Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination
Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by C31 integrase. Using six orthogonal attP/attB recombination site pair...
Saved in:
Published in | Nucleic acids research Vol. 42; no. 4; p. e23 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.02.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by C31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. C31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition. |
---|---|
AbstractList | Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by C31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. C31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition. Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by ΦC31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. ΦC31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition. Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by ϕC31 integrase. Using six orthogonal attP/attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. ϕC31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition. Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid procedure for DNA fragment assembly using site-specific recombination by ϕC31 integrase. Using six orthogonal attP / attB recombination site pairs with different overlap sequences, we can assemble up to five DNA fragments in a defined order and insert them into a plasmid vector in a single recombination reaction. ϕC31 integrase-mediated assembly is highly efficient, allowing production of large libraries suitable for combinatorial gene assembly strategies. The resultant assemblies contain arrays of DNA cassettes separated by recombination sites, which can be used to manipulate the assembly by further recombination. We illustrate the utility of these procedures to (i) assemble functional metabolic pathways containing three, four or five genes; (ii) optimize productivity of two model metabolic pathways by combinatorial assembly with randomization of gene order or ribosome binding site strength; and (iii) modify an assembled metabolic pathway by gene replacement or addition. |
Author | Keasling, Jay D Colloms, Sean D Olorunniji, Femi J Stark, W Marshall Smith, Margaret C M Osbourn, Anne Merrick, Christine A Rosser, Susan J |
Author_xml | – sequence: 1 givenname: Sean D surname: Colloms fullname: Colloms, Sean D organization: Institute of Molecular, Cell and Systems Biology, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, Scotland, UK, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK, Department of Metabolic Biology, The John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK, Joint BioEnergy Institute, Emeryville, CA 94608, USA, Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA – sequence: 2 givenname: Christine A surname: Merrick fullname: Merrick, Christine A – sequence: 3 givenname: Femi J surname: Olorunniji fullname: Olorunniji, Femi J – sequence: 4 givenname: W Marshall surname: Stark fullname: Stark, W Marshall – sequence: 5 givenname: Margaret C M surname: Smith fullname: Smith, Margaret C M – sequence: 6 givenname: Anne surname: Osbourn fullname: Osbourn, Anne – sequence: 7 givenname: Jay D surname: Keasling fullname: Keasling, Jay D – sequence: 8 givenname: Susan J surname: Rosser fullname: Rosser, Susan J |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24225316$$D View this record in MEDLINE/PubMed https://www.osti.gov/servlets/purl/1625515$$D View this record in Osti.gov |
BookMark | eNpVkc2L1EAQxRtZcWdXT94leBIkbn8nuQiy6CosCKLnptKpzLQm3bGrZ2X_ezPOuOipCupXr17xLthZTBEZey74G8E7dRUhX21_FCG4eMQ2QllZ687KM7bhiptacN2eswui75wLLYx-ws6lltIoYTds-AJLGKoZC_RpCr5aoOx-wX0FRDj309rEdZyGMAYPJaRY7SnEbUWYQ8QqxILbDIQVhYI1LegPZJXRp7kP8c_KU_Z4hInw2alesm8f3n-9_ljffr75dP3utva60aW2gzajALSN530D3eClVarlqAQAthJtKxvdKNnxQRrddNihRJRgxlZ1XKpL9vaou-z7GQePsWSY3JLDDPneJQju_0kMO7dNd051yjZSrAIvjwKJSnDk15f8zqcY0RcnrDRGmBV6dbqS0889UnFzII_TBBHTnpwwXBkjuT0Yen1EfU5EGccHL4K7Q3huDc-dwlvpF__af2D_pqV-A22Cmhw |
CitedBy_id | crossref_primary_10_1093_nar_gku604 crossref_primary_10_1093_nar_gkaa401 crossref_primary_10_1371_journal_pone_0137466 crossref_primary_10_1093_nar_gkz936 crossref_primary_10_1016_j_copbio_2020_08_011 crossref_primary_10_1038_nrm4014 crossref_primary_10_1016_j_jmb_2014_05_014 crossref_primary_10_1101_cshperspect_a023994 crossref_primary_10_1016_j_yexcr_2020_111851 crossref_primary_10_1002_adbi_201700190 crossref_primary_10_1002_wdev_214 crossref_primary_10_1039_C5NP00099H crossref_primary_10_1093_nar_gkx1233 crossref_primary_10_1039_C6NP00017G crossref_primary_10_1016_j_meteno_2016_05_003 crossref_primary_10_3389_fbioe_2014_00060 crossref_primary_10_1038_srep23697 crossref_primary_10_1128_mBio_01714_15 crossref_primary_10_1128_microbiolspec_MDNA3_0046_2014 crossref_primary_10_1111_1567_1364_12171 crossref_primary_10_1142_S233954781640001X crossref_primary_10_3390_app11041851 crossref_primary_10_1016_j_mib_2017_04_006 crossref_primary_10_1039_C9NP00025A crossref_primary_10_1016_j_bbapap_2019_140262 crossref_primary_10_1016_j_cell_2022_03_008 crossref_primary_10_1039_C9NP00029A crossref_primary_10_1049_enb_2017_0006 crossref_primary_10_3390_md20060341 crossref_primary_10_1038_s41467_023_41043_w crossref_primary_10_1002_bit_26854 crossref_primary_10_1093_nar_gkx567 crossref_primary_10_3390_synbio1020012 crossref_primary_10_1016_j_ymben_2020_07_007 crossref_primary_10_1016_j_biotechadv_2019_06_002 crossref_primary_10_1002_biot_202300410 crossref_primary_10_1099_acmi_0_000291 crossref_primary_10_1016_j_biotechadv_2020_107520 crossref_primary_10_1093_nar_gkac124 crossref_primary_10_1042_BJ20151112 crossref_primary_10_1128_AEM_02767_16 crossref_primary_10_1093_nar_gku829 crossref_primary_10_1093_nar_gkac845 crossref_primary_10_1002_adsc_201500202 crossref_primary_10_1128_JB_00703_20 crossref_primary_10_1016_j_synbio_2016_08_002 crossref_primary_10_1186_s13036_015_0021_0 crossref_primary_10_2323_jgam_2021_10_004 crossref_primary_10_1126_sciadv_ade1285 crossref_primary_10_1021_acssynbio_6b00165 crossref_primary_10_1093_nar_gkw520 crossref_primary_10_1038_s41467_020_18455_z crossref_primary_10_1002_bit_26938 crossref_primary_10_1016_j_biotechadv_2023_108301 crossref_primary_10_1002_jobm_201500658 crossref_primary_10_1002_biot_202400114 crossref_primary_10_1002_1873_3468_13023 crossref_primary_10_1021_acssynbio_5b00113 crossref_primary_10_1021_acssynbio_7b00308 crossref_primary_10_1186_s12896_019_0521_y crossref_primary_10_3390_microorganisms7100409 crossref_primary_10_3390_catal8120619 crossref_primary_10_1186_s12918_017_0490_5 crossref_primary_10_1186_s12896_017_0382_1 crossref_primary_10_3390_bioengineering11010022 crossref_primary_10_1093_nar_gkw616 crossref_primary_10_35534_sbe_2023_10017 crossref_primary_10_1016_j_ymben_2018_12_001 crossref_primary_10_1002_biot_202200411 crossref_primary_10_1021_acs_chemrev_6b00804 crossref_primary_10_1093_abbs_gmw115 crossref_primary_10_1016_j_jbiotec_2016_11_009 crossref_primary_10_1016_j_coche_2016_07_005 crossref_primary_10_1021_acssynbio_7b00131 crossref_primary_10_1016_j_synbio_2020_05_006 crossref_primary_10_1021_acssynbio_7b00017 crossref_primary_10_1021_acs_jafc_3c03942 crossref_primary_10_1093_nar_gkx466 crossref_primary_10_1128_microbiolspec_MDNA3_0059_2014 crossref_primary_10_1016_j_ymben_2018_08_002 crossref_primary_10_1093_nar_gky596 crossref_primary_10_1093_nar_gkz245 crossref_primary_10_1126_science_aad8559 crossref_primary_10_1128_microbiolspec_MDNA3_0045_2014 crossref_primary_10_1534_g3_118_200565 crossref_primary_10_1038_s41467_018_04254_0 crossref_primary_10_1126_science_abb3099 crossref_primary_10_1128_JB_00019_17 crossref_primary_10_1109_TBCAS_2016_2526668 |
Cites_doi | 10.1042/BST0380388 10.1002/j.1460-2075.1988.tb02884.x 10.1002/1097-0290(20000220)72:4<408::AID-BIT1003>3.0.CO;2-H 10.1046/j.1365-2958.2000.02142.x 10.1042/bj3240421 10.1186/1754-1611-2-5 10.1073/pnas.95.10.5505 10.1371/journal.pone.0003647 10.1093/nar/21.4.817 10.1038/srep00141 10.1371/journal.pone.0005553 10.1002/cbic.200600029 10.1007/s002530051632 10.1038/nbt.1568 10.1038/nmeth1010 10.1111/j.1365-2958.2011.07696.x 10.1101/gr.2512204 10.1093/nar/gkr1288 10.1371/journal.pone.0006441 10.1039/c0ib00070a 10.1002/bit.20539 10.1093/nar/gkn991 10.1128/AEM.02268-06 10.1128/JB.172.12.6704-6712.1990 10.1007/s00253-004-1619-1 10.1016/j.resmic.2004.09.007 10.1093/nar/gkp687 10.1101/gr.143000 10.1093/nar/25.6.1203 10.1186/1754-1611-4-1 10.1038/nmeth.1318 10.1007/s00253-006-0623-z 10.2144/99261rr02 10.1073/pnas.0811011106 10.1111/j.1365-2958.2003.03942.x 10.1093/nar/gkh538 10.1016/j.jbiotec.2003.10.001 10.1016/0022-2836(92)90629-X 10.1073/pnas.0711649105 10.1007/s002530051032 10.1073/pnas.1210964109 |
ContentType | Journal Article |
Copyright | The Author(s) 2013. Published by Oxford University Press. 2013 |
Copyright_xml | – notice: The Author(s) 2013. Published by Oxford University Press. 2013 |
CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 OIOZB OTOTI 5PM |
DOI | 10.1093/nar/gkt1101 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | e23 |
ExternalDocumentID | 1625515 10_1093_nar_gkt1101 24225316 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/E022200/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BBS/E/J/00000614 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H001212/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/K003356/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/J004561/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H005277/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/H005447/1 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 6.Y 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP AAWDT AAYJJ ABPTD ABQLI ABQTQ ABSAR ABSMQ ABXVV ACFRR ACGFO ACGFS ACIPB ACIWK ACMRT ACNCT ACPQN ACPRK ACUTJ ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFRAH AFSHK AFULF AFYAG AGKRT AGMDO AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC ANFBD AOIJS AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ BTTYL C1A CAG CGR CIDKT COF CS3 CUY CVF CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS ECM EIF EJD ELUNK EMOBN ESTFP F20 F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI M49 MBTAY MVM M~E NPM NTWIH NU- OAWHX OBC OBS OEB OES OJQWA OVD O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROX ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM AAYXX ABEJV CITATION 7X8 AAPBV AFPKN OIOZB OTOTI PQEST ZA5 5PM |
ID | FETCH-LOGICAL-c474t-6d45f1ae67c0b7a9dc263380e31aae82e6827473290d25479e9e2ee2a5f839023 |
IEDL.DBID | RPM |
ISSN | 0305-1048 |
IngestDate | Tue Sep 17 21:28:23 EDT 2024 Mon Jul 10 02:33:21 EDT 2023 Wed Dec 04 05:28:51 EST 2024 Fri Dec 06 04:48:36 EST 2024 Wed Oct 16 00:44:10 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://creativecommons.org/licenses/by/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-6d45f1ae67c0b7a9dc263380e31aae82e6827473290d25479e9e2ee2a5f839023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 AC02-05CH11231 USDOE Office of Science (SC), Biological and Environmental Research (BER). Biological Systems Science Division Present address: Susan J. Rosser, School of Biological Sciences, The University of Edinburgh, Darwin Building, King’s Buildings, Mayfield Road, Edinburgh EH9 3JR. |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3936721/ |
PMID | 24225316 |
PQID | 1503552062 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3936721 osti_scitechconnect_1625515 proquest_miscellaneous_1503552062 crossref_primary_10_1093_nar_gkt1101 pubmed_primary_24225316 |
PublicationCentury | 2000 |
PublicationDate | 2014-02-01 |
PublicationDateYYYYMMDD | 2014-02-01 |
PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: United States |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2014 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | August (2020112407563866400_gkt1101-B36) 2000; 2 Sasaki (2020112407563866400_gkt1101-B42) 2004; 107 Bernard (2020112407563866400_gkt1101-B15) 1992; 226 Lutz (2020112407563866400_gkt1101-B16) 1997; 25 Misawa (2020112407563866400_gkt1101-B27) 1990; 172 Ellis (2020112407563866400_gkt1101-B1) 2011; 3 Quan (2020112407563866400_gkt1101-B9) 2009; 4 Salis (2020112407563866400_gkt1101-B38) 2009; 27 Khaleel (2020112407563866400_gkt1101-B24) 2011; 80 Engler (2020112407563866400_gkt1101-B5) 2008; 3 Smith (2020112407563866400_gkt1101-B25) 2004; 51 Thorpe (2020112407563866400_gkt1101-B20) 1998; 95 Raymond (2020112407563866400_gkt1101-B12) 1999; 26 Gibson (2020112407563866400_gkt1101-B11) 2008; 105 Smith (2020112407563866400_gkt1101-B21) 2010; 38 Cheo (2020112407563866400_gkt1101-B40) 2004; 14 Demarre (2020112407563866400_gkt1101-B18) 2005; 156 Ruther (2020112407563866400_gkt1101-B35) 1997; 48 Olorunniji (2020112407563866400_gkt1101-B19) 2012; 109 Anderson (2020112407563866400_gkt1101-B2) 2010; 4 Smith (2020112407563866400_gkt1101-B22) 2004; 32 Gibson (2020112407563866400_gkt1101-B10) 2009; 37 Summers (2020112407563866400_gkt1101-B17) 1988; 7 Thorpe (2020112407563866400_gkt1101-B23) 2000; 38 Shetty (2020112407563866400_gkt1101-B3) 2008; 2 Kang (2020112407563866400_gkt1101-B29) 2005; 91 Kim (2020112407563866400_gkt1101-B30) 2001; 72 Matthews (2020112407563866400_gkt1101-B31) 2000; 53 Yoon (2020112407563866400_gkt1101-B33) 2007; 74 Hartley (2020112407563866400_gkt1101-B41) 2000; 10 Li (2020112407563866400_gkt1101-B6) 2007; 4 Sanchez (2020112407563866400_gkt1101-B37) 2006; 7 Sambrook (2020112407563866400_gkt1101-B14) 2001 Ghosh (2020112407563866400_gkt1101-B26) 2008; 105 Zhang (2020112407563866400_gkt1101-B8) 2012; 40 Nishizaki (2020112407563866400_gkt1101-B32) 2007; 73 Lee (2020112407563866400_gkt1101-B34) 2004; 65 Zhang (2020112407563866400_gkt1101-B43) 2011; 1 Engler (2020112407563866400_gkt1101-B4) 2009; 4 Gibson (2020112407563866400_gkt1101-B7) 2009; 6 Boyd (2020112407563866400_gkt1101-B39) 1993; 21 Shao (2020112407563866400_gkt1101-B13) 2009; 37 Kajiwara (2020112407563866400_gkt1101-B28) 1997; 324 |
References_xml | – volume: 38 start-page: 388 year: 2010 ident: 2020112407563866400_gkt1101-B21 article-title: Site-specific recombination by ϕC31 integrase and other large serine recombinases publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0380388 contributor: fullname: Smith – volume: 7 start-page: 851 year: 1988 ident: 2020112407563866400_gkt1101-B17 article-title: Resolution of ColE1 dimers requires a DNA sequence implicated in the three-dimensional organization of the cer site publication-title: EMBO J. doi: 10.1002/j.1460-2075.1988.tb02884.x contributor: fullname: Summers – volume: 72 start-page: 408 year: 2001 ident: 2020112407563866400_gkt1101-B30 article-title: Metabolic engineering of the nonmevalonate isopentenyl diphosphate synthesis pathway in Escherichia coli enhances lycopene production publication-title: Biotechnol. Bioeng. doi: 10.1002/1097-0290(20000220)72:4<408::AID-BIT1003>3.0.CO;2-H contributor: fullname: Kim – volume: 38 start-page: 232 year: 2000 ident: 2020112407563866400_gkt1101-B23 article-title: Control of directionality in the site-specific recombination system of the Streptomyces phage ϕC31 publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2000.02142.x contributor: fullname: Thorpe – volume: 324 start-page: 421 year: 1997 ident: 2020112407563866400_gkt1101-B28 article-title: Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli publication-title: Biochem. J. doi: 10.1042/bj3240421 contributor: fullname: Kajiwara – volume: 2 start-page: 5 year: 2008 ident: 2020112407563866400_gkt1101-B3 article-title: Engineering BioBrick vectors from BioBrick parts publication-title: J. Biol. Eng. doi: 10.1186/1754-1611-2-5 contributor: fullname: Shetty – volume: 95 start-page: 5505 year: 1998 ident: 2020112407563866400_gkt1101-B20 article-title: In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.95.10.5505 contributor: fullname: Thorpe – volume: 2 start-page: 513 year: 2000 ident: 2020112407563866400_gkt1101-B36 article-title: Sequence analysis and functional characterization of the violacein biosynthetic pathway from Chromobacterium violaceum publication-title: J. Mol. Microbiol. Biotechnol. contributor: fullname: August – volume: 3 start-page: e3647 year: 2008 ident: 2020112407563866400_gkt1101-B5 article-title: A one pot, one step, precision cloning method with high throughput capability publication-title: PLoS One doi: 10.1371/journal.pone.0003647 contributor: fullname: Engler – volume: 21 start-page: 817 year: 1993 ident: 2020112407563866400_gkt1101-B39 article-title: Turbo cloning: a fast, efficient method for cloning PCR products and other blunt-ended DNA fragments into plasmids publication-title: Nucleic Acids Res. doi: 10.1093/nar/21.4.817 contributor: fullname: Boyd – volume: 1 start-page: 141 year: 2011 ident: 2020112407563866400_gkt1101-B43 article-title: Tandem assembly of the epothilone biosynthetic gene cluster by in vitro site-specific recombination publication-title: Sci. Rep. doi: 10.1038/srep00141 contributor: fullname: Zhang – volume: 4 start-page: e5553 year: 2009 ident: 2020112407563866400_gkt1101-B4 article-title: Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes publication-title: PLoS One doi: 10.1371/journal.pone.0005553 contributor: fullname: Engler – volume: 7 start-page: 1231 year: 2006 ident: 2020112407563866400_gkt1101-B37 article-title: Reevaluation of the violacein biosynthetic pathway and its relationship to indolocarbazole biosynthesis publication-title: Chembiochem. doi: 10.1002/cbic.200600029 contributor: fullname: Sanchez – volume: 53 start-page: 396 year: 2000 ident: 2020112407563866400_gkt1101-B31 article-title: Metabolic engineering of carotenoid accumulation in Escherichia coli by modulation of the isoprenoid precursor pool with expression of deoxyxylulose phosphate synthase publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051632 contributor: fullname: Matthews – volume: 27 start-page: 946 year: 2009 ident: 2020112407563866400_gkt1101-B38 article-title: Automated design of synthetic ribosome binding sites to control protein expression publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1568 contributor: fullname: Salis – volume-title: Molecular Cloning: a Laboratory Manual year: 2001 ident: 2020112407563866400_gkt1101-B14 contributor: fullname: Sambrook – volume: 4 start-page: 251 year: 2007 ident: 2020112407563866400_gkt1101-B6 article-title: Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC publication-title: Nat. Methods doi: 10.1038/nmeth1010 contributor: fullname: Li – volume: 80 start-page: 1450 year: 2011 ident: 2020112407563866400_gkt1101-B24 article-title: A phage protein that binds ϕC31 integrase to switch its directionality publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2011.07696.x contributor: fullname: Khaleel – volume: 14 start-page: 2111 year: 2004 ident: 2020112407563866400_gkt1101-B40 article-title: Concerted assembly and cloning of multiple DNA segments using in vitro site-specific recombination: functional analysis of multi-segment expression clones publication-title: Genome Res. doi: 10.1101/gr.2512204 contributor: fullname: Cheo – volume: 40 start-page: e55 year: 2012 ident: 2020112407563866400_gkt1101-B8 article-title: SLiCE: a novel bacterial cell extract-based DNA cloning method publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkr1288 contributor: fullname: Zhang – volume: 4 start-page: e6441 year: 2009 ident: 2020112407563866400_gkt1101-B9 article-title: Circular polymerase extension cloning of complex gene libraries and pathways publication-title: PLoS One doi: 10.1371/journal.pone.0006441 contributor: fullname: Quan – volume: 3 start-page: 109 year: 2011 ident: 2020112407563866400_gkt1101-B1 article-title: DNA assembly for synthetic biology: from parts to pathways and beyond publication-title: Integr. Biol. (Camb) doi: 10.1039/c0ib00070a contributor: fullname: Ellis – volume: 91 start-page: 636 year: 2005 ident: 2020112407563866400_gkt1101-B29 article-title: Identification of genes affecting lycopene accumulation in Escherichia coli using a shot-gun method publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.20539 contributor: fullname: Kang – volume: 37 start-page: e16 year: 2009 ident: 2020112407563866400_gkt1101-B13 article-title: DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn991 contributor: fullname: Shao – volume: 73 start-page: 1355 year: 2007 ident: 2020112407563866400_gkt1101-B32 article-title: Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02268-06 contributor: fullname: Nishizaki – volume: 172 start-page: 6704 year: 1990 ident: 2020112407563866400_gkt1101-B27 article-title: Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.172.12.6704-6712.1990 contributor: fullname: Misawa – volume: 65 start-page: 538 year: 2004 ident: 2020112407563866400_gkt1101-B34 article-title: Investigation of factors influencing production of the monocyclic carotenoid torulene in metabolically engineered Escherichia coli publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-004-1619-1 contributor: fullname: Lee – volume: 156 start-page: 245 year: 2005 ident: 2020112407563866400_gkt1101-B18 article-title: A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPα) conjugative machineries and their cognate Escherichia coli host strains publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2004.09.007 contributor: fullname: Demarre – volume: 37 start-page: 6984 year: 2009 ident: 2020112407563866400_gkt1101-B10 article-title: Synthesis of DNA fragments in yeast by one-step assembly of overlapping oligonucleotides publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkp687 contributor: fullname: Gibson – volume: 10 start-page: 1788 year: 2000 ident: 2020112407563866400_gkt1101-B41 article-title: DNA cloning using in vitro site-specific recombination publication-title: Genome Res. doi: 10.1101/gr.143000 contributor: fullname: Hartley – volume: 25 start-page: 1203 year: 1997 ident: 2020112407563866400_gkt1101-B16 article-title: Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.6.1203 contributor: fullname: Lutz – volume: 4 start-page: 1 year: 2010 ident: 2020112407563866400_gkt1101-B2 article-title: BglBricks: A flexible standard for biological part assembly publication-title: J. Biol. Eng. doi: 10.1186/1754-1611-4-1 contributor: fullname: Anderson – volume: 6 start-page: 343 year: 2009 ident: 2020112407563866400_gkt1101-B7 article-title: Enzymatic assembly of DNA molecules up to several hundred kilobases publication-title: Nat. Methods doi: 10.1038/nmeth.1318 contributor: fullname: Gibson – volume: 74 start-page: 131 year: 2007 ident: 2020112407563866400_gkt1101-B33 article-title: Engineering the lycopene synthetic pathway in E. coli by comparison of the carotenoid genes of Pantoea agglomerans and Pantoea ananatis publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-006-0623-z contributor: fullname: Yoon – volume: 26 start-page: 134 year: 1999 ident: 2020112407563866400_gkt1101-B12 article-title: General method for plasmid construction using homologous recombination publication-title: Biotechniques doi: 10.2144/99261rr02 contributor: fullname: Raymond – volume: 105 start-page: 20404 year: 2008 ident: 2020112407563866400_gkt1101-B11 article-title: One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0811011106 contributor: fullname: Gibson – volume: 51 start-page: 1719 year: 2004 ident: 2020112407563866400_gkt1101-B25 article-title: Switching the polarity of a bacteriophage integration system publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2003.03942.x contributor: fullname: Smith – volume: 32 start-page: 2607 year: 2004 ident: 2020112407563866400_gkt1101-B22 article-title: Synapsis and DNA cleavage in ϕC31 integrase-mediated site-specific recombination publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkh538 contributor: fullname: Smith – volume: 107 start-page: 233 year: 2004 ident: 2020112407563866400_gkt1101-B42 article-title: Evidence for high specificity and efficiency of multiple recombination signals in mixed DNA cloning by the multisite gateway system publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2003.10.001 contributor: fullname: Sasaki – volume: 226 start-page: 735 year: 1992 ident: 2020112407563866400_gkt1101-B15 article-title: Cell killing by the F plasmid CcdB protein involves poisoning of DNA-topoisomerase II complexes publication-title: J. Mol. Biol. doi: 10.1016/0022-2836(92)90629-X contributor: fullname: Bernard – volume: 105 start-page: 3238 year: 2008 ident: 2020112407563866400_gkt1101-B26 article-title: Two-step site selection for serine-integrase-mediated excision: DNA-directed integrase conformation and central dinucleotide proofreading publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0711649105 contributor: fullname: Ghosh – volume: 48 start-page: 162 year: 1997 ident: 2020112407563866400_gkt1101-B35 article-title: Production of zeaxanthin in Escherichia coli transformed with different carotenogenic plasmids publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s002530051032 contributor: fullname: Ruther – volume: 109 start-page: 19661 year: 2012 ident: 2020112407563866400_gkt1101-B19 article-title: Gated rotation mechanism of site-specific recombination by ϕC31 integrase publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1210964109 contributor: fullname: Olorunniji |
SSID | ssj0014154 |
Score | 2.4857042 |
Snippet | Synthetic biology requires effective methods to assemble DNA parts into devices and to modify these devices once made. Here we demonstrate a convenient rapid... |
SourceID | pubmedcentral osti proquest crossref pubmed |
SourceType | Open Access Repository Aggregation Database Index Database |
StartPage | e23 |
SubjectTerms | Bacteriophages - enzymology BASIC BIOLOGICAL SCIENCES Biochemistry & Molecular Biology Biosynthetic Pathways - genetics Cloning, Molecular - methods Gene Order Integrases - metabolism Metabolic Engineering - methods Metabolic Networks and Pathways - genetics Methods Online Recombination, Genetic Ribosomes - metabolism Synthetic Biology - methods Synthetic Biology and Assembly Cloning |
Title | Rapid metabolic pathway assembly and modification using serine integrase site-specific recombination |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24225316 https://search.proquest.com/docview/1503552062 https://www.osti.gov/servlets/purl/1625515 https://pubmed.ncbi.nlm.nih.gov/PMC3936721 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAFHwkvrSX0iT9cPPBFkJviqzd1Uo6BpMQCklKScA3sVqtU1NrbWKFkn_f2ZUU6tJTL8YgCRnNEzPjnX2P6FRDtM9rYaIMBRJJPs-jXAgZqRz8YmUibZgZeX2jru7l11k626F02AsTQvumWpy5ZXPmFj9CtnLdmHjIicXfrqeiEArOJd6lXdDvYNH7pQMwUtczKrTYlHm_KQ_OPXb6MX742YLx_IAYkBNHBaotRhqt8Gb9S23-HZr8g4Uu39KbXj6y8-5n7tGOdft0cO5gnZtn9oWFQGf4p3yfXk2HYW4HVH_X60XNGtsC9OXCMD-J-Jd-ZtDOtqmW-OJweFX75FAAi_lE_APbhO2BrO8qsbHMrzZHfn-mP5N5P93AXIdL3tH95cXd9CrqByxERmayjVQt03mircrMpMp0URuuYFknViRa25xbIAa7IXgxqWEks8IWllvLdTqHrgLbv6eRWzn7kVhaVYkpcl6orJZ5lWqdZqLy3QGt0PAwYzodHnK57vpolN36tygBS9nDMqZDD0AJ-vc9bI0P-5i2TODSILzG9HnApcTz80sb2tnV06aErIVw4hOFG33ocHq5zYDzmLItBF9O8B22t4-g8EKn7b7QPv33lYf0GgpLdjHvIxq1j0_2GCqmrU6C-z8JtYvPu9vZb_Od9Uo |
link.rule.ids | 230,314,727,780,784,864,885,27924,27925,53791,53793 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwEB3R5UAvVQv92NKCK6HeQja2EydHtCratiyqKpC4WY4zC6tuvCs2CPHvGTsJ6lY9cYvkWI7yJpr34ucZgCNDpH1WCRspCpBI8lke5ULIKMspv6BMJIaekdPzbHIpf1ylV1uQ9mdhgmnflvNjt6iP3fwmeCtXtY17n1j8azoWhchIucQvYDsVqkh6kd5tHlBOaqtGhSKbMu-O5ZF2j525ja__NJTzfIsYSk-cYjDbyEmDJX1b_-Ob_9om_8pDp6_hVUcg2Un7oG9gC90u7J04Es_1A_vKgqUz_CvfhZ1x385tD6rfZjWvWI0Nwb6YW-Z7Ed-bB0bsGetyQReOhpeV9w4FuJj3xF-zdTggyLq6Emtkfr858ic0_Z3MK-qa5HWY8hYuT79djCdR12IhslLJJsoqmc4Sg5myo1KZorI8I9E6QpEYgzlHwowEh-DFqCIpqQoskCNyk86IWVG-fwcDt3T4AVhaloktcl5kqpJ5mRqTKlH6-oAoDKmYIRz1L1mv2koaut0BF5pg0R0sQ9j3AGgiAL6KrfV2H9vohHQaUa8hfOlx0fT-_OaGcbi8W2sitkSd-Cijhd63OD0t0-M8BLWB4NMNvsb25giFXqi13YXax2fPPISdycX0TJ99P_-5Dy-Jb8nW9P0JBs3tHX4mTtOUByGCHwFwofaO |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3BIgEXBC2UpRSMVHFLs7EdJzlWC6vy0apCVOrNcpxJu-rGu-qmQv33jJ2k6iJOvUVyLEd5E8178fMMwL4h0l5XwkYZBUgkeZ1HuRAyUjnlF5SJxNAz8vhEHZ3J7-fp-b1WX8G0b8v5gVs0B25-GbyVq8bGg08sPj2eikIoUi7xqqrjx_AkFRRkg1DvNxAoL3WVo0KhTZn3R_NIv8fOXMcXVy3lPd8mhlIUpzhUG3lptKTv63-c81_r5L1cNHsJL3oSyQ67h30Fj9BtwfahIwHd3LLPLNg6w__yLXg2HVq6bUP1y6zmFWuwJegXc8t8P-I_5pYRg8amXNCFo-Fl5f1DATLmffEXbB0OCbK-tsQamd9zjvwpTX8n86q6IYkdpryGs9nX39OjqG-zEFmZyTZSlUzrxKDK7KTMTFFZrki4TlAkxmDOkXAj0SF4MalITmYFFsgRuUlrYleU89_AyC0dvgWWlmVii5wXKqtkXqbGpJkofY1AFIaUzBj2h5esV101Dd3tggtNsOgeljHsegA0kQBfydZ6y49tdUJajejXGD4NuGh6f36Dwzhc3qw1kVuiT3yiaKGdDqe7ZQacx5BtIHh3g6-zvTlC4Rfqbffh9u7BMz_C09MvM_3z28mPXXhOlEt2vu_3MGqvb3CPaE1bfggB_Bf3DPeh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+metabolic+pathway+assembly+and+modification+using+serine+integrase+site-specific+recombination&rft.jtitle=Nucleic+acids+research&rft.au=Colloms%2C+Sean+D&rft.au=Merrick%2C+Christine+A&rft.au=Olorunniji%2C+Femi+J&rft.au=Stark%2C+W+Marshall&rft.date=2014-02-01&rft.eissn=1362-4962&rft.volume=42&rft.issue=4&rft.spage=e23&rft.epage=e23&rft_id=info:doi/10.1093%2Fnar%2Fgkt1101&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |