Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination

Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by C31 integrase. Using six orthogonal attP/attB recombination site pair...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 42; no. 4; p. e23
Main Authors Colloms, Sean D, Merrick, Christine A, Olorunniji, Femi J, Stark, W Marshall, Smith, Margaret C M, Osbourn, Anne, Keasling, Jay D, Rosser, Susan J
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.02.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by C31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. C31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition.
AbstractList Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by C31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. C31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition.
Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by ΦC31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. ΦC31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition.
Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by ϕC31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. ϕC31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition.
Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by ϕC31 integrase. Using six orthogonal attP / attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. ϕC31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition.
Author Keasling, Jay D
Colloms, Sean D
Olorunniji, Femi J
Stark, W Marshall
Smith, Margaret C M
Osbourn, Anne
Merrick, Christine A
Rosser, Susan J
Author_xml – sequence: 1
  givenname: Sean D
  surname: Colloms
  fullname: Colloms, Sean D
  organization: Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, Scotland, UK, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK, Department of Metabolic Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK, Joint BioEnergy Institute, Emeryville, CA 94608, USA, Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
– sequence: 2
  givenname: Christine A
  surname: Merrick
  fullname: Merrick, Christine A
– sequence: 3
  givenname: Femi J
  surname: Olorunniji
  fullname: Olorunniji, Femi J
– sequence: 4
  givenname: W Marshall
  surname: Stark
  fullname: Stark, W Marshall
– sequence: 5
  givenname: Margaret C M
  surname: Smith
  fullname: Smith, Margaret C M
– sequence: 6
  givenname: Anne
  surname: Osbourn
  fullname: Osbourn, Anne
– sequence: 7
  givenname: Jay D
  surname: Keasling
  fullname: Keasling, Jay D
– sequence: 8
  givenname: Susan J
  surname: Rosser
  fullname: Rosser, Susan J
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24225316$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1625515$$D View this record in Osti.gov
BookMark eNpVkc2L1EAQxRtZcWdXT94leBIkbn8nuQiy6CosCKLnptKpzLQm3bGrZ2X_ezPOuOipCupXr17xLthZTBEZey74G8E7dRUhX21_FCG4eMQ2QllZ687KM7bhiptacN2eswui75wLLYx-ws6lltIoYTds-AJLGKoZC_RpCr5aoOx-wX0FRDj309rEdZyGMAYPJaRY7SnEbUWYQ8QqxILbDIQVhYI1LegPZJXRp7kP8c_KU_Z4hInw2alesm8f3n-9_ljffr75dP3utva60aW2gzajALSN530D3eClVarlqAQAthJtKxvdKNnxQRrddNihRJRgxlZ1XKpL9vaou-z7GQePsWSY3JLDDPneJQju_0kMO7dNd051yjZSrAIvjwKJSnDk15f8zqcY0RcnrDRGmBV6dbqS0889UnFzII_TBBHTnpwwXBkjuT0Yen1EfU5EGccHL4K7Q3huDc-dwlvpF__af2D_pqV-A22Cmhw
CitedBy_id crossref_primary_10_1093_nar_gku604
crossref_primary_10_1093_nar_gkaa401
crossref_primary_10_1371_journal_pone_0137466
crossref_primary_10_1093_nar_gkz936
crossref_primary_10_1016_j_copbio_2020_08_011
crossref_primary_10_1038_nrm4014
crossref_primary_10_1016_j_jmb_2014_05_014
crossref_primary_10_1101_cshperspect_a023994
crossref_primary_10_1016_j_yexcr_2020_111851
crossref_primary_10_1002_adbi_201700190
crossref_primary_10_1002_wdev_214
crossref_primary_10_1039_C5NP00099H
crossref_primary_10_1093_nar_gkx1233
crossref_primary_10_1039_C6NP00017G
crossref_primary_10_1016_j_meteno_2016_05_003
crossref_primary_10_3389_fbioe_2014_00060
crossref_primary_10_1038_srep23697
crossref_primary_10_1128_mBio_01714_15
crossref_primary_10_1128_microbiolspec_MDNA3_0046_2014
crossref_primary_10_1111_1567_1364_12171
crossref_primary_10_1142_S233954781640001X
crossref_primary_10_3390_app11041851
crossref_primary_10_1016_j_mib_2017_04_006
crossref_primary_10_1039_C9NP00025A
crossref_primary_10_1016_j_bbapap_2019_140262
crossref_primary_10_1016_j_cell_2022_03_008
crossref_primary_10_1039_C9NP00029A
crossref_primary_10_1049_enb_2017_0006
crossref_primary_10_3390_md20060341
crossref_primary_10_1038_s41467_023_41043_w
crossref_primary_10_1002_bit_26854
crossref_primary_10_1093_nar_gkx567
crossref_primary_10_3390_synbio1020012
crossref_primary_10_1016_j_ymben_2020_07_007
crossref_primary_10_1016_j_biotechadv_2019_06_002
crossref_primary_10_1002_biot_202300410
crossref_primary_10_1099_acmi_0_000291
crossref_primary_10_1016_j_biotechadv_2020_107520
crossref_primary_10_1093_nar_gkac124
crossref_primary_10_1042_BJ20151112
crossref_primary_10_1128_AEM_02767_16
crossref_primary_10_1093_nar_gku829
crossref_primary_10_1093_nar_gkac845
crossref_primary_10_1002_adsc_201500202
crossref_primary_10_1128_JB_00703_20
crossref_primary_10_1016_j_synbio_2016_08_002
crossref_primary_10_1186_s13036_015_0021_0
crossref_primary_10_2323_jgam_2021_10_004
crossref_primary_10_1126_sciadv_ade1285
crossref_primary_10_1021_acssynbio_6b00165
crossref_primary_10_1093_nar_gkw520
crossref_primary_10_1038_s41467_020_18455_z
crossref_primary_10_1002_bit_26938
crossref_primary_10_1016_j_biotechadv_2023_108301
crossref_primary_10_1002_jobm_201500658
crossref_primary_10_1002_biot_202400114
crossref_primary_10_1002_1873_3468_13023
crossref_primary_10_1021_acssynbio_5b00113
crossref_primary_10_1021_acssynbio_7b00308
crossref_primary_10_1186_s12896_019_0521_y
crossref_primary_10_3390_microorganisms7100409
crossref_primary_10_3390_catal8120619
crossref_primary_10_1186_s12918_017_0490_5
crossref_primary_10_1186_s12896_017_0382_1
crossref_primary_10_3390_bioengineering11010022
crossref_primary_10_1093_nar_gkw616
crossref_primary_10_35534_sbe_2023_10017
crossref_primary_10_1016_j_ymben_2018_12_001
crossref_primary_10_1002_biot_202200411
crossref_primary_10_1021_acs_chemrev_6b00804
crossref_primary_10_1093_abbs_gmw115
crossref_primary_10_1016_j_jbiotec_2016_11_009
crossref_primary_10_1016_j_coche_2016_07_005
crossref_primary_10_1021_acssynbio_7b00131
crossref_primary_10_1016_j_synbio_2020_05_006
crossref_primary_10_1021_acssynbio_7b00017
crossref_primary_10_1021_acs_jafc_3c03942
crossref_primary_10_1093_nar_gkx466
crossref_primary_10_1128_microbiolspec_MDNA3_0059_2014
crossref_primary_10_1016_j_ymben_2018_08_002
crossref_primary_10_1093_nar_gky596
crossref_primary_10_1093_nar_gkz245
crossref_primary_10_1126_science_aad8559
crossref_primary_10_1128_microbiolspec_MDNA3_0045_2014
crossref_primary_10_1534_g3_118_200565
crossref_primary_10_1038_s41467_018_04254_0
crossref_primary_10_1126_science_abb3099
crossref_primary_10_1128_JB_00019_17
crossref_primary_10_1109_TBCAS_2016_2526668
Cites_doi 10.1042/BST0380388
10.1002/j.1460-2075.1988.tb02884.x
10.1002/1097-0290(20000220)72:4<408::AID-BIT1003>3.0.CO;2-H
10.1046/j.1365-2958.2000.02142.x
10.1042/bj3240421
10.1186/1754-1611-2-5
10.1073/pnas.95.10.5505
10.1371/journal.pone.0003647
10.1093/nar/21.4.817
10.1038/srep00141
10.1371/journal.pone.0005553
10.1002/cbic.200600029
10.1007/s002530051632
10.1038/nbt.1568
10.1038/nmeth1010
10.1111/j.1365-2958.2011.07696.x
10.1101/gr.2512204
10.1093/nar/gkr1288
10.1371/journal.pone.0006441
10.1039/c0ib00070a
10.1002/bit.20539
10.1093/nar/gkn991
10.1128/AEM.02268-06
10.1128/JB.172.12.6704-6712.1990
10.1007/s00253-004-1619-1
10.1016/j.resmic.2004.09.007
10.1093/nar/gkp687
10.1101/gr.143000
10.1093/nar/25.6.1203
10.1186/1754-1611-4-1
10.1038/nmeth.1318
10.1007/s00253-006-0623-z
10.2144/99261rr02
10.1073/pnas.0811011106
10.1111/j.1365-2958.2003.03942.x
10.1093/nar/gkh538
10.1016/j.jbiotec.2003.10.001
10.1016/0022-2836(92)90629-X
10.1073/pnas.0711649105
10.1007/s002530051032
10.1073/pnas.1210964109
ContentType Journal Article
Copyright The Author(s) 2013. Published by Oxford University Press. 2013
Copyright_xml – notice: The Author(s) 2013. Published by Oxford University Press. 2013
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
OIOZB
OTOTI
5PM
DOI 10.1093/nar/gkt1101
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage e23
ExternalDocumentID 1625515
10_1093_nar_gkt1101
24225316
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/E022200/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BBS/E/J/00000614
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H001212/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/K003356/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/J004561/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H005277/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/H005447/1
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
6.Y
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
ABPTD
ABQLI
ABQTQ
ABSAR
ABSMQ
ABXVV
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACMRT
ACNCT
ACPQN
ACPRK
ACUTJ
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFRAH
AFSHK
AFULF
AFYAG
AGKRT
AGMDO
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ANFBD
AOIJS
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
BTTYL
C1A
CAG
CGR
CIDKT
COF
CS3
CUY
CVF
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
ECM
EIF
EJD
ELUNK
EMOBN
ESTFP
F20
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
M49
MBTAY
MVM
M~E
NPM
NTWIH
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROX
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
AAYXX
ABEJV
CITATION
7X8
AAPBV
AFPKN
OIOZB
OTOTI
PQEST
ZA5
5PM
ID FETCH-LOGICAL-c474t-6d45f1ae67c0b7a9dc263380e31aae82e6827473290d25479e9e2ee2a5f839023
IEDL.DBID RPM
ISSN 0305-1048
IngestDate Tue Sep 17 21:28:23 EDT 2024
Mon Jul 10 02:33:21 EDT 2023
Wed Dec 04 05:28:51 EST 2024
Fri Dec 06 04:48:36 EST 2024
Wed Oct 16 00:44:10 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/by/3.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-6d45f1ae67c0b7a9dc263380e31aae82e6827473290d25479e9e2ee2a5f839023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
AC02-05CH11231
USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division
Present address: Susan J. Rosser, School of Biological Sciences, The University of Edinburgh, Darwin Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR.
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936721/
PMID 24225316
PQID 1503552062
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3936721
osti_scitechconnect_1625515
proquest_miscellaneous_1503552062
crossref_primary_10_1093_nar_gkt1101
pubmed_primary_24225316
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: United States
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2014
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References August (2020112407563866400_gkt1101-B36) 2000; 2
Sasaki (2020112407563866400_gkt1101-B42) 2004; 107
Bernard (2020112407563866400_gkt1101-B15) 1992; 226
Lutz (2020112407563866400_gkt1101-B16) 1997; 25
Misawa (2020112407563866400_gkt1101-B27) 1990; 172
Ellis (2020112407563866400_gkt1101-B1) 2011; 3
Quan (2020112407563866400_gkt1101-B9) 2009; 4
Salis (2020112407563866400_gkt1101-B38) 2009; 27
Khaleel (2020112407563866400_gkt1101-B24) 2011; 80
Engler (2020112407563866400_gkt1101-B5) 2008; 3
Smith (2020112407563866400_gkt1101-B25) 2004; 51
Thorpe (2020112407563866400_gkt1101-B20) 1998; 95
Raymond (2020112407563866400_gkt1101-B12) 1999; 26
Gibson (2020112407563866400_gkt1101-B11) 2008; 105
Smith (2020112407563866400_gkt1101-B21) 2010; 38
Cheo (2020112407563866400_gkt1101-B40) 2004; 14
Demarre (2020112407563866400_gkt1101-B18) 2005; 156
Ruther (2020112407563866400_gkt1101-B35) 1997; 48
Olorunniji (2020112407563866400_gkt1101-B19) 2012; 109
Anderson (2020112407563866400_gkt1101-B2) 2010; 4
Smith (2020112407563866400_gkt1101-B22) 2004; 32
Gibson (2020112407563866400_gkt1101-B10) 2009; 37
Summers (2020112407563866400_gkt1101-B17) 1988; 7
Thorpe (2020112407563866400_gkt1101-B23) 2000; 38
Shetty (2020112407563866400_gkt1101-B3) 2008; 2
Kang (2020112407563866400_gkt1101-B29) 2005; 91
Kim (2020112407563866400_gkt1101-B30) 2001; 72
Matthews (2020112407563866400_gkt1101-B31) 2000; 53
Yoon (2020112407563866400_gkt1101-B33) 2007; 74
Hartley (2020112407563866400_gkt1101-B41) 2000; 10
Li (2020112407563866400_gkt1101-B6) 2007; 4
Sanchez (2020112407563866400_gkt1101-B37) 2006; 7
Sambrook (2020112407563866400_gkt1101-B14) 2001
Ghosh (2020112407563866400_gkt1101-B26) 2008; 105
Zhang (2020112407563866400_gkt1101-B8) 2012; 40
Nishizaki (2020112407563866400_gkt1101-B32) 2007; 73
Lee (2020112407563866400_gkt1101-B34) 2004; 65
Zhang (2020112407563866400_gkt1101-B43) 2011; 1
Engler (2020112407563866400_gkt1101-B4) 2009; 4
Gibson (2020112407563866400_gkt1101-B7) 2009; 6
Boyd (2020112407563866400_gkt1101-B39) 1993; 21
Shao (2020112407563866400_gkt1101-B13) 2009; 37
Kajiwara (2020112407563866400_gkt1101-B28) 1997; 324
References_xml – volume: 38
  start-page: 388
  year: 2010
  ident: 2020112407563866400_gkt1101-B21
  article-title: Site-specific recombination by ϕC31 integrase and other large serine recombinases
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0380388
  contributor:
    fullname: Smith
– volume: 7
  start-page: 851
  year: 1988
  ident: 2020112407563866400_gkt1101-B17
  article-title: Resolution of ColE1 dimers requires a DNA sequence implicated in the three-dimensional organization of the cer site
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1988.tb02884.x
  contributor:
    fullname: Summers
– volume: 72
  start-page: 408
  year: 2001
  ident: 2020112407563866400_gkt1101-B30
  article-title: Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/1097-0290(20000220)72:4<408::AID-BIT1003>3.0.CO;2-H
  contributor:
    fullname: Kim
– volume: 38
  start-page: 232
  year: 2000
  ident: 2020112407563866400_gkt1101-B23
  article-title: Control of directionality in the site-specific recombination system of the Streptomyces phage ϕC31
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2000.02142.x
  contributor:
    fullname: Thorpe
– volume: 324
  start-page: 421
  year: 1997
  ident: 2020112407563866400_gkt1101-B28
  article-title: Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli
  publication-title: Biochem. J.
  doi: 10.1042/bj3240421
  contributor:
    fullname: Kajiwara
– volume: 2
  start-page: 5
  year: 2008
  ident: 2020112407563866400_gkt1101-B3
  article-title: Engineering BioBrick vectors from BioBrick parts
  publication-title: J. Biol. Eng.
  doi: 10.1186/1754-1611-2-5
  contributor:
    fullname: Shetty
– volume: 95
  start-page: 5505
  year: 1998
  ident: 2020112407563866400_gkt1101-B20
  article-title: In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.95.10.5505
  contributor:
    fullname: Thorpe
– volume: 2
  start-page: 513
  year: 2000
  ident: 2020112407563866400_gkt1101-B36
  article-title: Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum
  publication-title: J. Mol. Microbiol. Biotechnol.
  contributor:
    fullname: August
– volume: 3
  start-page: e3647
  year: 2008
  ident: 2020112407563866400_gkt1101-B5
  article-title: A one pot, one step, precision cloning method with high throughput capability
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0003647
  contributor:
    fullname: Engler
– volume: 21
  start-page: 817
  year: 1993
  ident: 2020112407563866400_gkt1101-B39
  article-title: Turbo cloning: a fast, efficient method for cloning PCR products and other blunt-ended DNA fragments into plasmids
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/21.4.817
  contributor:
    fullname: Boyd
– volume: 1
  start-page: 141
  year: 2011
  ident: 2020112407563866400_gkt1101-B43
  article-title: Tandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination
  publication-title: Sci. Rep.
  doi: 10.1038/srep00141
  contributor:
    fullname: Zhang
– volume: 4
  start-page: e5553
  year: 2009
  ident: 2020112407563866400_gkt1101-B4
  article-title: Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0005553
  contributor:
    fullname: Engler
– volume: 7
  start-page: 1231
  year: 2006
  ident: 2020112407563866400_gkt1101-B37
  article-title: Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis
  publication-title: Chembiochem.
  doi: 10.1002/cbic.200600029
  contributor:
    fullname: Sanchez
– volume: 53
  start-page: 396
  year: 2000
  ident: 2020112407563866400_gkt1101-B31
  article-title: Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051632
  contributor:
    fullname: Matthews
– volume: 27
  start-page: 946
  year: 2009
  ident: 2020112407563866400_gkt1101-B38
  article-title: Automated design of synthetic ribosome binding sites to control protein expression
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1568
  contributor:
    fullname: Salis
– volume-title: Molecular Cloning: a Laboratory Manual
  year: 2001
  ident: 2020112407563866400_gkt1101-B14
  contributor:
    fullname: Sambrook
– volume: 4
  start-page: 251
  year: 2007
  ident: 2020112407563866400_gkt1101-B6
  article-title: Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC
  publication-title: Nat. Methods
  doi: 10.1038/nmeth1010
  contributor:
    fullname: Li
– volume: 80
  start-page: 1450
  year: 2011
  ident: 2020112407563866400_gkt1101-B24
  article-title: A phage protein that binds ϕC31 integrase to switch its directionality
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2011.07696.x
  contributor:
    fullname: Khaleel
– volume: 14
  start-page: 2111
  year: 2004
  ident: 2020112407563866400_gkt1101-B40
  article-title: Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination: functional analysis of multi-segment expression clones
  publication-title: Genome Res.
  doi: 10.1101/gr.2512204
  contributor:
    fullname: Cheo
– volume: 40
  start-page: e55
  year: 2012
  ident: 2020112407563866400_gkt1101-B8
  article-title: SLiCE: a novel bacterial cell extract-based DNA cloning method
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkr1288
  contributor:
    fullname: Zhang
– volume: 4
  start-page: e6441
  year: 2009
  ident: 2020112407563866400_gkt1101-B9
  article-title: Circular polymerase extension cloning of complex gene libraries and pathways
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0006441
  contributor:
    fullname: Quan
– volume: 3
  start-page: 109
  year: 2011
  ident: 2020112407563866400_gkt1101-B1
  article-title: DNA assembly for synthetic biology: from parts to pathways and beyond
  publication-title: Integr. Biol. (Camb)
  doi: 10.1039/c0ib00070a
  contributor:
    fullname: Ellis
– volume: 91
  start-page: 636
  year: 2005
  ident: 2020112407563866400_gkt1101-B29
  article-title: Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.20539
  contributor:
    fullname: Kang
– volume: 37
  start-page: e16
  year: 2009
  ident: 2020112407563866400_gkt1101-B13
  article-title: DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn991
  contributor:
    fullname: Shao
– volume: 73
  start-page: 1355
  year: 2007
  ident: 2020112407563866400_gkt1101-B32
  article-title: Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02268-06
  contributor:
    fullname: Nishizaki
– volume: 172
  start-page: 6704
  year: 1990
  ident: 2020112407563866400_gkt1101-B27
  article-title: Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.172.12.6704-6712.1990
  contributor:
    fullname: Misawa
– volume: 65
  start-page: 538
  year: 2004
  ident: 2020112407563866400_gkt1101-B34
  article-title: Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-004-1619-1
  contributor:
    fullname: Lee
– volume: 156
  start-page: 245
  year: 2005
  ident: 2020112407563866400_gkt1101-B18
  article-title: A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPα) conjugative machineries and their cognate Escherichia coli host strains
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2004.09.007
  contributor:
    fullname: Demarre
– volume: 37
  start-page: 6984
  year: 2009
  ident: 2020112407563866400_gkt1101-B10
  article-title: Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkp687
  contributor:
    fullname: Gibson
– volume: 10
  start-page: 1788
  year: 2000
  ident: 2020112407563866400_gkt1101-B41
  article-title: DNA cloning using in vitro site-specific recombination
  publication-title: Genome Res.
  doi: 10.1101/gr.143000
  contributor:
    fullname: Hartley
– volume: 25
  start-page: 1203
  year: 1997
  ident: 2020112407563866400_gkt1101-B16
  article-title: Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.6.1203
  contributor:
    fullname: Lutz
– volume: 4
  start-page: 1
  year: 2010
  ident: 2020112407563866400_gkt1101-B2
  article-title: BglBricks: A flexible standard for biological part assembly
  publication-title: J. Biol. Eng.
  doi: 10.1186/1754-1611-4-1
  contributor:
    fullname: Anderson
– volume: 6
  start-page: 343
  year: 2009
  ident: 2020112407563866400_gkt1101-B7
  article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1318
  contributor:
    fullname: Gibson
– volume: 74
  start-page: 131
  year: 2007
  ident: 2020112407563866400_gkt1101-B33
  article-title: Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-006-0623-z
  contributor:
    fullname: Yoon
– volume: 26
  start-page: 134
  year: 1999
  ident: 2020112407563866400_gkt1101-B12
  article-title: General method for plasmid construction using homologous recombination
  publication-title: Biotechniques
  doi: 10.2144/99261rr02
  contributor:
    fullname: Raymond
– volume: 105
  start-page: 20404
  year: 2008
  ident: 2020112407563866400_gkt1101-B11
  article-title: One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0811011106
  contributor:
    fullname: Gibson
– volume: 51
  start-page: 1719
  year: 2004
  ident: 2020112407563866400_gkt1101-B25
  article-title: Switching the polarity of a bacteriophage integration system
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2003.03942.x
  contributor:
    fullname: Smith
– volume: 32
  start-page: 2607
  year: 2004
  ident: 2020112407563866400_gkt1101-B22
  article-title: Synapsis and DNA cleavage in ϕC31 integrase-mediated site-specific recombination
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkh538
  contributor:
    fullname: Smith
– volume: 107
  start-page: 233
  year: 2004
  ident: 2020112407563866400_gkt1101-B42
  article-title: Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the multisite gateway system
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2003.10.001
  contributor:
    fullname: Sasaki
– volume: 226
  start-page: 735
  year: 1992
  ident: 2020112407563866400_gkt1101-B15
  article-title: Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(92)90629-X
  contributor:
    fullname: Bernard
– volume: 105
  start-page: 3238
  year: 2008
  ident: 2020112407563866400_gkt1101-B26
  article-title: Two-step site selection for serine-integrase-mediated excision: DNA-directed integrase conformation and central dinucleotide proofreading
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0711649105
  contributor:
    fullname: Ghosh
– volume: 48
  start-page: 162
  year: 1997
  ident: 2020112407563866400_gkt1101-B35
  article-title: Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmids
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s002530051032
  contributor:
    fullname: Ruther
– volume: 109
  start-page: 19661
  year: 2012
  ident: 2020112407563866400_gkt1101-B19
  article-title: Gated rotation mechanism of site-specific recombination by ϕC31 integrase
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1210964109
  contributor:
    fullname: Olorunniji
SSID ssj0014154
Score 2.4857042
Snippet Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid...
SourceID pubmedcentral
osti
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e23
SubjectTerms Bacteriophages - enzymology
BASIC BIOLOGICAL SCIENCES
Biochemistry & Molecular Biology
Biosynthetic Pathways - genetics
Cloning, Molecular - methods
Gene Order
Integrases - metabolism
Metabolic Engineering - methods
Metabolic Networks and Pathways - genetics
Methods Online
Recombination, Genetic
Ribosomes - metabolism
Synthetic Biology - methods
Synthetic Biology and Assembly Cloning
Title Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination
URI https://www.ncbi.nlm.nih.gov/pubmed/24225316
https://search.proquest.com/docview/1503552062
https://www.osti.gov/servlets/purl/1625515
https://pubmed.ncbi.nlm.nih.gov/PMC3936721
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAFHwkvrSX0iT9cPPBFkJviqzd1Uo6BpMQCklKScA3sVqtU1NrbWKFkn_f2ZUU6tJTL8YgCRnNEzPjnX2P6FRDtM9rYaIMBRJJPs-jXAgZqRz8YmUibZgZeX2jru7l11k626F02AsTQvumWpy5ZXPmFj9CtnLdmHjIicXfrqeiEArOJd6lXdDvYNH7pQMwUtczKrTYlHm_KQ_OPXb6MX742YLx_IAYkBNHBaotRhqt8Gb9S23-HZr8g4Uu39KbXj6y8-5n7tGOdft0cO5gnZtn9oWFQGf4p3yfXk2HYW4HVH_X60XNGtsC9OXCMD-J-Jd-ZtDOtqmW-OJweFX75FAAi_lE_APbhO2BrO8qsbHMrzZHfn-mP5N5P93AXIdL3tH95cXd9CrqByxERmayjVQt03mircrMpMp0URuuYFknViRa25xbIAa7IXgxqWEks8IWllvLdTqHrgLbv6eRWzn7kVhaVYkpcl6orJZ5lWqdZqLy3QGt0PAwYzodHnK57vpolN36tygBS9nDMqZDD0AJ-vc9bI0P-5i2TODSILzG9HnApcTz80sb2tnV06aErIVw4hOFG33ocHq5zYDzmLItBF9O8B22t4-g8EKn7b7QPv33lYf0GgpLdjHvIxq1j0_2GCqmrU6C-z8JtYvPu9vZb_Od9Uo
link.rule.ids 230,314,727,780,784,864,885,27924,27925,53791,53793
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R5UAvVQv92NKCK6HeQja2EydHtCratiyqKpC4WY4zC6tuvCs2CPHvGTsJ6lY9cYvkWI7yJpr34ucZgCNDpH1WCRspCpBI8lke5ULIKMspv6BMJIaekdPzbHIpf1ylV1uQ9mdhgmnflvNjt6iP3fwmeCtXtY17n1j8azoWhchIucQvYDsVqkh6kd5tHlBOaqtGhSKbMu-O5ZF2j525ja__NJTzfIsYSk-cYjDbyEmDJX1b_-Ob_9om_8pDp6_hVUcg2Un7oG9gC90u7J04Es_1A_vKgqUz_CvfhZ1x385tD6rfZjWvWI0Nwb6YW-Z7Ed-bB0bsGetyQReOhpeV9w4FuJj3xF-zdTggyLq6Emtkfr858ic0_Z3MK-qa5HWY8hYuT79djCdR12IhslLJJsoqmc4Sg5myo1KZorI8I9E6QpEYgzlHwowEh-DFqCIpqQoskCNyk86IWVG-fwcDt3T4AVhaloktcl5kqpJ5mRqTKlH6-oAoDKmYIRz1L1mv2koaut0BF5pg0R0sQ9j3AGgiAL6KrfV2H9vohHQaUa8hfOlx0fT-_OaGcbi8W2sitkSd-Cijhd63OD0t0-M8BLWB4NMNvsb25giFXqi13YXax2fPPISdycX0TJ99P_-5Dy-Jb8nW9P0JBs3tHX4mTtOUByGCHwFwofaO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3BIgEXBC2UpRSMVHFLs7EdJzlWC6vy0apCVOrNcpxJu-rGu-qmQv33jJ2k6iJOvUVyLEd5E8178fMMwL4h0l5XwkYZBUgkeZ1HuRAyUjnlF5SJxNAz8vhEHZ3J7-fp-b1WX8G0b8v5gVs0B25-GbyVq8bGg08sPj2eikIoUi7xqqrjx_AkFRRkg1DvNxAoL3WVo0KhTZn3R_NIv8fOXMcXVy3lPd8mhlIUpzhUG3lptKTv63-c81_r5L1cNHsJL3oSyQ67h30Fj9BtwfahIwHd3LLPLNg6w__yLXg2HVq6bUP1y6zmFWuwJegXc8t8P-I_5pYRg8amXNCFo-Fl5f1DATLmffEXbB0OCbK-tsQamd9zjvwpTX8n86q6IYkdpryGs9nX39OjqG-zEFmZyTZSlUzrxKDK7KTMTFFZrki4TlAkxmDOkXAj0SF4MalITmYFFsgRuUlrYleU89_AyC0dvgWWlmVii5wXKqtkXqbGpJkofY1AFIaUzBj2h5esV101Dd3tggtNsOgeljHsegA0kQBfydZ6y49tdUJajejXGD4NuGh6f36Dwzhc3qw1kVuiT3yiaKGdDqe7ZQacx5BtIHh3g6-zvTlC4Rfqbffh9u7BMz_C09MvM_3z28mPXXhOlEt2vu_3MGqvb3CPaE1bfggB_Bf3DPeh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+metabolic+pathway+assembly+and+modification+using+serine+integrase+site-specific+recombination&rft.jtitle=Nucleic+acids+research&rft.au=Colloms%2C+Sean+D&rft.au=Merrick%2C+Christine+A&rft.au=Olorunniji%2C+Femi+J&rft.au=Stark%2C+W+Marshall&rft.date=2014-02-01&rft.eissn=1362-4962&rft.volume=42&rft.issue=4&rft.spage=e23&rft.epage=e23&rft_id=info:doi/10.1093%2Fnar%2Fgkt1101&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon