNPS doi: 10.1146/annurev-nucl-102711-095006 – volume: 792 start-page: 96 year: 2014a ident: apjaa6a18bib44 publication-title: ApJ doi: 10.1088/0004-637X/792/2/96 – volume: 807 start-page: L31 year: 2015 ident: apjaa6a18bib22 publication-title: ApJL doi: 10.1088/2041-8205/807/2/L31 – year: 2013 ident: apjaa6a18bib12 – volume: 447 start-page: 1049 year: 2006 ident: apjaa6a18bib3 publication-title: A&A doi: 10.1051/0004-6361:20053783 – volume: 396 start-page: 361 year: 2002 ident: apjaa6a18bib34 publication-title: A&A doi: 10.1051/0004-6361:20021398 – volume: 685 start-page: 1069 year: 2008 ident: apjaa6a18bib32 publication-title: ApJ doi: 10.1086/591440 – volume: 90 year: 2003 ident: apjaa6a18bib20 publication-title: PhRvL doi: 10.1103/PhysRevLett.90.241102 – volume: 108 start-page: 261104 year: 2012 ident: apjaa6a18bib7 publication-title: PhRvL doi: 10.1103/PhysRevLett.108.261104 – volume: 537 start-page: A63 year: 2012 ident: apjaa6a18bib30 publication-title: A&A doi: 10.1051/0004-6361/201117611 – volume: 74 start-page: 1015 year: 2002 ident: apjaa6a18bib48 publication-title: RvMP doi: 10.1103/RevModPhys.74.1015 – volume: 85 start-page: 245 year: 2013 ident: apjaa6a18bib4 publication-title: RvMP doi: 10.1103/RevModPhys.85.245 – volume: 620 start-page: 840 year: 2005 ident: apjaa6a18bib23 publication-title: ApJ doi: 10.1086/427203 – volume: 85 year: 2012b ident: apjaa6a18bib37 publication-title: PhRvD doi: 10.1103/PhysRevD.85.113007 – volume: 108 year: 2012 ident: apjaa6a18bib27 publication-title: PhRvL doi: 10.1103/PhysRevLett.108.231102 – volume: 74 start-page: 105014 year: 2006 ident: apjaa6a18bib10 publication-title: PhRvD doi: 10.1103/PhysRevD.74.105014 – volume: 808 start-page: L42 year: 2015a ident: apjaa6a18bib25 publication-title: ApJL doi: 10.1088/2041-8205/808/2/L42 – volume: 535 start-page: 331 year: 1991 ident: apjaa6a18bib21 publication-title: NuPhA doi: 10.1016/0375-9474(91)90452-C – volume: 104 year: 2010 ident: apjaa6a18bib13 publication-title: PhRvL doi: 10.1103/PhysRevLett.104.251101 – volume: 79 start-page: 105003 year: 2009 ident: apjaa6a18bib39 publication-title: PhRvD doi: 10.1103/PhysRevD.79.105003 – year: 2017 ident: apjaa6a18bib31 – volume: 86 year: 2012 ident: apjaa6a18bib45 publication-title: PhRvD doi: 10.1103/PhysRevD.86.125031 – volume: 60 start-page: 569 year: 2010 ident: apjaa6a18bib11 publication-title: ARNPS doi: 10.1146/annurev.nucl.012809.104524 – volume: 118 start-page: 021101 year: 2017 ident: apjaa6a18bib14 publication-title: PhRvL doi: 10.1103/PhysRevLett.118.021101 – volume: 728 start-page: 8 year: 2011 ident: apjaa6a18bib1 publication-title: ApJ doi: 10.1088/0004-637X/728/1/8 – volume: 908 start-page: 366 year: 2016a ident: apjaa6a18bib5 publication-title: NuPhB doi: 10.1016/j.nuclphysb.2016.02.012 – volume: 189 start-page: 104 year: 2010 ident: apjaa6a18bib29 publication-title: ApJS doi: 10.1088/0067-0049/189/1/104 – volume: 388 start-page: 917 year: 2002 ident: apjaa6a18bib9 publication-title: A&A doi: 10.1051/0004-6361:20020563 – volume: 561 start-page: 890 year: 2001 ident: apjaa6a18bib33 publication-title: ApJ doi: 10.1086/323379 – volume: 801 start-page: L24 year: 2015b ident: apjaa6a18bib26 publication-title: ApJL doi: 10.1088/2041-8205/801/2/L24 – volume: 216 start-page: 5 year: 2015 ident: apjaa6a18bib42 publication-title: ApJS doi: 10.1088/0067-0049/216/1/5 – volume: 2012 start-page: 01A309 year: 2012 ident: apjaa6a18bib16 publication-title: PTEP doi: 10.1093/ptep/pts067 – volume: 831 start-page: 98 year: 2016 ident: apjaa6a18bib35 publication-title: ApJ doi: 10.3847/0004-637X/831/1/98 – volume: 72 start-page: 045003 year: 2005 ident: apjaa6a18bib38 publication-title: PhRvD doi: 10.1103/PhysRevD.72.045003 – volume: 108 year: 2012a ident: apjaa6a18bib36 publication-title: PhRvL doi: 10.1103/PhysRevLett.108.061101 – volume: 1603 start-page: 042 year: 2016b ident: apjaa6a18bib6 publication-title: JCAP doi: 10.1088/1475-7516/2016/03/042 – volume: 100 year: 2008 ident: apjaa6a18bib19 publication-title: PhRvL doi: 10.1103/PhysRevLett.100.011101 |
SSID | ssj0004299 |
Score | 2.574347 |
Snippet | According to recent studies, the collective flavor evolution of neutrinos in core-collapse supernovae depends strongly on the flavor-dependent angular... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 132 |
SubjectTerms | ANGULAR DISTRIBUTION Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY Computer simulation COMPUTERIZED SIMULATION Decoupling ELECTRONS Flavor (particle physics) FLAVOR MODEL HYDRODYNAMICS LEPTON NUMBER Leptons MASS NEUTRINOS Radiation Stellar evolution Supernova SUPERNOVAE supernovae: general SYMMETRY |
Title | Flavor-dependent Neutrino Angular Distribution in Core-collapse Supernovae |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/aa6a18 https://www.proquest.com/docview/2365867552 https://www.osti.gov/biblio/22872766 |
Volume | 839 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA_bRPDFj6ns6hx5UMGH3NubpGmDT5e5yxi4DXR4H4SQNieg29rS2yvoX-9J07uxKUN8KYGetsnJ-fidNDmHkNdeIsxILcYmygGTqVMs99IzAcBBK-6gDxQ_HqvDM3m0SBcb5P3VWZi6GUz_GJsxUXBkYdBvgbZ00usoevlsYq2y03yT3BM5Os5weu_k9PpQJNcD9pVMiWwR_1H-9Q03fNImfhftc40a9od97p3O_BH5uu5u3GtyPl51xbj8dSuT43-O5zF5OIBROoukT8gGVNtkZ7YMy-P15U_6lvbtuPqx3Cb3T2PrKTmaX9gfdcvWNXQ7egwhr39V01kVqtu39ENIyTtU06LfKrpft8B6sWuWQD-tGmhDQVZ4Rs7mB5_3D9lQloGVMpMdCxhETvnU5yJPpQXrtQenylzaLCwppVpbn4Eu0BQUSnCtCq2l9ojlrXSQiOdkq6or2CFUWi5VojNX2kImOPocHCiRcO2SacH1iEzWE2PKIWd5KJ1xYTB2CcwzgXkmMM9E5o3Iu6snmpiv4w7aNzgnZlDa5R10ezfobPPdIK403GAobxrnR2Q3iIvBmQ6Zd8uwRansDMdolGdK4e21GF2_hAvEfhitpfzFP3bjJXnAA6ZAeebJLtnq2hW8QkTUFXu95OP1RHz5DT0aAr0 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB3RIhAXBAXUpaX4AEgczGZtx4mPq5ZVKbBUgoq9WU48lopKEmXTSvx7xkmWqgJV3CzFcazxfLyx43kAr4IimJE6yk20R65Sr3keVOASUaDRwmOfKH5e6uMzdbJKVyPPaX8Xpm5G1_-OmkOh4EGE0b4l-dJpb6MU5bOpc9rN8mnjwxbcTSWFGlLoL_L79cVIYUb8q7iW2Wo4p_znKDfi0hZ9m3x0TVb2l4_uA8_iETwcESObD_N7DHew2oHd-TruYdc_f7E3rG8PWxTrHbh3OrSewMniwl3VLd8Q3XZsibH4flWzeRUp6Ft2FOvmjpRX7Lxih3WLvNeNZo3s62WDbWRNxadwtnj_7fCYj9wJvFSZ6ngECmomZiGXeaocumACel3mymVx3yc1xoUMTUH2WmgpjC6MUSYQ4HbKYyKfwXZVV7gLTDmhdGIyX7pCJSSsHD1qmQjjk1khzASmG8nZciwsHvktLiwlGFHWNsraRlnbQdYTePvnjWYoqnFL39e0GHa0rPUt_Q5u9HPND0vgzwpL-bYlFZnAflxPS-oVy-OW8T-isrOCUkaRaU2PN-t8PYiQBNAopUrF8_-cxku4f3q0sJ8-LD_uwQMRMQDpnkj2YbtrL_EFIZiuOOi19De4jeZu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Flavor-dependent+Neutrino+Angular+Distribution+in+Core-collapse+Supernovae&rft.jtitle=The+Astrophysical+journal&rft.au=Tamborra%2C+Irene&rft.au=H%C3%BCdepohl%2C+Lorenz&rft.au=Raffelt%2C+Georg+G.&rft.au=Janka%2C+Hans-Thomas&rft.date=2017-04-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=839&rft.issue=2&rft.spage=132&rft_id=info:doi/10.3847%2F1538-4357%2Faa6a18&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_aa6a18 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |