Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids
We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA)...
Saved in:
Published in | Cell reports (Cambridge) Vol. 26; no. 1; pp. 222 - 235.e5 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
02.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) and increased the level of succinate in the gut. In vitro cultivation of PD demonstrated its capacity to transform bile acids and production of succinate. Succinate supplementation in the diet decreased hyperglycemia in ob/ob mice via the activation of intestinal gluconeogenesis (IGN). Gavage with a mixture of LCA and UDCA reduced hyperlipidemia by activating the FXR pathway and repairing gut barrier integrity. Co-treatment with succinate and LCA/UDCA mirrored the benefits of LPD. The binding target of succinate was identified as fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. The succinate and secondary bile acids produced by P. distasonis played key roles in the modulation of host metabolism.
[Display omitted]
•Parabacteroides distasonis alleviates obesity and obesity-related dysfunctions in mice.•P. distasonis generates succinate and secondary bile acids in the gut.•P. distasonis activates intestinal gluconeogenesis (IGN) and FXR pathways in the gut.•Succinate is a ligand of fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN.
Wang et al. report the metabolic benefits of gut commensal Parabacteroides distasonis via secondary bile acid-activated FXR signaling and succinate-activated intestinal gluconeogenesis (IGN). Succinate binds fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. |
---|---|
AbstractList | We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) and increased the level of succinate in the gut. In vitro cultivation of PD demonstrated its capacity to transform bile acids and production of succinate. Succinate supplementation in the diet decreased hyperglycemia in ob/ob mice via the activation of intestinal gluconeogenesis (IGN). Gavage with a mixture of LCA and UDCA reduced hyperlipidemia by activating the FXR pathway and repairing gut barrier integrity. Co-treatment with succinate and LCA/UDCA mirrored the benefits of LPD. The binding target of succinate was identified as fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. The succinate and secondary bile acids produced by P. distasonis played key roles in the modulation of host metabolism. We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) and increased the level of succinate in the gut. In vitro cultivation of PD demonstrated its capacity to transform bile acids and production of succinate. Succinate supplementation in the diet decreased hyperglycemia in ob/ob mice via the activation of intestinal gluconeogenesis (IGN). Gavage with a mixture of LCA and UDCA reduced hyperlipidemia by activating the FXR pathway and repairing gut barrier integrity. Co-treatment with succinate and LCA/UDCA mirrored the benefits of LPD. The binding target of succinate was identified as fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. The succinate and secondary bile acids produced by P. distasonis played key roles in the modulation of host metabolism.We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) and increased the level of succinate in the gut. In vitro cultivation of PD demonstrated its capacity to transform bile acids and production of succinate. Succinate supplementation in the diet decreased hyperglycemia in ob/ob mice via the activation of intestinal gluconeogenesis (IGN). Gavage with a mixture of LCA and UDCA reduced hyperlipidemia by activating the FXR pathway and repairing gut barrier integrity. Co-treatment with succinate and LCA/UDCA mirrored the benefits of LPD. The binding target of succinate was identified as fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. The succinate and secondary bile acids produced by P. distasonis played key roles in the modulation of host metabolism. We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat diet (HFD)-fed mice. Treatment with live P. distasonis (LPD) dramatically altered the bile acid profile with elevated lithocholic acid (LCA) and ursodeoxycholic acid (UDCA) and increased the level of succinate in the gut. In vitro cultivation of PD demonstrated its capacity to transform bile acids and production of succinate. Succinate supplementation in the diet decreased hyperglycemia in ob/ob mice via the activation of intestinal gluconeogenesis (IGN). Gavage with a mixture of LCA and UDCA reduced hyperlipidemia by activating the FXR pathway and repairing gut barrier integrity. Co-treatment with succinate and LCA/UDCA mirrored the benefits of LPD. The binding target of succinate was identified as fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. The succinate and secondary bile acids produced by P. distasonis played key roles in the modulation of host metabolism. [Display omitted] •Parabacteroides distasonis alleviates obesity and obesity-related dysfunctions in mice.•P. distasonis generates succinate and secondary bile acids in the gut.•P. distasonis activates intestinal gluconeogenesis (IGN) and FXR pathways in the gut.•Succinate is a ligand of fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. Wang et al. report the metabolic benefits of gut commensal Parabacteroides distasonis via secondary bile acid-activated FXR signaling and succinate-activated intestinal gluconeogenesis (IGN). Succinate binds fructose-1,6-bisphosphatase, the rate-limiting enzyme in IGN. |
Author | Zheng, Zhongyong Wang, Yujing Ma, Ke Liu, Hongwei Bao, Li Wang, Wenzhao Wang, Kai Zhou, Nan Wang, Jun Liao, Mingfang Liu, Shuang-Jiang Liu, Chang |
Author_xml | – sequence: 1 givenname: Kai surname: Wang fullname: Wang, Kai organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China – sequence: 2 givenname: Mingfang surname: Liao fullname: Liao, Mingfang organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China – sequence: 3 givenname: Nan surname: Zhou fullname: Zhou, Nan organization: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China – sequence: 4 givenname: Li surname: Bao fullname: Bao, Li organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China – sequence: 5 givenname: Ke surname: Ma fullname: Ma, Ke organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China – sequence: 6 givenname: Zhongyong surname: Zheng fullname: Zheng, Zhongyong organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China – sequence: 7 givenname: Yujing surname: Wang fullname: Wang, Yujing organization: Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China – sequence: 8 givenname: Chang surname: Liu fullname: Liu, Chang organization: State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China – sequence: 9 givenname: Wenzhao surname: Wang fullname: Wang, Wenzhao organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China – sequence: 10 givenname: Jun surname: Wang fullname: Wang, Jun organization: CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China – sequence: 11 givenname: Shuang-Jiang surname: Liu fullname: Liu, Shuang-Jiang email: liusj@im.ac.cn organization: Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China – sequence: 12 givenname: Hongwei surname: Liu fullname: Liu, Hongwei email: liuhw@im.ac.cn organization: State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, No. 1 Beichenxi Road, Chaoyang District, Beijing 100101, People’s Republic of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30605678$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9P3DAQxa0KVCjwDarKRy4bYicbJxyQtvQPSCCQaM-WM55Is8rai-0g7aHfvV4WpKoH8MVj6_2eZt58YnvOO2TssygLUYrmbFkAjgHXhSxFWwhZlLL9wA6lFGImZK32_qkP2EmMyzKfphSiqz-ygyqX80a1h-zPvQmmN5AweLIYuaWYTPSOIl-MIz6RSfn3rsdIacONs_wWk-n9SMC_beIwOUjkXeRZye-Dt9Pzm_uBP0wA5DL_jD0geGdN2PCvNCJfANl4zPYHM0Y8ebmP2O8f339dXs1u7n5eXy5uZlCrOs1UJSvbQQsdgK1y46JtAW0eQPXGYAsKZKeGzogWQDb1vLR1NzRolDWoAKojdrrzXQf_OGFMekUxJzgah36KWoqm3uaq5ln65UU69Su0eh1olZvWr5FlwflOAMHHGHDQQMlsZ07B0KhFqbdWeql3K9LbFWkhdV5Rhuv_4Ff_d7CLHYY5pCfCoCMQupwBBYSkrae3Df4CqNmvFg |
CitedBy_id | crossref_primary_10_1111_jam_15724 crossref_primary_10_1016_j_isci_2024_110412 crossref_primary_10_1186_s40168_021_01093_y crossref_primary_10_3390_foods12244440 crossref_primary_10_1016_j_jare_2024_11_024 crossref_primary_10_1016_j_phymed_2024_156100 crossref_primary_10_1055_a_2438_4383 crossref_primary_10_1007_s00203_024_03909_5 crossref_primary_10_3390_ijms23169350 crossref_primary_10_3390_nu16132010 crossref_primary_10_1038_s41467_021_21408_9 crossref_primary_10_1186_s40104_024_01076_7 crossref_primary_10_1016_j_cell_2022_08_021 crossref_primary_10_1021_acs_jafc_3c09146 crossref_primary_10_1016_j_jff_2019_103652 crossref_primary_10_1021_acs_jafc_3c00108 crossref_primary_10_3389_fmicb_2022_920277 crossref_primary_10_1177_0300060520936806 crossref_primary_10_1177_19160216241293070 crossref_primary_10_1128_jb_00545_21 crossref_primary_10_3389_fmicb_2021_797062 crossref_primary_10_3748_wjg_v26_i46_7338 crossref_primary_10_1038_s41467_019_13836_5 crossref_primary_10_1007_s00894_021_04699_z crossref_primary_10_3390_microorganisms12061081 crossref_primary_10_21603_2308_4057_2025_1_621 crossref_primary_10_1016_j_ijbiomac_2024_129994 crossref_primary_10_3389_fendo_2024_1481270 crossref_primary_10_1016_j_jff_2019_103665 crossref_primary_10_1016_j_csbj_2020_12_011 crossref_primary_10_1038_s41398_021_01620_3 crossref_primary_10_1080_19490976_2021_1922241 crossref_primary_10_1093_nutrit_nuaa128 crossref_primary_10_3390_pathogens13080702 crossref_primary_10_1093_femsre_fuaa065 crossref_primary_10_1021_acs_jafc_0c05060 crossref_primary_10_1186_s40168_024_01781_5 crossref_primary_10_3389_fmed_2021_737713 crossref_primary_10_3390_ijms22073566 crossref_primary_10_1093_femsle_fnac072 crossref_primary_10_1016_j_aquaculture_2024_741483 crossref_primary_10_1371_journal_pone_0317891 crossref_primary_10_3390_nu16234142 crossref_primary_10_1021_acs_jafc_1c02430 crossref_primary_10_3389_fendo_2022_918923 crossref_primary_10_1017_S0007114520001774 crossref_primary_10_1038_s42003_021_02753_3 crossref_primary_10_1186_s12906_024_04417_1 crossref_primary_10_3390_biomedicines9091246 crossref_primary_10_3390_foods12244410 crossref_primary_10_3390_nu13051559 crossref_primary_10_3389_fmicb_2022_908011 crossref_primary_10_1002_JPER_22_0294 crossref_primary_10_1007_s10753_021_01514_y crossref_primary_10_1080_19490976_2024_2399260 crossref_primary_10_1016_j_ijbiomac_2024_134085 crossref_primary_10_1016_j_jhazmat_2022_130034 crossref_primary_10_1186_s12866_021_02263_6 crossref_primary_10_1055_s_0043_1774414 crossref_primary_10_1016_j_foodchem_2021_130735 crossref_primary_10_1016_j_arabjc_2022_103755 crossref_primary_10_1039_D2NP00075J crossref_primary_10_3390_cells12141888 crossref_primary_10_3390_microorganisms9071436 crossref_primary_10_1016_j_jchromb_2021_122683 crossref_primary_10_1128_msystems_01567_24 crossref_primary_10_1002_mnfr_202300334 crossref_primary_10_3390_nu13030787 crossref_primary_10_1080_19490976_2025_2450871 crossref_primary_10_3390_nu12040935 crossref_primary_10_3390_nu15194163 crossref_primary_10_1016_j_jff_2021_104670 crossref_primary_10_3389_fmicb_2022_876043 crossref_primary_10_3389_fphar_2022_1040591 crossref_primary_10_1016_j_phymed_2024_155575 crossref_primary_10_1021_acs_jafc_8b04909 crossref_primary_10_1038_s41392_019_0074_5 crossref_primary_10_3390_metabo15010022 crossref_primary_10_3390_nu12113444 crossref_primary_10_3389_fmicb_2022_853566 crossref_primary_10_18632_aging_103962 crossref_primary_10_26599_FSHW_2024_9250086 crossref_primary_10_1016_j_jff_2020_104038 crossref_primary_10_1016_j_jff_2020_104278 crossref_primary_10_1093_ecco_jcc_jjae142 crossref_primary_10_1371_journal_pone_0262906 crossref_primary_10_1016_j_jad_2020_12_143 crossref_primary_10_1136_gutjnl_2021_326789 crossref_primary_10_3389_fnut_2023_1237237 crossref_primary_10_3389_fvets_2021_806105 crossref_primary_10_3390_foods11243970 crossref_primary_10_1002_imo2_70008 crossref_primary_10_1139_apnm_2020_0459 crossref_primary_10_3390_foods13213388 crossref_primary_10_1016_j_carbpol_2022_119862 crossref_primary_10_1016_j_fshw_2023_03_048 crossref_primary_10_1016_j_pharmthera_2022_108256 crossref_primary_10_1016_j_jhazmat_2023_131879 crossref_primary_10_1016_j_fochx_2023_101052 crossref_primary_10_1073_pnas_2405410121 crossref_primary_10_3390_ijms24021166 crossref_primary_10_1097_MD_0000000000034764 crossref_primary_10_1371_journal_pone_0268466 crossref_primary_10_1016_j_foodchem_2023_135440 crossref_primary_10_1177_20406223221117449 crossref_primary_10_3390_metabo15030167 crossref_primary_10_3390_nu12061622 crossref_primary_10_1002_imt2_124 crossref_primary_10_1152_ajpregu_00106_2021 crossref_primary_10_1016_j_jtcms_2022_04_005 crossref_primary_10_1039_C9FO02478F crossref_primary_10_3389_fnut_2022_810462 crossref_primary_10_1016_j_bcp_2024_116574 crossref_primary_10_1186_s42523_022_00221_9 crossref_primary_10_1016_j_celrep_2022_111789 crossref_primary_10_1016_j_foodres_2022_111014 crossref_primary_10_1016_j_phrs_2023_106983 crossref_primary_10_3920_BM2021_0171 crossref_primary_10_1080_19490976_2024_2416915 crossref_primary_10_3389_fmicb_2023_1185993 crossref_primary_10_1039_D1FO02886C crossref_primary_10_1016_j_jep_2024_118443 crossref_primary_10_1016_j_fshw_2023_02_023 crossref_primary_10_1016_j_ijbiomac_2024_138774 crossref_primary_10_1152_ajpgi_00216_2019 crossref_primary_10_1093_gastro_goac008 crossref_primary_10_1016_j_jff_2022_104978 crossref_primary_10_1111_febs_17249 crossref_primary_10_3390_foods11050725 crossref_primary_10_1016_j_ijbiomac_2024_138527 crossref_primary_10_2217_fmb_2021_0043 crossref_primary_10_1128_spectrum_02517_22 crossref_primary_10_3389_fmicb_2023_1239501 crossref_primary_10_1186_s12014_023_09396_y crossref_primary_10_3390_ani12121504 crossref_primary_10_3390_molecules28176352 crossref_primary_10_1016_j_jnutbio_2021_108908 crossref_primary_10_3390_microorganisms11112707 crossref_primary_10_1155_2021_8832554 crossref_primary_10_1080_10408398_2023_2191135 crossref_primary_10_3390_nu14204220 crossref_primary_10_3390_foods12091909 crossref_primary_10_1016_j_jep_2024_118438 crossref_primary_10_3389_fcimb_2021_696186 crossref_primary_10_1038_s41467_024_45572_w crossref_primary_10_3390_microorganisms9112284 crossref_primary_10_1111_cts_13051 crossref_primary_10_1080_19490976_2024_2390136 crossref_primary_10_1071_AN21093 crossref_primary_10_1039_D1FO02667D crossref_primary_10_3389_fmicb_2024_1469253 crossref_primary_10_3390_nu12113557 crossref_primary_10_1016_j_compbiomed_2022_105516 crossref_primary_10_3389_fcimb_2022_1044957 crossref_primary_10_1186_s12934_020_01319_y crossref_primary_10_1080_10408398_2021_1986466 crossref_primary_10_1016_j_foodchem_2021_129439 crossref_primary_10_1021_acs_jafc_2c06674 crossref_primary_10_1038_s41564_022_01195_9 crossref_primary_10_1080_19490976_2024_2350151 crossref_primary_10_3390_biology13010051 crossref_primary_10_1016_j_foodhyd_2023_109068 crossref_primary_10_1002_1873_3468_14441 crossref_primary_10_1021_acs_jafc_2c02079 crossref_primary_10_1016_j_foodres_2023_113192 crossref_primary_10_3389_fmicb_2021_628426 crossref_primary_10_1016_j_jff_2024_106410 crossref_primary_10_1186_s12866_024_03372_8 crossref_primary_10_1053_j_gastro_2019_09_023 crossref_primary_10_1039_D4FO02256D crossref_primary_10_1186_s40168_022_01306_y crossref_primary_10_1016_j_ijbiomac_2021_04_070 crossref_primary_10_1039_D4FO05633G crossref_primary_10_1016_j_ejphar_2024_177105 crossref_primary_10_1080_19490976_2025_2465896 crossref_primary_10_3390_nu12040977 crossref_primary_10_3389_fmicb_2022_831176 crossref_primary_10_1128_spectrum_01904_21 crossref_primary_10_1002_efd2_70007 crossref_primary_10_1631_jzus_B2200491 crossref_primary_10_2147_DDDT_S457338 crossref_primary_10_1007_s00253_019_10307_1 crossref_primary_10_1016_j_foodhyd_2023_108781 crossref_primary_10_1007_s13105_021_00837_6 crossref_primary_10_1002_advs_202309255 crossref_primary_10_1039_D2FO01958B crossref_primary_10_1016_j_ijbiomac_2022_04_107 crossref_primary_10_1039_D1FO03185F crossref_primary_10_3390_nu16142322 crossref_primary_10_1111_obr_13341 crossref_primary_10_1136_bmjdrc_2022_003149 crossref_primary_10_1002_mco2_171 crossref_primary_10_1016_j_tim_2022_08_003 crossref_primary_10_1080_19490976_2021_1897209 crossref_primary_10_1016_j_ijbiomac_2023_125964 crossref_primary_10_3389_fmicb_2022_980082 crossref_primary_10_3389_fmicb_2024_1484134 crossref_primary_10_1080_19490976_2024_2335879 crossref_primary_10_3389_fmicb_2019_01746 crossref_primary_10_1016_j_ijbiomac_2024_133053 crossref_primary_10_1016_j_phrs_2020_104942 crossref_primary_10_5812_hepatmon_149965 crossref_primary_10_1155_2020_8846401 crossref_primary_10_3389_fphys_2023_1292673 crossref_primary_10_1021_acs_jafc_2c07945 crossref_primary_10_3920_BM2022_0022 crossref_primary_10_1186_s12882_024_03899_y crossref_primary_10_1016_j_nut_2021_111176 crossref_primary_10_3390_cancers15205091 crossref_primary_10_1016_j_fbio_2025_106229 crossref_primary_10_1080_10408398_2022_2110035 crossref_primary_10_1016_j_lfs_2023_122380 crossref_primary_10_3389_fmicb_2022_911275 crossref_primary_10_1016_j_biopha_2023_115050 crossref_primary_10_1039_D0RA07551E crossref_primary_10_1080_19490976_2024_2367342 crossref_primary_10_1155_2020_9067821 crossref_primary_10_1016_j_jep_2025_119578 crossref_primary_10_1016_j_jpha_2020_10_001 crossref_primary_10_3389_fcimb_2023_1269548 crossref_primary_10_3390_ijms25031803 crossref_primary_10_3389_fvets_2022_905242 crossref_primary_10_3389_fmicb_2022_984654 crossref_primary_10_1080_19490976_2020_1802209 crossref_primary_10_3390_nu14194176 crossref_primary_10_1152_ajpgi_00274_2023 crossref_primary_10_1007_s10753_024_02021_6 crossref_primary_10_3390_nu14194050 crossref_primary_10_3390_ani13243867 crossref_primary_10_1016_j_jff_2020_104334 crossref_primary_10_3389_fphar_2020_606227 crossref_primary_10_3390_antiox11122372 crossref_primary_10_1016_j_foodhyd_2022_108045 crossref_primary_10_1016_j_jnutbio_2023_109437 crossref_primary_10_1016_j_carbpol_2021_118716 crossref_primary_10_3390_metabo13070846 crossref_primary_10_1038_s41598_020_60150_y crossref_primary_10_1097_HEP_0000000000000627 crossref_primary_10_18632_aging_203460 crossref_primary_10_1016_j_phrs_2024_107511 crossref_primary_10_3390_ani14070999 crossref_primary_10_1038_s41467_023_43622_3 crossref_primary_10_3390_foods11142039 crossref_primary_10_4240_wjgs_v16_i8_2436 crossref_primary_10_1016_j_ijbiomac_2022_04_029 crossref_primary_10_1002_jsfa_11945 crossref_primary_10_3390_microorganisms7060176 crossref_primary_10_3390_nu14101994 crossref_primary_10_2147_DMSO_S313385 crossref_primary_10_1016_j_lwt_2021_110921 crossref_primary_10_7717_peerj_17583 crossref_primary_10_3389_fphar_2023_1134429 crossref_primary_10_1038_s41522_023_00451_y crossref_primary_10_1186_s40168_023_01636_5 crossref_primary_10_1016_j_ejphar_2022_174773 crossref_primary_10_1016_j_ygeno_2023_110647 crossref_primary_10_1038_s41598_023_37036_w crossref_primary_10_7717_peerj_10946 crossref_primary_10_1016_j_bbi_2022_02_009 crossref_primary_10_1111_1750_3841_17056 crossref_primary_10_1039_D1FO03170H crossref_primary_10_1038_s41522_023_00386_4 crossref_primary_10_3389_fcimb_2021_717636 crossref_primary_10_1039_D2FO01901A crossref_primary_10_3748_wjg_v27_i33_5555 crossref_primary_10_1002_mnfr_202101091 crossref_primary_10_1002_smtd_201900604 crossref_primary_10_3390_jpm13020327 crossref_primary_10_1016_j_jep_2025_119514 crossref_primary_10_2217_fmb_2019_0301 crossref_primary_10_1038_s41598_022_13270_6 crossref_primary_10_1039_D1FO04012J crossref_primary_10_1007_s00253_019_10012_z crossref_primary_10_3389_fmicb_2021_761067 crossref_primary_10_1039_D3FO02791K crossref_primary_10_18632_aging_205501 crossref_primary_10_1136_gutjnl_2022_327756 crossref_primary_10_1186_s12915_023_01578_2 crossref_primary_10_3389_fnut_2022_1019344 crossref_primary_10_3389_fnut_2023_1205377 crossref_primary_10_1093_rheumatology_kead042 crossref_primary_10_3390_metabo12111092 crossref_primary_10_1038_s41398_021_01610_5 crossref_primary_10_3390_microorganisms12030430 crossref_primary_10_1016_j_jep_2023_116916 crossref_primary_10_1080_19490976_2023_2221098 crossref_primary_10_1016_j_molcel_2020_03_005 crossref_primary_10_1016_j_phymed_2021_153561 crossref_primary_10_1080_19490976_2022_2027853 crossref_primary_10_1016_j_fbio_2024_103701 crossref_primary_10_1016_j_hnm_2023_200193 crossref_primary_10_1016_j_carbpol_2024_122870 crossref_primary_10_1128_spectrum_01147_21 crossref_primary_10_1186_s40168_024_01799_9 crossref_primary_10_1016_j_ijbiomac_2024_135309 crossref_primary_10_1631_jzus_B1900158 crossref_primary_10_1039_D2FO03142F crossref_primary_10_3390_nu15235005 crossref_primary_10_1016_j_ijbiomac_2023_125647 crossref_primary_10_1016_j_jcjd_2019_05_008 crossref_primary_10_3390_nu12123759 crossref_primary_10_1016_j_aninu_2023_12_006 crossref_primary_10_1080_19476337_2022_2093979 crossref_primary_10_3390_ijms231911227 crossref_primary_10_1093_femspd_ftz058 crossref_primary_10_1016_j_foodres_2023_113133 crossref_primary_10_1186_s13578_024_01253_1 crossref_primary_10_3390_microorganisms11112656 crossref_primary_10_1016_j_ijbiomac_2024_138933 crossref_primary_10_1080_19490976_2023_2190300 crossref_primary_10_1097_MD_0000000000038610 crossref_primary_10_1038_s41467_021_27191_x crossref_primary_10_3389_fphar_2021_788558 crossref_primary_10_3390_foods12234285 crossref_primary_10_1002_ijc_32563 crossref_primary_10_1186_s40104_023_00832_5 crossref_primary_10_3389_fmicb_2023_1096471 crossref_primary_10_3389_fimmu_2022_842669 crossref_primary_10_1002_mnfr_202000532 crossref_primary_10_3389_fnut_2021_722557 crossref_primary_10_1038_s41467_022_29589_7 crossref_primary_10_3382_ps_pez483 crossref_primary_10_3389_fmicb_2023_1332230 crossref_primary_10_1016_j_foodhyd_2024_110756 crossref_primary_10_3390_metabo13080960 crossref_primary_10_1016_j_bbadis_2024_167119 crossref_primary_10_3389_fmicb_2022_835950 crossref_primary_10_3389_fmicb_2021_615416 crossref_primary_10_1016_j_psj_2022_102010 crossref_primary_10_1186_s12866_020_02002_3 crossref_primary_10_3390_nu16244268 crossref_primary_10_1038_s41598_020_69295_2 crossref_primary_10_3389_fvets_2024_1381226 crossref_primary_10_1038_s43587_022_00193_0 crossref_primary_10_3390_ijms241512123 crossref_primary_10_1007_s10517_021_05286_1 crossref_primary_10_3389_fmicb_2022_989060 crossref_primary_10_3390_microorganisms11082087 crossref_primary_10_2139_ssrn_3940277 crossref_primary_10_1186_s12902_022_01155_8 crossref_primary_10_1080_10408398_2022_2098249 crossref_primary_10_1038_s41598_021_90060_6 crossref_primary_10_1038_s41538_024_00311_9 crossref_primary_10_1080_19490976_2021_1997293 crossref_primary_10_3390_microorganisms11102408 crossref_primary_10_1002_jsfa_12958 crossref_primary_10_1039_D2FO01161A crossref_primary_10_1016_j_isci_2024_109633 crossref_primary_10_1016_j_aninu_2024_08_008 crossref_primary_10_1016_j_beem_2021_101504 crossref_primary_10_1093_ijfood_vvae004 crossref_primary_10_1021_acs_jafc_4c01595 crossref_primary_10_1016_j_psj_2024_103954 crossref_primary_10_1016_j_phymed_2024_156352 crossref_primary_10_3390_ph18010055 crossref_primary_10_1016_j_jare_2024_12_002 crossref_primary_10_1080_1828051X_2024_2377642 crossref_primary_10_1002_ptr_7343 crossref_primary_10_1113_JP284294 crossref_primary_10_1002_imt2_69 crossref_primary_10_3390_nu14163384 crossref_primary_10_1002_eji_201948478 crossref_primary_10_1002_fsn3_2630 crossref_primary_10_1007_s00125_023_06063_7 crossref_primary_10_3390_jpm11020109 crossref_primary_10_3390_microorganisms9030565 crossref_primary_10_1038_s41598_024_58983_y crossref_primary_10_1128_msystems_00912_24 crossref_primary_10_1038_s41467_022_28856_x crossref_primary_10_1111_1759_7714_13442 crossref_primary_10_1007_s11357_024_01419_2 crossref_primary_10_1021_acs_jafc_1c01801 crossref_primary_10_1016_j_hnm_2025_200300 crossref_primary_10_1002_mnfr_202000996 crossref_primary_10_1016_j_jpha_2024_100976 crossref_primary_10_1016_j_tem_2021_06_003 crossref_primary_10_1016_j_ecoenv_2024_117447 crossref_primary_10_26599_FSHW_2022_9250230 crossref_primary_10_3389_fmicb_2021_643025 crossref_primary_10_3389_fnut_2022_1062961 crossref_primary_10_1002_jmv_28979 crossref_primary_10_1007_s11695_022_06017_9 crossref_primary_10_1016_j_fbio_2024_105470 crossref_primary_10_1021_acsomega_1c00739 crossref_primary_10_1016_j_ijbiomac_2024_135992 crossref_primary_10_1016_j_ijbiomac_2024_132251 crossref_primary_10_1021_acs_jafc_1c07583 crossref_primary_10_3390_biomedicines10010016 crossref_primary_10_1038_s41579_022_00805_x crossref_primary_10_1016_j_phrs_2021_105587 crossref_primary_10_3389_fmicb_2022_862882 crossref_primary_10_3390_nu16010046 crossref_primary_10_1016_j_bbi_2025_02_014 crossref_primary_10_1111_1750_3841_17326 crossref_primary_10_3389_fnut_2022_894278 crossref_primary_10_3389_fmicb_2022_951473 crossref_primary_10_1016_j_jep_2022_115065 crossref_primary_10_1039_D1FO03374C crossref_primary_10_3390_nu16152408 crossref_primary_10_1038_s41575_022_00707_6 crossref_primary_10_1016_j_envpol_2024_123291 crossref_primary_10_3389_fnut_2022_877948 crossref_primary_10_1038_s41392_022_01219_0 crossref_primary_10_1080_10408398_2022_2158174 crossref_primary_10_1021_acs_jafc_4c09010 crossref_primary_10_3389_fmicb_2021_703785 crossref_primary_10_1038_s42003_024_06158_w crossref_primary_10_2337_dc20_0460 crossref_primary_10_3389_fnut_2021_705763 crossref_primary_10_1093_ofid_ofae506 crossref_primary_10_3390_ijms25137250 crossref_primary_10_1097_CRD_0000000000000327 crossref_primary_10_1080_19490976_2020_1869501 crossref_primary_10_1016_j_ajt_2024_03_020 crossref_primary_10_1039_D0FO00116C crossref_primary_10_1111_1750_3841_17439 crossref_primary_10_3389_fanim_2022_880237 crossref_primary_10_1002_bab_2518 crossref_primary_10_1515_biol_2022_0803 crossref_primary_10_1002_jsfa_11535 crossref_primary_10_1016_j_intimp_2025_114408 crossref_primary_10_1038_s41467_021_22727_7 crossref_primary_10_3390_md20120764 crossref_primary_10_1007_s00284_024_03974_5 crossref_primary_10_3389_fnut_2023_1169843 crossref_primary_10_1080_19490976_2023_2298254 crossref_primary_10_1002_mnfr_202101119 crossref_primary_10_1016_j_ijbiomac_2024_133681 crossref_primary_10_1192_j_eurpsy_2019_13 crossref_primary_10_1042_CS20230704 crossref_primary_10_1002_ptr_7439 crossref_primary_10_1093_jas_skad260 crossref_primary_10_1016_j_foodres_2021_110646 crossref_primary_10_1021_acs_jafc_0c02336 crossref_primary_10_1080_10408398_2023_2176464 crossref_primary_10_3389_fphar_2021_622841 crossref_primary_10_3389_fnut_2022_1048693 crossref_primary_10_1111_1744_7917_12905 crossref_primary_10_3389_fncel_2019_00402 crossref_primary_10_1080_09637486_2021_1886255 crossref_primary_10_5713_ajas_18_0984 crossref_primary_10_3389_fphar_2022_904420 crossref_primary_10_1016_j_molmet_2021_101427 crossref_primary_10_1016_j_ejphar_2023_175800 crossref_primary_10_1038_s41598_024_76351_8 crossref_primary_10_3389_fmicb_2023_1052824 crossref_primary_10_1007_s11274_022_03495_y crossref_primary_10_3389_fnins_2022_889211 crossref_primary_10_1016_j_jff_2021_104906 crossref_primary_10_3389_fvets_2021_791371 crossref_primary_10_1016_j_chom_2020_01_006 crossref_primary_10_26599_FSHW_2022_9250218 crossref_primary_10_3390_nu15081965 crossref_primary_10_1039_D0FO03160G crossref_primary_10_1128_Spectrum_00223_21 crossref_primary_10_1155_2022_8647483 crossref_primary_10_3390_ani13121923 crossref_primary_10_3390_metabo14090497 crossref_primary_10_1002_eji_202249866 crossref_primary_10_3389_fvets_2022_982349 crossref_primary_10_1016_j_ijbiomac_2022_10_144 crossref_primary_10_3390_ijms21114093 crossref_primary_10_1038_s41398_021_01309_7 crossref_primary_10_1039_D0FO01768J crossref_primary_10_3390_ph17081015 crossref_primary_10_3389_fmicb_2024_1339621 crossref_primary_10_3390_nu15143255 crossref_primary_10_1016_j_celrep_2020_108005 crossref_primary_10_1016_j_scitotenv_2023_164307 crossref_primary_10_3390_nu15204339 crossref_primary_10_1038_s41522_022_00280_5 crossref_primary_10_1007_s10482_021_01632_5 crossref_primary_10_1038_s41598_022_04902_y crossref_primary_10_3389_fnut_2024_1447878 crossref_primary_10_1016_j_clnu_2022_10_009 crossref_primary_10_1016_j_lfs_2023_121919 crossref_primary_10_1111_1751_2980_13306 crossref_primary_10_3390_obesities2030025 crossref_primary_10_1039_D2FO02268K crossref_primary_10_3389_fimmu_2023_1260780 crossref_primary_10_3390_metabo14030174 crossref_primary_10_3389_fcimb_2022_956528 crossref_primary_10_3389_fmicb_2022_998524 crossref_primary_10_1002_jsfa_13624 crossref_primary_10_1186_s40104_023_00851_2 crossref_primary_10_3389_fmicb_2021_752512 crossref_primary_10_1007_s11130_024_01176_9 crossref_primary_10_1016_j_jep_2023_116893 crossref_primary_10_3389_fmicb_2024_1341938 crossref_primary_10_1002_fsn3_1842 crossref_primary_10_1016_j_biopha_2024_116410 crossref_primary_10_1016_j_jff_2023_105773 crossref_primary_10_1038_s41398_023_02450_1 crossref_primary_10_1016_j_taap_2023_116732 crossref_primary_10_2174_1389201021666201013153142 crossref_primary_10_3389_fendo_2022_906310 crossref_primary_10_1017_S0007114520003001 crossref_primary_10_1080_09513590_2023_2219342 crossref_primary_10_3390_foods12020424 crossref_primary_10_1016_j_foodres_2023_113773 crossref_primary_10_1039_D0FO02810J crossref_primary_10_1080_10408398_2023_2187212 crossref_primary_10_1038_s41564_023_01418_7 crossref_primary_10_1016_j_fochx_2023_100644 crossref_primary_10_1016_j_jff_2022_105234 crossref_primary_10_3390_foods12214014 crossref_primary_10_1038_s41577_019_0198_4 crossref_primary_10_3389_fmicb_2025_1499035 crossref_primary_10_1038_s41598_024_71684_w crossref_primary_10_3389_fpls_2023_1234729 crossref_primary_10_1016_j_ijbiomac_2024_134607 crossref_primary_10_1039_D0FO03044A crossref_primary_10_3389_fendo_2023_1220044 crossref_primary_10_1002_jsfa_13758 crossref_primary_10_1016_j_foodres_2022_111942 crossref_primary_10_3389_fcvm_2022_1076806 crossref_primary_10_1039_D2FO00055E crossref_primary_10_3389_fnut_2021_737059 crossref_primary_10_1186_s13073_022_01053_7 crossref_primary_10_1093_toxsci_kfaa065 crossref_primary_10_3389_fcimb_2024_1367998 crossref_primary_10_3390_nu16121929 crossref_primary_10_1186_s12866_024_03431_0 crossref_primary_10_1038_s41598_020_64728_4 crossref_primary_10_1186_s40104_024_01072_x crossref_primary_10_1053_j_gastro_2020_09_060 crossref_primary_10_1016_j_phrs_2020_105088 crossref_primary_10_3390_nu13010167 crossref_primary_10_3389_fmolb_2021_703585 crossref_primary_10_1172_jci_insight_160578 crossref_primary_10_1016_j_ijbiomac_2023_127326 crossref_primary_10_1186_s40168_021_01065_2 crossref_primary_10_1038_s43587_023_00389_y crossref_primary_10_1038_s42255_025_01246_5 crossref_primary_10_1039_D2FO02257E crossref_primary_10_1007_s11154_019_09513_z crossref_primary_10_3389_fendo_2023_1289571 crossref_primary_10_3389_fimmu_2022_964910 crossref_primary_10_1096_fj_201903244R crossref_primary_10_1002_cbdv_202200949 crossref_primary_10_1038_s41564_023_01570_0 crossref_primary_10_1007_s00394_021_02504_4 crossref_primary_10_1039_D4FO05555A crossref_primary_10_1016_j_ijbiomac_2025_141663 crossref_primary_10_1128_spectrum_03771_22 crossref_primary_10_1371_journal_pone_0241338 crossref_primary_10_3389_fimmu_2022_1033393 crossref_primary_10_1186_s13073_021_00921_y crossref_primary_10_3389_fnut_2022_931458 crossref_primary_10_1016_j_cmet_2021_12_011 crossref_primary_10_1093_gigascience_giad118 crossref_primary_10_1021_acs_jproteome_9b00181 crossref_primary_10_1371_journal_pone_0247039 crossref_primary_10_1016_j_diabres_2021_109078 crossref_primary_10_1016_j_isci_2020_101777 crossref_primary_10_1016_j_foohum_2024_100317 crossref_primary_10_1111_all_15455 crossref_primary_10_26599_FSHW_2022_9250195 crossref_primary_10_3390_microorganisms9081602 crossref_primary_10_1016_j_jenvman_2024_120329 crossref_primary_10_1099_mgen_0_000852 crossref_primary_10_1186_s40104_024_01060_1 crossref_primary_10_26599_FSHW_2022_9250071 crossref_primary_10_3389_fnut_2022_886256 crossref_primary_10_1016_j_isci_2021_102900 crossref_primary_10_1007_s00253_021_11548_9 crossref_primary_10_1016_j_phymed_2022_154440 crossref_primary_10_3389_fmicb_2023_1183598 crossref_primary_10_3390_metabo12070659 crossref_primary_10_1016_j_exger_2025_112734 crossref_primary_10_3389_fnut_2023_1203430 crossref_primary_10_1016_j_schres_2024_06_040 crossref_primary_10_1128_msystems_00765_19 crossref_primary_10_1016_j_foodres_2021_110594 crossref_primary_10_1039_D4FO02963A crossref_primary_10_1002_fft2_379 crossref_primary_10_3389_fnut_2024_1411374 crossref_primary_10_1111_jvp_13038 crossref_primary_10_1038_s42003_024_06224_3 crossref_primary_10_26599_FSHW_2023_9250008 crossref_primary_10_3389_fnut_2022_959703 crossref_primary_10_1016_j_redox_2025_103576 crossref_primary_10_18632_aging_202728 crossref_primary_10_3390_microorganisms9010199 crossref_primary_10_1016_j_jot_2022_09_006 crossref_primary_10_1021_acs_est_1c00573 crossref_primary_10_3389_fendo_2022_929530 crossref_primary_10_3389_fphar_2022_911356 crossref_primary_10_1016_j_foodres_2022_111732 crossref_primary_10_1016_j_isci_2023_106960 crossref_primary_10_1039_D1FO01375K crossref_primary_10_3389_fendo_2024_1380163 crossref_primary_10_1016_j_heliyon_2023_e21935 crossref_primary_10_1186_s40168_021_01040_x crossref_primary_10_3389_fmicb_2022_967649 crossref_primary_10_1016_j_ecoenv_2023_115811 crossref_primary_10_1128_msystems_00232_21 crossref_primary_10_1155_2021_5585952 crossref_primary_10_3389_fsufs_2024_1364403 crossref_primary_10_3390_microorganisms13010200 crossref_primary_10_3390_microorganisms12081674 crossref_primary_10_3390_nu14102146 crossref_primary_10_3390_microorganisms9050897 crossref_primary_10_1111_liv_15098 crossref_primary_10_1515_biol_2021_0140 crossref_primary_10_1016_j_psj_2024_104062 crossref_primary_10_1136_gutjnl_2023_330987 crossref_primary_10_3390_nu15020284 crossref_primary_10_1016_j_apsb_2025_01_024 crossref_primary_10_1002_jsfa_12222 crossref_primary_10_1039_D2FO02549C crossref_primary_10_3390_foods13060948 crossref_primary_10_1289_EHP9674 crossref_primary_10_1016_j_foodres_2022_111744 crossref_primary_10_1016_j_ijbiomac_2020_08_026 crossref_primary_10_1038_s42255_022_00649_y crossref_primary_10_3389_fendo_2023_973624 crossref_primary_10_1080_19490976_2022_2044722 crossref_primary_10_1186_s40104_023_00982_6 crossref_primary_10_1007_s00394_023_03237_2 crossref_primary_10_1016_j_vetmic_2022_109357 crossref_primary_10_3389_fmicb_2024_1409128 crossref_primary_10_3389_fphys_2023_1163055 crossref_primary_10_1002_fsn3_4108 crossref_primary_10_1038_s41564_023_01440_9 crossref_primary_10_1128_mSystems_01047_20 crossref_primary_10_3390_ijms23031673 crossref_primary_10_3390_ijms23169411 crossref_primary_10_3390_ijms24076755 crossref_primary_10_1016_j_scitotenv_2023_169330 crossref_primary_10_3389_fimmu_2022_1036196 crossref_primary_10_3390_nu14142937 crossref_primary_10_1016_j_foodhyd_2021_107213 crossref_primary_10_1016_j_jnutbio_2020_108532 crossref_primary_10_3390_ijms221910858 crossref_primary_10_26599_FSHW_2022_9250065 crossref_primary_10_3389_fphar_2022_761618 crossref_primary_10_1007_s00403_025_04097_y crossref_primary_10_3389_fnut_2022_842686 crossref_primary_10_3389_fnins_2022_917197 crossref_primary_10_3389_fnut_2022_964273 crossref_primary_10_17816_MAJ115019 crossref_primary_10_1002_fsn3_4337 crossref_primary_10_3390_ijms21020445 crossref_primary_10_1002_jsfa_13453 crossref_primary_10_1039_D2FO01206E crossref_primary_10_3390_metabo10110475 crossref_primary_10_1016_j_nmni_2022_100973 crossref_primary_10_1136_gutjnl_2022_329386 crossref_primary_10_1016_j_biopha_2023_115550 crossref_primary_10_1038_s41598_021_84905_3 crossref_primary_10_1186_s12872_025_04549_3 crossref_primary_10_1016_j_foodres_2022_111405 crossref_primary_10_1186_s13020_021_00529_9 crossref_primary_10_1016_j_ijbiomac_2021_08_052 crossref_primary_10_1515_mr_2024_0020 crossref_primary_10_5851_kosfa_2023_e61 crossref_primary_10_1002_mco2_70017 crossref_primary_10_1016_j_ijbiomac_2025_139878 crossref_primary_10_1016_j_ijbiomac_2025_141714 crossref_primary_10_1016_j_tifs_2020_10_010 crossref_primary_10_3390_ijerph18084049 crossref_primary_10_62347_FTYJ6152 crossref_primary_10_1016_j_ijbiomac_2023_126172 crossref_primary_10_1002_jsfa_12377 crossref_primary_10_1016_j_fbio_2021_101107 crossref_primary_10_1186_s40104_024_01074_9 crossref_primary_10_1136_gutjnl_2022_328185 crossref_primary_10_1016_j_fbio_2024_105326 crossref_primary_10_26599_FSHW_2022_9250048 crossref_primary_10_1016_j_fbio_2024_105685 crossref_primary_10_26599_FSHW_2022_9250165 crossref_primary_10_3390_cells12091260 crossref_primary_10_18632_aging_102221 crossref_primary_10_1038_s41588_020_00747_1 crossref_primary_10_1039_D2FO00038E crossref_primary_10_1002_advs_202411770 crossref_primary_10_1016_j_clnu_2020_02_014 crossref_primary_10_1016_j_carbpol_2021_119055 crossref_primary_10_1016_j_ebiom_2020_102766 crossref_primary_10_3390_microorganisms11081882 crossref_primary_10_3390_nu15133048 crossref_primary_10_3389_fimmu_2022_930872 crossref_primary_10_3390_nu12092707 crossref_primary_10_1093_jn_nxaa331 crossref_primary_10_3389_fimmu_2022_836542 crossref_primary_10_3390_nu13031017 crossref_primary_10_3390_ijms25063481 crossref_primary_10_1042_NS20200007 crossref_primary_10_1093_jambio_lxae096 crossref_primary_10_1080_10408398_2021_2004993 crossref_primary_10_1128_MRA_00585_19 crossref_primary_10_26599_FSHW_2022_9250252 crossref_primary_10_1264_jsme2_ME20037 crossref_primary_10_1007_s11655_023_3542_2 crossref_primary_10_3389_fmicb_2021_761836 crossref_primary_10_1002_imt2_7 crossref_primary_10_1016_j_nut_2022_111802 crossref_primary_10_1002_imo2_59 crossref_primary_10_3389_fimmu_2022_1007610 crossref_primary_10_1016_j_numecd_2021_08_045 crossref_primary_10_1093_lifemeta_load032 crossref_primary_10_1186_s40168_021_01193_9 crossref_primary_10_3390_nu14234945 crossref_primary_10_3390_nu13062081 crossref_primary_10_1002_fft2_238 crossref_primary_10_1038_s41467_023_37459_z crossref_primary_10_1016_j_redox_2025_103575 crossref_primary_10_1039_D3FO00991B crossref_primary_10_3390_nu15102236 crossref_primary_10_1111_1753_0407_13356 crossref_primary_10_1002_mco2_70044 crossref_primary_10_1016_j_bbadis_2021_166179 crossref_primary_10_1016_j_foodchem_2022_134591 crossref_primary_10_1016_j_isci_2020_101522 crossref_primary_10_3390_ani14152156 crossref_primary_10_1016_j_foodchem_2022_135320 crossref_primary_10_1084_jem_20210324 crossref_primary_10_3389_fmicb_2024_1466024 crossref_primary_10_3724_abbs_2022201 crossref_primary_10_1016_j_ijbiomac_2025_140619 crossref_primary_10_1161_HYPERTENSIONAHA_121_17441 crossref_primary_10_3748_wjg_v26_i36_5420 crossref_primary_10_1007_s00253_019_10312_4 crossref_primary_10_1038_s41575_023_00867_z crossref_primary_10_1111_ijfs_15005 crossref_primary_10_1016_j_ijbiomac_2022_01_152 crossref_primary_10_1016_j_carbpol_2022_119457 crossref_primary_10_1080_19490976_2021_1959242 crossref_primary_10_3390_molecules28227471 crossref_primary_10_1016_j_ijbiomac_2023_129112 crossref_primary_10_2147_JIR_S502980 crossref_primary_10_3748_wjg_v27_i19_2394 |
Cites_doi | 10.1136/gutjnl-2014-307649 10.1530/JOE-17-0542 10.1128/AEM.03588-15 10.1016/S0140-6736(16)30054-X 10.1111/j.1365-2249.2010.04286.x 10.1016/S0140-6736(11)60813-1 10.1038/nrd1469 10.1136/gut.2010.212159 10.1124/pr.108.00802 10.1016/S0168-8278(01)00092-7 10.1097/MOL.0000000000000508 10.1038/nrgastro.2013.149 10.1016/j.gcb.2010.03.009 10.1002/oby.20466 10.1126/science.aad3503 10.1248/cpb.c16-00836 10.1016/S0140-6736(87)91610-2 10.1099/ijs.0.64192-0 10.1002/hep.22627 10.1021/acs.jmedchem.8b00107 10.1016/j.chom.2017.08.020 10.1016/j.cmet.2016.06.013 10.1056/NEJMoa021423 10.1016/S0140-6736(05)67483-1 10.1016/j.cmet.2005.09.001 10.1038/nature25019 10.1111/jgh.12694 10.1016/j.cmet.2009.08.001 10.3389/fmicb.2017.00114 10.1002/hep.28572 10.1016/j.cmet.2013.03.013 10.1016/j.chroma.2014.10.064 10.1111/j.1365-2036.2007.03562.x 10.1038/nri.2016.42 10.1016/j.chom.2016.09.002 10.1016/S0021-9258(18)97164-4 10.3389/fmicb.2017.01765 10.1007/s00706-004-0228-0 10.1038/nchembio.1535 10.1016/j.steroids.2011.07.009 10.2337/diab.40.10.1259 10.1073/pnas.1711235114 10.1097/MCO.0b013e32832c4d6a 10.1002/chem.201405707 10.1038/ismej.2012.153 10.1111/j.1753-4887.2011.00388.x 10.1056/NEJMra1600266 10.1038/nm.4236 10.1073/pnas.0502983102 10.1016/j.ejmech.2016.11.015 10.1038/nature17645 10.1016/S0021-9258(18)98373-0 10.1194/jlr.R036012 10.1016/j.ejmech.2017.09.029 10.1038/nrgastro.2017.119 10.1136/gutjnl-2017-314050 10.1038/35007508 10.1002/ijc.31559 10.1152/ajpgi.00354.2017 10.1099/ijs.0.02873-0 10.1073/pnas.0804812105 10.1038/nm.3760 10.1007/s13105-014-0336-1 10.1039/C5OB02561C 10.1002/hep.25797 10.1021/ja0103288 10.1136/gut.28.10.1221 10.1016/j.mib.2017.10.001 10.1016/j.nut.2009.06.010 10.1038/nmeth.f.303 |
ContentType | Journal Article |
Copyright | 2018 The Author(s) Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 The Author(s) – notice: Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.celrep.2018.12.028 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2211-1247 |
EndPage | 235.e5 |
ExternalDocumentID | 30605678 10_1016_j_celrep_2018_12_028 S2211124718319582 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 0SF 4.4 457 53G 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AAKRW AALRI AAUCE AAXUO ABMAC ABMWF ACGFO ACGFS ADBBV ADEZE AENEX AEXQZ AFTJW AGHFR AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BCNDV DIK EBS EJD FCP FDB FRP GROUPED_DOAJ GX1 IXB KQ8 M41 M48 NCXOZ O-L O9- OK1 RCE RIG ROL SSZ AAMRU AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP APXCP CITATION HZ~ IPNFZ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c474t-7323d9c8c9ccd3567188ced6787baae8c7c297f9a18cc26450d49f6ea7dae7cc3 |
IEDL.DBID | M48 |
ISSN | 2211-1247 |
IngestDate | Fri Jul 11 15:41:30 EDT 2025 Thu Apr 03 06:56:27 EDT 2025 Thu Apr 24 23:03:30 EDT 2025 Tue Jul 01 02:58:59 EDT 2025 Wed May 17 00:03:06 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | succinate Parabacteroides distasonis metabolic disorders FBPase bile acids |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-7323d9c8c9ccd3567188ced6787baae8c7c297f9a18cc26450d49f6ea7dae7cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S2211124718319582 |
PMID | 30605678 |
PQID | 2164101675 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2164101675 pubmed_primary_30605678 crossref_citationtrail_10_1016_j_celrep_2018_12_028 crossref_primary_10_1016_j_celrep_2018_12_028 elsevier_sciencedirect_doi_10_1016_j_celrep_2018_12_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-02 |
PublicationDateYYYYMMDD | 2019-01-02 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Cell reports (Cambridge) |
PublicationTitleAlternate | Cell Rep |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Dangate, Salunke, Akamanchi (bib8) 2011; 76 Pontremoli, Traniello, Luppis, Wood (bib49) 1965; 240 Vincent, Marangos, Gruber, Van den Berghe (bib66) 1991; 40 Lazaridis, Gores, Lindor (bib35) 2001; 35 Verdam, Fuentes, de Jonge, Zoetendal, Erbil, Greve, Buurman, de Vos, Rensen (bib65) 2013; 21 Surana, Kasper (bib62) 2017; 552 Fei, Zhao (bib21) 2013; 7 Reddy, Erion (bib54) 2001; 123 Koh, Kane, Lee, Xu, Wu, Roper, Mason, Crott (bib32) 2018; 143 Shi, Burn (bib57) 2004; 3 Cekanaviciute, Yoo, Runia, Debelius, Singh, Nelson, Kanner, Bencosme, Lee, Hauser (bib6) 2017; 114 Neville, Forster, Lawley (bib45) 2018; 42 Swinburn, Sacks, Hall, McPherson, Finegood, Moodie, Gortmaker (bib63) 2011; 378 Kverka, Zakostelska, Klimesova, Sokol, Hudcovic, Hrncir, Rossmann, Mrazek, Kopecny, Verdu, Tlaskalova-Hogenova (bib34) 2011; 163 Neff, Rhodes, Arnolds, Collins, Donnelly, Nusbacher, Jedlicka, Schneider, McCarter, Shaffer (bib44) 2016; 20 Erion, van Poelje, Dang, Kasibhatla, Potter, Reddy, Reddy, Jiang, Lipscomb (bib18) 2005; 102 Li, Yi, Katiraei, Kooijman, Zhou, Chung, Gao, van den Heuvel, Meijer, Berbée (bib37) 2018; 67 Mithieux (bib41) 2009; 25 Inagaki, Choi, Moschetta, Peng, Cummins, McDonald, Luo, Jones, Goodwin, Richardson (bib27) 2005; 2 Poupon, Chrétien, Poupon, Ballet, Calmus, Darnis (bib51) 1987; 1 De Cruz, Kang, Wagner, Buckley, Sim, Prideaux, Lockett, McSweeney, Morrison, Kirkwood, Kamm (bib11) 2015; 30 De Vadder, Kovatcheva-Datchary, Zitoun, Duchampt, Bäckhed, Mithieux (bib13) 2016; 24 (bib43) 2016; 387 Cummings, Pomare, Branch, Naylor, Macfarlane (bib7) 1987; 28 Lee, Hase (bib36) 2014; 10 Porter, Canales, Peterson, Martens (bib50) 2017; 22 Zhao, Zhao, Feng, Hou, Zhao (bib71) 2017; 65 Jiang, Dong, Zhao, Hu, Shen, Qiao, Zhang, Wang, Ismagilov, Liu, Du (bib29) 2016; 82 de Boer, Bloks, Verkade, Heiner-Fokkema, Kuipers (bib10) 2018; 29 de Aguiar Vallim, Tarling, Edwards (bib9) 2013; 17 Surana, Kasper (bib61) 2014; 124 Fang, Suh, Reilly, Yu, Osborn, Lackey, Yoshihara, Perino, Jacinto, Lukasheva (bib20) 2015; 21 de Vadder, Mithieux (bib12) 2018; 236 Browne, Forster, Anonye, Kumar, Neville, Stares, Goulding, Lawley (bib2) 2016; 533 Rooks, Garrett (bib55) 2016; 16 Breyner, Michon, de Sousa, Vilas Boas, Chain, Azevedo, Langella, Chatel (bib1) 2017; 8 Mithieux, Andreelli, Magnan (bib42) 2009; 12 Falony, Joossens, Vieira-Silva, Wang, Darzi, Faust, Kurilshikov, Bonder, Valles-Colomer, Vandeputte (bib19) 2016; 352 Lynch, Pedersen (bib39) 2016; 375 Cani, de Vos (bib4) 2017; 8 Golden, Escobar, Nguyen, Mallicote, Kavarian, Frey, Gayer (bib23) 2018; 315 Kaur, Dahiya, Kumar (bib31) 2017; 141 Calle, Rodriguez, Walker-Thurmond, Thun (bib3) 2003; 348 Thomas, Gioiello, Noriega, Strehle, Oury, Rizzo, Macchiarulo, Yamamoto, Mataki, Pruzanski (bib64) 2009; 10 Zhang, Fan, Tian, Suo, Yang, Bai, Zhang (bib70) 2015; 21 Del Chierico, Nobili, Vernocchi, Russo, Stefanis, Gnani, Furlanello, Zandonà, Paci, Capuani (bib14) 2017; 65 Song, Li, Owsley, Strom, Chiang (bib59) 2009; 49 Wree, Broderick, Canbay, Hoffman, Feldstein (bib69) 2013; 10 Caporaso, Kuczynski, Stombaugh, Bittinger, Bushman, Costello, Fierer, Peña, Goodrich, Gordon (bib5) 2010; 7 el-Maghrabi, Gidh-Jain, Austin, Pilkis (bib17) 1993; 268 Quévrain, Maubert, Michon, Chain, Marquant, Tailhades, Miquel, Carlier, Bermúdez-Humarán, Pigneur (bib52) 2016; 65 Plovier, Everard, Druart, Depommier, Van Hul, Geurts, Chilloux, Ottman, Duparc, Lichtenstein (bib47) 2017; 23 Derrien, Vaughan, Plugge, de Vos (bib16) 2004; 54 Hamer, Jonkers, Venema, Vanhoutvin, Troost, Brummer (bib24) 2008; 27 Wang, Bao, Ma, Zhang, Chen, Han, Ren, Luo, Liu (bib67) 2017; 127 Nie, Park, Kazantzis, Lin, Henkin, Ng, Song, Chen, Tran, Lai (bib46) 2012; 56 Stoddart, Smith, Milligan (bib60) 2008; 60 Kopelman (bib33) 2000; 404 Sokol, Pigneur, Watterlot, Lakhdari, Bermúdez-Humarán, Gratadoux, Blugeon, Bridonneau, Furet, Corthier (bib58) 2008; 105 Hosseini, Grootaert, Verstraete, Van de Wiele (bib26) 2011; 69 Jia, Xie, Jia (bib28) 2018; 15 Lotowski, Guzmanski (bib38) 2005; 136 Miro, Marin, Miranda (bib40) 2016; 14 Sakamoto, Benno (bib56) 2006; 56 Wang, Bao, Zhou, Zhang, Liao, Zheng, Wang, Liu, Wang, Wang (bib68) 2018; 61 den Besten, van Eunen, Groen, Venema, Reijngoud, Bakker (bib15) 2013; 54 John, Werner, Worthmann, Wegner, Tödter, Scheja, Rohn, Heeren, Fischer (bib30) 2014; 1371 Pols, Auwerx, Schoonjans (bib48) 2010; 34 Haslam, James (bib25) 2005; 366 Quintero, Pizarro, Solís, Arab, Padilla, Riquelme, Arrese (bib53) 2014; 70 Gadaleta, van Erpecum, Oldenburg, Willemsen, Renooij, Murzilli, Klomp, Siersema, Schipper, Danese (bib22) 2011; 60 Koh (10.1016/j.celrep.2018.12.028_bib32) 2018; 143 Plovier (10.1016/j.celrep.2018.12.028_bib47) 2017; 23 Wree (10.1016/j.celrep.2018.12.028_bib69) 2013; 10 de Aguiar Vallim (10.1016/j.celrep.2018.12.028_bib9) 2013; 17 Rooks (10.1016/j.celrep.2018.12.028_bib55) 2016; 16 Pols (10.1016/j.celrep.2018.12.028_bib48) 2010; 34 Surana (10.1016/j.celrep.2018.12.028_bib62) 2017; 552 Song (10.1016/j.celrep.2018.12.028_bib59) 2009; 49 Hamer (10.1016/j.celrep.2018.12.028_bib24) 2008; 27 Zhang (10.1016/j.celrep.2018.12.028_bib70) 2015; 21 de Boer (10.1016/j.celrep.2018.12.028_bib10) 2018; 29 Derrien (10.1016/j.celrep.2018.12.028_bib16) 2004; 54 Wang (10.1016/j.celrep.2018.12.028_bib67) 2017; 127 De Vadder (10.1016/j.celrep.2018.12.028_bib13) 2016; 24 Fei (10.1016/j.celrep.2018.12.028_bib21) 2013; 7 Dangate (10.1016/j.celrep.2018.12.028_bib8) 2011; 76 Inagaki (10.1016/j.celrep.2018.12.028_bib27) 2005; 2 Shi (10.1016/j.celrep.2018.12.028_bib57) 2004; 3 Cani (10.1016/j.celrep.2018.12.028_bib4) 2017; 8 Neff (10.1016/j.celrep.2018.12.028_bib44) 2016; 20 Kverka (10.1016/j.celrep.2018.12.028_bib34) 2011; 163 (10.1016/j.celrep.2018.12.028_bib43) 2016; 387 Browne (10.1016/j.celrep.2018.12.028_bib2) 2016; 533 Neville (10.1016/j.celrep.2018.12.028_bib45) 2018; 42 Del Chierico (10.1016/j.celrep.2018.12.028_bib14) 2017; 65 Fang (10.1016/j.celrep.2018.12.028_bib20) 2015; 21 Cekanaviciute (10.1016/j.celrep.2018.12.028_bib6) 2017; 114 Haslam (10.1016/j.celrep.2018.12.028_bib25) 2005; 366 Verdam (10.1016/j.celrep.2018.12.028_bib65) 2013; 21 Gadaleta (10.1016/j.celrep.2018.12.028_bib22) 2011; 60 Thomas (10.1016/j.celrep.2018.12.028_bib64) 2009; 10 de Vadder (10.1016/j.celrep.2018.12.028_bib12) 2018; 236 Falony (10.1016/j.celrep.2018.12.028_bib19) 2016; 352 Kopelman (10.1016/j.celrep.2018.12.028_bib33) 2000; 404 Mithieux (10.1016/j.celrep.2018.12.028_bib42) 2009; 12 Porter (10.1016/j.celrep.2018.12.028_bib50) 2017; 22 Breyner (10.1016/j.celrep.2018.12.028_bib1) 2017; 8 Swinburn (10.1016/j.celrep.2018.12.028_bib63) 2011; 378 Calle (10.1016/j.celrep.2018.12.028_bib3) 2003; 348 Mithieux (10.1016/j.celrep.2018.12.028_bib41) 2009; 25 Jiang (10.1016/j.celrep.2018.12.028_bib29) 2016; 82 Poupon (10.1016/j.celrep.2018.12.028_bib51) 1987; 1 De Cruz (10.1016/j.celrep.2018.12.028_bib11) 2015; 30 Stoddart (10.1016/j.celrep.2018.12.028_bib60) 2008; 60 Caporaso (10.1016/j.celrep.2018.12.028_bib5) 2010; 7 Lee (10.1016/j.celrep.2018.12.028_bib36) 2014; 10 el-Maghrabi (10.1016/j.celrep.2018.12.028_bib17) 1993; 268 Miro (10.1016/j.celrep.2018.12.028_bib40) 2016; 14 Reddy (10.1016/j.celrep.2018.12.028_bib54) 2001; 123 Wang (10.1016/j.celrep.2018.12.028_bib68) 2018; 61 Cummings (10.1016/j.celrep.2018.12.028_bib7) 1987; 28 Pontremoli (10.1016/j.celrep.2018.12.028_bib49) 1965; 240 Kaur (10.1016/j.celrep.2018.12.028_bib31) 2017; 141 Golden (10.1016/j.celrep.2018.12.028_bib23) 2018; 315 Lotowski (10.1016/j.celrep.2018.12.028_bib38) 2005; 136 Lynch (10.1016/j.celrep.2018.12.028_bib39) 2016; 375 Quintero (10.1016/j.celrep.2018.12.028_bib53) 2014; 70 den Besten (10.1016/j.celrep.2018.12.028_bib15) 2013; 54 John (10.1016/j.celrep.2018.12.028_bib30) 2014; 1371 Sokol (10.1016/j.celrep.2018.12.028_bib58) 2008; 105 Jia (10.1016/j.celrep.2018.12.028_bib28) 2018; 15 Vincent (10.1016/j.celrep.2018.12.028_bib66) 1991; 40 Quévrain (10.1016/j.celrep.2018.12.028_bib52) 2016; 65 Surana (10.1016/j.celrep.2018.12.028_bib61) 2014; 124 Erion (10.1016/j.celrep.2018.12.028_bib18) 2005; 102 Li (10.1016/j.celrep.2018.12.028_bib37) 2018; 67 Sakamoto (10.1016/j.celrep.2018.12.028_bib56) 2006; 56 Hosseini (10.1016/j.celrep.2018.12.028_bib26) 2011; 69 Nie (10.1016/j.celrep.2018.12.028_bib46) 2012; 56 Lazaridis (10.1016/j.celrep.2018.12.028_bib35) 2001; 35 Zhao (10.1016/j.celrep.2018.12.028_bib71) 2017; 65 |
References_xml | – volume: 49 start-page: 297 year: 2009 end-page: 305 ident: bib59 article-title: Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression publication-title: Hepatology – volume: 10 start-page: 416 year: 2014 end-page: 424 ident: bib36 article-title: Gut microbiota-generated metabolites in animal health and disease publication-title: Nat. Chem. Biol. – volume: 268 start-page: 9466 year: 1993 end-page: 9472 ident: bib17 article-title: Isolation of a human liver fructose-1,6-bisphosphatase cDNA and expression of the protein in Escherichia coli. Role of ASP-118 and ASP-121 in catalysis publication-title: J. Biol. Chem. – volume: 7 start-page: 335 year: 2010 end-page: 336 ident: bib5 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods – volume: 21 start-page: E607 year: 2013 end-page: E615 ident: bib65 article-title: Human intestinal microbiota composition is associated with local and systemic inflammation in obesity publication-title: Obesity (Silver Spring) – volume: 8 start-page: 1765 year: 2017 ident: bib4 article-title: Next-generation beneficial microbes: the case of publication-title: Front. Microbiol. – volume: 17 start-page: 657 year: 2013 end-page: 669 ident: bib9 article-title: Pleiotropic roles of bile acids in metabolism publication-title: Cell Metab. – volume: 102 start-page: 7970 year: 2005 end-page: 7975 ident: bib18 article-title: MB06322 (CS-917): a potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes publication-title: Proc. Natl. Acad. Sci. USA – volume: 136 start-page: 153 year: 2005 end-page: 158 ident: bib38 article-title: New cyclic dimers of cholic acid publication-title: Monatsh. Chem. – volume: 3 start-page: 695 year: 2004 end-page: 710 ident: bib57 article-title: Lipid metabolic enzymes: emerging drug targets for the treatment of obesity publication-title: Nat. Rev. Drug Discov. – volume: 20 start-page: 535 year: 2016 end-page: 547 ident: bib44 article-title: Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties publication-title: Cell Host Microbe – volume: 16 start-page: 341 year: 2016 end-page: 352 ident: bib55 article-title: Gut microbiota, metabolites and host immunity publication-title: Nat. Rev. Immunol. – volume: 35 start-page: 134 year: 2001 end-page: 146 ident: bib35 article-title: Ursodeoxycholic acid “mechanisms of action and clinical use in hepatobiliary disorders.” publication-title: J. Hepatol. – volume: 1 start-page: 834 year: 1987 end-page: 836 ident: bib51 article-title: Is ursodeoxycholic acid an effective treatment for primary biliary cirrhosis? publication-title: Lancet – volume: 60 start-page: 405 year: 2008 end-page: 417 ident: bib60 article-title: International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions publication-title: Pharmacol. Rev. – volume: 533 start-page: 543 year: 2016 end-page: 546 ident: bib2 article-title: Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation publication-title: Nature – volume: 23 start-page: 107 year: 2017 end-page: 113 ident: bib47 article-title: A purified membrane protein from publication-title: Nat. Med. – volume: 114 start-page: 10713 year: 2017 end-page: 10718 ident: bib6 article-title: Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models publication-title: Proc. Natl. Acad. Sci. USA – volume: 54 start-page: 1469 year: 2004 end-page: 1476 ident: bib16 article-title: gen. nov., sp. nov., a human intestinal mucin-degrading bacterium publication-title: Int. J. Syst. Evol. Microbiol. – volume: 348 start-page: 1625 year: 2003 end-page: 1638 ident: bib3 article-title: Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults publication-title: N. Engl. J. Med. – volume: 105 start-page: 16731 year: 2008 end-page: 16736 ident: bib58 article-title: is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients publication-title: Proc. Natl. Acad. Sci. USA – volume: 14 start-page: 2679 year: 2016 end-page: 2683 ident: bib40 article-title: Radical-mediated dehydrogenation of bile acids by means of hydrogen atom transfer to triplet carbonyls publication-title: Org. Biomol. Chem. – volume: 378 start-page: 804 year: 2011 end-page: 814 ident: bib63 article-title: The global obesity pandemic: shaped by global drivers and local environments publication-title: Lancet – volume: 10 start-page: 627 year: 2013 end-page: 636 ident: bib69 article-title: From NAFLD to NASH to cirrhosis-new insights into disease mechanisms publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 69 start-page: 245 year: 2011 end-page: 258 ident: bib26 article-title: Propionate as a health-promoting microbial metabolite in the human gut publication-title: Nutr. Rev. – volume: 15 start-page: 111 year: 2018 end-page: 128 ident: bib28 article-title: Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis publication-title: Nat. Rev. Gastroenterol. Hepatol. – volume: 141 start-page: 473 year: 2017 end-page: 505 ident: bib31 article-title: Fructose-1,6-bisphosphatase inhibitors: a new valid approach for management of type 2 diabetes mellitus publication-title: Eur. J. Med. Chem. – volume: 34 start-page: 270 year: 2010 end-page: 273 ident: bib48 article-title: Targeting the TGR5-GLP-1 pathway to combat type 2 diabetes and non-alcoholic fatty liver disease publication-title: Gastroenterol. Clin. Biol. – volume: 240 start-page: 3459 year: 1965 end-page: 3463 ident: bib49 article-title: Fructose diphosphatase from rabbit liver. I. Purification and properties publication-title: J. Biol. Chem. – volume: 123 start-page: 6246 year: 2001 end-page: 6252 ident: bib54 article-title: Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach publication-title: J. Am. Chem. Soc. – volume: 61 start-page: 3609 year: 2018 end-page: 3625 ident: bib68 article-title: Structural modification of natural product ganomycin I leading to discovery of a α-glucosidase and HMG-CoA reductase dual inhibitor improving obesity and metabolic dysfunction publication-title: J. Med. Chem. – volume: 236 start-page: R105 year: 2018 end-page: R108 ident: bib12 article-title: Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate publication-title: J. Endocrinol. – volume: 30 start-page: 268 year: 2015 end-page: 278 ident: bib11 article-title: Association between specific mucosa-associated microbiota in Crohn’s disease at the time of resection and subsequent disease recurrence: a pilot study publication-title: J. Gastroenterol. Hepatol. – volume: 315 start-page: G259 year: 2018 end-page: G271 ident: bib23 article-title: Ursodeoxycholic acid protects against intestinal barrier breakdown by promoting enterocyte migration via EGFR- and COX-2-dependent mechanisms publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. – volume: 25 start-page: 881 year: 2009 end-page: 884 ident: bib41 article-title: A novel function of intestinal gluconeogenesis: central signaling in glucose and energy homeostasis publication-title: Nutrition – volume: 163 start-page: 250 year: 2011 end-page: 259 ident: bib34 article-title: Oral administration of publication-title: Clin. Exp. Immunol. – volume: 366 start-page: 1197 year: 2005 end-page: 1209 ident: bib25 article-title: Obesity publication-title: Lancet – volume: 8 start-page: 114 year: 2017 ident: bib1 article-title: Microbial anti-inflammatory molecule (MAM) from publication-title: Front. Microbiol. – volume: 1371 start-page: 184 year: 2014 end-page: 195 ident: bib30 article-title: A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids publication-title: J. Chromatogr. A – volume: 67 start-page: 1269 year: 2018 end-page: 1279 ident: bib37 article-title: Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit publication-title: Gut – volume: 404 start-page: 635 year: 2000 end-page: 643 ident: bib33 article-title: Obesity as a medical problem publication-title: Nature – volume: 143 start-page: 1797 year: 2018 end-page: 1805 ident: bib32 article-title: attenuates toll-like receptor 4 signaling and Akt activation and blocks colon tumor formation in high-fat diet-fed azoxymethane-treated mice publication-title: Int. J. Cancer – volume: 2 start-page: 217 year: 2005 end-page: 225 ident: bib27 article-title: Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis publication-title: Cell Metab. – volume: 28 start-page: 1221 year: 1987 end-page: 1227 ident: bib7 article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood publication-title: Gut – volume: 387 start-page: 1377 year: 2016 end-page: 1396 ident: bib43 article-title: Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants publication-title: Lancet – volume: 127 start-page: 1035 year: 2017 end-page: 1046 ident: bib67 article-title: A novel class of α-glucosidase and HMG-CoA reductase inhibitors from publication-title: Eur. J. Med. Chem. – volume: 40 start-page: 1259 year: 1991 end-page: 1266 ident: bib66 article-title: Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes publication-title: Diabetes – volume: 65 start-page: 276 year: 2017 end-page: 283 ident: bib71 article-title: Discovery and synthesis of amino acids modified deoxycholic acid derivatives and publication-title: Chem. Pharm. Bull. (Tokyo) – volume: 22 start-page: 494 year: 2017 end-page: 506.e8 ident: bib50 article-title: A subset of polysaccharide capsules in the human symbiont publication-title: Cell Host Microbe – volume: 10 start-page: 167 year: 2009 end-page: 177 ident: bib64 article-title: TGR5-mediated bile acid sensing controls glucose homeostasis publication-title: Cell Metab. – volume: 42 start-page: 47 year: 2018 end-page: 52 ident: bib45 article-title: Commensal Koch’s postulates: establishing causation in human microbiota research publication-title: Curr. Opin. Microbiol. – volume: 124 start-page: 4197 year: 2014 end-page: 4203 ident: bib61 article-title: Deciphering the tête-à-tête between the microbiota and the immune system publication-title: J. Clin. Invest. – volume: 375 start-page: 2369 year: 2016 end-page: 2379 ident: bib39 article-title: The human intestinal microbiome in health and disease publication-title: N. Engl. J. Med. – volume: 12 start-page: 419 year: 2009 end-page: 423 ident: bib42 article-title: Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis publication-title: Curr. Opin. Clin. Nutr. Metab. Care – volume: 70 start-page: 667 year: 2014 end-page: 674 ident: bib53 article-title: Bile acid supplementation improves established liver steatosis in obese mice independently of glucagon-like peptide-1 secretion publication-title: J. Physiol. Biochem. – volume: 27 start-page: 104 year: 2008 end-page: 119 ident: bib24 article-title: Review article: the role of butyrate on colonic function publication-title: Aliment. Pharmacol. Ther. – volume: 24 start-page: 151 year: 2016 end-page: 157 ident: bib13 article-title: Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis publication-title: Cell Metab. – volume: 76 start-page: 1397 year: 2011 end-page: 1399 ident: bib8 article-title: Regioselective oxidation of cholic acid and its 7β epimer by using o-iodoxybenzoic acid publication-title: Steroids – volume: 552 start-page: 244 year: 2017 end-page: 247 ident: bib62 article-title: Moving beyond microbiome-wide associations to causal microbe identification publication-title: Nature – volume: 56 start-page: 1300 year: 2012 end-page: 1310 ident: bib46 article-title: Specific bile acids inhibit hepatic fatty acid uptake in mice publication-title: Hepatology – volume: 21 start-page: 5000 year: 2015 end-page: 5008 ident: bib70 article-title: Ultrasound-driven secondary self-assembly of amphiphilic β-cyclodextrin dimers publication-title: Chemistry – volume: 65 start-page: 451 year: 2017 end-page: 464 ident: bib14 article-title: Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach publication-title: Hepatology – volume: 352 start-page: 560 year: 2016 end-page: 564 ident: bib19 article-title: Population-level analysis of gut microbiome variation publication-title: Science – volume: 54 start-page: 2325 year: 2013 end-page: 2340 ident: bib15 article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism publication-title: J. Lipid Res. – volume: 7 start-page: 880 year: 2013 end-page: 884 ident: bib21 article-title: An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice publication-title: ISME J. – volume: 29 start-page: 194 year: 2018 end-page: 202 ident: bib10 article-title: New insights in the multiple roles of bile acids and their signaling pathways in metabolic control publication-title: Curr. Opin. Lipidol. – volume: 82 start-page: 2210 year: 2016 end-page: 2218 ident: bib29 article-title: High-throughput single-cell cultivation on microfluidic streak plates publication-title: Appl. Environ. Microbiol. – volume: 65 start-page: 415 year: 2016 end-page: 425 ident: bib52 article-title: Identification of an anti-inflammatory protein from publication-title: Gut – volume: 21 start-page: 159 year: 2015 end-page: 165 ident: bib20 article-title: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance publication-title: Nat. Med. – volume: 60 start-page: 463 year: 2011 end-page: 472 ident: bib22 article-title: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease publication-title: Gut – volume: 56 start-page: 1599 year: 2006 end-page: 1605 ident: bib56 article-title: Reclassification of publication-title: Int. J. Syst. Evol. Microbiol. – volume: 65 start-page: 415 year: 2016 ident: 10.1016/j.celrep.2018.12.028_bib52 article-title: Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease publication-title: Gut doi: 10.1136/gutjnl-2014-307649 – volume: 236 start-page: R105 year: 2018 ident: 10.1016/j.celrep.2018.12.028_bib12 article-title: Gut-brain signaling in energy homeostasis: the unexpected role of microbiota-derived succinate publication-title: J. Endocrinol. doi: 10.1530/JOE-17-0542 – volume: 82 start-page: 2210 year: 2016 ident: 10.1016/j.celrep.2018.12.028_bib29 article-title: High-throughput single-cell cultivation on microfluidic streak plates publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03588-15 – volume: 387 start-page: 1377 year: 2016 ident: 10.1016/j.celrep.2018.12.028_bib43 article-title: Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants publication-title: Lancet doi: 10.1016/S0140-6736(16)30054-X – volume: 163 start-page: 250 year: 2011 ident: 10.1016/j.celrep.2018.12.028_bib34 article-title: Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition publication-title: Clin. Exp. Immunol. doi: 10.1111/j.1365-2249.2010.04286.x – volume: 378 start-page: 804 year: 2011 ident: 10.1016/j.celrep.2018.12.028_bib63 article-title: The global obesity pandemic: shaped by global drivers and local environments publication-title: Lancet doi: 10.1016/S0140-6736(11)60813-1 – volume: 3 start-page: 695 year: 2004 ident: 10.1016/j.celrep.2018.12.028_bib57 article-title: Lipid metabolic enzymes: emerging drug targets for the treatment of obesity publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd1469 – volume: 60 start-page: 463 year: 2011 ident: 10.1016/j.celrep.2018.12.028_bib22 article-title: Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease publication-title: Gut doi: 10.1136/gut.2010.212159 – volume: 60 start-page: 405 year: 2008 ident: 10.1016/j.celrep.2018.12.028_bib60 article-title: International Union of Pharmacology. LXXI. Free fatty acid receptors FFA1, -2, and -3: pharmacology and pathophysiological functions publication-title: Pharmacol. Rev. doi: 10.1124/pr.108.00802 – volume: 35 start-page: 134 year: 2001 ident: 10.1016/j.celrep.2018.12.028_bib35 article-title: Ursodeoxycholic acid “mechanisms of action and clinical use in hepatobiliary disorders.” publication-title: J. Hepatol. doi: 10.1016/S0168-8278(01)00092-7 – volume: 29 start-page: 194 year: 2018 ident: 10.1016/j.celrep.2018.12.028_bib10 article-title: New insights in the multiple roles of bile acids and their signaling pathways in metabolic control publication-title: Curr. Opin. Lipidol. doi: 10.1097/MOL.0000000000000508 – volume: 10 start-page: 627 year: 2013 ident: 10.1016/j.celrep.2018.12.028_bib69 article-title: From NAFLD to NASH to cirrhosis-new insights into disease mechanisms publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2013.149 – volume: 34 start-page: 270 year: 2010 ident: 10.1016/j.celrep.2018.12.028_bib48 article-title: Targeting the TGR5-GLP-1 pathway to combat type 2 diabetes and non-alcoholic fatty liver disease publication-title: Gastroenterol. Clin. Biol. doi: 10.1016/j.gcb.2010.03.009 – volume: 21 start-page: E607 year: 2013 ident: 10.1016/j.celrep.2018.12.028_bib65 article-title: Human intestinal microbiota composition is associated with local and systemic inflammation in obesity publication-title: Obesity (Silver Spring) doi: 10.1002/oby.20466 – volume: 352 start-page: 560 year: 2016 ident: 10.1016/j.celrep.2018.12.028_bib19 article-title: Population-level analysis of gut microbiome variation publication-title: Science doi: 10.1126/science.aad3503 – volume: 65 start-page: 276 year: 2017 ident: 10.1016/j.celrep.2018.12.028_bib71 article-title: Discovery and synthesis of amino acids modified deoxycholic acid derivatives and in vitro antiproliferative evaluation publication-title: Chem. Pharm. Bull. (Tokyo) doi: 10.1248/cpb.c16-00836 – volume: 1 start-page: 834 year: 1987 ident: 10.1016/j.celrep.2018.12.028_bib51 article-title: Is ursodeoxycholic acid an effective treatment for primary biliary cirrhosis? publication-title: Lancet doi: 10.1016/S0140-6736(87)91610-2 – volume: 56 start-page: 1599 year: 2006 ident: 10.1016/j.celrep.2018.12.028_bib56 article-title: Reclassification of Bacteroides distasonis, Bacteroides goldsteinii and Bacteroides merdae as Parabacteroides distasonis gen. nov., comb. nov., Parabacteroides goldsteinii comb. nov. and Parabacteroides merdae comb. nov publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.64192-0 – volume: 49 start-page: 297 year: 2009 ident: 10.1016/j.celrep.2018.12.028_bib59 article-title: Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha-hydroxylase gene expression publication-title: Hepatology doi: 10.1002/hep.22627 – volume: 61 start-page: 3609 year: 2018 ident: 10.1016/j.celrep.2018.12.028_bib68 article-title: Structural modification of natural product ganomycin I leading to discovery of a α-glucosidase and HMG-CoA reductase dual inhibitor improving obesity and metabolic dysfunction in vivo publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.8b00107 – volume: 22 start-page: 494 year: 2017 ident: 10.1016/j.celrep.2018.12.028_bib50 article-title: A subset of polysaccharide capsules in the human symbiont Bacteroides thetaiotaomicron promote increased competitive fitness in the mouse gut publication-title: Cell Host Microbe doi: 10.1016/j.chom.2017.08.020 – volume: 24 start-page: 151 year: 2016 ident: 10.1016/j.celrep.2018.12.028_bib13 article-title: Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis publication-title: Cell Metab. doi: 10.1016/j.cmet.2016.06.013 – volume: 348 start-page: 1625 year: 2003 ident: 10.1016/j.celrep.2018.12.028_bib3 article-title: Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa021423 – volume: 366 start-page: 1197 year: 2005 ident: 10.1016/j.celrep.2018.12.028_bib25 article-title: Obesity publication-title: Lancet doi: 10.1016/S0140-6736(05)67483-1 – volume: 2 start-page: 217 year: 2005 ident: 10.1016/j.celrep.2018.12.028_bib27 article-title: Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis publication-title: Cell Metab. doi: 10.1016/j.cmet.2005.09.001 – volume: 552 start-page: 244 year: 2017 ident: 10.1016/j.celrep.2018.12.028_bib62 article-title: Moving beyond microbiome-wide associations to causal microbe identification publication-title: Nature doi: 10.1038/nature25019 – volume: 30 start-page: 268 year: 2015 ident: 10.1016/j.celrep.2018.12.028_bib11 article-title: Association between specific mucosa-associated microbiota in Crohn’s disease at the time of resection and subsequent disease recurrence: a pilot study publication-title: J. Gastroenterol. Hepatol. doi: 10.1111/jgh.12694 – volume: 10 start-page: 167 year: 2009 ident: 10.1016/j.celrep.2018.12.028_bib64 article-title: TGR5-mediated bile acid sensing controls glucose homeostasis publication-title: Cell Metab. doi: 10.1016/j.cmet.2009.08.001 – volume: 8 start-page: 114 year: 2017 ident: 10.1016/j.celrep.2018.12.028_bib1 article-title: Microbial anti-inflammatory molecule (MAM) from Faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-induced colitis model in mice through inhibition of NF-kappa B pathway publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.00114 – volume: 65 start-page: 451 year: 2017 ident: 10.1016/j.celrep.2018.12.028_bib14 article-title: Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach publication-title: Hepatology doi: 10.1002/hep.28572 – volume: 17 start-page: 657 year: 2013 ident: 10.1016/j.celrep.2018.12.028_bib9 article-title: Pleiotropic roles of bile acids in metabolism publication-title: Cell Metab. doi: 10.1016/j.cmet.2013.03.013 – volume: 1371 start-page: 184 year: 2014 ident: 10.1016/j.celrep.2018.12.028_bib30 article-title: A liquid chromatography-tandem mass spectrometry-based method for the simultaneous determination of hydroxy sterols and bile acids publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2014.10.064 – volume: 27 start-page: 104 year: 2008 ident: 10.1016/j.celrep.2018.12.028_bib24 article-title: Review article: the role of butyrate on colonic function publication-title: Aliment. Pharmacol. Ther. doi: 10.1111/j.1365-2036.2007.03562.x – volume: 16 start-page: 341 year: 2016 ident: 10.1016/j.celrep.2018.12.028_bib55 article-title: Gut microbiota, metabolites and host immunity publication-title: Nat. Rev. Immunol. doi: 10.1038/nri.2016.42 – volume: 20 start-page: 535 year: 2016 ident: 10.1016/j.celrep.2018.12.028_bib44 article-title: Diverse intestinal bacteria contain putative zwitterionic capsular polysaccharides with anti-inflammatory properties publication-title: Cell Host Microbe doi: 10.1016/j.chom.2016.09.002 – volume: 240 start-page: 3459 year: 1965 ident: 10.1016/j.celrep.2018.12.028_bib49 article-title: Fructose diphosphatase from rabbit liver. I. Purification and properties publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)97164-4 – volume: 8 start-page: 1765 year: 2017 ident: 10.1016/j.celrep.2018.12.028_bib4 article-title: Next-generation beneficial microbes: the case of Akkermansia muciniphila publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.01765 – volume: 136 start-page: 153 year: 2005 ident: 10.1016/j.celrep.2018.12.028_bib38 article-title: New cyclic dimers of cholic acid publication-title: Monatsh. Chem. doi: 10.1007/s00706-004-0228-0 – volume: 10 start-page: 416 year: 2014 ident: 10.1016/j.celrep.2018.12.028_bib36 article-title: Gut microbiota-generated metabolites in animal health and disease publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1535 – volume: 76 start-page: 1397 year: 2011 ident: 10.1016/j.celrep.2018.12.028_bib8 article-title: Regioselective oxidation of cholic acid and its 7β epimer by using o-iodoxybenzoic acid publication-title: Steroids doi: 10.1016/j.steroids.2011.07.009 – volume: 40 start-page: 1259 year: 1991 ident: 10.1016/j.celrep.2018.12.028_bib66 article-title: Inhibition by AICA riboside of gluconeogenesis in isolated rat hepatocytes publication-title: Diabetes doi: 10.2337/diab.40.10.1259 – volume: 114 start-page: 10713 year: 2017 ident: 10.1016/j.celrep.2018.12.028_bib6 article-title: Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1711235114 – volume: 12 start-page: 419 year: 2009 ident: 10.1016/j.celrep.2018.12.028_bib42 article-title: Intestinal gluconeogenesis: key signal of central control of energy and glucose homeostasis publication-title: Curr. Opin. Clin. Nutr. Metab. Care doi: 10.1097/MCO.0b013e32832c4d6a – volume: 21 start-page: 5000 year: 2015 ident: 10.1016/j.celrep.2018.12.028_bib70 article-title: Ultrasound-driven secondary self-assembly of amphiphilic β-cyclodextrin dimers publication-title: Chemistry doi: 10.1002/chem.201405707 – volume: 7 start-page: 880 year: 2013 ident: 10.1016/j.celrep.2018.12.028_bib21 article-title: An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice publication-title: ISME J. doi: 10.1038/ismej.2012.153 – volume: 69 start-page: 245 year: 2011 ident: 10.1016/j.celrep.2018.12.028_bib26 article-title: Propionate as a health-promoting microbial metabolite in the human gut publication-title: Nutr. Rev. doi: 10.1111/j.1753-4887.2011.00388.x – volume: 375 start-page: 2369 year: 2016 ident: 10.1016/j.celrep.2018.12.028_bib39 article-title: The human intestinal microbiome in health and disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMra1600266 – volume: 23 start-page: 107 year: 2017 ident: 10.1016/j.celrep.2018.12.028_bib47 article-title: A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice publication-title: Nat. Med. doi: 10.1038/nm.4236 – volume: 102 start-page: 7970 year: 2005 ident: 10.1016/j.celrep.2018.12.028_bib18 article-title: MB06322 (CS-917): a potent and selective inhibitor of fructose 1,6-bisphosphatase for controlling gluconeogenesis in type 2 diabetes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0502983102 – volume: 127 start-page: 1035 year: 2017 ident: 10.1016/j.celrep.2018.12.028_bib67 article-title: A novel class of α-glucosidase and HMG-CoA reductase inhibitors from Ganoderma leucocontextum and the anti-diabetic properties of ganomycin I in KK-Ay mice publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2016.11.015 – volume: 533 start-page: 543 year: 2016 ident: 10.1016/j.celrep.2018.12.028_bib2 article-title: Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation publication-title: Nature doi: 10.1038/nature17645 – volume: 268 start-page: 9466 year: 1993 ident: 10.1016/j.celrep.2018.12.028_bib17 article-title: Isolation of a human liver fructose-1,6-bisphosphatase cDNA and expression of the protein in Escherichia coli. Role of ASP-118 and ASP-121 in catalysis publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)98373-0 – volume: 54 start-page: 2325 year: 2013 ident: 10.1016/j.celrep.2018.12.028_bib15 article-title: The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism publication-title: J. Lipid Res. doi: 10.1194/jlr.R036012 – volume: 141 start-page: 473 year: 2017 ident: 10.1016/j.celrep.2018.12.028_bib31 article-title: Fructose-1,6-bisphosphatase inhibitors: a new valid approach for management of type 2 diabetes mellitus publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2017.09.029 – volume: 15 start-page: 111 year: 2018 ident: 10.1016/j.celrep.2018.12.028_bib28 article-title: Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis publication-title: Nat. Rev. Gastroenterol. Hepatol. doi: 10.1038/nrgastro.2017.119 – volume: 67 start-page: 1269 year: 2018 ident: 10.1016/j.celrep.2018.12.028_bib37 article-title: Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit publication-title: Gut doi: 10.1136/gutjnl-2017-314050 – volume: 404 start-page: 635 year: 2000 ident: 10.1016/j.celrep.2018.12.028_bib33 article-title: Obesity as a medical problem publication-title: Nature doi: 10.1038/35007508 – volume: 124 start-page: 4197 year: 2014 ident: 10.1016/j.celrep.2018.12.028_bib61 article-title: Deciphering the tête-à-tête between the microbiota and the immune system publication-title: J. Clin. Invest. – volume: 143 start-page: 1797 year: 2018 ident: 10.1016/j.celrep.2018.12.028_bib32 article-title: Parabacteroides distasonis attenuates toll-like receptor 4 signaling and Akt activation and blocks colon tumor formation in high-fat diet-fed azoxymethane-treated mice publication-title: Int. J. Cancer doi: 10.1002/ijc.31559 – volume: 315 start-page: G259 year: 2018 ident: 10.1016/j.celrep.2018.12.028_bib23 article-title: Ursodeoxycholic acid protects against intestinal barrier breakdown by promoting enterocyte migration via EGFR- and COX-2-dependent mechanisms publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00354.2017 – volume: 54 start-page: 1469 year: 2004 ident: 10.1016/j.celrep.2018.12.028_bib16 article-title: Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.02873-0 – volume: 105 start-page: 16731 year: 2008 ident: 10.1016/j.celrep.2018.12.028_bib58 article-title: Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0804812105 – volume: 21 start-page: 159 year: 2015 ident: 10.1016/j.celrep.2018.12.028_bib20 article-title: Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance publication-title: Nat. Med. doi: 10.1038/nm.3760 – volume: 70 start-page: 667 year: 2014 ident: 10.1016/j.celrep.2018.12.028_bib53 article-title: Bile acid supplementation improves established liver steatosis in obese mice independently of glucagon-like peptide-1 secretion publication-title: J. Physiol. Biochem. doi: 10.1007/s13105-014-0336-1 – volume: 14 start-page: 2679 year: 2016 ident: 10.1016/j.celrep.2018.12.028_bib40 article-title: Radical-mediated dehydrogenation of bile acids by means of hydrogen atom transfer to triplet carbonyls publication-title: Org. Biomol. Chem. doi: 10.1039/C5OB02561C – volume: 56 start-page: 1300 year: 2012 ident: 10.1016/j.celrep.2018.12.028_bib46 article-title: Specific bile acids inhibit hepatic fatty acid uptake in mice publication-title: Hepatology doi: 10.1002/hep.25797 – volume: 123 start-page: 6246 year: 2001 ident: 10.1016/j.celrep.2018.12.028_bib54 article-title: Calculation of relative binding free energy differences for fructose 1,6-bisphosphatase inhibitors using the thermodynamic cycle perturbation approach publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0103288 – volume: 28 start-page: 1221 year: 1987 ident: 10.1016/j.celrep.2018.12.028_bib7 article-title: Short chain fatty acids in human large intestine, portal, hepatic and venous blood publication-title: Gut doi: 10.1136/gut.28.10.1221 – volume: 42 start-page: 47 year: 2018 ident: 10.1016/j.celrep.2018.12.028_bib45 article-title: Commensal Koch’s postulates: establishing causation in human microbiota research publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2017.10.001 – volume: 25 start-page: 881 year: 2009 ident: 10.1016/j.celrep.2018.12.028_bib41 article-title: A novel function of intestinal gluconeogenesis: central signaling in glucose and energy homeostasis publication-title: Nutrition doi: 10.1016/j.nut.2009.06.010 – volume: 7 start-page: 335 year: 2010 ident: 10.1016/j.celrep.2018.12.028_bib5 article-title: QIIME allows analysis of high-throughput community sequencing data publication-title: Nat. Methods doi: 10.1038/nmeth.f.303 |
SSID | ssj0000601194 |
Score | 2.679016 |
Snippet | We demonstrated the metabolic benefits of Parabacteroides distasonis (PD) on decreasing weight gain, hyperglycemia, and hepatic steatosis in ob/ob and high-fat... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 222 |
SubjectTerms | Animals Bacterial Proteins - chemistry Bacteroidetes - enzymology bile acids Bile Acids and Salts - metabolism FBPase Gastrointestinal Microbiome - physiology Humans metabolic disorders Mice Obesity - microbiology Parabacteroides distasonis succinate Succinic Acid - metabolism |
SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect Open Access Journals dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBalMNjLaLe1TX8MDfZqUlu2JT-m7UoYZBSyQt7E-SSDR3BKnDzkof9772Q7MGgp7FFGh43ufPedpPtOiB8xUFgCraPMlHmUQpVH4JnuLkdm__amQi5Onv3Op4_pr0W2OBC3Qy0MX6vsfX_n04O37p-M-9UcP9X1eJ5Q7kLRiZyrYsYU9sMqNaGIb3Gz32dhvpE49EPk-RELDBV04ZoX-uXaM3FlbMK-ILdlfz1CvYVAQyS6PxKfeggpJ91XHosD33wWH7qmkrsv4vkB-JyeSZhXtfOtdAwRCVbXrZwsuZqc4aXsOwJIaJyc-Q3ZwrJGebdrOdIFY5Q0Uz50jLA0lqtKzreIdUPyQWzOybSD9U7ekG-RE6xd-1U83v_8czuN-iYLEaY63URaJcoVaLBAdCrLaTkNrT3FMF0CeIMak0JXBcQGkdBTdu3Soso9aAdeI6oTcdisGn8mJBbGQ6qBfEScVtdYAJSqAsJQSYWqdCOhhoW12DOQcyOMpR2umv21nTosq8PGiSV1jES0l3rqGDjema8Hndl_LMlSkHhH8vugYks_GZ-cQONX29YmlFSymM5G4rTT_f5bKOciEKnN-X-_90J8pFERNnaSS3G4WW_9FUGdTfkt2PILsLL-eA priority: 102 providerName: Elsevier |
Title | Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids |
URI | https://dx.doi.org/10.1016/j.celrep.2018.12.028 https://www.ncbi.nlm.nih.gov/pubmed/30605678 https://www.proquest.com/docview/2164101675 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9tAEF6clEAupY-0dR9mA70qWKvHrg6lOG2DW3AIpAbfltHsClSE3Fo21If-987okV5i0otAoJHEzux-3-zjGyHeh0CwBFoHicnTIIYiDcCz3F2KrP7tTYF8OHlxnc6X8bdVshqJoWZr34DNvakd15NabqqL37_2H6nDf_i3Vwt9tfGsPhmadnJPmSPxiLBJc1dd9IS_G5tZ44yXmpXivVwq1sN5ugMvOoRXh_hoi0tXT8TjnlDKWRcBT8XI18_ESVdicv9c_LkBXrVnSeZ16XwjHRNGItllI2cVny1nsin7-gASaicXfkuRUZUoP-8bxr02NCU9KW86fVi6l-tC3u4Qy5rsW7NbTq0dbPbykkYaOcPSNWdiefXl-6d50JdcCDDW8TbQkYpchgYzRBclKSGXQe8I0XQO4A1qVJkuMggNInGpZOrirEg9aAdeI0YvxHG9rv0rITEzHmINNGKEcTHFDCCPCiBGpQqMcjcW0dCwFns9ci6LUdlh49kP27nDsjtsqCy5YyyCO6ufnR7HA8_rwWe25xQdV7AUQQ9Yng8uttTleB0Far_eNVZRislmOhmLl53v7_6FMjCilNq8_g_rN-KUvpe1EzrqrTjebnb-HVGcbT5ppwbo-nV1OWkj-C-rAf15 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEF_EUuqLaG31tLZb8DWc-bjs5vG0lbP1RDiFe1smsxuIHDm53D3cg_-7M5vkQLAIfUyyQ8LMZOY3-_EbIc5CoLQESgUDnadBAkUagGO6uxSZ_dvpAvlw8vg2HT0kf6aD6Za47M7C8LbKNvY3Md1H6_ZOv9Vm_6ks-5OIahfKThRcY2ZMoTj8gdCA4v4N19OLzUQLE46EviEiCwQs0R2h8_u80M0WjpkrQ-0nBrkv-9sp6l8Q1Keiqz2x22JIOWw-c19sueqz-Nh0lVwfiOc74IV6ZmGel9bV0jJGJFxd1nI44-PkjC9l2xJAQmXl2C3JGWYlyl_rmlOd90ZJI-VdQwlL13JeyMkKsaxI3otNuJq2sFjLCwoucoilrb-Ih6vf95ejoO2yEGCikmWg4ii2GWrMEG1MCgy1JuVTElM5gNOoMMpUkUGoEQk-Dc5tkhWpA2XBKcT4q9iu5pU7EhIz7SBRQEEiTIpzzADyuAACUVGBcW57Iu4Ua7ClIOdOGDPT7TV7NI05DJvDhJEhc_REsJF6aig43hmvOpuZV65kKEu8I_mzM7Ghv4yXTqBy81VtIqoqWUwNeuKwsf3mW6joIhSp9PF_v_eH-DS6H9-Ym-vbvydih55kfpYn-ia2l4uVOyXcs8y_e79-AXvTAaY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parabacteroides+distasonis+Alleviates+Obesity+and+Metabolic+Dysfunctions+via+Production+of+Succinate+and+Secondary+Bile+Acids&rft.jtitle=Cell+reports+%28Cambridge%29&rft.au=Wang%2C+Kai&rft.au=Liao%2C+Mingfang&rft.au=Zhou%2C+Nan&rft.au=Bao%2C+Li&rft.date=2019-01-02&rft.issn=2211-1247&rft.eissn=2211-1247&rft.volume=26&rft.issue=1&rft.spage=222&rft_id=info:doi/10.1016%2Fj.celrep.2018.12.028&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2211-1247&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2211-1247&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2211-1247&client=summon |