Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids

We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA)...

Full description

Saved in:
Bibliographic Details
Published inCell reports (Cambridge) Vol. 26; no. 1; pp. 222 - 235.e5
Main Authors Wang, Kai, Liao, Mingfang, Zhou, Nan, Bao, Li, Ma, Ke, Zheng, Zhongyong, Wang, Yujing, Liu, Chang, Wang, Wenzhao, Wang, Jun, Liu, Shuang-Jiang, Liu, Hongwei
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 02.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) and increased the level of succinate in the gut. In vitro cultivation of PD demonstrated its capacity to transform bile acids and production of succinate. Succinate supplementation in the diet decreased hyperglycemia in ob/ob mice via the activation of intestinal gluconeogenesis (IGN). Gavage with a mixture of LCA and UDCA reduced hyperlipidemia by activating the FXR pathway and repairing gut barrier integrity. Co-treatment with succinate and LCA/UDCA mirrored the benefits of LPD. The binding target of succinate was identified as fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. The succinate and secondary bile acids produced by P. distasonis played key roles in the modulation of host metabolism. [Display omitted] •Parabacteroides distasonis alleviates obesity and obesity-related dysfunctions in mice.•P. distasonis generates succinate and secondary bile acids in the gut.•P. distasonis activates intestinal gluconeogenesis (IGN) and FXR pathways in the gut.•Succinate is a ligand of fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. Wang et al. report the metabolic benefits of gut commensal Parabacteroides distasonis via secondary bile acid-activated FXR signaling and succinate-activated intestinal gluconeogenesis (IGN). Succinate binds fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN.
AbstractList We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) and increased the level of succinate in the gut. In vitro cultivation of PD demonstrated its capacity to transform bile acids and production of succinate. Succinate supplementation in the diet decreased hyperglycemia in ob/ob mice via the activation of intestinal gluconeogenesis (IGN). Gavage with a mixture of LCA and UDCA reduced hyperlipidemia by activating the FXR pathway and repairing gut barrier integrity. Co-treatment with succinate and LCA/UDCA mirrored the benefits of LPD. The binding target of succinate was identified as fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. The succinate and secondary bile acids produced by P. distasonis played key roles in the modulation of host metabolism.
We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) and increased the level of succinate in the gut. In vitro cultivation of PD demonstrated its capacity to transform bile acids and production of succinate. Succinate supplementation in the diet decreased hyperglycemia in ob/ob mice via the activation of intestinal gluconeogenesis (IGN). Gavage with a mixture of LCA and UDCA reduced hyperlipidemia by activating the FXR pathway and repairing gut barrier integrity. Co-treatment with succinate and LCA/UDCA mirrored the benefits of LPD. The binding target of succinate was identified as fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. The succinate and secondary bile acids produced by P. distasonis played key roles in the modulation of host metabolism.We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) and increased the level of succinate in the gut. In vitro cultivation of PD demonstrated its capacity to transform bile acids and production of succinate. Succinate supplementation in the diet decreased hyperglycemia in ob/ob mice via the activation of intestinal gluconeogenesis (IGN). Gavage with a mixture of LCA and UDCA reduced hyperlipidemia by activating the FXR pathway and repairing gut barrier integrity. Co-treatment with succinate and LCA/UDCA mirrored the benefits of LPD. The binding target of succinate was identified as fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. The succinate and secondary bile acids produced by P. distasonis played key roles in the modulation of host metabolism.
We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) and increased the level of succinate in the gut. In vitro cultivation of PD demonstrated its capacity to transform bile acids and production of succinate. Succinate supplementation in the diet decreased hyperglycemia in ob/ob mice via the activation of intestinal gluconeogenesis (IGN). Gavage with a mixture of LCA and UDCA reduced hyperlipidemia by activating the FXR pathway and repairing gut barrier integrity. Co-treatment with succinate and LCA/UDCA mirrored the benefits of LPD. The binding target of succinate was identified as fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. The succinate and secondary bile acids produced by P. distasonis played key roles in the modulation of host metabolism. [Display omitted] •Parabacteroides distasonis alleviates obesity and obesity-related dysfunctions in mice.•P. distasonis generates succinate and secondary bile acids in the gut.•P. distasonis activates intestinal gluconeogenesis (IGN) and FXR pathways in the gut.•Succinate is a ligand of fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. Wang et al. report the metabolic benefits of gut commensal Parabacteroides distasonis via secondary bile acid-activated FXR signaling and succinate-activated intestinal gluconeogenesis (IGN). Succinate binds fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN.
Author Zheng, Zhongyong
Wang, Yujing
Ma, Ke
Liu, Hongwei
Bao, Li
Wang, Wenzhao
Wang, Kai
Zhou, Nan
Wang, Jun
Liao, Mingfang
Liu, Shuang-Jiang
Liu, Chang
Author_xml – sequence: 1
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
  organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China
– sequence: 2
  givenname: Mingfang
  surname: Liao
  fullname: Liao, Mingfang
  organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China
– sequence: 3
  givenname: Nan
  surname: Zhou
  fullname: Zhou, Nan
  organization: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China
– sequence: 4
  givenname: Li
  surname: Bao
  fullname: Bao, Li
  organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China
– sequence: 5
  givenname: Ke
  surname: Ma
  fullname: Ma, Ke
  organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China
– sequence: 6
  givenname: Zhongyong
  surname: Zheng
  fullname: Zheng, Zhongyong
  organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China
– sequence: 7
  givenname: Yujing
  surname: Wang
  fullname: Wang, Yujing
  organization: Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
– sequence: 8
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  organization: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China
– sequence: 9
  givenname: Wenzhao
  surname: Wang
  fullname: Wang, Wenzhao
  organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China
– sequence: 10
  givenname: Jun
  surname: Wang
  fullname: Wang, Jun
  organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China
– sequence: 11
  givenname: Shuang-Jiang
  surname: Liu
  fullname: Liu, Shuang-Jiang
  email: liusj@im.ac.cn
  organization: Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
– sequence: 12
  givenname: Hongwei
  surname: Liu
  fullname: Liu, Hongwei
  email: liuhw@im.ac.cn
  organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30605678$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9P3DAQxa0KVCjwDarKRy4bYicbJxyQtvQPSCCQaM-WM55Is8rai-0g7aHfvV4WpKoH8MVj6_2eZt58YnvOO2TssygLUYrmbFkAjgHXhSxFWwhZlLL9wA6lFGImZK32_qkP2EmMyzKfphSiqz-ygyqX80a1h-zPvQmmN5AweLIYuaWYTPSOIl-MIz6RSfn3rsdIacONs_wWk-n9SMC_beIwOUjkXeRZye-Dt9Pzm_uBP0wA5DL_jD0geGdN2PCvNCJfANl4zPYHM0Y8ebmP2O8f339dXs1u7n5eXy5uZlCrOs1UJSvbQQsdgK1y46JtAW0eQPXGYAsKZKeGzogWQDb1vLR1NzRolDWoAKojdrrzXQf_OGFMekUxJzgah36KWoqm3uaq5ln65UU69Su0eh1olZvWr5FlwflOAMHHGHDQQMlsZ07B0KhFqbdWeql3K9LbFWkhdV5Rhuv_4Ff_d7CLHYY5pCfCoCMQupwBBYSkrae3Df4CqNmvFg
CitedBy_id crossref_primary_10_1111_jam_15724
crossref_primary_10_1016_j_isci_2024_110412
crossref_primary_10_1186_s40168_021_01093_y
crossref_primary_10_3390_foods12244440
crossref_primary_10_1016_j_jare_2024_11_024
crossref_primary_10_1016_j_phymed_2024_156100
crossref_primary_10_1055_a_2438_4383
crossref_primary_10_1007_s00203_024_03909_5
crossref_primary_10_3390_ijms23169350
crossref_primary_10_3390_nu16132010
crossref_primary_10_1038_s41467_021_21408_9
crossref_primary_10_1186_s40104_024_01076_7
crossref_primary_10_1016_j_cell_2022_08_021
crossref_primary_10_1021_acs_jafc_3c09146
crossref_primary_10_1016_j_jff_2019_103652
crossref_primary_10_1021_acs_jafc_3c00108
crossref_primary_10_3389_fmicb_2022_920277
crossref_primary_10_1177_0300060520936806
crossref_primary_10_1177_19160216241293070
crossref_primary_10_1128_jb_00545_21
crossref_primary_10_3389_fmicb_2021_797062
crossref_primary_10_3748_wjg_v26_i46_7338
crossref_primary_10_1038_s41467_019_13836_5
crossref_primary_10_1007_s00894_021_04699_z
crossref_primary_10_3390_microorganisms12061081
crossref_primary_10_21603_2308_4057_2025_1_621
crossref_primary_10_1016_j_ijbiomac_2024_129994
crossref_primary_10_3389_fendo_2024_1481270
crossref_primary_10_1016_j_jff_2019_103665
crossref_primary_10_1016_j_csbj_2020_12_011
crossref_primary_10_1038_s41398_021_01620_3
crossref_primary_10_1080_19490976_2021_1922241
crossref_primary_10_1093_nutrit_nuaa128
crossref_primary_10_3390_pathogens13080702
crossref_primary_10_1093_femsre_fuaa065
crossref_primary_10_1021_acs_jafc_0c05060
crossref_primary_10_1186_s40168_024_01781_5
crossref_primary_10_3389_fmed_2021_737713
crossref_primary_10_3390_ijms22073566
crossref_primary_10_1093_femsle_fnac072
crossref_primary_10_1016_j_aquaculture_2024_741483
crossref_primary_10_1371_journal_pone_0317891
crossref_primary_10_3390_nu16234142
crossref_primary_10_1021_acs_jafc_1c02430
crossref_primary_10_3389_fendo_2022_918923
crossref_primary_10_1017_S0007114520001774
crossref_primary_10_1038_s42003_021_02753_3
crossref_primary_10_1186_s12906_024_04417_1
crossref_primary_10_3390_biomedicines9091246
crossref_primary_10_3390_foods12244410
crossref_primary_10_3390_nu13051559
crossref_primary_10_3389_fmicb_2022_908011
crossref_primary_10_1002_JPER_22_0294
crossref_primary_10_1007_s10753_021_01514_y
crossref_primary_10_1080_19490976_2024_2399260
crossref_primary_10_1016_j_ijbiomac_2024_134085
crossref_primary_10_1016_j_jhazmat_2022_130034
crossref_primary_10_1186_s12866_021_02263_6
crossref_primary_10_1055_s_0043_1774414
crossref_primary_10_1016_j_foodchem_2021_130735
crossref_primary_10_1016_j_arabjc_2022_103755
crossref_primary_10_1039_D2NP00075J
crossref_primary_10_3390_cells12141888
crossref_primary_10_3390_microorganisms9071436
crossref_primary_10_1016_j_jchromb_2021_122683
crossref_primary_10_1128_msystems_01567_24
crossref_primary_10_1002_mnfr_202300334
crossref_primary_10_3390_nu13030787
crossref_primary_10_1080_19490976_2025_2450871
crossref_primary_10_3390_nu12040935
crossref_primary_10_3390_nu15194163
crossref_primary_10_1016_j_jff_2021_104670
crossref_primary_10_3389_fmicb_2022_876043
crossref_primary_10_3389_fphar_2022_1040591
crossref_primary_10_1016_j_phymed_2024_155575
crossref_primary_10_1021_acs_jafc_8b04909
crossref_primary_10_1038_s41392_019_0074_5
crossref_primary_10_3390_metabo15010022
crossref_primary_10_3390_nu12113444
crossref_primary_10_3389_fmicb_2022_853566
crossref_primary_10_18632_aging_103962
crossref_primary_10_26599_FSHW_2024_9250086
crossref_primary_10_1016_j_jff_2020_104038
crossref_primary_10_1016_j_jff_2020_104278
crossref_primary_10_1093_ecco_jcc_jjae142
crossref_primary_10_1371_journal_pone_0262906
crossref_primary_10_1016_j_jad_2020_12_143
crossref_primary_10_1136_gutjnl_2021_326789
crossref_primary_10_3389_fnut_2023_1237237
crossref_primary_10_3389_fvets_2021_806105
crossref_primary_10_3390_foods11243970
crossref_primary_10_1002_imo2_70008
crossref_primary_10_1139_apnm_2020_0459
crossref_primary_10_3390_foods13213388
crossref_primary_10_1016_j_carbpol_2022_119862
crossref_primary_10_1016_j_fshw_2023_03_048
crossref_primary_10_1016_j_pharmthera_2022_108256
crossref_primary_10_1016_j_jhazmat_2023_131879
crossref_primary_10_1016_j_fochx_2023_101052
crossref_primary_10_1073_pnas_2405410121
crossref_primary_10_3390_ijms24021166
crossref_primary_10_1097_MD_0000000000034764
crossref_primary_10_1371_journal_pone_0268466
crossref_primary_10_1016_j_foodchem_2023_135440
crossref_primary_10_1177_20406223221117449
crossref_primary_10_3390_metabo15030167
crossref_primary_10_3390_nu12061622
crossref_primary_10_1002_imt2_124
crossref_primary_10_1152_ajpregu_00106_2021
crossref_primary_10_1016_j_jtcms_2022_04_005
crossref_primary_10_1039_C9FO02478F
crossref_primary_10_3389_fnut_2022_810462
crossref_primary_10_1016_j_bcp_2024_116574
crossref_primary_10_1186_s42523_022_00221_9
crossref_primary_10_1016_j_celrep_2022_111789
crossref_primary_10_1016_j_foodres_2022_111014
crossref_primary_10_1016_j_phrs_2023_106983
crossref_primary_10_3920_BM2021_0171
crossref_primary_10_1080_19490976_2024_2416915
crossref_primary_10_3389_fmicb_2023_1185993
crossref_primary_10_1039_D1FO02886C
crossref_primary_10_1016_j_jep_2024_118443
crossref_primary_10_1016_j_fshw_2023_02_023
crossref_primary_10_1016_j_ijbiomac_2024_138774
crossref_primary_10_1152_ajpgi_00216_2019
crossref_primary_10_1093_gastro_goac008
crossref_primary_10_1016_j_jff_2022_104978
crossref_primary_10_1111_febs_17249
crossref_primary_10_3390_foods11050725
crossref_primary_10_1016_j_ijbiomac_2024_138527
crossref_primary_10_2217_fmb_2021_0043
crossref_primary_10_1128_spectrum_02517_22
crossref_primary_10_3389_fmicb_2023_1239501
crossref_primary_10_1186_s12014_023_09396_y
crossref_primary_10_3390_ani12121504
crossref_primary_10_3390_molecules28176352
crossref_primary_10_1016_j_jnutbio_2021_108908
crossref_primary_10_3390_microorganisms11112707
crossref_primary_10_1155_2021_8832554
crossref_primary_10_1080_10408398_2023_2191135
crossref_primary_10_3390_nu14204220
crossref_primary_10_3390_foods12091909
crossref_primary_10_1016_j_jep_2024_118438
crossref_primary_10_3389_fcimb_2021_696186
crossref_primary_10_1038_s41467_024_45572_w
crossref_primary_10_3390_microorganisms9112284
crossref_primary_10_1111_cts_13051
crossref_primary_10_1080_19490976_2024_2390136
crossref_primary_10_1071_AN21093
crossref_primary_10_1039_D1FO02667D
crossref_primary_10_3389_fmicb_2024_1469253
crossref_primary_10_3390_nu12113557
crossref_primary_10_1016_j_compbiomed_2022_105516
crossref_primary_10_3389_fcimb_2022_1044957
crossref_primary_10_1186_s12934_020_01319_y
crossref_primary_10_1080_10408398_2021_1986466
crossref_primary_10_1016_j_foodchem_2021_129439
crossref_primary_10_1021_acs_jafc_2c06674
crossref_primary_10_1038_s41564_022_01195_9
crossref_primary_10_1080_19490976_2024_2350151
crossref_primary_10_3390_biology13010051
crossref_primary_10_1016_j_foodhyd_2023_109068
crossref_primary_10_1002_1873_3468_14441
crossref_primary_10_1021_acs_jafc_2c02079
crossref_primary_10_1016_j_foodres_2023_113192
crossref_primary_10_3389_fmicb_2021_628426
crossref_primary_10_1016_j_jff_2024_106410
crossref_primary_10_1186_s12866_024_03372_8
crossref_primary_10_1053_j_gastro_2019_09_023
crossref_primary_10_1039_D4FO02256D
crossref_primary_10_1186_s40168_022_01306_y
crossref_primary_10_1016_j_ijbiomac_2021_04_070
crossref_primary_10_1039_D4FO05633G
crossref_primary_10_1016_j_ejphar_2024_177105
crossref_primary_10_1080_19490976_2025_2465896
crossref_primary_10_3390_nu12040977
crossref_primary_10_3389_fmicb_2022_831176
crossref_primary_10_1128_spectrum_01904_21
crossref_primary_10_1002_efd2_70007
crossref_primary_10_1631_jzus_B2200491
crossref_primary_10_2147_DDDT_S457338
crossref_primary_10_1007_s00253_019_10307_1
crossref_primary_10_1016_j_foodhyd_2023_108781
crossref_primary_10_1007_s13105_021_00837_6
crossref_primary_10_1002_advs_202309255
crossref_primary_10_1039_D2FO01958B
crossref_primary_10_1016_j_ijbiomac_2022_04_107
crossref_primary_10_1039_D1FO03185F
crossref_primary_10_3390_nu16142322
crossref_primary_10_1111_obr_13341
crossref_primary_10_1136_bmjdrc_2022_003149
crossref_primary_10_1002_mco2_171
crossref_primary_10_1016_j_tim_2022_08_003
crossref_primary_10_1080_19490976_2021_1897209
crossref_primary_10_1016_j_ijbiomac_2023_125964
crossref_primary_10_3389_fmicb_2022_980082
crossref_primary_10_3389_fmicb_2024_1484134
crossref_primary_10_1080_19490976_2024_2335879
crossref_primary_10_3389_fmicb_2019_01746
crossref_primary_10_1016_j_ijbiomac_2024_133053
crossref_primary_10_1016_j_phrs_2020_104942
crossref_primary_10_5812_hepatmon_149965
crossref_primary_10_1155_2020_8846401
crossref_primary_10_3389_fphys_2023_1292673
crossref_primary_10_1021_acs_jafc_2c07945
crossref_primary_10_3920_BM2022_0022
crossref_primary_10_1186_s12882_024_03899_y
crossref_primary_10_1016_j_nut_2021_111176
crossref_primary_10_3390_cancers15205091
crossref_primary_10_1016_j_fbio_2025_106229
crossref_primary_10_1080_10408398_2022_2110035
crossref_primary_10_1016_j_lfs_2023_122380
crossref_primary_10_3389_fmicb_2022_911275
crossref_primary_10_1016_j_biopha_2023_115050
crossref_primary_10_1039_D0RA07551E
crossref_primary_10_1080_19490976_2024_2367342
crossref_primary_10_1155_2020_9067821
crossref_primary_10_1016_j_jep_2025_119578
crossref_primary_10_1016_j_jpha_2020_10_001
crossref_primary_10_3389_fcimb_2023_1269548
crossref_primary_10_3390_ijms25031803
crossref_primary_10_3389_fvets_2022_905242
crossref_primary_10_3389_fmicb_2022_984654
crossref_primary_10_1080_19490976_2020_1802209
crossref_primary_10_3390_nu14194176
crossref_primary_10_1152_ajpgi_00274_2023
crossref_primary_10_1007_s10753_024_02021_6
crossref_primary_10_3390_nu14194050
crossref_primary_10_3390_ani13243867
crossref_primary_10_1016_j_jff_2020_104334
crossref_primary_10_3389_fphar_2020_606227
crossref_primary_10_3390_antiox11122372
crossref_primary_10_1016_j_foodhyd_2022_108045
crossref_primary_10_1016_j_jnutbio_2023_109437
crossref_primary_10_1016_j_carbpol_2021_118716
crossref_primary_10_3390_metabo13070846
crossref_primary_10_1038_s41598_020_60150_y
crossref_primary_10_1097_HEP_0000000000000627
crossref_primary_10_18632_aging_203460
crossref_primary_10_1016_j_phrs_2024_107511
crossref_primary_10_3390_ani14070999
crossref_primary_10_1038_s41467_023_43622_3
crossref_primary_10_3390_foods11142039
crossref_primary_10_4240_wjgs_v16_i8_2436
crossref_primary_10_1016_j_ijbiomac_2022_04_029
crossref_primary_10_1002_jsfa_11945
crossref_primary_10_3390_microorganisms7060176
crossref_primary_10_3390_nu14101994
crossref_primary_10_2147_DMSO_S313385
crossref_primary_10_1016_j_lwt_2021_110921
crossref_primary_10_7717_peerj_17583
crossref_primary_10_3389_fphar_2023_1134429
crossref_primary_10_1038_s41522_023_00451_y
crossref_primary_10_1186_s40168_023_01636_5
crossref_primary_10_1016_j_ejphar_2022_174773
crossref_primary_10_1016_j_ygeno_2023_110647
crossref_primary_10_1038_s41598_023_37036_w
crossref_primary_10_7717_peerj_10946
crossref_primary_10_1016_j_bbi_2022_02_009
crossref_primary_10_1111_1750_3841_17056
crossref_primary_10_1039_D1FO03170H
crossref_primary_10_1038_s41522_023_00386_4
crossref_primary_10_3389_fcimb_2021_717636
crossref_primary_10_1039_D2FO01901A
crossref_primary_10_3748_wjg_v27_i33_5555
crossref_primary_10_1002_mnfr_202101091
crossref_primary_10_1002_smtd_201900604
crossref_primary_10_3390_jpm13020327
crossref_primary_10_1016_j_jep_2025_119514
crossref_primary_10_2217_fmb_2019_0301
crossref_primary_10_1038_s41598_022_13270_6
crossref_primary_10_1039_D1FO04012J
crossref_primary_10_1007_s00253_019_10012_z
crossref_primary_10_3389_fmicb_2021_761067
crossref_primary_10_1039_D3FO02791K
crossref_primary_10_18632_aging_205501
crossref_primary_10_1136_gutjnl_2022_327756
crossref_primary_10_1186_s12915_023_01578_2
crossref_primary_10_3389_fnut_2022_1019344
crossref_primary_10_3389_fnut_2023_1205377
crossref_primary_10_1093_rheumatology_kead042
crossref_primary_10_3390_metabo12111092
crossref_primary_10_1038_s41398_021_01610_5
crossref_primary_10_3390_microorganisms12030430
crossref_primary_10_1016_j_jep_2023_116916
crossref_primary_10_1080_19490976_2023_2221098
crossref_primary_10_1016_j_molcel_2020_03_005
crossref_primary_10_1016_j_phymed_2021_153561
crossref_primary_10_1080_19490976_2022_2027853
crossref_primary_10_1016_j_fbio_2024_103701
crossref_primary_10_1016_j_hnm_2023_200193
crossref_primary_10_1016_j_carbpol_2024_122870
crossref_primary_10_1128_spectrum_01147_21
crossref_primary_10_1186_s40168_024_01799_9
crossref_primary_10_1016_j_ijbiomac_2024_135309
crossref_primary_10_1631_jzus_B1900158
crossref_primary_10_1039_D2FO03142F
crossref_primary_10_3390_nu15235005
crossref_primary_10_1016_j_ijbiomac_2023_125647
crossref_primary_10_1016_j_jcjd_2019_05_008
crossref_primary_10_3390_nu12123759
crossref_primary_10_1016_j_aninu_2023_12_006
crossref_primary_10_1080_19476337_2022_2093979
crossref_primary_10_3390_ijms231911227
crossref_primary_10_1093_femspd_ftz058
crossref_primary_10_1016_j_foodres_2023_113133
crossref_primary_10_1186_s13578_024_01253_1
crossref_primary_10_3390_microorganisms11112656
crossref_primary_10_1016_j_ijbiomac_2024_138933
crossref_primary_10_1080_19490976_2023_2190300
crossref_primary_10_1097_MD_0000000000038610
crossref_primary_10_1038_s41467_021_27191_x
crossref_primary_10_3389_fphar_2021_788558
crossref_primary_10_3390_foods12234285
crossref_primary_10_1002_ijc_32563
crossref_primary_10_1186_s40104_023_00832_5
crossref_primary_10_3389_fmicb_2023_1096471
crossref_primary_10_3389_fimmu_2022_842669
crossref_primary_10_1002_mnfr_202000532
crossref_primary_10_3389_fnut_2021_722557
crossref_primary_10_1038_s41467_022_29589_7
crossref_primary_10_3382_ps_pez483
crossref_primary_10_3389_fmicb_2023_1332230
crossref_primary_10_1016_j_foodhyd_2024_110756
crossref_primary_10_3390_metabo13080960
crossref_primary_10_1016_j_bbadis_2024_167119
crossref_primary_10_3389_fmicb_2022_835950
crossref_primary_10_3389_fmicb_2021_615416
crossref_primary_10_1016_j_psj_2022_102010
crossref_primary_10_1186_s12866_020_02002_3
crossref_primary_10_3390_nu16244268
crossref_primary_10_1038_s41598_020_69295_2
crossref_primary_10_3389_fvets_2024_1381226
crossref_primary_10_1038_s43587_022_00193_0
crossref_primary_10_3390_ijms241512123
crossref_primary_10_1007_s10517_021_05286_1
crossref_primary_10_3389_fmicb_2022_989060
crossref_primary_10_3390_microorganisms11082087
crossref_primary_10_2139_ssrn_3940277
crossref_primary_10_1186_s12902_022_01155_8
crossref_primary_10_1080_10408398_2022_2098249
crossref_primary_10_1038_s41598_021_90060_6
crossref_primary_10_1038_s41538_024_00311_9
crossref_primary_10_1080_19490976_2021_1997293
crossref_primary_10_3390_microorganisms11102408
crossref_primary_10_1002_jsfa_12958
crossref_primary_10_1039_D2FO01161A
crossref_primary_10_1016_j_isci_2024_109633
crossref_primary_10_1016_j_aninu_2024_08_008
crossref_primary_10_1016_j_beem_2021_101504
crossref_primary_10_1093_ijfood_vvae004
crossref_primary_10_1021_acs_jafc_4c01595
crossref_primary_10_1016_j_psj_2024_103954
crossref_primary_10_1016_j_phymed_2024_156352
crossref_primary_10_3390_ph18010055
crossref_primary_10_1016_j_jare_2024_12_002
crossref_primary_10_1080_1828051X_2024_2377642
crossref_primary_10_1002_ptr_7343
crossref_primary_10_1113_JP284294
crossref_primary_10_1002_imt2_69
crossref_primary_10_3390_nu14163384
crossref_primary_10_1002_eji_201948478
crossref_primary_10_1002_fsn3_2630
crossref_primary_10_1007_s00125_023_06063_7
crossref_primary_10_3390_jpm11020109
crossref_primary_10_3390_microorganisms9030565
crossref_primary_10_1038_s41598_024_58983_y
crossref_primary_10_1128_msystems_00912_24
crossref_primary_10_1038_s41467_022_28856_x
crossref_primary_10_1111_1759_7714_13442
crossref_primary_10_1007_s11357_024_01419_2
crossref_primary_10_1021_acs_jafc_1c01801
crossref_primary_10_1016_j_hnm_2025_200300
crossref_primary_10_1002_mnfr_202000996
crossref_primary_10_1016_j_jpha_2024_100976
crossref_primary_10_1016_j_tem_2021_06_003
crossref_primary_10_1016_j_ecoenv_2024_117447
crossref_primary_10_26599_FSHW_2022_9250230
crossref_primary_10_3389_fmicb_2021_643025
crossref_primary_10_3389_fnut_2022_1062961
crossref_primary_10_1002_jmv_28979
crossref_primary_10_1007_s11695_022_06017_9
crossref_primary_10_1016_j_fbio_2024_105470
crossref_primary_10_1021_acsomega_1c00739
crossref_primary_10_1016_j_ijbiomac_2024_135992
crossref_primary_10_1016_j_ijbiomac_2024_132251
crossref_primary_10_1021_acs_jafc_1c07583
crossref_primary_10_3390_biomedicines10010016
crossref_primary_10_1038_s41579_022_00805_x
crossref_primary_10_1016_j_phrs_2021_105587
crossref_primary_10_3389_fmicb_2022_862882
crossref_primary_10_3390_nu16010046
crossref_primary_10_1016_j_bbi_2025_02_014
crossref_primary_10_1111_1750_3841_17326
crossref_primary_10_3389_fnut_2022_894278
crossref_primary_10_3389_fmicb_2022_951473
crossref_primary_10_1016_j_jep_2022_115065
crossref_primary_10_1039_D1FO03374C
crossref_primary_10_3390_nu16152408
crossref_primary_10_1038_s41575_022_00707_6
crossref_primary_10_1016_j_envpol_2024_123291
crossref_primary_10_3389_fnut_2022_877948
crossref_primary_10_1038_s41392_022_01219_0
crossref_primary_10_1080_10408398_2022_2158174
crossref_primary_10_1021_acs_jafc_4c09010
crossref_primary_10_3389_fmicb_2021_703785
crossref_primary_10_1038_s42003_024_06158_w
crossref_primary_10_2337_dc20_0460
crossref_primary_10_3389_fnut_2021_705763
crossref_primary_10_1093_ofid_ofae506
crossref_primary_10_3390_ijms25137250
crossref_primary_10_1097_CRD_0000000000000327
crossref_primary_10_1080_19490976_2020_1869501
crossref_primary_10_1016_j_ajt_2024_03_020
crossref_primary_10_1039_D0FO00116C
crossref_primary_10_1111_1750_3841_17439
crossref_primary_10_3389_fanim_2022_880237
crossref_primary_10_1002_bab_2518
crossref_primary_10_1515_biol_2022_0803
crossref_primary_10_1002_jsfa_11535
crossref_primary_10_1016_j_intimp_2025_114408
crossref_primary_10_1038_s41467_021_22727_7
crossref_primary_10_3390_md20120764
crossref_primary_10_1007_s00284_024_03974_5
crossref_primary_10_3389_fnut_2023_1169843
crossref_primary_10_1080_19490976_2023_2298254
crossref_primary_10_1002_mnfr_202101119
crossref_primary_10_1016_j_ijbiomac_2024_133681
crossref_primary_10_1192_j_eurpsy_2019_13
crossref_primary_10_1042_CS20230704
crossref_primary_10_1002_ptr_7439
crossref_primary_10_1093_jas_skad260
crossref_primary_10_1016_j_foodres_2021_110646
crossref_primary_10_1021_acs_jafc_0c02336
crossref_primary_10_1080_10408398_2023_2176464
crossref_primary_10_3389_fphar_2021_622841
crossref_primary_10_3389_fnut_2022_1048693
crossref_primary_10_1111_1744_7917_12905
crossref_primary_10_3389_fncel_2019_00402
crossref_primary_10_1080_09637486_2021_1886255
crossref_primary_10_5713_ajas_18_0984
crossref_primary_10_3389_fphar_2022_904420
crossref_primary_10_1016_j_molmet_2021_101427
crossref_primary_10_1016_j_ejphar_2023_175800
crossref_primary_10_1038_s41598_024_76351_8
crossref_primary_10_3389_fmicb_2023_1052824
crossref_primary_10_1007_s11274_022_03495_y
crossref_primary_10_3389_fnins_2022_889211
crossref_primary_10_1016_j_jff_2021_104906
crossref_primary_10_3389_fvets_2021_791371
crossref_primary_10_1016_j_chom_2020_01_006
crossref_primary_10_26599_FSHW_2022_9250218
crossref_primary_10_3390_nu15081965
crossref_primary_10_1039_D0FO03160G
crossref_primary_10_1128_Spectrum_00223_21
crossref_primary_10_1155_2022_8647483
crossref_primary_10_3390_ani13121923
crossref_primary_10_3390_metabo14090497
crossref_primary_10_1002_eji_202249866
crossref_primary_10_3389_fvets_2022_982349
crossref_primary_10_1016_j_ijbiomac_2022_10_144
crossref_primary_10_3390_ijms21114093
crossref_primary_10_1038_s41398_021_01309_7
crossref_primary_10_1039_D0FO01768J
crossref_primary_10_3390_ph17081015
crossref_primary_10_3389_fmicb_2024_1339621
crossref_primary_10_3390_nu15143255
crossref_primary_10_1016_j_celrep_2020_108005
crossref_primary_10_1016_j_scitotenv_2023_164307
crossref_primary_10_3390_nu15204339
crossref_primary_10_1038_s41522_022_00280_5
crossref_primary_10_1007_s10482_021_01632_5
crossref_primary_10_1038_s41598_022_04902_y
crossref_primary_10_3389_fnut_2024_1447878
crossref_primary_10_1016_j_clnu_2022_10_009
crossref_primary_10_1016_j_lfs_2023_121919
crossref_primary_10_1111_1751_2980_13306
crossref_primary_10_3390_obesities2030025
crossref_primary_10_1039_D2FO02268K
crossref_primary_10_3389_fimmu_2023_1260780
crossref_primary_10_3390_metabo14030174
crossref_primary_10_3389_fcimb_2022_956528
crossref_primary_10_3389_fmicb_2022_998524
crossref_primary_10_1002_jsfa_13624
crossref_primary_10_1186_s40104_023_00851_2
crossref_primary_10_3389_fmicb_2021_752512
crossref_primary_10_1007_s11130_024_01176_9
crossref_primary_10_1016_j_jep_2023_116893
crossref_primary_10_3389_fmicb_2024_1341938
crossref_primary_10_1002_fsn3_1842
crossref_primary_10_1016_j_biopha_2024_116410
crossref_primary_10_1016_j_jff_2023_105773
crossref_primary_10_1038_s41398_023_02450_1
crossref_primary_10_1016_j_taap_2023_116732
crossref_primary_10_2174_1389201021666201013153142
crossref_primary_10_3389_fendo_2022_906310
crossref_primary_10_1017_S0007114520003001
crossref_primary_10_1080_09513590_2023_2219342
crossref_primary_10_3390_foods12020424
crossref_primary_10_1016_j_foodres_2023_113773
crossref_primary_10_1039_D0FO02810J
crossref_primary_10_1080_10408398_2023_2187212
crossref_primary_10_1038_s41564_023_01418_7
crossref_primary_10_1016_j_fochx_2023_100644
crossref_primary_10_1016_j_jff_2022_105234
crossref_primary_10_3390_foods12214014
crossref_primary_10_1038_s41577_019_0198_4
crossref_primary_10_3389_fmicb_2025_1499035
crossref_primary_10_1038_s41598_024_71684_w
crossref_primary_10_3389_fpls_2023_1234729
crossref_primary_10_1016_j_ijbiomac_2024_134607
crossref_primary_10_1039_D0FO03044A
crossref_primary_10_3389_fendo_2023_1220044
crossref_primary_10_1002_jsfa_13758
crossref_primary_10_1016_j_foodres_2022_111942
crossref_primary_10_3389_fcvm_2022_1076806
crossref_primary_10_1039_D2FO00055E
crossref_primary_10_3389_fnut_2021_737059
crossref_primary_10_1186_s13073_022_01053_7
crossref_primary_10_1093_toxsci_kfaa065
crossref_primary_10_3389_fcimb_2024_1367998
crossref_primary_10_3390_nu16121929
crossref_primary_10_1186_s12866_024_03431_0
crossref_primary_10_1038_s41598_020_64728_4
crossref_primary_10_1186_s40104_024_01072_x
crossref_primary_10_1053_j_gastro_2020_09_060
crossref_primary_10_1016_j_phrs_2020_105088
crossref_primary_10_3390_nu13010167
crossref_primary_10_3389_fmolb_2021_703585
crossref_primary_10_1172_jci_insight_160578
crossref_primary_10_1016_j_ijbiomac_2023_127326
crossref_primary_10_1186_s40168_021_01065_2
crossref_primary_10_1038_s43587_023_00389_y
crossref_primary_10_1038_s42255_025_01246_5
crossref_primary_10_1039_D2FO02257E
crossref_primary_10_1007_s11154_019_09513_z
crossref_primary_10_3389_fendo_2023_1289571
crossref_primary_10_3389_fimmu_2022_964910
crossref_primary_10_1096_fj_201903244R
crossref_primary_10_1002_cbdv_202200949
crossref_primary_10_1038_s41564_023_01570_0
crossref_primary_10_1007_s00394_021_02504_4
crossref_primary_10_1039_D4FO05555A
crossref_primary_10_1016_j_ijbiomac_2025_141663
crossref_primary_10_1128_spectrum_03771_22
crossref_primary_10_1371_journal_pone_0241338
crossref_primary_10_3389_fimmu_2022_1033393
crossref_primary_10_1186_s13073_021_00921_y
crossref_primary_10_3389_fnut_2022_931458
crossref_primary_10_1016_j_cmet_2021_12_011
crossref_primary_10_1093_gigascience_giad118
crossref_primary_10_1021_acs_jproteome_9b00181
crossref_primary_10_1371_journal_pone_0247039
crossref_primary_10_1016_j_diabres_2021_109078
crossref_primary_10_1016_j_isci_2020_101777
crossref_primary_10_1016_j_foohum_2024_100317
crossref_primary_10_1111_all_15455
crossref_primary_10_26599_FSHW_2022_9250195
crossref_primary_10_3390_microorganisms9081602
crossref_primary_10_1016_j_jenvman_2024_120329
crossref_primary_10_1099_mgen_0_000852
crossref_primary_10_1186_s40104_024_01060_1
crossref_primary_10_26599_FSHW_2022_9250071
crossref_primary_10_3389_fnut_2022_886256
crossref_primary_10_1016_j_isci_2021_102900
crossref_primary_10_1007_s00253_021_11548_9
crossref_primary_10_1016_j_phymed_2022_154440
crossref_primary_10_3389_fmicb_2023_1183598
crossref_primary_10_3390_metabo12070659
crossref_primary_10_1016_j_exger_2025_112734
crossref_primary_10_3389_fnut_2023_1203430
crossref_primary_10_1016_j_schres_2024_06_040
crossref_primary_10_1128_msystems_00765_19
crossref_primary_10_1016_j_foodres_2021_110594
crossref_primary_10_1039_D4FO02963A
crossref_primary_10_1002_fft2_379
crossref_primary_10_3389_fnut_2024_1411374
crossref_primary_10_1111_jvp_13038
crossref_primary_10_1038_s42003_024_06224_3
crossref_primary_10_26599_FSHW_2023_9250008
crossref_primary_10_3389_fnut_2022_959703
crossref_primary_10_1016_j_redox_2025_103576
crossref_primary_10_18632_aging_202728
crossref_primary_10_3390_microorganisms9010199
crossref_primary_10_1016_j_jot_2022_09_006
crossref_primary_10_1021_acs_est_1c00573
crossref_primary_10_3389_fendo_2022_929530
crossref_primary_10_3389_fphar_2022_911356
crossref_primary_10_1016_j_foodres_2022_111732
crossref_primary_10_1016_j_isci_2023_106960
crossref_primary_10_1039_D1FO01375K
crossref_primary_10_3389_fendo_2024_1380163
crossref_primary_10_1016_j_heliyon_2023_e21935
crossref_primary_10_1186_s40168_021_01040_x
crossref_primary_10_3389_fmicb_2022_967649
crossref_primary_10_1016_j_ecoenv_2023_115811
crossref_primary_10_1128_msystems_00232_21
crossref_primary_10_1155_2021_5585952
crossref_primary_10_3389_fsufs_2024_1364403
crossref_primary_10_3390_microorganisms13010200
crossref_primary_10_3390_microorganisms12081674
crossref_primary_10_3390_nu14102146
crossref_primary_10_3390_microorganisms9050897
crossref_primary_10_1111_liv_15098
crossref_primary_10_1515_biol_2021_0140
crossref_primary_10_1016_j_psj_2024_104062
crossref_primary_10_1136_gutjnl_2023_330987
crossref_primary_10_3390_nu15020284
crossref_primary_10_1016_j_apsb_2025_01_024
crossref_primary_10_1002_jsfa_12222
crossref_primary_10_1039_D2FO02549C
crossref_primary_10_3390_foods13060948
crossref_primary_10_1289_EHP9674
crossref_primary_10_1016_j_foodres_2022_111744
crossref_primary_10_1016_j_ijbiomac_2020_08_026
crossref_primary_10_1038_s42255_022_00649_y
crossref_primary_10_3389_fendo_2023_973624
crossref_primary_10_1080_19490976_2022_2044722
crossref_primary_10_1186_s40104_023_00982_6
crossref_primary_10_1007_s00394_023_03237_2
crossref_primary_10_1016_j_vetmic_2022_109357
crossref_primary_10_3389_fmicb_2024_1409128
crossref_primary_10_3389_fphys_2023_1163055
crossref_primary_10_1002_fsn3_4108
crossref_primary_10_1038_s41564_023_01440_9
crossref_primary_10_1128_mSystems_01047_20
crossref_primary_10_3390_ijms23031673
crossref_primary_10_3390_ijms23169411
crossref_primary_10_3390_ijms24076755
crossref_primary_10_1016_j_scitotenv_2023_169330
crossref_primary_10_3389_fimmu_2022_1036196
crossref_primary_10_3390_nu14142937
crossref_primary_10_1016_j_foodhyd_2021_107213
crossref_primary_10_1016_j_jnutbio_2020_108532
crossref_primary_10_3390_ijms221910858
crossref_primary_10_26599_FSHW_2022_9250065
crossref_primary_10_3389_fphar_2022_761618
crossref_primary_10_1007_s00403_025_04097_y
crossref_primary_10_3389_fnut_2022_842686
crossref_primary_10_3389_fnins_2022_917197
crossref_primary_10_3389_fnut_2022_964273
crossref_primary_10_17816_MAJ115019
crossref_primary_10_1002_fsn3_4337
crossref_primary_10_3390_ijms21020445
crossref_primary_10_1002_jsfa_13453
crossref_primary_10_1039_D2FO01206E
crossref_primary_10_3390_metabo10110475
crossref_primary_10_1016_j_nmni_2022_100973
crossref_primary_10_1136_gutjnl_2022_329386
crossref_primary_10_1016_j_biopha_2023_115550
crossref_primary_10_1038_s41598_021_84905_3
crossref_primary_10_1186_s12872_025_04549_3
crossref_primary_10_1016_j_foodres_2022_111405
crossref_primary_10_1186_s13020_021_00529_9
crossref_primary_10_1016_j_ijbiomac_2021_08_052
crossref_primary_10_1515_mr_2024_0020
crossref_primary_10_5851_kosfa_2023_e61
crossref_primary_10_1002_mco2_70017
crossref_primary_10_1016_j_ijbiomac_2025_139878
crossref_primary_10_1016_j_ijbiomac_2025_141714
crossref_primary_10_1016_j_tifs_2020_10_010
crossref_primary_10_3390_ijerph18084049
crossref_primary_10_62347_FTYJ6152
crossref_primary_10_1016_j_ijbiomac_2023_126172
crossref_primary_10_1002_jsfa_12377
crossref_primary_10_1016_j_fbio_2021_101107
crossref_primary_10_1186_s40104_024_01074_9
crossref_primary_10_1136_gutjnl_2022_328185
crossref_primary_10_1016_j_fbio_2024_105326
crossref_primary_10_26599_FSHW_2022_9250048
crossref_primary_10_1016_j_fbio_2024_105685
crossref_primary_10_26599_FSHW_2022_9250165
crossref_primary_10_3390_cells12091260
crossref_primary_10_18632_aging_102221
crossref_primary_10_1038_s41588_020_00747_1
crossref_primary_10_1039_D2FO00038E
crossref_primary_10_1002_advs_202411770
crossref_primary_10_1016_j_clnu_2020_02_014
crossref_primary_10_1016_j_carbpol_2021_119055
crossref_primary_10_1016_j_ebiom_2020_102766
crossref_primary_10_3390_microorganisms11081882
crossref_primary_10_3390_nu15133048
crossref_primary_10_3389_fimmu_2022_930872
crossref_primary_10_3390_nu12092707
crossref_primary_10_1093_jn_nxaa331
crossref_primary_10_3389_fimmu_2022_836542
crossref_primary_10_3390_nu13031017
crossref_primary_10_3390_ijms25063481
crossref_primary_10_1042_NS20200007
crossref_primary_10_1093_jambio_lxae096
crossref_primary_10_1080_10408398_2021_2004993
crossref_primary_10_1128_MRA_00585_19
crossref_primary_10_26599_FSHW_2022_9250252
crossref_primary_10_1264_jsme2_ME20037
crossref_primary_10_1007_s11655_023_3542_2
crossref_primary_10_3389_fmicb_2021_761836
crossref_primary_10_1002_imt2_7
crossref_primary_10_1016_j_nut_2022_111802
crossref_primary_10_1002_imo2_59
crossref_primary_10_3389_fimmu_2022_1007610
crossref_primary_10_1016_j_numecd_2021_08_045
crossref_primary_10_1093_lifemeta_load032
crossref_primary_10_1186_s40168_021_01193_9
crossref_primary_10_3390_nu14234945
crossref_primary_10_3390_nu13062081
crossref_primary_10_1002_fft2_238
crossref_primary_10_1038_s41467_023_37459_z
crossref_primary_10_1016_j_redox_2025_103575
crossref_primary_10_1039_D3FO00991B
crossref_primary_10_3390_nu15102236
crossref_primary_10_1111_1753_0407_13356
crossref_primary_10_1002_mco2_70044
crossref_primary_10_1016_j_bbadis_2021_166179
crossref_primary_10_1016_j_foodchem_2022_134591
crossref_primary_10_1016_j_isci_2020_101522
crossref_primary_10_3390_ani14152156
crossref_primary_10_1016_j_foodchem_2022_135320
crossref_primary_10_1084_jem_20210324
crossref_primary_10_3389_fmicb_2024_1466024
crossref_primary_10_3724_abbs_2022201
crossref_primary_10_1016_j_ijbiomac_2025_140619
crossref_primary_10_1161_HYPERTENSIONAHA_121_17441
crossref_primary_10_3748_wjg_v26_i36_5420
crossref_primary_10_1007_s00253_019_10312_4
crossref_primary_10_1038_s41575_023_00867_z
crossref_primary_10_1111_ijfs_15005
crossref_primary_10_1016_j_ijbiomac_2022_01_152
crossref_primary_10_1016_j_carbpol_2022_119457
crossref_primary_10_1080_19490976_2021_1959242
crossref_primary_10_3390_molecules28227471
crossref_primary_10_1016_j_ijbiomac_2023_129112
crossref_primary_10_2147_JIR_S502980
crossref_primary_10_3748_wjg_v27_i19_2394
Cites_doi 10.1136/gutjnl-2014-307649
10.1530/JOE-17-0542
10.1128/AEM.03588-15
10.1016/S0140-6736(16)30054-X
10.1111/j.1365-2249.2010.04286.x
10.1016/S0140-6736(11)60813-1
10.1038/nrd1469
10.1136/gut.2010.212159
10.1124/pr.108.00802
10.1016/S0168-8278(01)00092-7
10.1097/MOL.0000000000000508
10.1038/nrgastro.2013.149
10.1016/j.gcb.2010.03.009
10.1002/oby.20466
10.1126/science.aad3503
10.1248/cpb.c16-00836
10.1016/S0140-6736(87)91610-2
10.1099/ijs.0.64192-0
10.1002/hep.22627
10.1021/acs.jmedchem.8b00107
10.1016/j.chom.2017.08.020
10.1016/j.cmet.2016.06.013
10.1056/NEJMoa021423
10.1016/S0140-6736(05)67483-1
10.1016/j.cmet.2005.09.001
10.1038/nature25019
10.1111/jgh.12694
10.1016/j.cmet.2009.08.001
10.3389/fmicb.2017.00114
10.1002/hep.28572
10.1016/j.cmet.2013.03.013
10.1016/j.chroma.2014.10.064
10.1111/j.1365-2036.2007.03562.x
10.1038/nri.2016.42
10.1016/j.chom.2016.09.002
10.1016/S0021-9258(18)97164-4
10.3389/fmicb.2017.01765
10.1007/s00706-004-0228-0
10.1038/nchembio.1535
10.1016/j.steroids.2011.07.009
10.2337/diab.40.10.1259
10.1073/pnas.1711235114
10.1097/MCO.0b013e32832c4d6a
10.1002/chem.201405707
10.1038/ismej.2012.153
10.1111/j.1753-4887.2011.00388.x
10.1056/NEJMra1600266
10.1038/nm.4236
10.1073/pnas.0502983102
10.1016/j.ejmech.2016.11.015
10.1038/nature17645
10.1016/S0021-9258(18)98373-0
10.1194/jlr.R036012
10.1016/j.ejmech.2017.09.029
10.1038/nrgastro.2017.119
10.1136/gutjnl-2017-314050
10.1038/35007508
10.1002/ijc.31559
10.1152/ajpgi.00354.2017
10.1099/ijs.0.02873-0
10.1073/pnas.0804812105
10.1038/nm.3760
10.1007/s13105-014-0336-1
10.1039/C5OB02561C
10.1002/hep.25797
10.1021/ja0103288
10.1136/gut.28.10.1221
10.1016/j.mib.2017.10.001
10.1016/j.nut.2009.06.010
10.1038/nmeth.f.303
ContentType Journal Article
Copyright 2018 The Author(s)
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 The Author(s)
– notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.celrep.2018.12.028
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2211-1247
EndPage 235.e5
ExternalDocumentID 30605678
10_1016_j_celrep_2018_12_028
S2211124718319582
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
0SF
4.4
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKRW
AALRI
AAUCE
AAXUO
ABMAC
ABMWF
ACGFO
ACGFS
ADBBV
ADEZE
AENEX
AEXQZ
AFTJW
AGHFR
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BCNDV
DIK
EBS
EJD
FCP
FDB
FRP
GROUPED_DOAJ
GX1
IXB
KQ8
M41
M48
NCXOZ
O-L
O9-
OK1
RCE
RIG
ROL
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
APXCP
CITATION
HZ~
IPNFZ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c474t-7323d9c8c9ccd3567188ced6787baae8c7c297f9a18cc26450d49f6ea7dae7cc3
IEDL.DBID M48
ISSN 2211-1247
IngestDate Fri Jul 11 15:41:30 EDT 2025
Thu Apr 03 06:56:27 EDT 2025
Thu Apr 24 23:03:30 EDT 2025
Tue Jul 01 02:58:59 EDT 2025
Wed May 17 00:03:06 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords succinate
Parabacteroides distasonis
metabolic disorders
FBPase
bile acids
Language English
License This is an open access article under the CC BY license.
Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-7323d9c8c9ccd3567188ced6787baae8c7c297f9a18cc26450d49f6ea7dae7cc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2211124718319582
PMID 30605678
PQID 2164101675
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2164101675
pubmed_primary_30605678
crossref_citationtrail_10_1016_j_celrep_2018_12_028
crossref_primary_10_1016_j_celrep_2018_12_028
elsevier_sciencedirect_doi_10_1016_j_celrep_2018_12_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-02
PublicationDateYYYYMMDD 2019-01-02
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-02
  day: 02
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cell reports (Cambridge)
PublicationTitleAlternate Cell Rep
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dangate, Salunke, Akamanchi (bib8) 2011; 76
Pontremoli, Traniello, Luppis, Wood (bib49) 1965; 240
Vincent, Marangos, Gruber, Van den Berghe (bib66) 1991; 40
Lazaridis, Gores, Lindor (bib35) 2001; 35
Verdam, Fuentes, de Jonge, Zoetendal, Erbil, Greve, Buurman, de Vos, Rensen (bib65) 2013; 21
Surana, Kasper (bib62) 2017; 552
Fei, Zhao (bib21) 2013; 7
Reddy, Erion (bib54) 2001; 123
Koh, Kane, Lee, Xu, Wu, Roper, Mason, Crott (bib32) 2018; 143
Shi, Burn (bib57) 2004; 3
Cekanaviciute, Yoo, Runia, Debelius, Singh, Nelson, Kanner, Bencosme, Lee, Hauser (bib6) 2017; 114
Neville, Forster, Lawley (bib45) 2018; 42
Swinburn, Sacks, Hall, McPherson, Finegood, Moodie, Gortmaker (bib63) 2011; 378
Kverka, Zakostelska, Klimesova, Sokol, Hudcovic, Hrncir, Rossmann, Mrazek, Kopecny, Verdu, Tlaskalova-Hogenova (bib34) 2011; 163
Neff, Rhodes, Arnolds, Collins, Donnelly, Nusbacher, Jedlicka, Schneider, McCarter, Shaffer (bib44) 2016; 20
Erion, van Poelje, Dang, Kasibhatla, Potter, Reddy, Reddy, Jiang, Lipscomb (bib18) 2005; 102
Li, Yi, Katiraei, Kooijman, Zhou, Chung, Gao, van den Heuvel, Meijer, Berbée (bib37) 2018; 67
Mithieux (bib41) 2009; 25
Inagaki, Choi, Moschetta, Peng, Cummins, McDonald, Luo, Jones, Goodwin, Richardson (bib27) 2005; 2
Poupon, Chrétien, Poupon, Ballet, Calmus, Darnis (bib51) 1987; 1
De Cruz, Kang, Wagner, Buckley, Sim, Prideaux, Lockett, McSweeney, Morrison, Kirkwood, Kamm (bib11) 2015; 30
De Vadder, Kovatcheva-Datchary, Zitoun, Duchampt, Bäckhed, Mithieux (bib13) 2016; 24
(bib43) 2016; 387
Cummings, Pomare, Branch, Naylor, Macfarlane (bib7) 1987; 28
Lee, Hase (bib36) 2014; 10
Porter, Canales, Peterson, Martens (bib50) 2017; 22
Zhao, Zhao, Feng, Hou, Zhao (bib71) 2017; 65
Jiang, Dong, Zhao, Hu, Shen, Qiao, Zhang, Wang, Ismagilov, Liu, Du (bib29) 2016; 82
de Boer, Bloks, Verkade, Heiner-Fokkema, Kuipers (bib10) 2018; 29
de Aguiar Vallim, Tarling, Edwards (bib9) 2013; 17
Surana, Kasper (bib61) 2014; 124
Fang, Suh, Reilly, Yu, Osborn, Lackey, Yoshihara, Perino, Jacinto, Lukasheva (bib20) 2015; 21
de Vadder, Mithieux (bib12) 2018; 236
Browne, Forster, Anonye, Kumar, Neville, Stares, Goulding, Lawley (bib2) 2016; 533
Rooks, Garrett (bib55) 2016; 16
Breyner, Michon, de Sousa, Vilas Boas, Chain, Azevedo, Langella, Chatel (bib1) 2017; 8
Mithieux, Andreelli, Magnan (bib42) 2009; 12
Falony, Joossens, Vieira-Silva, Wang, Darzi, Faust, Kurilshikov, Bonder, Valles-Colomer, Vandeputte (bib19) 2016; 352
Lynch, Pedersen (bib39) 2016; 375
Cani, de Vos (bib4) 2017; 8
Golden, Escobar, Nguyen, Mallicote, Kavarian, Frey, Gayer (bib23) 2018; 315
Kaur, Dahiya, Kumar (bib31) 2017; 141
Calle, Rodriguez, Walker-Thurmond, Thun (bib3) 2003; 348
Thomas, Gioiello, Noriega, Strehle, Oury, Rizzo, Macchiarulo, Yamamoto, Mataki, Pruzanski (bib64) 2009; 10
Zhang, Fan, Tian, Suo, Yang, Bai, Zhang (bib70) 2015; 21
Del Chierico, Nobili, Vernocchi, Russo, Stefanis, Gnani, Furlanello, Zandonà, Paci, Capuani (bib14) 2017; 65
Song, Li, Owsley, Strom, Chiang (bib59) 2009; 49
Wree, Broderick, Canbay, Hoffman, Feldstein (bib69) 2013; 10
Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Peña, Goodrich, Gordon (bib5) 2010; 7
el-Maghrabi, Gidh-Jain, Austin, Pilkis (bib17) 1993; 268
Quévrain, Maubert, Michon, Chain, Marquant, Tailhades, Miquel, Carlier, Bermúdez-Humarán, Pigneur (bib52) 2016; 65
Plovier, Everard, Druart, Depommier, Van Hul, Geurts, Chilloux, Ottman, Duparc, Lichtenstein (bib47) 2017; 23
Derrien, Vaughan, Plugge, de Vos (bib16) 2004; 54
Hamer, Jonkers, Venema, Vanhoutvin, Troost, Brummer (bib24) 2008; 27
Wang, Bao, Ma, Zhang, Chen, Han, Ren, Luo, Liu (bib67) 2017; 127
Nie, Park, Kazantzis, Lin, Henkin, Ng, Song, Chen, Tran, Lai (bib46) 2012; 56
Stoddart, Smith, Milligan (bib60) 2008; 60
Kopelman (bib33) 2000; 404
Sokol, Pigneur, Watterlot, Lakhdari, Bermúdez-Humarán, Gratadoux, Blugeon, Bridonneau, Furet, Corthier (bib58) 2008; 105
Hosseini, Grootaert, Verstraete, Van de Wiele (bib26) 2011; 69
Jia, Xie, Jia (bib28) 2018; 15
Lotowski, Guzmanski (bib38) 2005; 136
Miro, Marin, Miranda (bib40) 2016; 14
Sakamoto, Benno (bib56) 2006; 56
Wang, Bao, Zhou, Zhang, Liao, Zheng, Wang, Liu, Wang, Wang (bib68) 2018; 61
den Besten, van Eunen, Groen, Venema, Reijngoud, Bakker (bib15) 2013; 54
John, Werner, Worthmann, Wegner, Tödter, Scheja, Rohn, Heeren, Fischer (bib30) 2014; 1371
Pols, Auwerx, Schoonjans (bib48) 2010; 34
Haslam, James (bib25) 2005; 366
Quintero, Pizarro, Solís, Arab, Padilla, Riquelme, Arrese (bib53) 2014; 70
Gadaleta, van Erpecum, Oldenburg, Willemsen, Renooij, Murzilli, Klomp, Siersema, Schipper, Danese (bib22) 2011; 60
Koh (10.1016/j.celrep.2018.12.028_bib32) 2018; 143
Plovier (10.1016/j.celrep.2018.12.028_bib47) 2017; 23
Wree (10.1016/j.celrep.2018.12.028_bib69) 2013; 10
de Aguiar Vallim (10.1016/j.celrep.2018.12.028_bib9) 2013; 17
Rooks (10.1016/j.celrep.2018.12.028_bib55) 2016; 16
Pols (10.1016/j.celrep.2018.12.028_bib48) 2010; 34
Surana (10.1016/j.celrep.2018.12.028_bib62) 2017; 552
Song (10.1016/j.celrep.2018.12.028_bib59) 2009; 49
Hamer (10.1016/j.celrep.2018.12.028_bib24) 2008; 27
Zhang (10.1016/j.celrep.2018.12.028_bib70) 2015; 21
de Boer (10.1016/j.celrep.2018.12.028_bib10) 2018; 29
Derrien (10.1016/j.celrep.2018.12.028_bib16) 2004; 54
Wang (10.1016/j.celrep.2018.12.028_bib67) 2017; 127
De Vadder (10.1016/j.celrep.2018.12.028_bib13) 2016; 24
Fei (10.1016/j.celrep.2018.12.028_bib21) 2013; 7
Dangate (10.1016/j.celrep.2018.12.028_bib8) 2011; 76
Inagaki (10.1016/j.celrep.2018.12.028_bib27) 2005; 2
Shi (10.1016/j.celrep.2018.12.028_bib57) 2004; 3
Cani (10.1016/j.celrep.2018.12.028_bib4) 2017; 8
Neff (10.1016/j.celrep.2018.12.028_bib44) 2016; 20
Kverka (10.1016/j.celrep.2018.12.028_bib34) 2011; 163
(10.1016/j.celrep.2018.12.028_bib43) 2016; 387
Browne (10.1016/j.celrep.2018.12.028_bib2) 2016; 533
Neville (10.1016/j.celrep.2018.12.028_bib45) 2018; 42
Del Chierico (10.1016/j.celrep.2018.12.028_bib14) 2017; 65
Fang (10.1016/j.celrep.2018.12.028_bib20) 2015; 21
Cekanaviciute (10.1016/j.celrep.2018.12.028_bib6) 2017; 114
Haslam (10.1016/j.celrep.2018.12.028_bib25) 2005; 366
Verdam (10.1016/j.celrep.2018.12.028_bib65) 2013; 21
Gadaleta (10.1016/j.celrep.2018.12.028_bib22) 2011; 60
Thomas (10.1016/j.celrep.2018.12.028_bib64) 2009; 10
de Vadder (10.1016/j.celrep.2018.12.028_bib12) 2018; 236
Falony (10.1016/j.celrep.2018.12.028_bib19) 2016; 352
Kopelman (10.1016/j.celrep.2018.12.028_bib33) 2000; 404
Mithieux (10.1016/j.celrep.2018.12.028_bib42) 2009; 12
Porter (10.1016/j.celrep.2018.12.028_bib50) 2017; 22
Breyner (10.1016/j.celrep.2018.12.028_bib1) 2017; 8
Swinburn (10.1016/j.celrep.2018.12.028_bib63) 2011; 378
Calle (10.1016/j.celrep.2018.12.028_bib3) 2003; 348
Mithieux (10.1016/j.celrep.2018.12.028_bib41) 2009; 25
Jiang (10.1016/j.celrep.2018.12.028_bib29) 2016; 82
Poupon (10.1016/j.celrep.2018.12.028_bib51) 1987; 1
De Cruz (10.1016/j.celrep.2018.12.028_bib11) 2015; 30
Stoddart (10.1016/j.celrep.2018.12.028_bib60) 2008; 60
Caporaso (10.1016/j.celrep.2018.12.028_bib5) 2010; 7
Lee (10.1016/j.celrep.2018.12.028_bib36) 2014; 10
el-Maghrabi (10.1016/j.celrep.2018.12.028_bib17) 1993; 268
Miro (10.1016/j.celrep.2018.12.028_bib40) 2016; 14
Reddy (10.1016/j.celrep.2018.12.028_bib54) 2001; 123
Wang (10.1016/j.celrep.2018.12.028_bib68) 2018; 61
Cummings (10.1016/j.celrep.2018.12.028_bib7) 1987; 28
Pontremoli (10.1016/j.celrep.2018.12.028_bib49) 1965; 240
Kaur (10.1016/j.celrep.2018.12.028_bib31) 2017; 141
Golden (10.1016/j.celrep.2018.12.028_bib23) 2018; 315
Lotowski (10.1016/j.celrep.2018.12.028_bib38) 2005; 136
Lynch (10.1016/j.celrep.2018.12.028_bib39) 2016; 375
Quintero (10.1016/j.celrep.2018.12.028_bib53) 2014; 70
den Besten (10.1016/j.celrep.2018.12.028_bib15) 2013; 54
John (10.1016/j.celrep.2018.12.028_bib30) 2014; 1371
Sokol (10.1016/j.celrep.2018.12.028_bib58) 2008; 105
Jia (10.1016/j.celrep.2018.12.028_bib28) 2018; 15
Vincent (10.1016/j.celrep.2018.12.028_bib66) 1991; 40
Quévrain (10.1016/j.celrep.2018.12.028_bib52) 2016; 65
Surana (10.1016/j.celrep.2018.12.028_bib61) 2014; 124
Erion (10.1016/j.celrep.2018.12.028_bib18) 2005; 102
Li (10.1016/j.celrep.2018.12.028_bib37) 2018; 67
Sakamoto (10.1016/j.celrep.2018.12.028_bib56) 2006; 56
Hosseini (10.1016/j.celrep.2018.12.028_bib26) 2011; 69
Nie (10.1016/j.celrep.2018.12.028_bib46) 2012; 56
Lazaridis (10.1016/j.celrep.2018.12.028_bib35) 2001; 35
Zhao (10.1016/j.celrep.2018.12.028_bib71) 2017; 65
References_xml – volume: 49
  start-page: 297
  year: 2009
  end-page: 305
  ident: bib59
  article-title: Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression
  publication-title: Hepatology
– volume: 10
  start-page: 416
  year: 2014
  end-page: 424
  ident: bib36
  article-title: Gut microbiota-generated metabolites in animal health and disease
  publication-title: Nat. Chem. Biol.
– volume: 268
  start-page: 9466
  year: 1993
  end-page: 9472
  ident: bib17
  article-title: Isolation of a human liver fructose-1,6-bisphosphatase cDNA and expression of the protein in Escherichia coli. Role of ASP-118 and ASP-121 in catalysis
  publication-title: J. Biol. Chem.
– volume: 7
  start-page: 335
  year: 2010
  end-page: 336
  ident: bib5
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
– volume: 21
  start-page: E607
  year: 2013
  end-page: E615
  ident: bib65
  article-title: Human intestinal microbiota composition is associated with local and systemic inflammation in obesity
  publication-title: Obesity (Silver Spring)
– volume: 8
  start-page: 1765
  year: 2017
  ident: bib4
  article-title: Next-generation beneficial microbes: the case of
  publication-title: Front. Microbiol.
– volume: 17
  start-page: 657
  year: 2013
  end-page: 669
  ident: bib9
  article-title: Pleiotropic roles of bile acids in metabolism
  publication-title: Cell Metab.
– volume: 102
  start-page: 7970
  year: 2005
  end-page: 7975
  ident: bib18
  article-title: MB06322 (CS-917): a potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 136
  start-page: 153
  year: 2005
  end-page: 158
  ident: bib38
  article-title: New cyclic dimers of cholic acid
  publication-title: Monatsh. Chem.
– volume: 3
  start-page: 695
  year: 2004
  end-page: 710
  ident: bib57
  article-title: Lipid metabolic enzymes: emerging drug targets for the treatment of obesity
  publication-title: Nat. Rev. Drug Discov.
– volume: 20
  start-page: 535
  year: 2016
  end-page: 547
  ident: bib44
  article-title: Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties
  publication-title: Cell Host Microbe
– volume: 16
  start-page: 341
  year: 2016
  end-page: 352
  ident: bib55
  article-title: Gut microbiota, metabolites and host immunity
  publication-title: Nat. Rev. Immunol.
– volume: 35
  start-page: 134
  year: 2001
  end-page: 146
  ident: bib35
  article-title: Ursodeoxycholic acid “mechanisms of action and clinical use in hepatobiliary disorders.”
  publication-title: J. Hepatol.
– volume: 1
  start-page: 834
  year: 1987
  end-page: 836
  ident: bib51
  article-title: Is ursodeoxycholic acid an effective treatment for primary biliary cirrhosis?
  publication-title: Lancet
– volume: 60
  start-page: 405
  year: 2008
  end-page: 417
  ident: bib60
  article-title: International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions
  publication-title: Pharmacol. Rev.
– volume: 533
  start-page: 543
  year: 2016
  end-page: 546
  ident: bib2
  article-title: Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation
  publication-title: Nature
– volume: 23
  start-page: 107
  year: 2017
  end-page: 113
  ident: bib47
  article-title: A purified membrane protein from
  publication-title: Nat. Med.
– volume: 114
  start-page: 10713
  year: 2017
  end-page: 10718
  ident: bib6
  article-title: Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 54
  start-page: 1469
  year: 2004
  end-page: 1476
  ident: bib16
  article-title: gen. nov., sp. nov., a human intestinal mucin-degrading bacterium
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 348
  start-page: 1625
  year: 2003
  end-page: 1638
  ident: bib3
  article-title: Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults
  publication-title: N. Engl. J. Med.
– volume: 105
  start-page: 16731
  year: 2008
  end-page: 16736
  ident: bib58
  article-title: is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 14
  start-page: 2679
  year: 2016
  end-page: 2683
  ident: bib40
  article-title: Radical-mediated dehydrogenation of bile acids by means of hydrogen atom transfer to triplet carbonyls
  publication-title: Org. Biomol. Chem.
– volume: 378
  start-page: 804
  year: 2011
  end-page: 814
  ident: bib63
  article-title: The global obesity pandemic: shaped by global drivers and local environments
  publication-title: Lancet
– volume: 10
  start-page: 627
  year: 2013
  end-page: 636
  ident: bib69
  article-title: From NAFLD to NASH to cirrhosis-new insights into disease mechanisms
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 69
  start-page: 245
  year: 2011
  end-page: 258
  ident: bib26
  article-title: Propionate as a health-promoting microbial metabolite in the human gut
  publication-title: Nutr. Rev.
– volume: 15
  start-page: 111
  year: 2018
  end-page: 128
  ident: bib28
  article-title: Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
– volume: 141
  start-page: 473
  year: 2017
  end-page: 505
  ident: bib31
  article-title: Fructose-1,6-bisphosphatase inhibitors: a new valid approach for management of type 2 diabetes mellitus
  publication-title: Eur. J. Med. Chem.
– volume: 34
  start-page: 270
  year: 2010
  end-page: 273
  ident: bib48
  article-title: Targeting the TGR5-GLP-1 pathway to combat type 2 diabetes and non-alcoholic fatty liver disease
  publication-title: Gastroenterol. Clin. Biol.
– volume: 240
  start-page: 3459
  year: 1965
  end-page: 3463
  ident: bib49
  article-title: Fructose diphosphatase from rabbit liver. I. Purification and properties
  publication-title: J. Biol. Chem.
– volume: 123
  start-page: 6246
  year: 2001
  end-page: 6252
  ident: bib54
  article-title: Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach
  publication-title: J. Am. Chem. Soc.
– volume: 61
  start-page: 3609
  year: 2018
  end-page: 3625
  ident: bib68
  article-title: Structural modification of natural product ganomycin I leading to discovery of a α-glucosidase and HMG-CoA reductase dual inhibitor improving obesity and metabolic dysfunction
  publication-title: J. Med. Chem.
– volume: 236
  start-page: R105
  year: 2018
  end-page: R108
  ident: bib12
  article-title: Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate
  publication-title: J. Endocrinol.
– volume: 30
  start-page: 268
  year: 2015
  end-page: 278
  ident: bib11
  article-title: Association between specific mucosa-associated microbiota in Crohn’s disease at the time of resection and subsequent disease recurrence: a pilot study
  publication-title: J. Gastroenterol. Hepatol.
– volume: 315
  start-page: G259
  year: 2018
  end-page: G271
  ident: bib23
  article-title: Ursodeoxycholic acid protects against intestinal barrier breakdown by promoting enterocyte migration via EGFR- and COX-2-dependent mechanisms
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
– volume: 25
  start-page: 881
  year: 2009
  end-page: 884
  ident: bib41
  article-title: A novel function of intestinal gluconeogenesis: central signaling in glucose and energy homeostasis
  publication-title: Nutrition
– volume: 163
  start-page: 250
  year: 2011
  end-page: 259
  ident: bib34
  article-title: Oral administration of
  publication-title: Clin. Exp. Immunol.
– volume: 366
  start-page: 1197
  year: 2005
  end-page: 1209
  ident: bib25
  article-title: Obesity
  publication-title: Lancet
– volume: 8
  start-page: 114
  year: 2017
  ident: bib1
  article-title: Microbial anti-inflammatory molecule (MAM) from
  publication-title: Front. Microbiol.
– volume: 1371
  start-page: 184
  year: 2014
  end-page: 195
  ident: bib30
  article-title: A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids
  publication-title: J. Chromatogr. A
– volume: 67
  start-page: 1269
  year: 2018
  end-page: 1279
  ident: bib37
  article-title: Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit
  publication-title: Gut
– volume: 404
  start-page: 635
  year: 2000
  end-page: 643
  ident: bib33
  article-title: Obesity as a medical problem
  publication-title: Nature
– volume: 143
  start-page: 1797
  year: 2018
  end-page: 1805
  ident: bib32
  article-title: attenuates toll-like receptor 4 signaling and Akt activation and blocks colon tumor formation in high-fat diet-fed azoxymethane-treated mice
  publication-title: Int. J. Cancer
– volume: 2
  start-page: 217
  year: 2005
  end-page: 225
  ident: bib27
  article-title: Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
  publication-title: Cell Metab.
– volume: 28
  start-page: 1221
  year: 1987
  end-page: 1227
  ident: bib7
  article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood
  publication-title: Gut
– volume: 387
  start-page: 1377
  year: 2016
  end-page: 1396
  ident: bib43
  article-title: Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants
  publication-title: Lancet
– volume: 127
  start-page: 1035
  year: 2017
  end-page: 1046
  ident: bib67
  article-title: A novel class of α-glucosidase and HMG-CoA reductase inhibitors from
  publication-title: Eur. J. Med. Chem.
– volume: 40
  start-page: 1259
  year: 1991
  end-page: 1266
  ident: bib66
  article-title: Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes
  publication-title: Diabetes
– volume: 65
  start-page: 276
  year: 2017
  end-page: 283
  ident: bib71
  article-title: Discovery and synthesis of amino acids modified deoxycholic acid derivatives and
  publication-title: Chem. Pharm. Bull. (Tokyo)
– volume: 22
  start-page: 494
  year: 2017
  end-page: 506.e8
  ident: bib50
  article-title: A subset of polysaccharide capsules in the human symbiont
  publication-title: Cell Host Microbe
– volume: 10
  start-page: 167
  year: 2009
  end-page: 177
  ident: bib64
  article-title: TGR5-mediated bile acid sensing controls glucose homeostasis
  publication-title: Cell Metab.
– volume: 42
  start-page: 47
  year: 2018
  end-page: 52
  ident: bib45
  article-title: Commensal Koch’s postulates: establishing causation in human microbiota research
  publication-title: Curr. Opin. Microbiol.
– volume: 124
  start-page: 4197
  year: 2014
  end-page: 4203
  ident: bib61
  article-title: Deciphering the tête-à-tête between the microbiota and the immune system
  publication-title: J. Clin. Invest.
– volume: 375
  start-page: 2369
  year: 2016
  end-page: 2379
  ident: bib39
  article-title: The human intestinal microbiome in health and disease
  publication-title: N. Engl. J. Med.
– volume: 12
  start-page: 419
  year: 2009
  end-page: 423
  ident: bib42
  article-title: Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
– volume: 70
  start-page: 667
  year: 2014
  end-page: 674
  ident: bib53
  article-title: Bile acid supplementation improves established liver steatosis in obese mice independently of glucagon-like peptide-1 secretion
  publication-title: J. Physiol. Biochem.
– volume: 27
  start-page: 104
  year: 2008
  end-page: 119
  ident: bib24
  article-title: Review article: the role of butyrate on colonic function
  publication-title: Aliment. Pharmacol. Ther.
– volume: 24
  start-page: 151
  year: 2016
  end-page: 157
  ident: bib13
  article-title: Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis
  publication-title: Cell Metab.
– volume: 76
  start-page: 1397
  year: 2011
  end-page: 1399
  ident: bib8
  article-title: Regioselective oxidation of cholic acid and its 7β epimer by using o-iodoxybenzoic acid
  publication-title: Steroids
– volume: 552
  start-page: 244
  year: 2017
  end-page: 247
  ident: bib62
  article-title: Moving beyond microbiome-wide associations to causal microbe identification
  publication-title: Nature
– volume: 56
  start-page: 1300
  year: 2012
  end-page: 1310
  ident: bib46
  article-title: Specific bile acids inhibit hepatic fatty acid uptake in mice
  publication-title: Hepatology
– volume: 21
  start-page: 5000
  year: 2015
  end-page: 5008
  ident: bib70
  article-title: Ultrasound-driven secondary self-assembly of amphiphilic β-cyclodextrin dimers
  publication-title: Chemistry
– volume: 65
  start-page: 451
  year: 2017
  end-page: 464
  ident: bib14
  article-title: Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach
  publication-title: Hepatology
– volume: 352
  start-page: 560
  year: 2016
  end-page: 564
  ident: bib19
  article-title: Population-level analysis of gut microbiome variation
  publication-title: Science
– volume: 54
  start-page: 2325
  year: 2013
  end-page: 2340
  ident: bib15
  article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism
  publication-title: J. Lipid Res.
– volume: 7
  start-page: 880
  year: 2013
  end-page: 884
  ident: bib21
  article-title: An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice
  publication-title: ISME J.
– volume: 29
  start-page: 194
  year: 2018
  end-page: 202
  ident: bib10
  article-title: New insights in the multiple roles of bile acids and their signaling pathways in metabolic control
  publication-title: Curr. Opin. Lipidol.
– volume: 82
  start-page: 2210
  year: 2016
  end-page: 2218
  ident: bib29
  article-title: High-throughput single-cell cultivation on microfluidic streak plates
  publication-title: Appl. Environ. Microbiol.
– volume: 65
  start-page: 415
  year: 2016
  end-page: 425
  ident: bib52
  article-title: Identification of an anti-inflammatory protein from
  publication-title: Gut
– volume: 21
  start-page: 159
  year: 2015
  end-page: 165
  ident: bib20
  article-title: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance
  publication-title: Nat. Med.
– volume: 60
  start-page: 463
  year: 2011
  end-page: 472
  ident: bib22
  article-title: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease
  publication-title: Gut
– volume: 56
  start-page: 1599
  year: 2006
  end-page: 1605
  ident: bib56
  article-title: Reclassification of
  publication-title: Int. J. Syst. Evol. Microbiol.
– volume: 65
  start-page: 415
  year: 2016
  ident: 10.1016/j.celrep.2018.12.028_bib52
  article-title: Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease
  publication-title: Gut
  doi: 10.1136/gutjnl-2014-307649
– volume: 236
  start-page: R105
  year: 2018
  ident: 10.1016/j.celrep.2018.12.028_bib12
  article-title: Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate
  publication-title: J. Endocrinol.
  doi: 10.1530/JOE-17-0542
– volume: 82
  start-page: 2210
  year: 2016
  ident: 10.1016/j.celrep.2018.12.028_bib29
  article-title: High-throughput single-cell cultivation on microfluidic streak plates
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.03588-15
– volume: 387
  start-page: 1377
  year: 2016
  ident: 10.1016/j.celrep.2018.12.028_bib43
  article-title: Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants
  publication-title: Lancet
  doi: 10.1016/S0140-6736(16)30054-X
– volume: 163
  start-page: 250
  year: 2011
  ident: 10.1016/j.celrep.2018.12.028_bib34
  article-title: Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition
  publication-title: Clin. Exp. Immunol.
  doi: 10.1111/j.1365-2249.2010.04286.x
– volume: 378
  start-page: 804
  year: 2011
  ident: 10.1016/j.celrep.2018.12.028_bib63
  article-title: The global obesity pandemic: shaped by global drivers and local environments
  publication-title: Lancet
  doi: 10.1016/S0140-6736(11)60813-1
– volume: 3
  start-page: 695
  year: 2004
  ident: 10.1016/j.celrep.2018.12.028_bib57
  article-title: Lipid metabolic enzymes: emerging drug targets for the treatment of obesity
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1469
– volume: 60
  start-page: 463
  year: 2011
  ident: 10.1016/j.celrep.2018.12.028_bib22
  article-title: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease
  publication-title: Gut
  doi: 10.1136/gut.2010.212159
– volume: 60
  start-page: 405
  year: 2008
  ident: 10.1016/j.celrep.2018.12.028_bib60
  article-title: International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.108.00802
– volume: 35
  start-page: 134
  year: 2001
  ident: 10.1016/j.celrep.2018.12.028_bib35
  article-title: Ursodeoxycholic acid “mechanisms of action and clinical use in hepatobiliary disorders.”
  publication-title: J. Hepatol.
  doi: 10.1016/S0168-8278(01)00092-7
– volume: 29
  start-page: 194
  year: 2018
  ident: 10.1016/j.celrep.2018.12.028_bib10
  article-title: New insights in the multiple roles of bile acids and their signaling pathways in metabolic control
  publication-title: Curr. Opin. Lipidol.
  doi: 10.1097/MOL.0000000000000508
– volume: 10
  start-page: 627
  year: 2013
  ident: 10.1016/j.celrep.2018.12.028_bib69
  article-title: From NAFLD to NASH to cirrhosis-new insights into disease mechanisms
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2013.149
– volume: 34
  start-page: 270
  year: 2010
  ident: 10.1016/j.celrep.2018.12.028_bib48
  article-title: Targeting the TGR5-GLP-1 pathway to combat type 2 diabetes and non-alcoholic fatty liver disease
  publication-title: Gastroenterol. Clin. Biol.
  doi: 10.1016/j.gcb.2010.03.009
– volume: 21
  start-page: E607
  year: 2013
  ident: 10.1016/j.celrep.2018.12.028_bib65
  article-title: Human intestinal microbiota composition is associated with local and systemic inflammation in obesity
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.20466
– volume: 352
  start-page: 560
  year: 2016
  ident: 10.1016/j.celrep.2018.12.028_bib19
  article-title: Population-level analysis of gut microbiome variation
  publication-title: Science
  doi: 10.1126/science.aad3503
– volume: 65
  start-page: 276
  year: 2017
  ident: 10.1016/j.celrep.2018.12.028_bib71
  article-title: Discovery and synthesis of amino acids modified deoxycholic acid derivatives and in vitro antiproliferative evaluation
  publication-title: Chem. Pharm. Bull. (Tokyo)
  doi: 10.1248/cpb.c16-00836
– volume: 1
  start-page: 834
  year: 1987
  ident: 10.1016/j.celrep.2018.12.028_bib51
  article-title: Is ursodeoxycholic acid an effective treatment for primary biliary cirrhosis?
  publication-title: Lancet
  doi: 10.1016/S0140-6736(87)91610-2
– volume: 56
  start-page: 1599
  year: 2006
  ident: 10.1016/j.celrep.2018.12.028_bib56
  article-title: Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.64192-0
– volume: 49
  start-page: 297
  year: 2009
  ident: 10.1016/j.celrep.2018.12.028_bib59
  article-title: Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression
  publication-title: Hepatology
  doi: 10.1002/hep.22627
– volume: 61
  start-page: 3609
  year: 2018
  ident: 10.1016/j.celrep.2018.12.028_bib68
  article-title: Structural modification of natural product ganomycin I leading to discovery of a α-glucosidase and HMG-CoA reductase dual inhibitor improving obesity and metabolic dysfunction in vivo
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.8b00107
– volume: 22
  start-page: 494
  year: 2017
  ident: 10.1016/j.celrep.2018.12.028_bib50
  article-title: A subset of polysaccharide capsules in the human symbiont Bacteroides thetaiotaomicron promote increased competitive fitness in the mouse gut
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.08.020
– volume: 24
  start-page: 151
  year: 2016
  ident: 10.1016/j.celrep.2018.12.028_bib13
  article-title: Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.013
– volume: 348
  start-page: 1625
  year: 2003
  ident: 10.1016/j.celrep.2018.12.028_bib3
  article-title: Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa021423
– volume: 366
  start-page: 1197
  year: 2005
  ident: 10.1016/j.celrep.2018.12.028_bib25
  article-title: Obesity
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)67483-1
– volume: 2
  start-page: 217
  year: 2005
  ident: 10.1016/j.celrep.2018.12.028_bib27
  article-title: Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2005.09.001
– volume: 552
  start-page: 244
  year: 2017
  ident: 10.1016/j.celrep.2018.12.028_bib62
  article-title: Moving beyond microbiome-wide associations to causal microbe identification
  publication-title: Nature
  doi: 10.1038/nature25019
– volume: 30
  start-page: 268
  year: 2015
  ident: 10.1016/j.celrep.2018.12.028_bib11
  article-title: Association between specific mucosa-associated microbiota in Crohn’s disease at the time of resection and subsequent disease recurrence: a pilot study
  publication-title: J. Gastroenterol. Hepatol.
  doi: 10.1111/jgh.12694
– volume: 10
  start-page: 167
  year: 2009
  ident: 10.1016/j.celrep.2018.12.028_bib64
  article-title: TGR5-mediated bile acid sensing controls glucose homeostasis
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2009.08.001
– volume: 8
  start-page: 114
  year: 2017
  ident: 10.1016/j.celrep.2018.12.028_bib1
  article-title: Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-kappa B pathway
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.00114
– volume: 65
  start-page: 451
  year: 2017
  ident: 10.1016/j.celrep.2018.12.028_bib14
  article-title: Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach
  publication-title: Hepatology
  doi: 10.1002/hep.28572
– volume: 17
  start-page: 657
  year: 2013
  ident: 10.1016/j.celrep.2018.12.028_bib9
  article-title: Pleiotropic roles of bile acids in metabolism
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2013.03.013
– volume: 1371
  start-page: 184
  year: 2014
  ident: 10.1016/j.celrep.2018.12.028_bib30
  article-title: A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2014.10.064
– volume: 27
  start-page: 104
  year: 2008
  ident: 10.1016/j.celrep.2018.12.028_bib24
  article-title: Review article: the role of butyrate on colonic function
  publication-title: Aliment. Pharmacol. Ther.
  doi: 10.1111/j.1365-2036.2007.03562.x
– volume: 16
  start-page: 341
  year: 2016
  ident: 10.1016/j.celrep.2018.12.028_bib55
  article-title: Gut microbiota, metabolites and host immunity
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.42
– volume: 20
  start-page: 535
  year: 2016
  ident: 10.1016/j.celrep.2018.12.028_bib44
  article-title: Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2016.09.002
– volume: 240
  start-page: 3459
  year: 1965
  ident: 10.1016/j.celrep.2018.12.028_bib49
  article-title: Fructose diphosphatase from rabbit liver. I. Purification and properties
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)97164-4
– volume: 8
  start-page: 1765
  year: 2017
  ident: 10.1016/j.celrep.2018.12.028_bib4
  article-title: Next-generation beneficial microbes: the case of Akkermansia muciniphila
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2017.01765
– volume: 136
  start-page: 153
  year: 2005
  ident: 10.1016/j.celrep.2018.12.028_bib38
  article-title: New cyclic dimers of cholic acid
  publication-title: Monatsh. Chem.
  doi: 10.1007/s00706-004-0228-0
– volume: 10
  start-page: 416
  year: 2014
  ident: 10.1016/j.celrep.2018.12.028_bib36
  article-title: Gut microbiota-generated metabolites in animal health and disease
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1535
– volume: 76
  start-page: 1397
  year: 2011
  ident: 10.1016/j.celrep.2018.12.028_bib8
  article-title: Regioselective oxidation of cholic acid and its 7β epimer by using o-iodoxybenzoic acid
  publication-title: Steroids
  doi: 10.1016/j.steroids.2011.07.009
– volume: 40
  start-page: 1259
  year: 1991
  ident: 10.1016/j.celrep.2018.12.028_bib66
  article-title: Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes
  publication-title: Diabetes
  doi: 10.2337/diab.40.10.1259
– volume: 114
  start-page: 10713
  year: 2017
  ident: 10.1016/j.celrep.2018.12.028_bib6
  article-title: Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1711235114
– volume: 12
  start-page: 419
  year: 2009
  ident: 10.1016/j.celrep.2018.12.028_bib42
  article-title: Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis
  publication-title: Curr. Opin. Clin. Nutr. Metab. Care
  doi: 10.1097/MCO.0b013e32832c4d6a
– volume: 21
  start-page: 5000
  year: 2015
  ident: 10.1016/j.celrep.2018.12.028_bib70
  article-title: Ultrasound-driven secondary self-assembly of amphiphilic β-cyclodextrin dimers
  publication-title: Chemistry
  doi: 10.1002/chem.201405707
– volume: 7
  start-page: 880
  year: 2013
  ident: 10.1016/j.celrep.2018.12.028_bib21
  article-title: An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice
  publication-title: ISME J.
  doi: 10.1038/ismej.2012.153
– volume: 69
  start-page: 245
  year: 2011
  ident: 10.1016/j.celrep.2018.12.028_bib26
  article-title: Propionate as a health-promoting microbial metabolite in the human gut
  publication-title: Nutr. Rev.
  doi: 10.1111/j.1753-4887.2011.00388.x
– volume: 375
  start-page: 2369
  year: 2016
  ident: 10.1016/j.celrep.2018.12.028_bib39
  article-title: The human intestinal microbiome in health and disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra1600266
– volume: 23
  start-page: 107
  year: 2017
  ident: 10.1016/j.celrep.2018.12.028_bib47
  article-title: A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice
  publication-title: Nat. Med.
  doi: 10.1038/nm.4236
– volume: 102
  start-page: 7970
  year: 2005
  ident: 10.1016/j.celrep.2018.12.028_bib18
  article-title: MB06322 (CS-917): a potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0502983102
– volume: 127
  start-page: 1035
  year: 2017
  ident: 10.1016/j.celrep.2018.12.028_bib67
  article-title: A novel class of α-glucosidase and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of ganomycin I in KK-Ay mice
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2016.11.015
– volume: 533
  start-page: 543
  year: 2016
  ident: 10.1016/j.celrep.2018.12.028_bib2
  article-title: Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation
  publication-title: Nature
  doi: 10.1038/nature17645
– volume: 268
  start-page: 9466
  year: 1993
  ident: 10.1016/j.celrep.2018.12.028_bib17
  article-title: Isolation of a human liver fructose-1,6-bisphosphatase cDNA and expression of the protein in Escherichia coli. Role of ASP-118 and ASP-121 in catalysis
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)98373-0
– volume: 54
  start-page: 2325
  year: 2013
  ident: 10.1016/j.celrep.2018.12.028_bib15
  article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism
  publication-title: J. Lipid Res.
  doi: 10.1194/jlr.R036012
– volume: 141
  start-page: 473
  year: 2017
  ident: 10.1016/j.celrep.2018.12.028_bib31
  article-title: Fructose-1,6-bisphosphatase inhibitors: a new valid approach for management of type 2 diabetes mellitus
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2017.09.029
– volume: 15
  start-page: 111
  year: 2018
  ident: 10.1016/j.celrep.2018.12.028_bib28
  article-title: Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis
  publication-title: Nat. Rev. Gastroenterol. Hepatol.
  doi: 10.1038/nrgastro.2017.119
– volume: 67
  start-page: 1269
  year: 2018
  ident: 10.1016/j.celrep.2018.12.028_bib37
  article-title: Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-314050
– volume: 404
  start-page: 635
  year: 2000
  ident: 10.1016/j.celrep.2018.12.028_bib33
  article-title: Obesity as a medical problem
  publication-title: Nature
  doi: 10.1038/35007508
– volume: 124
  start-page: 4197
  year: 2014
  ident: 10.1016/j.celrep.2018.12.028_bib61
  article-title: Deciphering the tête-à-tête between the microbiota and the immune system
  publication-title: J. Clin. Invest.
– volume: 143
  start-page: 1797
  year: 2018
  ident: 10.1016/j.celrep.2018.12.028_bib32
  article-title: Parabacteroides distasonis attenuates toll-like receptor 4 signaling and Akt activation and blocks colon tumor formation in high-fat diet-fed azoxymethane-treated mice
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31559
– volume: 315
  start-page: G259
  year: 2018
  ident: 10.1016/j.celrep.2018.12.028_bib23
  article-title: Ursodeoxycholic acid protects against intestinal barrier breakdown by promoting enterocyte migration via EGFR- and COX-2-dependent mechanisms
  publication-title: Am. J. Physiol. Gastrointest. Liver Physiol.
  doi: 10.1152/ajpgi.00354.2017
– volume: 54
  start-page: 1469
  year: 2004
  ident: 10.1016/j.celrep.2018.12.028_bib16
  article-title: Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium
  publication-title: Int. J. Syst. Evol. Microbiol.
  doi: 10.1099/ijs.0.02873-0
– volume: 105
  start-page: 16731
  year: 2008
  ident: 10.1016/j.celrep.2018.12.028_bib58
  article-title: Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0804812105
– volume: 21
  start-page: 159
  year: 2015
  ident: 10.1016/j.celrep.2018.12.028_bib20
  article-title: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance
  publication-title: Nat. Med.
  doi: 10.1038/nm.3760
– volume: 70
  start-page: 667
  year: 2014
  ident: 10.1016/j.celrep.2018.12.028_bib53
  article-title: Bile acid supplementation improves established liver steatosis in obese mice independently of glucagon-like peptide-1 secretion
  publication-title: J. Physiol. Biochem.
  doi: 10.1007/s13105-014-0336-1
– volume: 14
  start-page: 2679
  year: 2016
  ident: 10.1016/j.celrep.2018.12.028_bib40
  article-title: Radical-mediated dehydrogenation of bile acids by means of hydrogen atom transfer to triplet carbonyls
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C5OB02561C
– volume: 56
  start-page: 1300
  year: 2012
  ident: 10.1016/j.celrep.2018.12.028_bib46
  article-title: Specific bile acids inhibit hepatic fatty acid uptake in mice
  publication-title: Hepatology
  doi: 10.1002/hep.25797
– volume: 123
  start-page: 6246
  year: 2001
  ident: 10.1016/j.celrep.2018.12.028_bib54
  article-title: Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0103288
– volume: 28
  start-page: 1221
  year: 1987
  ident: 10.1016/j.celrep.2018.12.028_bib7
  article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood
  publication-title: Gut
  doi: 10.1136/gut.28.10.1221
– volume: 42
  start-page: 47
  year: 2018
  ident: 10.1016/j.celrep.2018.12.028_bib45
  article-title: Commensal Koch’s postulates: establishing causation in human microbiota research
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2017.10.001
– volume: 25
  start-page: 881
  year: 2009
  ident: 10.1016/j.celrep.2018.12.028_bib41
  article-title: A novel function of intestinal gluconeogenesis: central signaling in glucose and energy homeostasis
  publication-title: Nutrition
  doi: 10.1016/j.nut.2009.06.010
– volume: 7
  start-page: 335
  year: 2010
  ident: 10.1016/j.celrep.2018.12.028_bib5
  article-title: QIIME allows analysis of high-throughput community sequencing data
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.f.303
SSID ssj0000601194
Score 2.679016
Snippet We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 222
SubjectTerms Animals
Bacterial Proteins - chemistry
Bacteroidetes - enzymology
bile acids
Bile Acids and Salts - metabolism
FBPase
Gastrointestinal Microbiome - physiology
Humans
metabolic disorders
Mice
Obesity - microbiology
Parabacteroides distasonis
succinate
Succinic Acid - metabolism
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect Open Access Journals
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalMNjLaLe1TX8MDfZqUlu2JT-m7UoYZBSyQt7E-SSDR3BKnDzkof9772Q7MGgp7FFGh43ufPedpPtOiB8xUFgCraPMlHmUQpVH4JnuLkdm__amQi5Onv3Op4_pr0W2OBC3Qy0MX6vsfX_n04O37p-M-9UcP9X1eJ5Q7kLRiZyrYsYU9sMqNaGIb3Gz32dhvpE49EPk-RELDBV04ZoX-uXaM3FlbMK-ILdlfz1CvYVAQyS6PxKfeggpJ91XHosD33wWH7qmkrsv4vkB-JyeSZhXtfOtdAwRCVbXrZwsuZqc4aXsOwJIaJyc-Q3ZwrJGebdrOdIFY5Q0Uz50jLA0lqtKzreIdUPyQWzOybSD9U7ekG-RE6xd-1U83v_8czuN-iYLEaY63URaJcoVaLBAdCrLaTkNrT3FMF0CeIMak0JXBcQGkdBTdu3Soso9aAdeI6oTcdisGn8mJBbGQ6qBfEScVtdYAJSqAsJQSYWqdCOhhoW12DOQcyOMpR2umv21nTosq8PGiSV1jES0l3rqGDjema8Hndl_LMlSkHhH8vugYks_GZ-cQONX29YmlFSymM5G4rTT_f5bKOciEKnN-X-_90J8pFERNnaSS3G4WW_9FUGdTfkt2PILsLL-eA
  priority: 102
  providerName: Elsevier
Title Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids
URI https://dx.doi.org/10.1016/j.celrep.2018.12.028
https://www.ncbi.nlm.nih.gov/pubmed/30605678
https://www.proquest.com/docview/2164101675
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEF6clEAupY-0dR9mA70qWKvHrg6lOG2DW3AIpAbfltHsClSE3Fo21If-987okV5i0otAoJHEzux-3-zjGyHeh0CwBFoHicnTIIYiDcCz3F2KrP7tTYF8OHlxnc6X8bdVshqJoWZr34DNvakd15NabqqL37_2H6nDf_i3Vwt9tfGsPhmadnJPmSPxiLBJc1dd9IS_G5tZ44yXmpXivVwq1sN5ugMvOoRXh_hoi0tXT8TjnlDKWRcBT8XI18_ESVdicv9c_LkBXrVnSeZ16XwjHRNGItllI2cVny1nsin7-gASaicXfkuRUZUoP-8bxr02NCU9KW86fVi6l-tC3u4Qy5rsW7NbTq0dbPbykkYaOcPSNWdiefXl-6d50JdcCDDW8TbQkYpchgYzRBclKSGXQe8I0XQO4A1qVJkuMggNInGpZOrirEg9aAdeI0YvxHG9rv0rITEzHmINNGKEcTHFDCCPCiBGpQqMcjcW0dCwFns9ci6LUdlh49kP27nDsjtsqCy5YyyCO6ufnR7HA8_rwWe25xQdV7AUQQ9Yng8uttTleB0Far_eNVZRislmOhmLl53v7_6FMjCilNq8_g_rN-KUvpe1EzrqrTjebnb-HVGcbT5ppwbo-nV1OWkj-C-rAf15
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF_EUuqLaG31tLZb8DWc-bjs5vG0lbP1RDiFe1smsxuIHDm53D3cg_-7M5vkQLAIfUyyQ8LMZOY3-_EbIc5CoLQESgUDnadBAkUagGO6uxSZ_dvpAvlw8vg2HT0kf6aD6Za47M7C8LbKNvY3Md1H6_ZOv9Vm_6ks-5OIahfKThRcY2ZMoTj8gdCA4v4N19OLzUQLE46EviEiCwQs0R2h8_u80M0WjpkrQ-0nBrkv-9sp6l8Q1Keiqz2x22JIOWw-c19sueqz-Nh0lVwfiOc74IV6ZmGel9bV0jJGJFxd1nI44-PkjC9l2xJAQmXl2C3JGWYlyl_rmlOd90ZJI-VdQwlL13JeyMkKsaxI3otNuJq2sFjLCwoucoilrb-Ih6vf95ejoO2yEGCikmWg4ii2GWrMEG1MCgy1JuVTElM5gNOoMMpUkUGoEQk-Dc5tkhWpA2XBKcT4q9iu5pU7EhIz7SBRQEEiTIpzzADyuAACUVGBcW57Iu4Ua7ClIOdOGDPT7TV7NI05DJvDhJEhc_REsJF6aig43hmvOpuZV65kKEu8I_mzM7Ghv4yXTqBy81VtIqoqWUwNeuKwsf3mW6joIhSp9PF_v_eH-DS6H9-Ym-vbvydih55kfpYn-ia2l4uVOyXcs8y_e79-AXvTAaY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parabacteroides+distasonis+Alleviates+Obesity+and+Metabolic+Dysfunctions+via+Production+of+Succinate+and+Secondary+Bile+Acids&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Wang%2C+Kai&rft.au=Liao%2C+Mingfang&rft.au=Zhou%2C+Nan&rft.au=Bao%2C+Li&rft.date=2019-01-02&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=26&rft.issue=1&rft.spage=222&rft_id=info:doi/10.1016%2Fj.celrep.2018.12.028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon