Fcγ Receptor-Dependent Internalization and Off-Target Cytotoxicity of Antibody-Drug Conjugate Aggregates

Purpose Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs’ function. On the other hand, the conjugation of payloads often increases the hy...

Full description

Saved in:
Bibliographic Details
Published inPharmaceutical research Vol. 39; no. 1; pp. 89 - 103
Main Authors Aoyama, Michihiko, Tada, Minoru, Yokoo, Hidetomo, Demizu, Yosuke, Ishii-Watabe, Akiko
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs’ function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells. Methods The ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay. Results Aggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions. Conclusions These results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity.
AbstractList Purpose Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs’ function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells. Methods The ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay. Results Aggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions. Conclusions These results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity.
PurposeAntibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs’ function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells.MethodsThe ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay.ResultsAggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions.ConclusionsThese results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity.
Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs' function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells.PURPOSEAntibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs' function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells.The ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay.METHODSThe ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay.Aggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions.RESULTSAggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions.These results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity.CONCLUSIONSThese results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity.
Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs' function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells. The ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay. Aggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions. These results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity.
Author Aoyama, Michihiko
Yokoo, Hidetomo
Demizu, Yosuke
Tada, Minoru
Ishii-Watabe, Akiko
Author_xml – sequence: 1
  givenname: Michihiko
  surname: Aoyama
  fullname: Aoyama, Michihiko
  email: aoyama-m@nihs.go.jp
  organization: Division of Biological Chemistry and Biologicals, National Institute of Health Sciences
– sequence: 2
  givenname: Minoru
  surname: Tada
  fullname: Tada, Minoru
  organization: Division of Biological Chemistry and Biologicals, National Institute of Health Sciences
– sequence: 3
  givenname: Hidetomo
  surname: Yokoo
  fullname: Yokoo, Hidetomo
  organization: Division of Organic Chemistry, National Institute of Health Sciences
– sequence: 4
  givenname: Yosuke
  surname: Demizu
  fullname: Demizu, Yosuke
  organization: Division of Organic Chemistry, National Institute of Health Sciences
– sequence: 5
  givenname: Akiko
  surname: Ishii-Watabe
  fullname: Ishii-Watabe, Akiko
  organization: Division of Biological Chemistry and Biologicals, National Institute of Health Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34961908$$D View this record in MEDLINE/PubMed
BookMark eNp9kd1qFDEAhYNU7Lb6Al5IwBtvovmbSeZGWLZWC4WCVPAupElmzDKbrEmm7Ppavkefqdlu608vepVAvnM4OecIHIQYHACvCX5PMBYfMiG4axCmBGFGGok2z8CMNIKhDvPvB2CGBeVICk4OwVHOS4yxJB1_AQ4Z71rSYTkD_tTc_IZfnXHrEhM6cWsXrAsFnoXiUtCj_6WLjwHqYOFF36NLnQZX4GJbYokbb3zZwtjDeSj-KtotOknTABcxLKdBFwfnw5Dc7pZfgue9HrN7dX8eg2-nny4XX9D5xeezxfwcGS54Qa3hDWUaG900siOio6IXuO2F0L1oLRNUUmmMM43mLbdWGyFwzxwV1mIqLTsGH_e-6-lq5aypn0l6VOvkVzptVdRe_f8S_A81xGslJRMNJ9Xg3b1Bij8nl4ta-WzcOOrg4pQVbUlTm8eEV_TtI3QZp11rO4oKKZjsWKXe_JvoT5SHFSog94BJMefkelVrvau9BvSjIljtBlf7wVUdXN0NrjZVSh9JH9yfFLG9KFc4DC79jf2E6hYGd8BK
CitedBy_id crossref_primary_10_1002_ange_202417620
crossref_primary_10_1016_j_xphs_2023_06_016
crossref_primary_10_1007_s00210_024_03764_7
crossref_primary_10_1007_s12672_024_01705_7
crossref_primary_10_1016_j_xphs_2023_12_003
crossref_primary_10_1208_s12248_024_00909_7
crossref_primary_10_3390_ph16040590
crossref_primary_10_1021_acs_jmedchem_3c01174
crossref_primary_10_1111_imr_13379
crossref_primary_10_1016_j_apsb_2024_07_024
crossref_primary_10_1002_anie_202417620
crossref_primary_10_1021_acs_bioconjchem_3c00244
crossref_primary_10_1177_01926233241311259
crossref_primary_10_1007_s13318_024_00891_7
crossref_primary_10_3389_fonc_2024_1459368
crossref_primary_10_1038_s41573_023_00709_2
crossref_primary_10_1038_s41571_023_00783_w
crossref_primary_10_1002_smll_202400977
crossref_primary_10_1016_j_esmogo_2025_100154
crossref_primary_10_1002_eji_202250340
crossref_primary_10_1182_blood_2024024442
crossref_primary_10_1158_1535_7163_MCT_23_0701
crossref_primary_10_1080_17425255_2024_2302460
crossref_primary_10_1016_j_drudis_2024_104241
crossref_primary_10_3389_fphar_2025_1556245
crossref_primary_10_1093_jjco_hyae054
crossref_primary_10_1158_1535_7163_MCT_23_0720
crossref_primary_10_1016_j_xphs_2024_04_024
crossref_primary_10_1021_acs_jmedchem_3c00794
crossref_primary_10_1016_j_biomaterials_2024_122798
crossref_primary_10_1021_acs_bioconjchem_3c00354
crossref_primary_10_3389_fimmu_2024_1447280
crossref_primary_10_3390_cancers15030713
Cites_doi 10.1021/acs.molpharmaceut.8b00177
10.1007/978-1-4939-8958-4_21
10.1186/s13024-015-0053-4
10.1021/bc100261d
10.1038/nri2206
10.1016/j.xphs.2019.07.021
10.1158/1078-0432.CCR-14-2093
10.1016/j.pharmthera.2019.04.008
10.1006/cimm.2000.1617
10.1007/s11095-014-1541-x
10.1016/j.xphs.2020.01.029
10.1158/0008-5472.CAN-08-1776
10.1371/journal.pone.0095787
10.1158/1078-0432.CCR-15-2822
10.1038/s41598-018-29850-4
10.1124/dmd.115.068049
10.1002/jps.24379
10.1021/bc400182x
10.1016/j.taap.2020.114932
10.4161/mabs.22066
10.1016/j.xphs.2019.01.029
10.1158/1535-7163.MCT-16-0710
10.1038/d41573-021-00079-7
10.18632/oncotarget.26461
10.1021/acs.bioconjchem.7b00791
10.1158/1535-7163.MCT-17-0133
10.1016/j.xphs.2016.09.028
10.1158/0008-5472.CAN-17-3202
10.1189/jlb.0106019
10.1038/nbt.3212
10.1016/j.xphs.2015.11.002
10.1016/j.xphs.2019.10.046
10.1002/jps.22371
10.1080/19420862.2016.1156829
10.1074/jbc.M111.330902
10.1158/1078-0432.CCR-04-0789
10.1182/blood-2011-12-401133
10.1016/j.xphs.2018.03.022
10.1016/j.xphs.2021.09.047
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
CCPQU
FYUFA
GHDGH
K9.
KB0
M0S
M1P
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s11095-021-03158-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
ProQuest One Community College
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Health & Medical Collection
Medical Database
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
ProQuest One Academic Middle East (New)
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1573-904X
EndPage 103
ExternalDocumentID PMC8837541
34961908
10_1007_s11095_021_03158_x
Genre Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IHR
IJ-
IKXTQ
IMOTQ
INH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L7B
LAK
LLZTM
LSO
M1P
M4Y
MA-
MK0
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
WOW
YCJ
YLTOR
Z45
Z5O
Z7S
Z7U
Z7V
Z7W
Z7X
Z81
Z82
Z83
Z84
Z87
Z88
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
ABRTQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-6c4523a0ca558917927f706f77af76d372828ccec5a464ddac770f3e27dd028d3
IEDL.DBID C6C
ISSN 0724-8741
1573-904X
IngestDate Thu Aug 21 13:59:33 EDT 2025
Fri Jul 11 03:01:41 EDT 2025
Sat Aug 16 15:22:28 EDT 2025
Thu Apr 03 06:57:56 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Tue Jul 01 03:51:03 EDT 2025
Fri Feb 21 02:47:18 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords aggregation
off-target toxicity
Fcγ receptors
Antibody-drug conjugates
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-6c4523a0ca558917927f706f77af76d372828ccec5a464ddac770f3e27dd028d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doi.org/10.1007/s11095-021-03158-x
PMID 34961908
PQID 2627873893
PQPubID 37334
PageCount 15
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8837541
proquest_miscellaneous_2615110014
proquest_journals_2627873893
pubmed_primary_34961908
crossref_citationtrail_10_1007_s11095_021_03158_x
crossref_primary_10_1007_s11095_021_03158_x
springer_journals_10_1007_s11095_021_03158_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle An Official Journal of the American Association of Pharmaceutical Scientists
PublicationTitle Pharmaceutical research
PublicationTitleAbbrev Pharm Res
PublicationTitleAlternate Pharm Res
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References GandhiAVArlottaKJChenHNOwenSCCarpenterJFBiophysical properties and heating-induced aggregation of lysine-conjugated antibody-drug conjugatesJ Pharm Sci20181077185818691:CAS:528:DC%2BC1cXotlGisbc%3D10.1016/j.xphs.2018.03.02229626535
TadaMIshii-WatabeASuzukiTKawasakiNDevelopment of a cell-based assay measuring the activation of FcgammaRIIa for the characterization of therapeutic monoclonal antibodiesPLoS One2014941:CAS:528:DC%2BC2cXhs1aqsbfM10.1371/journal.pone.0095787247523413994145
Mullard A. FDA approves 100th monoclonal antibody product. Nat Rev Drug Discov. 2021. https://doi.org/10.1038/d41573-021-00079-7.
AoyamaMTadaMIshii-WatabeAA cell-based reporter assay measuring the activation of fc gamma receptors induced by therapeutic monoclonal antibodiesMethods Mol Biol201919044234291:CAS:528:DC%2BC1MXitVOkurnJ10.1007/978-1-4939-8958-4_2130539484
PolumuriSKHaileLAIrelandDDCVerthelyiDAggregates of IVIG or Avastin, but not HSA, modify the response to model innate immune response modulating impuritiesSci Rep201881114771:CAS:528:DC%2BC1MXptFGn10.1038/s41598-018-29850-4300653066068171
Lewis PhillipsGDLiGDuggerDLCrockerLMParsonsKLMaiETargeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugateCancer Res20086822928092901:CAS:528:DC%2BD1cXhtlOmt7rK10.1158/0008-5472.CAN-08-177619010901
BeckleyNSLazzareschiKPChihHWSharmaVKFloresHLInvestigation into temperature-induced aggregation of an antibody drug conjugateBioconjug Chem20132410167416831:CAS:528:DC%2BC3sXhsVWkurbI10.1021/bc400182x24070051
NimmerjahnFRavetchJVFcgamma receptors as regulators of immune responsesNat Rev Immunol20088134471:CAS:528:DC%2BD2sXhsVKrsLnK10.1038/nri220618064051
ZhaoHGulesserianSGanesanSKOuJMorrisonKZengZInhibition of megakaryocyte differentiation by antibody-drug conjugates (ADCs) is mediated by macropinocytosis: implications for ADC-induced thrombocytopeniaMol Cancer Ther2017169187718861:CAS:528:DC%2BC2sXhsVCitr%2FE10.1158/1535-7163.MCT-16-071028655784
BuechelerJWWinzerMTonilloJWeberCGieselerHImpact of payload hydrophobicity on the stability of antibody-drug conjugatesMol Pharm2018157265626641:CAS:528:DC%2BC1cXhtVajsLrJ10.1021/acs.molpharmaceut.8b0017729809017
TelikepalliSShinogleHEThapaPSKimJHDeshpandeMJawaVPhysical characterization and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sortingJ Pharm Sci20151045157515911:CAS:528:DC%2BC2MXkvVSnsbc%3D10.1002/jps.24379257537564448733
MahalingaiahPKCiurlionisRDurbinKRYeagerRLPhilipBKBawaBPotential mechanisms of target-independent uptake and toxicity of antibody-drug conjugatesPharmacol Ther20192001101251:CAS:528:DC%2BC1MXpsVWlt74%3D10.1016/j.pharmthera.2019.04.00831028836
PardeshiNNQiWDahlKCaplanLCarpenterJFMicroparticles and nanoparticles delivered in intravenous saline and in an intravenous solution of a therapeutic antibody productJ Pharm Sci201710625115201:CAS:528:DC%2BC28XhvVSntbrE10.1016/j.xphs.2016.09.02827832839
MillsBJKrugerTBrunckoMZhangXJameelFEffect of linker-drug properties and conjugation site on the physical stability of ADCsJ Pharm Sci20201095166216721:CAS:528:DC%2BB3cXkvFamtrc%3D10.1016/j.xphs.2020.01.02932027921
ChenKNishiHTraversRTsuboiNMartinodKWagnerDDEndocytosis of soluble immune complexes leads to their clearance by FcgammaRIIIB but induces neutrophil extracellular traps via FcgammaRIIA in vivoBlood201212022442144311:CAS:528:DC%2BC38XhslOqu7zO10.1182/blood-2011-12-401133229559243507149
OhriRBhaktaSFourie-O'DonohueADela Cruz-ChuhJTsaiSPCookRHigh-throughput cysteine scanning to identify stable antibody conjugation sites for Maleimide- and disulfide-based linkersBioconjug Chem20182924734851:CAS:528:DC%2BC1cXisVKku7g%3D10.1021/acs.bioconjchem.7b0079129425028
HuangZYBarredaDRWorthRGIndikZKKimMKChienPDifferential kinase requirements in human and mouse fc-gamma receptor phagocytosis and endocytosisJ Leukoc Biol2006806155315621:CAS:528:DC%2BD28XhtlSisb7M10.1189/jlb.010601916921024
EndoYTakedaKMohanNShenYJiangJRotsteinDPayload of T-DM1 binds to cell surface cytoskeleton-associated protein 5 to mediate cytotoxicity of hepatocytesOncotarget2018998372003721510.18632/oncotarget.26461306478546324681
ZhaoHAtkinsonJGulesserianSZengZNaterJOuJModulation of macropinocytosis-mediated internalization decreases ocular toxicity of antibody-drug conjugatesCancer Res2018788211521261:CAS:528:DC%2BC1cXnslKms7k%3D10.1158/0008-5472.CAN-17-320229382707
Shibata H, Harazono A, Kiyoshi M, Ishii-Watabe A. Quantitative evaluation of insoluble particulate matters in therapeutic protein injections using light obscuration and flow imaging methods. J Pharm Sci. 2021. https://doi.org/10.1016/j.xphs.2021.09.047.
XuDAlegreMLVargaSSRothermelALCollinsAMPulitoVLIn vitro characterization of five humanized OKT3 effector function variant antibodiesCell Immunol2000200116261:CAS:528:DC%2BD3cXhs12iu7c%3D10.1006/cimm.2000.161710716879
GoldbergDSBishopSMShahAUSathishHAFormulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: role of conformational and colloidal stabilityJ Pharm Sci20111004130613151:CAS:528:DC%2BC3MXisVenu7g%3D10.1002/jps.2237120960568
TadaMAoyamaMIshii-WatabeAFcgamma receptor activation by human monoclonal antibody aggregatesJ Pharm Sci202010915765831:CAS:528:DC%2BC1MXit1Crt7vI10.1016/j.xphs.2019.10.04631676270
UppalHDoudementEMahapatraKDarbonneWCBumbacaDShenBQPotential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1)Clin Cancer Res20152111231331:CAS:528:DC%2BC2MXis12ntA%3D%3D10.1158/1078-0432.CCR-14-209325370470
FilipeVJiskootWBasmelehAHHalimASchellekensHBrinksVImmunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic miceMAbs20124674075210.4161/mabs.22066229515183502241
BoswellCATesarDBMukhyalaKTheilFPFielderPJKhawliLAEffects of charge on antibody tissue distribution and pharmacokineticsBioconjug Chem20102112215321631:CAS:528:DC%2BC3cXhtlynsb3N10.1021/bc100261d21053952
GandhiAVRandolphTWCarpenterJFConjugation of Emtansine onto Trastuzumab promotes aggregation of the antibody-drug conjugate by reducing repulsive electrostatic interactions and increasing hydrophobic interactionsJ Pharm Sci20191086197319831:CAS:528:DC%2BC1MXks1eis7w%3D10.1016/j.xphs.2019.01.02930735687
OgitaniYAidaTHagiharaKYamaguchiJIshiiCHaradaNDS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1Clin Cancer Res20162220509751081:CAS:528:DC%2BC28XhslOhs77F10.1158/1078-0432.CCR-15-282227026201
KraynovEKamathAVWallesMTarcsaEDeslandesAIyerRACurrent approaches for absorption, distribution, metabolism, and excretion characterization of antibody-drug conjugates: an industry white paperDrug Metab Dispos20164456176231:CAS:528:DC%2BC28XhtFCgtL%2FM10.1124/dmd.115.06804926669328
LyonRPBoveeTDDoroninaSOBurkePJHunterJHNeff-LaFordHDReducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic indexNat Biotechnol20153377337351:CAS:528:DC%2BC2MXhtFaitrfF10.1038/nbt.321226076429
DonaghyHEffects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugatesMAbs2016846596711:CAS:528:DC%2BC28XmtFant7k%3D10.1080/19420862.2016.1156829270458004966843
SimmonsJKBurkePJCochranJHPittmanPGLyonRPReducing the antigen-independent toxicity of antibody-drug conjugates by minimizing their non-specific clearance through PEGylationToxicol Appl Pharmacol20203921:CAS:528:DC%2BB3cXktleisrg%3D10.1016/j.taap.2020.11493232109510
MoussaEMPanchalJPMoorthyBSBlumJSJoubertMKNarhiLOImmunogenicity of therapeutic protein aggregatesJ Pharm Sci201610524174301:CAS:528:DC%2BC28XhtFegu7fE10.1016/j.xphs.2015.11.00226869409
AhmadiMBrysonCJCloakeEAWelchKFilipeVRomeijnSSmall amounts of sub-visible aggregates enhance the immunogenic potential of monoclonal antibody therapeuticsPharm Res2015324138313941:CAS:528:DC%2BC2cXhsl2lsr7J10.1007/s11095-014-1541-x25319104
ZeineddineRPundavelaJFCorcoranLStewartEMDo-HaDBaxMSOD1 protein aggregates stimulate macropinocytosis in neurons to facilitate their propagationMol Neurodegener201510571:CAS:528:DC%2BC2sXivVaqtg%3D%3D10.1186/s13024-015-0053-4265203944628302
JoubertMKHokomMEakinCZhouLDeshpandeMBakerMPHighly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responsesJ Biol Chem20122873025266252791:CAS:528:DC%2BC38XhtVGnt7jP10.1074/jbc.M111.330902225845773408134
HamblettKJSenterPDChaceDFSunMMLenoxJCervenyCGEffects of drug loading on the antitumor activity of a monoclonal antibody drug conjugateClin Cancer Res20041020706370701:CAS:528:DC%2BD2cXpslGlu78%3D10.1158/1078-0432.CCR-04-078915501986
ZhaoHGulesserianSMalinaoMCGanesanSKSongJChangMSA potential mechanism for ADC-induced neutropenia: role of neutrophils in their own demiseMol Cancer Ther2017169186618761:CAS:528:DC%2BC2sXhsVCitr%2FL10.1158/1535-7163.MCT-17-013328522588
PetoskeyFKwokSCJacksonWJiangSOvercoming challenges of implementing closed system transfer device clinical in-use compatibility testing for drug development of antibody drug conjugatesJ Pharm Sci202010917617681:CAS:528:DC%2BC1MXhslOhtbbF10.1016/j.xphs.2019.07.02131376374
NN Pardeshi (3158_CR32) 2017; 106
M Aoyama (3158_CR15) 2019; 1904
H Zhao (3158_CR27) 2018; 78
SK Polumuri (3158_CR9) 2018; 8
DS Goldberg (3158_CR34) 2011; 100
PK Mahalingaiah (3158_CR13) 2019; 200
V Filipe (3158_CR35) 2012; 4
K Chen (3158_CR24) 2012; 120
GD Lewis Phillips (3158_CR17) 2008; 68
Y Endo (3158_CR30) 2018; 9
KJ Hamblett (3158_CR2) 2004; 10
AV Gandhi (3158_CR5) 2019; 108
S Telikepalli (3158_CR31) 2015; 104
EM Moussa (3158_CR7) 2016; 105
Y Ogitani (3158_CR18) 2016; 22
H Donaghy (3158_CR12) 2016; 8
CA Boswell (3158_CR28) 2010; 21
AV Gandhi (3158_CR6) 2018; 107
3158_CR16
H Zhao (3158_CR21) 2017; 16
R Ohri (3158_CR37) 2018; 29
D Xu (3158_CR19) 2000; 200
H Uppal (3158_CR20) 2015; 21
BJ Mills (3158_CR39) 2020; 109
RP Lyon (3158_CR3) 2015; 33
M Tada (3158_CR14) 2014; 9
H Zhao (3158_CR26) 2017; 16
F Petoskey (3158_CR33) 2020; 109
MK Joubert (3158_CR8) 2012; 287
M Tada (3158_CR10) 2020; 109
E Kraynov (3158_CR25) 2016; 44
R Zeineddine (3158_CR29) 2015; 10
NS Beckley (3158_CR36) 2013; 24
ZY Huang (3158_CR22) 2006; 80
3158_CR1
JK Simmons (3158_CR4) 2020; 392
M Ahmadi (3158_CR11) 2015; 32
JW Buecheler (3158_CR38) 2018; 15
F Nimmerjahn (3158_CR23) 2008; 8
References_xml – reference: MahalingaiahPKCiurlionisRDurbinKRYeagerRLPhilipBKBawaBPotential mechanisms of target-independent uptake and toxicity of antibody-drug conjugatesPharmacol Ther20192001101251:CAS:528:DC%2BC1MXpsVWlt74%3D10.1016/j.pharmthera.2019.04.00831028836
– reference: NimmerjahnFRavetchJVFcgamma receptors as regulators of immune responsesNat Rev Immunol20088134471:CAS:528:DC%2BD2sXhsVKrsLnK10.1038/nri220618064051
– reference: GandhiAVRandolphTWCarpenterJFConjugation of Emtansine onto Trastuzumab promotes aggregation of the antibody-drug conjugate by reducing repulsive electrostatic interactions and increasing hydrophobic interactionsJ Pharm Sci20191086197319831:CAS:528:DC%2BC1MXks1eis7w%3D10.1016/j.xphs.2019.01.02930735687
– reference: TadaMIshii-WatabeASuzukiTKawasakiNDevelopment of a cell-based assay measuring the activation of FcgammaRIIa for the characterization of therapeutic monoclonal antibodiesPLoS One2014941:CAS:528:DC%2BC2cXhs1aqsbfM10.1371/journal.pone.0095787247523413994145
– reference: ZhaoHGulesserianSGanesanSKOuJMorrisonKZengZInhibition of megakaryocyte differentiation by antibody-drug conjugates (ADCs) is mediated by macropinocytosis: implications for ADC-induced thrombocytopeniaMol Cancer Ther2017169187718861:CAS:528:DC%2BC2sXhsVCitr%2FE10.1158/1535-7163.MCT-16-071028655784
– reference: ZhaoHAtkinsonJGulesserianSZengZNaterJOuJModulation of macropinocytosis-mediated internalization decreases ocular toxicity of antibody-drug conjugatesCancer Res2018788211521261:CAS:528:DC%2BC1cXnslKms7k%3D10.1158/0008-5472.CAN-17-320229382707
– reference: ZeineddineRPundavelaJFCorcoranLStewartEMDo-HaDBaxMSOD1 protein aggregates stimulate macropinocytosis in neurons to facilitate their propagationMol Neurodegener201510571:CAS:528:DC%2BC2sXivVaqtg%3D%3D10.1186/s13024-015-0053-4265203944628302
– reference: MillsBJKrugerTBrunckoMZhangXJameelFEffect of linker-drug properties and conjugation site on the physical stability of ADCsJ Pharm Sci20201095166216721:CAS:528:DC%2BB3cXkvFamtrc%3D10.1016/j.xphs.2020.01.02932027921
– reference: XuDAlegreMLVargaSSRothermelALCollinsAMPulitoVLIn vitro characterization of five humanized OKT3 effector function variant antibodiesCell Immunol2000200116261:CAS:528:DC%2BD3cXhs12iu7c%3D10.1006/cimm.2000.161710716879
– reference: SimmonsJKBurkePJCochranJHPittmanPGLyonRPReducing the antigen-independent toxicity of antibody-drug conjugates by minimizing their non-specific clearance through PEGylationToxicol Appl Pharmacol20203921:CAS:528:DC%2BB3cXktleisrg%3D10.1016/j.taap.2020.11493232109510
– reference: Lewis PhillipsGDLiGDuggerDLCrockerLMParsonsKLMaiETargeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugateCancer Res20086822928092901:CAS:528:DC%2BD1cXhtlOmt7rK10.1158/0008-5472.CAN-08-177619010901
– reference: ZhaoHGulesserianSMalinaoMCGanesanSKSongJChangMSA potential mechanism for ADC-induced neutropenia: role of neutrophils in their own demiseMol Cancer Ther2017169186618761:CAS:528:DC%2BC2sXhsVCitr%2FL10.1158/1535-7163.MCT-17-013328522588
– reference: LyonRPBoveeTDDoroninaSOBurkePJHunterJHNeff-LaFordHDReducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic indexNat Biotechnol20153377337351:CAS:528:DC%2BC2MXhtFaitrfF10.1038/nbt.321226076429
– reference: ChenKNishiHTraversRTsuboiNMartinodKWagnerDDEndocytosis of soluble immune complexes leads to their clearance by FcgammaRIIIB but induces neutrophil extracellular traps via FcgammaRIIA in vivoBlood201212022442144311:CAS:528:DC%2BC38XhslOqu7zO10.1182/blood-2011-12-401133229559243507149
– reference: OgitaniYAidaTHagiharaKYamaguchiJIshiiCHaradaNDS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1Clin Cancer Res20162220509751081:CAS:528:DC%2BC28XhslOhs77F10.1158/1078-0432.CCR-15-282227026201
– reference: TelikepalliSShinogleHEThapaPSKimJHDeshpandeMJawaVPhysical characterization and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sortingJ Pharm Sci20151045157515911:CAS:528:DC%2BC2MXkvVSnsbc%3D10.1002/jps.24379257537564448733
– reference: BeckleyNSLazzareschiKPChihHWSharmaVKFloresHLInvestigation into temperature-induced aggregation of an antibody drug conjugateBioconjug Chem20132410167416831:CAS:528:DC%2BC3sXhsVWkurbI10.1021/bc400182x24070051
– reference: JoubertMKHokomMEakinCZhouLDeshpandeMBakerMPHighly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responsesJ Biol Chem20122873025266252791:CAS:528:DC%2BC38XhtVGnt7jP10.1074/jbc.M111.330902225845773408134
– reference: Mullard A. FDA approves 100th monoclonal antibody product. Nat Rev Drug Discov. 2021. https://doi.org/10.1038/d41573-021-00079-7.
– reference: EndoYTakedaKMohanNShenYJiangJRotsteinDPayload of T-DM1 binds to cell surface cytoskeleton-associated protein 5 to mediate cytotoxicity of hepatocytesOncotarget2018998372003721510.18632/oncotarget.26461306478546324681
– reference: PolumuriSKHaileLAIrelandDDCVerthelyiDAggregates of IVIG or Avastin, but not HSA, modify the response to model innate immune response modulating impuritiesSci Rep201881114771:CAS:528:DC%2BC1MXptFGn10.1038/s41598-018-29850-4300653066068171
– reference: GandhiAVArlottaKJChenHNOwenSCCarpenterJFBiophysical properties and heating-induced aggregation of lysine-conjugated antibody-drug conjugatesJ Pharm Sci20181077185818691:CAS:528:DC%2BC1cXotlGisbc%3D10.1016/j.xphs.2018.03.02229626535
– reference: HamblettKJSenterPDChaceDFSunMMLenoxJCervenyCGEffects of drug loading on the antitumor activity of a monoclonal antibody drug conjugateClin Cancer Res20041020706370701:CAS:528:DC%2BD2cXpslGlu78%3D10.1158/1078-0432.CCR-04-078915501986
– reference: OhriRBhaktaSFourie-O'DonohueADela Cruz-ChuhJTsaiSPCookRHigh-throughput cysteine scanning to identify stable antibody conjugation sites for Maleimide- and disulfide-based linkersBioconjug Chem20182924734851:CAS:528:DC%2BC1cXisVKku7g%3D10.1021/acs.bioconjchem.7b0079129425028
– reference: BuechelerJWWinzerMTonilloJWeberCGieselerHImpact of payload hydrophobicity on the stability of antibody-drug conjugatesMol Pharm2018157265626641:CAS:528:DC%2BC1cXhtVajsLrJ10.1021/acs.molpharmaceut.8b0017729809017
– reference: BoswellCATesarDBMukhyalaKTheilFPFielderPJKhawliLAEffects of charge on antibody tissue distribution and pharmacokineticsBioconjug Chem20102112215321631:CAS:528:DC%2BC3cXhtlynsb3N10.1021/bc100261d21053952
– reference: MoussaEMPanchalJPMoorthyBSBlumJSJoubertMKNarhiLOImmunogenicity of therapeutic protein aggregatesJ Pharm Sci201610524174301:CAS:528:DC%2BC28XhtFegu7fE10.1016/j.xphs.2015.11.00226869409
– reference: HuangZYBarredaDRWorthRGIndikZKKimMKChienPDifferential kinase requirements in human and mouse fc-gamma receptor phagocytosis and endocytosisJ Leukoc Biol2006806155315621:CAS:528:DC%2BD28XhtlSisb7M10.1189/jlb.010601916921024
– reference: TadaMAoyamaMIshii-WatabeAFcgamma receptor activation by human monoclonal antibody aggregatesJ Pharm Sci202010915765831:CAS:528:DC%2BC1MXit1Crt7vI10.1016/j.xphs.2019.10.04631676270
– reference: FilipeVJiskootWBasmelehAHHalimASchellekensHBrinksVImmunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic miceMAbs20124674075210.4161/mabs.22066229515183502241
– reference: AhmadiMBrysonCJCloakeEAWelchKFilipeVRomeijnSSmall amounts of sub-visible aggregates enhance the immunogenic potential of monoclonal antibody therapeuticsPharm Res2015324138313941:CAS:528:DC%2BC2cXhsl2lsr7J10.1007/s11095-014-1541-x25319104
– reference: KraynovEKamathAVWallesMTarcsaEDeslandesAIyerRACurrent approaches for absorption, distribution, metabolism, and excretion characterization of antibody-drug conjugates: an industry white paperDrug Metab Dispos20164456176231:CAS:528:DC%2BC28XhtFCgtL%2FM10.1124/dmd.115.06804926669328
– reference: GoldbergDSBishopSMShahAUSathishHAFormulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: role of conformational and colloidal stabilityJ Pharm Sci20111004130613151:CAS:528:DC%2BC3MXisVenu7g%3D10.1002/jps.2237120960568
– reference: Shibata H, Harazono A, Kiyoshi M, Ishii-Watabe A. Quantitative evaluation of insoluble particulate matters in therapeutic protein injections using light obscuration and flow imaging methods. J Pharm Sci. 2021. https://doi.org/10.1016/j.xphs.2021.09.047.
– reference: UppalHDoudementEMahapatraKDarbonneWCBumbacaDShenBQPotential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1)Clin Cancer Res20152111231331:CAS:528:DC%2BC2MXis12ntA%3D%3D10.1158/1078-0432.CCR-14-209325370470
– reference: DonaghyHEffects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugatesMAbs2016846596711:CAS:528:DC%2BC28XmtFant7k%3D10.1080/19420862.2016.1156829270458004966843
– reference: PardeshiNNQiWDahlKCaplanLCarpenterJFMicroparticles and nanoparticles delivered in intravenous saline and in an intravenous solution of a therapeutic antibody productJ Pharm Sci201710625115201:CAS:528:DC%2BC28XhvVSntbrE10.1016/j.xphs.2016.09.02827832839
– reference: PetoskeyFKwokSCJacksonWJiangSOvercoming challenges of implementing closed system transfer device clinical in-use compatibility testing for drug development of antibody drug conjugatesJ Pharm Sci202010917617681:CAS:528:DC%2BC1MXhslOhtbbF10.1016/j.xphs.2019.07.02131376374
– reference: AoyamaMTadaMIshii-WatabeAA cell-based reporter assay measuring the activation of fc gamma receptors induced by therapeutic monoclonal antibodiesMethods Mol Biol201919044234291:CAS:528:DC%2BC1MXitVOkurnJ10.1007/978-1-4939-8958-4_2130539484
– volume: 15
  start-page: 2656
  issue: 7
  year: 2018
  ident: 3158_CR38
  publication-title: Mol Pharm
  doi: 10.1021/acs.molpharmaceut.8b00177
– volume: 1904
  start-page: 423
  year: 2019
  ident: 3158_CR15
  publication-title: Methods Mol Biol
  doi: 10.1007/978-1-4939-8958-4_21
– volume: 10
  start-page: 57
  year: 2015
  ident: 3158_CR29
  publication-title: Mol Neurodegener
  doi: 10.1186/s13024-015-0053-4
– volume: 21
  start-page: 2153
  issue: 12
  year: 2010
  ident: 3158_CR28
  publication-title: Bioconjug Chem
  doi: 10.1021/bc100261d
– volume: 8
  start-page: 34
  issue: 1
  year: 2008
  ident: 3158_CR23
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri2206
– volume: 109
  start-page: 761
  issue: 1
  year: 2020
  ident: 3158_CR33
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2019.07.021
– volume: 21
  start-page: 123
  issue: 1
  year: 2015
  ident: 3158_CR20
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-14-2093
– volume: 200
  start-page: 110
  year: 2019
  ident: 3158_CR13
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2019.04.008
– volume: 200
  start-page: 16
  issue: 1
  year: 2000
  ident: 3158_CR19
  publication-title: Cell Immunol
  doi: 10.1006/cimm.2000.1617
– volume: 32
  start-page: 1383
  issue: 4
  year: 2015
  ident: 3158_CR11
  publication-title: Pharm Res
  doi: 10.1007/s11095-014-1541-x
– volume: 109
  start-page: 1662
  issue: 5
  year: 2020
  ident: 3158_CR39
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2020.01.029
– volume: 68
  start-page: 9280
  issue: 22
  year: 2008
  ident: 3158_CR17
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-1776
– volume: 9
  issue: 4
  year: 2014
  ident: 3158_CR14
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0095787
– volume: 22
  start-page: 5097
  issue: 20
  year: 2016
  ident: 3158_CR18
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-15-2822
– volume: 8
  start-page: 11477
  issue: 1
  year: 2018
  ident: 3158_CR9
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-29850-4
– volume: 44
  start-page: 617
  issue: 5
  year: 2016
  ident: 3158_CR25
  publication-title: Drug Metab Dispos
  doi: 10.1124/dmd.115.068049
– volume: 104
  start-page: 1575
  issue: 5
  year: 2015
  ident: 3158_CR31
  publication-title: J Pharm Sci
  doi: 10.1002/jps.24379
– volume: 24
  start-page: 1674
  issue: 10
  year: 2013
  ident: 3158_CR36
  publication-title: Bioconjug Chem
  doi: 10.1021/bc400182x
– volume: 392
  year: 2020
  ident: 3158_CR4
  publication-title: Toxicol Appl Pharmacol
  doi: 10.1016/j.taap.2020.114932
– volume: 4
  start-page: 740
  issue: 6
  year: 2012
  ident: 3158_CR35
  publication-title: MAbs
  doi: 10.4161/mabs.22066
– volume: 108
  start-page: 1973
  issue: 6
  year: 2019
  ident: 3158_CR5
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2019.01.029
– volume: 16
  start-page: 1877
  issue: 9
  year: 2017
  ident: 3158_CR21
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-16-0710
– ident: 3158_CR1
  doi: 10.1038/d41573-021-00079-7
– volume: 9
  start-page: 37200
  issue: 98
  year: 2018
  ident: 3158_CR30
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.26461
– volume: 29
  start-page: 473
  issue: 2
  year: 2018
  ident: 3158_CR37
  publication-title: Bioconjug Chem
  doi: 10.1021/acs.bioconjchem.7b00791
– volume: 16
  start-page: 1866
  issue: 9
  year: 2017
  ident: 3158_CR26
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-17-0133
– volume: 106
  start-page: 511
  issue: 2
  year: 2017
  ident: 3158_CR32
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2016.09.028
– volume: 78
  start-page: 2115
  issue: 8
  year: 2018
  ident: 3158_CR27
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-3202
– volume: 80
  start-page: 1553
  issue: 6
  year: 2006
  ident: 3158_CR22
  publication-title: J Leukoc Biol
  doi: 10.1189/jlb.0106019
– volume: 33
  start-page: 733
  issue: 7
  year: 2015
  ident: 3158_CR3
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3212
– volume: 105
  start-page: 417
  issue: 2
  year: 2016
  ident: 3158_CR7
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2015.11.002
– volume: 109
  start-page: 576
  issue: 1
  year: 2020
  ident: 3158_CR10
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2019.10.046
– volume: 100
  start-page: 1306
  issue: 4
  year: 2011
  ident: 3158_CR34
  publication-title: J Pharm Sci
  doi: 10.1002/jps.22371
– volume: 8
  start-page: 659
  issue: 4
  year: 2016
  ident: 3158_CR12
  publication-title: MAbs
  doi: 10.1080/19420862.2016.1156829
– volume: 287
  start-page: 25266
  issue: 30
  year: 2012
  ident: 3158_CR8
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M111.330902
– volume: 10
  start-page: 7063
  issue: 20
  year: 2004
  ident: 3158_CR2
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-04-0789
– volume: 120
  start-page: 4421
  issue: 22
  year: 2012
  ident: 3158_CR24
  publication-title: Blood
  doi: 10.1182/blood-2011-12-401133
– volume: 107
  start-page: 1858
  issue: 7
  year: 2018
  ident: 3158_CR6
  publication-title: J Pharm Sci
  doi: 10.1016/j.xphs.2018.03.022
– ident: 3158_CR16
  doi: 10.1016/j.xphs.2021.09.047
SSID ssj0008194
Score 2.5270815
Snippet Purpose Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due...
Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the...
PurposeAntibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 89
SubjectTerms Antibodies
Antibodies, Monoclonal - pharmacology
Antineoplastic Agents, Immunological - pharmacology
Biochemistry
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Blocking antibodies
Cell activation
Cell Line
Cell Line, Tumor
Cytotoxicity
Humans
Hydrophobicity
Immunoconjugates - pharmacology
Internalization
Medical Law
Monoclonal antibodies
Pharmacology/Toxicology
Pharmacy
Receptors, IgG
Research Paper
Tumors
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDBa27rLLsPe8dYMKDL0swmJblpzTEKQNigLbekiB3AxZjy5FYWeNAyS_a_9jv2mkrNjIivZmQDL8ICl9pMiPhHx22gphALmVvMwYtzJmSknDZDzS3OUjGMKA_vcf4uySn8-zeQi4rUJa5W5N9Au1qTXGyL8mIgHdwu312_I3w65ReLoaWmg8Jk-Qugy1Ws47hwt3O08fJRMOVs_jUDTTls7FQ1-bjAlFcZazzf7GdAdt3k2a_O_k1G9I0-fkWUCSdNyK_gV5ZKuX5PiipaLeDuisr6xaDegxvehJqrevyGKq__6hABrtErxudhJ64TY0hAhvQn0mVZWhP51jM58yTifbpm7qzUIDeqe1o-OqWZS12bKT2_UVndTV9RoDc3R8BY48Xq1ek8vp6WxyxkLbBaa55A0TmoN3qoZaZdhyUI4S6eRQOCmVk8KkEr00ra3OFBfcGKWlHLrUJtIYQCsmfUMOqrqy7whNleAW5M9h3eBGlHlqYsBbAArAM7MjE5F4988LHTjJsTXGTdGzKaOcCpBT4eVUbCLypbtn2TJyPDj7cCfKIljnquh1KSJH3TDYFR6WqMrWa5wDWAgJqnhE3raS7x6HJPsApPKIyD2d6CYgZ_f-SLX45bm78xx7DscRGey0p3-t-7_i_cNf8YE8TbAqw0eGDslBc7u2HwErNeUnbxD_AKUoEhk
  priority: 102
  providerName: ProQuest
Title Fcγ Receptor-Dependent Internalization and Off-Target Cytotoxicity of Antibody-Drug Conjugate Aggregates
URI https://link.springer.com/article/10.1007/s11095-021-03158-x
https://www.ncbi.nlm.nih.gov/pubmed/34961908
https://www.proquest.com/docview/2627873893
https://www.proquest.com/docview/2615110014
https://pubmed.ncbi.nlm.nih.gov/PMC8837541
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZge-EFMa6BURkJ7YVaNIljp49p1jKBKBVqpfIUOb5sRVMyram0_q79D34T56Rpqm6AxEscySfX42N_x_b5DiHvnbZCGEBuOc8jxq30mVLSMOn3NXdxH6pwQv_rWJzN-Od5NG9ocjAW5s76_cclMmJiDDFu_PGjmAFePIz8UGKahlSkba8LI1tNFSUDDhbO_SZA5s_32B-E7iHL-xsk76yS1oPP6Al53KBGmmzUfEQe2OIpOZlsaKfXXTrdRVEtu_SETnaE1OtnZDHSv24pAER7BR42O23y3la0mQ68bGIxqSoM_eYcm9bbw2m6rsqqvFloQOq0dDQpqkVemjU7vV6d07Qsfq5wEo4m5-C049nyOZmNhtP0jDUpFpjmkldMaA6eqOppFWF6QdkPpJM94aRUTgoTSvTItLY6UlxwY5SWsudCG0hjAJmY8AU5KMrCviI0VIJb0DWHPoIbkceh8QFbAQAAL8z2jUf87T_PdMM_jmkwLrMdczLqKQM9ZbWeshuPfGivudqwb_xT-niryqyxxGUWiAD6JIRlHnnXVoMN4cKIKmy5QhnAPUhGxT3ycqP59nFIqA-gKfaI3GsTrQDyc-_XFIuLmqc7jjG_sO-R7rb17F7r71_x-v_E35BHAUZk1LNCx-Sgul7Zt4CTqrxDHsq57JDDZDQYjLH89OPLEMrBcDz53qnNB46zIPkNwzcRug
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAL4o1LgUWCXsiqsbP2OgeEooQopQ96SKXcjLO7DkGVnSaOiP8UF_4Hv4kZPxUqeuvN0m4Sb2Z25pvZnW8A3kXKeJ5G5DYVU5cLI20ehlJzaXeViPwuDlFC__TMG12ILxN3sgO_qloYulZZ2cTcUOtEUY780PEc1C1yr58WV5y6RtHpatVCo1CLY5P9xJBt9fFogPJ97zjDz-P-iJddBbgSUqTcUwKDr7CtQpc66smuIyPZ9iIpw0h6uiMpCFHKKDcUntA6VFK2o45xpNbojHUHv_cO3EXH26ZgT07qAI-8a05XJR2BVkbYZZFOUapnt_NaaLrAZLs-32w7wmvo9volzX9OanMHOHwID0rkynqFqj2CHRM_hoPzgvo6a7FxU8m1arEDdt6QYmdPYD5Uf34zBKlmgVE-H5S9d1NWpiQvy3pQFsaafY0iPs6vqLN-liZpspkrjBZYErFenM6nic74YLmesX4S_1hTIpD1ZrOloafVU7i4FYE8g904ic0LYJ3QEwb1TaCdEtqb-h1tI75DEIKRoOlqC-zqPw9UyYFOrTgug4a9meQUoJyCXE7BxoIP9WcWBQPIjbP3K1EGpTVYBY3uWvC2HsZ9TIczYWySNc1B7EWEWMKC54Xk658jUn8Ebr4Fcksn6gnEEb49Es-_51zhvk89jm0LWpX2NK_1_1Xs3byKN3BvND49CU6Ozo5fwn2HKkLyrNQ-7KbLtXmFOC2dvs43B4Nvt70b_wKWe06C
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEG9cCiwS9EJWje2N1zkgFJJGLYUQoVTqzTi765CqskPiiPh3ceNH8JuY8SsKFb31Fmk3D2dmZ76ZnfkG4HWkjOdpRG4TMWlzYaTNw1BqLu2OEpHfwSVK6H8eesdn4uN5-3wHfle9MFRWWdnE3FDrRFGO_NDxHNQtcq-HUVkWMeoP3s9_cJogRTet1TiNQkVOTfYTw7flu5M-yvqN4wyOxr1jXk4Y4EpIkXJPCQzEwpYK2zRdT3YcGcmWF0kZRtLTrqSARCmj2qHwhNahkrIVucaRWqNj1i5-7i3YlRQVNWD3w9Fw9LX2A-hrc_Iq6Qi0OcIuW3aKxj27lXdGUzmT3fb5etstXsG6V0s2_7m3zd3h4B7cLXEs6xaKdx92TPwADkYFEXbWZONNX9eyyQ7YaEORnT2E2UD9-cUQspo5xvy8X07iTVmZoLwsu0NZGGv2JYr4OC9YZ70sTdJkPVMYO7AkYt04nU0SnfH-YjVlvSS-WFFakHWn04WhV8tHcHYjInkMjTiJzVNgbugJg9on0GoJ7U18V9uI9hCSYFxoOtoCu_rPA1UyotNgjstgw-VMcgpQTkEup2Btwdv6PfOCD-Ta3fuVKIPSNiyDjSZb8KpexlNNVzVhbJIV7UEkRvRYwoInheTrryOKf4RxvgVySyfqDcQYvr0Sz77nzOG-TxOPbQualfZsftb_n2Lv-qd4CbfxJAafToanz-COQ-0heYpqHxrpYmWeI2hLJy_K08Hg200fyL_2M1Qd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fc%CE%B3+Receptor-Dependent+Internalization+and+Off-Target+Cytotoxicity+of+Antibody-Drug+Conjugate+Aggregates&rft.jtitle=Pharmaceutical+research&rft.au=Aoyama%2C+Michihiko&rft.au=Tada%2C+Minoru&rft.au=Yokoo%2C+Hidetomo&rft.au=Demizu%2C+Yosuke&rft.date=2022-01-01&rft.issn=0724-8741&rft.eissn=1573-904X&rft.volume=39&rft.issue=1&rft.spage=89&rft.epage=103&rft_id=info:doi/10.1007%2Fs11095-021-03158-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11095_021_03158_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0724-8741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0724-8741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0724-8741&client=summon