Fcγ Receptor-Dependent Internalization and Off-Target Cytotoxicity of Antibody-Drug Conjugate Aggregates
Purpose Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs’ function. On the other hand, the conjugation of payloads often increases the hy...
Saved in:
Published in | Pharmaceutical research Vol. 39; no. 1; pp. 89 - 103 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs’ function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells.
Methods
The ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay.
Results
Aggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions.
Conclusions
These results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity. |
---|---|
AbstractList | Purpose
Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs’ function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells.
Methods
The ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay.
Results
Aggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions.
Conclusions
These results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity. PurposeAntibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs’ function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells.MethodsThe ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay.ResultsAggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions.ConclusionsThese results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity. Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs' function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells.PURPOSEAntibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs' function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells.The ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay.METHODSThe ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay.Aggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions.RESULTSAggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions.These results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity.CONCLUSIONSThese results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity. Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the specific delivery of payloads in accordance with mAbs' function. On the other hand, the conjugation of payloads often increases the hydrophobicity of mAbs, resulting in reduced stability and increased aggregation. It is considered that mAb aggregates have potential risk for activating Fcγ receptors (FcγRs) on immune cells, and are internalized into cells via FcγRs. Based on the mechanism of action of ADCs, the internalization of ADCs into target-negative cells may cause the off-target toxicity. However, the impacts of aggregation on the safety of ADCs including off-target cytotoxicity have been unclear. In this study, we investigated the cytotoxicity of ADC aggregates in target-negative cells. The ADC aggregates were generated by stirring stress or thermal stress. The off-target cytotoxicity of ADC aggregates was evaluated in several target-negative cell lines, and FcγR-activation properties of ADC aggregates were characterized using a reporter cell assay. Aggregation of ADCs enhanced the off-target cytotoxicity in several target-negative cell lines compared with non-stressed ADCs. Notably, ADC aggregates with FcγR-activation properties showed dramatically enhanced cytotoxicity in FcγR-expressing cells. The FcγR-mediated off-target cytotoxicity of ADC aggregates was reduced by using a FcγR-blocking antibody or Fc-engineering for silencing Fc-mediated effector functions. These results indicated that FcγRs play an important role for internalization of ADC aggregates into non-target cells, and the aggregation of ADCs increases the potential risk for off-target toxicity. |
Author | Aoyama, Michihiko Yokoo, Hidetomo Demizu, Yosuke Tada, Minoru Ishii-Watabe, Akiko |
Author_xml | – sequence: 1 givenname: Michihiko surname: Aoyama fullname: Aoyama, Michihiko email: aoyama-m@nihs.go.jp organization: Division of Biological Chemistry and Biologicals, National Institute of Health Sciences – sequence: 2 givenname: Minoru surname: Tada fullname: Tada, Minoru organization: Division of Biological Chemistry and Biologicals, National Institute of Health Sciences – sequence: 3 givenname: Hidetomo surname: Yokoo fullname: Yokoo, Hidetomo organization: Division of Organic Chemistry, National Institute of Health Sciences – sequence: 4 givenname: Yosuke surname: Demizu fullname: Demizu, Yosuke organization: Division of Organic Chemistry, National Institute of Health Sciences – sequence: 5 givenname: Akiko surname: Ishii-Watabe fullname: Ishii-Watabe, Akiko organization: Division of Biological Chemistry and Biologicals, National Institute of Health Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34961908$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kd1qFDEAhYNU7Lb6Al5IwBtvovmbSeZGWLZWC4WCVPAupElmzDKbrEmm7Ppavkefqdlu608vepVAvnM4OecIHIQYHACvCX5PMBYfMiG4axCmBGFGGok2z8CMNIKhDvPvB2CGBeVICk4OwVHOS4yxJB1_AQ4Z71rSYTkD_tTc_IZfnXHrEhM6cWsXrAsFnoXiUtCj_6WLjwHqYOFF36NLnQZX4GJbYokbb3zZwtjDeSj-KtotOknTABcxLKdBFwfnw5Dc7pZfgue9HrN7dX8eg2-nny4XX9D5xeezxfwcGS54Qa3hDWUaG900siOio6IXuO2F0L1oLRNUUmmMM43mLbdWGyFwzxwV1mIqLTsGH_e-6-lq5aypn0l6VOvkVzptVdRe_f8S_A81xGslJRMNJ9Xg3b1Bij8nl4ta-WzcOOrg4pQVbUlTm8eEV_TtI3QZp11rO4oKKZjsWKXe_JvoT5SHFSog94BJMefkelVrvau9BvSjIljtBlf7wVUdXN0NrjZVSh9JH9yfFLG9KFc4DC79jf2E6hYGd8BK |
CitedBy_id | crossref_primary_10_1002_ange_202417620 crossref_primary_10_1016_j_xphs_2023_06_016 crossref_primary_10_1007_s00210_024_03764_7 crossref_primary_10_1007_s12672_024_01705_7 crossref_primary_10_1016_j_xphs_2023_12_003 crossref_primary_10_1208_s12248_024_00909_7 crossref_primary_10_3390_ph16040590 crossref_primary_10_1021_acs_jmedchem_3c01174 crossref_primary_10_1111_imr_13379 crossref_primary_10_1016_j_apsb_2024_07_024 crossref_primary_10_1002_anie_202417620 crossref_primary_10_1021_acs_bioconjchem_3c00244 crossref_primary_10_1177_01926233241311259 crossref_primary_10_1007_s13318_024_00891_7 crossref_primary_10_3389_fonc_2024_1459368 crossref_primary_10_1038_s41573_023_00709_2 crossref_primary_10_1038_s41571_023_00783_w crossref_primary_10_1002_smll_202400977 crossref_primary_10_1016_j_esmogo_2025_100154 crossref_primary_10_1002_eji_202250340 crossref_primary_10_1182_blood_2024024442 crossref_primary_10_1158_1535_7163_MCT_23_0701 crossref_primary_10_1080_17425255_2024_2302460 crossref_primary_10_1016_j_drudis_2024_104241 crossref_primary_10_3389_fphar_2025_1556245 crossref_primary_10_1093_jjco_hyae054 crossref_primary_10_1158_1535_7163_MCT_23_0720 crossref_primary_10_1016_j_xphs_2024_04_024 crossref_primary_10_1021_acs_jmedchem_3c00794 crossref_primary_10_1016_j_biomaterials_2024_122798 crossref_primary_10_1021_acs_bioconjchem_3c00354 crossref_primary_10_3389_fimmu_2024_1447280 crossref_primary_10_3390_cancers15030713 |
Cites_doi | 10.1021/acs.molpharmaceut.8b00177 10.1007/978-1-4939-8958-4_21 10.1186/s13024-015-0053-4 10.1021/bc100261d 10.1038/nri2206 10.1016/j.xphs.2019.07.021 10.1158/1078-0432.CCR-14-2093 10.1016/j.pharmthera.2019.04.008 10.1006/cimm.2000.1617 10.1007/s11095-014-1541-x 10.1016/j.xphs.2020.01.029 10.1158/0008-5472.CAN-08-1776 10.1371/journal.pone.0095787 10.1158/1078-0432.CCR-15-2822 10.1038/s41598-018-29850-4 10.1124/dmd.115.068049 10.1002/jps.24379 10.1021/bc400182x 10.1016/j.taap.2020.114932 10.4161/mabs.22066 10.1016/j.xphs.2019.01.029 10.1158/1535-7163.MCT-16-0710 10.1038/d41573-021-00079-7 10.18632/oncotarget.26461 10.1021/acs.bioconjchem.7b00791 10.1158/1535-7163.MCT-17-0133 10.1016/j.xphs.2016.09.028 10.1158/0008-5472.CAN-17-3202 10.1189/jlb.0106019 10.1038/nbt.3212 10.1016/j.xphs.2015.11.002 10.1016/j.xphs.2019.10.046 10.1002/jps.22371 10.1080/19420862.2016.1156829 10.1074/jbc.M111.330902 10.1158/1078-0432.CCR-04-0789 10.1182/blood-2011-12-401133 10.1016/j.xphs.2018.03.022 10.1016/j.xphs.2021.09.047 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR CCPQU FYUFA GHDGH K9. KB0 M0S M1P NAPCQ PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s11095-021-03158-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central ProQuest One Community College Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) ProQuest Health & Medical Collection Medical Database Nursing & Allied Health Premium ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection Health Research Premium Collection (Alumni) Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Academic Middle East (New) MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Link url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1573-904X |
EndPage | 103 |
ExternalDocumentID | PMC8837541 34961908 10_1007_s11095_021_03158_x |
Genre | Journal Article |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IJ- IKXTQ IMOTQ INH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAK LLZTM LSO M1P M4Y MA- MK0 N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 WOW YCJ YLTOR Z45 Z5O Z7S Z7U Z7V Z7W Z7X Z81 Z82 Z83 Z84 Z87 Z88 Z8N Z8O Z8P Z8Q Z8R Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK ABRTQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c474t-6c4523a0ca558917927f706f77af76d372828ccec5a464ddac770f3e27dd028d3 |
IEDL.DBID | C6C |
ISSN | 0724-8741 1573-904X |
IngestDate | Thu Aug 21 13:59:33 EDT 2025 Fri Jul 11 03:01:41 EDT 2025 Sat Aug 16 15:22:28 EDT 2025 Thu Apr 03 06:57:56 EDT 2025 Thu Apr 24 23:08:58 EDT 2025 Tue Jul 01 03:51:03 EDT 2025 Fri Feb 21 02:47:18 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | aggregation off-target toxicity Fcγ receptors Antibody-drug conjugates |
Language | English |
License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-6c4523a0ca558917927f706f77af76d372828ccec5a464ddac770f3e27dd028d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://doi.org/10.1007/s11095-021-03158-x |
PMID | 34961908 |
PQID | 2627873893 |
PQPubID | 37334 |
PageCount | 15 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8837541 proquest_miscellaneous_2615110014 proquest_journals_2627873893 pubmed_primary_34961908 crossref_citationtrail_10_1007_s11095_021_03158_x crossref_primary_10_1007_s11095_021_03158_x springer_journals_10_1007_s11095_021_03158_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationSubtitle | An Official Journal of the American Association of Pharmaceutical Scientists |
PublicationTitle | Pharmaceutical research |
PublicationTitleAbbrev | Pharm Res |
PublicationTitleAlternate | Pharm Res |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | GandhiAVArlottaKJChenHNOwenSCCarpenterJFBiophysical properties and heating-induced aggregation of lysine-conjugated antibody-drug conjugatesJ Pharm Sci20181077185818691:CAS:528:DC%2BC1cXotlGisbc%3D10.1016/j.xphs.2018.03.02229626535 TadaMIshii-WatabeASuzukiTKawasakiNDevelopment of a cell-based assay measuring the activation of FcgammaRIIa for the characterization of therapeutic monoclonal antibodiesPLoS One2014941:CAS:528:DC%2BC2cXhs1aqsbfM10.1371/journal.pone.0095787247523413994145 Mullard A. FDA approves 100th monoclonal antibody product. Nat Rev Drug Discov. 2021. https://doi.org/10.1038/d41573-021-00079-7. AoyamaMTadaMIshii-WatabeAA cell-based reporter assay measuring the activation of fc gamma receptors induced by therapeutic monoclonal antibodiesMethods Mol Biol201919044234291:CAS:528:DC%2BC1MXitVOkurnJ10.1007/978-1-4939-8958-4_2130539484 PolumuriSKHaileLAIrelandDDCVerthelyiDAggregates of IVIG or Avastin, but not HSA, modify the response to model innate immune response modulating impuritiesSci Rep201881114771:CAS:528:DC%2BC1MXptFGn10.1038/s41598-018-29850-4300653066068171 Lewis PhillipsGDLiGDuggerDLCrockerLMParsonsKLMaiETargeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugateCancer Res20086822928092901:CAS:528:DC%2BD1cXhtlOmt7rK10.1158/0008-5472.CAN-08-177619010901 BeckleyNSLazzareschiKPChihHWSharmaVKFloresHLInvestigation into temperature-induced aggregation of an antibody drug conjugateBioconjug Chem20132410167416831:CAS:528:DC%2BC3sXhsVWkurbI10.1021/bc400182x24070051 NimmerjahnFRavetchJVFcgamma receptors as regulators of immune responsesNat Rev Immunol20088134471:CAS:528:DC%2BD2sXhsVKrsLnK10.1038/nri220618064051 ZhaoHGulesserianSGanesanSKOuJMorrisonKZengZInhibition of megakaryocyte differentiation by antibody-drug conjugates (ADCs) is mediated by macropinocytosis: implications for ADC-induced thrombocytopeniaMol Cancer Ther2017169187718861:CAS:528:DC%2BC2sXhsVCitr%2FE10.1158/1535-7163.MCT-16-071028655784 BuechelerJWWinzerMTonilloJWeberCGieselerHImpact of payload hydrophobicity on the stability of antibody-drug conjugatesMol Pharm2018157265626641:CAS:528:DC%2BC1cXhtVajsLrJ10.1021/acs.molpharmaceut.8b0017729809017 TelikepalliSShinogleHEThapaPSKimJHDeshpandeMJawaVPhysical characterization and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sortingJ Pharm Sci20151045157515911:CAS:528:DC%2BC2MXkvVSnsbc%3D10.1002/jps.24379257537564448733 MahalingaiahPKCiurlionisRDurbinKRYeagerRLPhilipBKBawaBPotential mechanisms of target-independent uptake and toxicity of antibody-drug conjugatesPharmacol Ther20192001101251:CAS:528:DC%2BC1MXpsVWlt74%3D10.1016/j.pharmthera.2019.04.00831028836 PardeshiNNQiWDahlKCaplanLCarpenterJFMicroparticles and nanoparticles delivered in intravenous saline and in an intravenous solution of a therapeutic antibody productJ Pharm Sci201710625115201:CAS:528:DC%2BC28XhvVSntbrE10.1016/j.xphs.2016.09.02827832839 MillsBJKrugerTBrunckoMZhangXJameelFEffect of linker-drug properties and conjugation site on the physical stability of ADCsJ Pharm Sci20201095166216721:CAS:528:DC%2BB3cXkvFamtrc%3D10.1016/j.xphs.2020.01.02932027921 ChenKNishiHTraversRTsuboiNMartinodKWagnerDDEndocytosis of soluble immune complexes leads to their clearance by FcgammaRIIIB but induces neutrophil extracellular traps via FcgammaRIIA in vivoBlood201212022442144311:CAS:528:DC%2BC38XhslOqu7zO10.1182/blood-2011-12-401133229559243507149 OhriRBhaktaSFourie-O'DonohueADela Cruz-ChuhJTsaiSPCookRHigh-throughput cysteine scanning to identify stable antibody conjugation sites for Maleimide- and disulfide-based linkersBioconjug Chem20182924734851:CAS:528:DC%2BC1cXisVKku7g%3D10.1021/acs.bioconjchem.7b0079129425028 HuangZYBarredaDRWorthRGIndikZKKimMKChienPDifferential kinase requirements in human and mouse fc-gamma receptor phagocytosis and endocytosisJ Leukoc Biol2006806155315621:CAS:528:DC%2BD28XhtlSisb7M10.1189/jlb.010601916921024 EndoYTakedaKMohanNShenYJiangJRotsteinDPayload of T-DM1 binds to cell surface cytoskeleton-associated protein 5 to mediate cytotoxicity of hepatocytesOncotarget2018998372003721510.18632/oncotarget.26461306478546324681 ZhaoHAtkinsonJGulesserianSZengZNaterJOuJModulation of macropinocytosis-mediated internalization decreases ocular toxicity of antibody-drug conjugatesCancer Res2018788211521261:CAS:528:DC%2BC1cXnslKms7k%3D10.1158/0008-5472.CAN-17-320229382707 Shibata H, Harazono A, Kiyoshi M, Ishii-Watabe A. Quantitative evaluation of insoluble particulate matters in therapeutic protein injections using light obscuration and flow imaging methods. J Pharm Sci. 2021. https://doi.org/10.1016/j.xphs.2021.09.047. XuDAlegreMLVargaSSRothermelALCollinsAMPulitoVLIn vitro characterization of five humanized OKT3 effector function variant antibodiesCell Immunol2000200116261:CAS:528:DC%2BD3cXhs12iu7c%3D10.1006/cimm.2000.161710716879 GoldbergDSBishopSMShahAUSathishHAFormulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: role of conformational and colloidal stabilityJ Pharm Sci20111004130613151:CAS:528:DC%2BC3MXisVenu7g%3D10.1002/jps.2237120960568 TadaMAoyamaMIshii-WatabeAFcgamma receptor activation by human monoclonal antibody aggregatesJ Pharm Sci202010915765831:CAS:528:DC%2BC1MXit1Crt7vI10.1016/j.xphs.2019.10.04631676270 UppalHDoudementEMahapatraKDarbonneWCBumbacaDShenBQPotential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1)Clin Cancer Res20152111231331:CAS:528:DC%2BC2MXis12ntA%3D%3D10.1158/1078-0432.CCR-14-209325370470 FilipeVJiskootWBasmelehAHHalimASchellekensHBrinksVImmunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic miceMAbs20124674075210.4161/mabs.22066229515183502241 BoswellCATesarDBMukhyalaKTheilFPFielderPJKhawliLAEffects of charge on antibody tissue distribution and pharmacokineticsBioconjug Chem20102112215321631:CAS:528:DC%2BC3cXhtlynsb3N10.1021/bc100261d21053952 GandhiAVRandolphTWCarpenterJFConjugation of Emtansine onto Trastuzumab promotes aggregation of the antibody-drug conjugate by reducing repulsive electrostatic interactions and increasing hydrophobic interactionsJ Pharm Sci20191086197319831:CAS:528:DC%2BC1MXks1eis7w%3D10.1016/j.xphs.2019.01.02930735687 OgitaniYAidaTHagiharaKYamaguchiJIshiiCHaradaNDS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1Clin Cancer Res20162220509751081:CAS:528:DC%2BC28XhslOhs77F10.1158/1078-0432.CCR-15-282227026201 KraynovEKamathAVWallesMTarcsaEDeslandesAIyerRACurrent approaches for absorption, distribution, metabolism, and excretion characterization of antibody-drug conjugates: an industry white paperDrug Metab Dispos20164456176231:CAS:528:DC%2BC28XhtFCgtL%2FM10.1124/dmd.115.06804926669328 LyonRPBoveeTDDoroninaSOBurkePJHunterJHNeff-LaFordHDReducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic indexNat Biotechnol20153377337351:CAS:528:DC%2BC2MXhtFaitrfF10.1038/nbt.321226076429 DonaghyHEffects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugatesMAbs2016846596711:CAS:528:DC%2BC28XmtFant7k%3D10.1080/19420862.2016.1156829270458004966843 SimmonsJKBurkePJCochranJHPittmanPGLyonRPReducing the antigen-independent toxicity of antibody-drug conjugates by minimizing their non-specific clearance through PEGylationToxicol Appl Pharmacol20203921:CAS:528:DC%2BB3cXktleisrg%3D10.1016/j.taap.2020.11493232109510 MoussaEMPanchalJPMoorthyBSBlumJSJoubertMKNarhiLOImmunogenicity of therapeutic protein aggregatesJ Pharm Sci201610524174301:CAS:528:DC%2BC28XhtFegu7fE10.1016/j.xphs.2015.11.00226869409 AhmadiMBrysonCJCloakeEAWelchKFilipeVRomeijnSSmall amounts of sub-visible aggregates enhance the immunogenic potential of monoclonal antibody therapeuticsPharm Res2015324138313941:CAS:528:DC%2BC2cXhsl2lsr7J10.1007/s11095-014-1541-x25319104 ZeineddineRPundavelaJFCorcoranLStewartEMDo-HaDBaxMSOD1 protein aggregates stimulate macropinocytosis in neurons to facilitate their propagationMol Neurodegener201510571:CAS:528:DC%2BC2sXivVaqtg%3D%3D10.1186/s13024-015-0053-4265203944628302 JoubertMKHokomMEakinCZhouLDeshpandeMBakerMPHighly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responsesJ Biol Chem20122873025266252791:CAS:528:DC%2BC38XhtVGnt7jP10.1074/jbc.M111.330902225845773408134 HamblettKJSenterPDChaceDFSunMMLenoxJCervenyCGEffects of drug loading on the antitumor activity of a monoclonal antibody drug conjugateClin Cancer Res20041020706370701:CAS:528:DC%2BD2cXpslGlu78%3D10.1158/1078-0432.CCR-04-078915501986 ZhaoHGulesserianSMalinaoMCGanesanSKSongJChangMSA potential mechanism for ADC-induced neutropenia: role of neutrophils in their own demiseMol Cancer Ther2017169186618761:CAS:528:DC%2BC2sXhsVCitr%2FL10.1158/1535-7163.MCT-17-013328522588 PetoskeyFKwokSCJacksonWJiangSOvercoming challenges of implementing closed system transfer device clinical in-use compatibility testing for drug development of antibody drug conjugatesJ Pharm Sci202010917617681:CAS:528:DC%2BC1MXhslOhtbbF10.1016/j.xphs.2019.07.02131376374 NN Pardeshi (3158_CR32) 2017; 106 M Aoyama (3158_CR15) 2019; 1904 H Zhao (3158_CR27) 2018; 78 SK Polumuri (3158_CR9) 2018; 8 DS Goldberg (3158_CR34) 2011; 100 PK Mahalingaiah (3158_CR13) 2019; 200 V Filipe (3158_CR35) 2012; 4 K Chen (3158_CR24) 2012; 120 GD Lewis Phillips (3158_CR17) 2008; 68 Y Endo (3158_CR30) 2018; 9 KJ Hamblett (3158_CR2) 2004; 10 AV Gandhi (3158_CR5) 2019; 108 S Telikepalli (3158_CR31) 2015; 104 EM Moussa (3158_CR7) 2016; 105 Y Ogitani (3158_CR18) 2016; 22 H Donaghy (3158_CR12) 2016; 8 CA Boswell (3158_CR28) 2010; 21 AV Gandhi (3158_CR6) 2018; 107 3158_CR16 H Zhao (3158_CR21) 2017; 16 R Ohri (3158_CR37) 2018; 29 D Xu (3158_CR19) 2000; 200 H Uppal (3158_CR20) 2015; 21 BJ Mills (3158_CR39) 2020; 109 RP Lyon (3158_CR3) 2015; 33 M Tada (3158_CR14) 2014; 9 H Zhao (3158_CR26) 2017; 16 F Petoskey (3158_CR33) 2020; 109 MK Joubert (3158_CR8) 2012; 287 M Tada (3158_CR10) 2020; 109 E Kraynov (3158_CR25) 2016; 44 R Zeineddine (3158_CR29) 2015; 10 NS Beckley (3158_CR36) 2013; 24 ZY Huang (3158_CR22) 2006; 80 3158_CR1 JK Simmons (3158_CR4) 2020; 392 M Ahmadi (3158_CR11) 2015; 32 JW Buecheler (3158_CR38) 2018; 15 F Nimmerjahn (3158_CR23) 2008; 8 |
References_xml | – reference: MahalingaiahPKCiurlionisRDurbinKRYeagerRLPhilipBKBawaBPotential mechanisms of target-independent uptake and toxicity of antibody-drug conjugatesPharmacol Ther20192001101251:CAS:528:DC%2BC1MXpsVWlt74%3D10.1016/j.pharmthera.2019.04.00831028836 – reference: NimmerjahnFRavetchJVFcgamma receptors as regulators of immune responsesNat Rev Immunol20088134471:CAS:528:DC%2BD2sXhsVKrsLnK10.1038/nri220618064051 – reference: GandhiAVRandolphTWCarpenterJFConjugation of Emtansine onto Trastuzumab promotes aggregation of the antibody-drug conjugate by reducing repulsive electrostatic interactions and increasing hydrophobic interactionsJ Pharm Sci20191086197319831:CAS:528:DC%2BC1MXks1eis7w%3D10.1016/j.xphs.2019.01.02930735687 – reference: TadaMIshii-WatabeASuzukiTKawasakiNDevelopment of a cell-based assay measuring the activation of FcgammaRIIa for the characterization of therapeutic monoclonal antibodiesPLoS One2014941:CAS:528:DC%2BC2cXhs1aqsbfM10.1371/journal.pone.0095787247523413994145 – reference: ZhaoHGulesserianSGanesanSKOuJMorrisonKZengZInhibition of megakaryocyte differentiation by antibody-drug conjugates (ADCs) is mediated by macropinocytosis: implications for ADC-induced thrombocytopeniaMol Cancer Ther2017169187718861:CAS:528:DC%2BC2sXhsVCitr%2FE10.1158/1535-7163.MCT-16-071028655784 – reference: ZhaoHAtkinsonJGulesserianSZengZNaterJOuJModulation of macropinocytosis-mediated internalization decreases ocular toxicity of antibody-drug conjugatesCancer Res2018788211521261:CAS:528:DC%2BC1cXnslKms7k%3D10.1158/0008-5472.CAN-17-320229382707 – reference: ZeineddineRPundavelaJFCorcoranLStewartEMDo-HaDBaxMSOD1 protein aggregates stimulate macropinocytosis in neurons to facilitate their propagationMol Neurodegener201510571:CAS:528:DC%2BC2sXivVaqtg%3D%3D10.1186/s13024-015-0053-4265203944628302 – reference: MillsBJKrugerTBrunckoMZhangXJameelFEffect of linker-drug properties and conjugation site on the physical stability of ADCsJ Pharm Sci20201095166216721:CAS:528:DC%2BB3cXkvFamtrc%3D10.1016/j.xphs.2020.01.02932027921 – reference: XuDAlegreMLVargaSSRothermelALCollinsAMPulitoVLIn vitro characterization of five humanized OKT3 effector function variant antibodiesCell Immunol2000200116261:CAS:528:DC%2BD3cXhs12iu7c%3D10.1006/cimm.2000.161710716879 – reference: SimmonsJKBurkePJCochranJHPittmanPGLyonRPReducing the antigen-independent toxicity of antibody-drug conjugates by minimizing their non-specific clearance through PEGylationToxicol Appl Pharmacol20203921:CAS:528:DC%2BB3cXktleisrg%3D10.1016/j.taap.2020.11493232109510 – reference: Lewis PhillipsGDLiGDuggerDLCrockerLMParsonsKLMaiETargeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugateCancer Res20086822928092901:CAS:528:DC%2BD1cXhtlOmt7rK10.1158/0008-5472.CAN-08-177619010901 – reference: ZhaoHGulesserianSMalinaoMCGanesanSKSongJChangMSA potential mechanism for ADC-induced neutropenia: role of neutrophils in their own demiseMol Cancer Ther2017169186618761:CAS:528:DC%2BC2sXhsVCitr%2FL10.1158/1535-7163.MCT-17-013328522588 – reference: LyonRPBoveeTDDoroninaSOBurkePJHunterJHNeff-LaFordHDReducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic indexNat Biotechnol20153377337351:CAS:528:DC%2BC2MXhtFaitrfF10.1038/nbt.321226076429 – reference: ChenKNishiHTraversRTsuboiNMartinodKWagnerDDEndocytosis of soluble immune complexes leads to their clearance by FcgammaRIIIB but induces neutrophil extracellular traps via FcgammaRIIA in vivoBlood201212022442144311:CAS:528:DC%2BC38XhslOqu7zO10.1182/blood-2011-12-401133229559243507149 – reference: OgitaniYAidaTHagiharaKYamaguchiJIshiiCHaradaNDS-8201a, a novel HER2-targeting ADC with a novel DNA topoisomerase I inhibitor, demonstrates a promising antitumor efficacy with differentiation from T-DM1Clin Cancer Res20162220509751081:CAS:528:DC%2BC28XhslOhs77F10.1158/1078-0432.CCR-15-282227026201 – reference: TelikepalliSShinogleHEThapaPSKimJHDeshpandeMJawaVPhysical characterization and in vitro biological impact of highly aggregated antibodies separated into size-enriched populations by fluorescence-activated cell sortingJ Pharm Sci20151045157515911:CAS:528:DC%2BC2MXkvVSnsbc%3D10.1002/jps.24379257537564448733 – reference: BeckleyNSLazzareschiKPChihHWSharmaVKFloresHLInvestigation into temperature-induced aggregation of an antibody drug conjugateBioconjug Chem20132410167416831:CAS:528:DC%2BC3sXhsVWkurbI10.1021/bc400182x24070051 – reference: JoubertMKHokomMEakinCZhouLDeshpandeMBakerMPHighly aggregated antibody therapeutics can enhance the in vitro innate and late-stage T-cell immune responsesJ Biol Chem20122873025266252791:CAS:528:DC%2BC38XhtVGnt7jP10.1074/jbc.M111.330902225845773408134 – reference: Mullard A. FDA approves 100th monoclonal antibody product. Nat Rev Drug Discov. 2021. https://doi.org/10.1038/d41573-021-00079-7. – reference: EndoYTakedaKMohanNShenYJiangJRotsteinDPayload of T-DM1 binds to cell surface cytoskeleton-associated protein 5 to mediate cytotoxicity of hepatocytesOncotarget2018998372003721510.18632/oncotarget.26461306478546324681 – reference: PolumuriSKHaileLAIrelandDDCVerthelyiDAggregates of IVIG or Avastin, but not HSA, modify the response to model innate immune response modulating impuritiesSci Rep201881114771:CAS:528:DC%2BC1MXptFGn10.1038/s41598-018-29850-4300653066068171 – reference: GandhiAVArlottaKJChenHNOwenSCCarpenterJFBiophysical properties and heating-induced aggregation of lysine-conjugated antibody-drug conjugatesJ Pharm Sci20181077185818691:CAS:528:DC%2BC1cXotlGisbc%3D10.1016/j.xphs.2018.03.02229626535 – reference: HamblettKJSenterPDChaceDFSunMMLenoxJCervenyCGEffects of drug loading on the antitumor activity of a monoclonal antibody drug conjugateClin Cancer Res20041020706370701:CAS:528:DC%2BD2cXpslGlu78%3D10.1158/1078-0432.CCR-04-078915501986 – reference: OhriRBhaktaSFourie-O'DonohueADela Cruz-ChuhJTsaiSPCookRHigh-throughput cysteine scanning to identify stable antibody conjugation sites for Maleimide- and disulfide-based linkersBioconjug Chem20182924734851:CAS:528:DC%2BC1cXisVKku7g%3D10.1021/acs.bioconjchem.7b0079129425028 – reference: BuechelerJWWinzerMTonilloJWeberCGieselerHImpact of payload hydrophobicity on the stability of antibody-drug conjugatesMol Pharm2018157265626641:CAS:528:DC%2BC1cXhtVajsLrJ10.1021/acs.molpharmaceut.8b0017729809017 – reference: BoswellCATesarDBMukhyalaKTheilFPFielderPJKhawliLAEffects of charge on antibody tissue distribution and pharmacokineticsBioconjug Chem20102112215321631:CAS:528:DC%2BC3cXhtlynsb3N10.1021/bc100261d21053952 – reference: MoussaEMPanchalJPMoorthyBSBlumJSJoubertMKNarhiLOImmunogenicity of therapeutic protein aggregatesJ Pharm Sci201610524174301:CAS:528:DC%2BC28XhtFegu7fE10.1016/j.xphs.2015.11.00226869409 – reference: HuangZYBarredaDRWorthRGIndikZKKimMKChienPDifferential kinase requirements in human and mouse fc-gamma receptor phagocytosis and endocytosisJ Leukoc Biol2006806155315621:CAS:528:DC%2BD28XhtlSisb7M10.1189/jlb.010601916921024 – reference: TadaMAoyamaMIshii-WatabeAFcgamma receptor activation by human monoclonal antibody aggregatesJ Pharm Sci202010915765831:CAS:528:DC%2BC1MXit1Crt7vI10.1016/j.xphs.2019.10.04631676270 – reference: FilipeVJiskootWBasmelehAHHalimASchellekensHBrinksVImmunogenicity of different stressed IgG monoclonal antibody formulations in immune tolerant transgenic miceMAbs20124674075210.4161/mabs.22066229515183502241 – reference: AhmadiMBrysonCJCloakeEAWelchKFilipeVRomeijnSSmall amounts of sub-visible aggregates enhance the immunogenic potential of monoclonal antibody therapeuticsPharm Res2015324138313941:CAS:528:DC%2BC2cXhsl2lsr7J10.1007/s11095-014-1541-x25319104 – reference: KraynovEKamathAVWallesMTarcsaEDeslandesAIyerRACurrent approaches for absorption, distribution, metabolism, and excretion characterization of antibody-drug conjugates: an industry white paperDrug Metab Dispos20164456176231:CAS:528:DC%2BC28XhtFCgtL%2FM10.1124/dmd.115.06804926669328 – reference: GoldbergDSBishopSMShahAUSathishHAFormulation development of therapeutic monoclonal antibodies using high-throughput fluorescence and static light scattering techniques: role of conformational and colloidal stabilityJ Pharm Sci20111004130613151:CAS:528:DC%2BC3MXisVenu7g%3D10.1002/jps.2237120960568 – reference: Shibata H, Harazono A, Kiyoshi M, Ishii-Watabe A. Quantitative evaluation of insoluble particulate matters in therapeutic protein injections using light obscuration and flow imaging methods. J Pharm Sci. 2021. https://doi.org/10.1016/j.xphs.2021.09.047. – reference: UppalHDoudementEMahapatraKDarbonneWCBumbacaDShenBQPotential mechanisms for thrombocytopenia development with trastuzumab emtansine (T-DM1)Clin Cancer Res20152111231331:CAS:528:DC%2BC2MXis12ntA%3D%3D10.1158/1078-0432.CCR-14-209325370470 – reference: DonaghyHEffects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugatesMAbs2016846596711:CAS:528:DC%2BC28XmtFant7k%3D10.1080/19420862.2016.1156829270458004966843 – reference: PardeshiNNQiWDahlKCaplanLCarpenterJFMicroparticles and nanoparticles delivered in intravenous saline and in an intravenous solution of a therapeutic antibody productJ Pharm Sci201710625115201:CAS:528:DC%2BC28XhvVSntbrE10.1016/j.xphs.2016.09.02827832839 – reference: PetoskeyFKwokSCJacksonWJiangSOvercoming challenges of implementing closed system transfer device clinical in-use compatibility testing for drug development of antibody drug conjugatesJ Pharm Sci202010917617681:CAS:528:DC%2BC1MXhslOhtbbF10.1016/j.xphs.2019.07.02131376374 – reference: AoyamaMTadaMIshii-WatabeAA cell-based reporter assay measuring the activation of fc gamma receptors induced by therapeutic monoclonal antibodiesMethods Mol Biol201919044234291:CAS:528:DC%2BC1MXitVOkurnJ10.1007/978-1-4939-8958-4_2130539484 – volume: 15 start-page: 2656 issue: 7 year: 2018 ident: 3158_CR38 publication-title: Mol Pharm doi: 10.1021/acs.molpharmaceut.8b00177 – volume: 1904 start-page: 423 year: 2019 ident: 3158_CR15 publication-title: Methods Mol Biol doi: 10.1007/978-1-4939-8958-4_21 – volume: 10 start-page: 57 year: 2015 ident: 3158_CR29 publication-title: Mol Neurodegener doi: 10.1186/s13024-015-0053-4 – volume: 21 start-page: 2153 issue: 12 year: 2010 ident: 3158_CR28 publication-title: Bioconjug Chem doi: 10.1021/bc100261d – volume: 8 start-page: 34 issue: 1 year: 2008 ident: 3158_CR23 publication-title: Nat Rev Immunol doi: 10.1038/nri2206 – volume: 109 start-page: 761 issue: 1 year: 2020 ident: 3158_CR33 publication-title: J Pharm Sci doi: 10.1016/j.xphs.2019.07.021 – volume: 21 start-page: 123 issue: 1 year: 2015 ident: 3158_CR20 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-14-2093 – volume: 200 start-page: 110 year: 2019 ident: 3158_CR13 publication-title: Pharmacol Ther doi: 10.1016/j.pharmthera.2019.04.008 – volume: 200 start-page: 16 issue: 1 year: 2000 ident: 3158_CR19 publication-title: Cell Immunol doi: 10.1006/cimm.2000.1617 – volume: 32 start-page: 1383 issue: 4 year: 2015 ident: 3158_CR11 publication-title: Pharm Res doi: 10.1007/s11095-014-1541-x – volume: 109 start-page: 1662 issue: 5 year: 2020 ident: 3158_CR39 publication-title: J Pharm Sci doi: 10.1016/j.xphs.2020.01.029 – volume: 68 start-page: 9280 issue: 22 year: 2008 ident: 3158_CR17 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-1776 – volume: 9 issue: 4 year: 2014 ident: 3158_CR14 publication-title: PLoS One doi: 10.1371/journal.pone.0095787 – volume: 22 start-page: 5097 issue: 20 year: 2016 ident: 3158_CR18 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-15-2822 – volume: 8 start-page: 11477 issue: 1 year: 2018 ident: 3158_CR9 publication-title: Sci Rep doi: 10.1038/s41598-018-29850-4 – volume: 44 start-page: 617 issue: 5 year: 2016 ident: 3158_CR25 publication-title: Drug Metab Dispos doi: 10.1124/dmd.115.068049 – volume: 104 start-page: 1575 issue: 5 year: 2015 ident: 3158_CR31 publication-title: J Pharm Sci doi: 10.1002/jps.24379 – volume: 24 start-page: 1674 issue: 10 year: 2013 ident: 3158_CR36 publication-title: Bioconjug Chem doi: 10.1021/bc400182x – volume: 392 year: 2020 ident: 3158_CR4 publication-title: Toxicol Appl Pharmacol doi: 10.1016/j.taap.2020.114932 – volume: 4 start-page: 740 issue: 6 year: 2012 ident: 3158_CR35 publication-title: MAbs doi: 10.4161/mabs.22066 – volume: 108 start-page: 1973 issue: 6 year: 2019 ident: 3158_CR5 publication-title: J Pharm Sci doi: 10.1016/j.xphs.2019.01.029 – volume: 16 start-page: 1877 issue: 9 year: 2017 ident: 3158_CR21 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-16-0710 – ident: 3158_CR1 doi: 10.1038/d41573-021-00079-7 – volume: 9 start-page: 37200 issue: 98 year: 2018 ident: 3158_CR30 publication-title: Oncotarget doi: 10.18632/oncotarget.26461 – volume: 29 start-page: 473 issue: 2 year: 2018 ident: 3158_CR37 publication-title: Bioconjug Chem doi: 10.1021/acs.bioconjchem.7b00791 – volume: 16 start-page: 1866 issue: 9 year: 2017 ident: 3158_CR26 publication-title: Mol Cancer Ther doi: 10.1158/1535-7163.MCT-17-0133 – volume: 106 start-page: 511 issue: 2 year: 2017 ident: 3158_CR32 publication-title: J Pharm Sci doi: 10.1016/j.xphs.2016.09.028 – volume: 78 start-page: 2115 issue: 8 year: 2018 ident: 3158_CR27 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-3202 – volume: 80 start-page: 1553 issue: 6 year: 2006 ident: 3158_CR22 publication-title: J Leukoc Biol doi: 10.1189/jlb.0106019 – volume: 33 start-page: 733 issue: 7 year: 2015 ident: 3158_CR3 publication-title: Nat Biotechnol doi: 10.1038/nbt.3212 – volume: 105 start-page: 417 issue: 2 year: 2016 ident: 3158_CR7 publication-title: J Pharm Sci doi: 10.1016/j.xphs.2015.11.002 – volume: 109 start-page: 576 issue: 1 year: 2020 ident: 3158_CR10 publication-title: J Pharm Sci doi: 10.1016/j.xphs.2019.10.046 – volume: 100 start-page: 1306 issue: 4 year: 2011 ident: 3158_CR34 publication-title: J Pharm Sci doi: 10.1002/jps.22371 – volume: 8 start-page: 659 issue: 4 year: 2016 ident: 3158_CR12 publication-title: MAbs doi: 10.1080/19420862.2016.1156829 – volume: 287 start-page: 25266 issue: 30 year: 2012 ident: 3158_CR8 publication-title: J Biol Chem doi: 10.1074/jbc.M111.330902 – volume: 10 start-page: 7063 issue: 20 year: 2004 ident: 3158_CR2 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-04-0789 – volume: 120 start-page: 4421 issue: 22 year: 2012 ident: 3158_CR24 publication-title: Blood doi: 10.1182/blood-2011-12-401133 – volume: 107 start-page: 1858 issue: 7 year: 2018 ident: 3158_CR6 publication-title: J Pharm Sci doi: 10.1016/j.xphs.2018.03.022 – ident: 3158_CR16 doi: 10.1016/j.xphs.2021.09.047 |
SSID | ssj0008194 |
Score | 2.5270815 |
Snippet | Purpose
Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due... Antibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due to the... PurposeAntibody-drug conjugates (ADCs), which are monoclonal antibodies (mAbs) conjugated with highly toxic payloads, achieve high tumor killing efficacy due... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 89 |
SubjectTerms | Antibodies Antibodies, Monoclonal - pharmacology Antineoplastic Agents, Immunological - pharmacology Biochemistry Biomedical and Life Sciences Biomedical Engineering and Bioengineering Biomedicine Blocking antibodies Cell activation Cell Line Cell Line, Tumor Cytotoxicity Humans Hydrophobicity Immunoconjugates - pharmacology Internalization Medical Law Monoclonal antibodies Pharmacology/Toxicology Pharmacy Receptors, IgG Research Paper Tumors |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9swDBa27rLLsPe8dYMKDL0swmJblpzTEKQNigLbekiB3AxZjy5FYWeNAyS_a_9jv2mkrNjIivZmQDL8ICl9pMiPhHx22gphALmVvMwYtzJmSknDZDzS3OUjGMKA_vcf4uySn8-zeQi4rUJa5W5N9Au1qTXGyL8mIgHdwu312_I3w65ReLoaWmg8Jk-Qugy1Ws47hwt3O08fJRMOVs_jUDTTls7FQ1-bjAlFcZazzf7GdAdt3k2a_O_k1G9I0-fkWUCSdNyK_gV5ZKuX5PiipaLeDuisr6xaDegxvehJqrevyGKq__6hABrtErxudhJ64TY0hAhvQn0mVZWhP51jM58yTifbpm7qzUIDeqe1o-OqWZS12bKT2_UVndTV9RoDc3R8BY48Xq1ek8vp6WxyxkLbBaa55A0TmoN3qoZaZdhyUI4S6eRQOCmVk8KkEr00ra3OFBfcGKWlHLrUJtIYQCsmfUMOqrqy7whNleAW5M9h3eBGlHlqYsBbAArAM7MjE5F4988LHTjJsTXGTdGzKaOcCpBT4eVUbCLypbtn2TJyPDj7cCfKIljnquh1KSJH3TDYFR6WqMrWa5wDWAgJqnhE3raS7x6HJPsApPKIyD2d6CYgZ_f-SLX45bm78xx7DscRGey0p3-t-7_i_cNf8YE8TbAqw0eGDslBc7u2HwErNeUnbxD_AKUoEhk priority: 102 providerName: ProQuest |
Title | Fcγ Receptor-Dependent Internalization and Off-Target Cytotoxicity of Antibody-Drug Conjugate Aggregates |
URI | https://link.springer.com/article/10.1007/s11095-021-03158-x https://www.ncbi.nlm.nih.gov/pubmed/34961908 https://www.proquest.com/docview/2627873893 https://www.proquest.com/docview/2615110014 https://pubmed.ncbi.nlm.nih.gov/PMC8837541 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9MwFLZge-EFMa6BURkJ7YVaNIljp49p1jKBKBVqpfIUOb5sRVMyram0_q79D34T56Rpqm6AxEscySfX42N_x_b5DiHvnbZCGEBuOc8jxq30mVLSMOn3NXdxH6pwQv_rWJzN-Od5NG9ocjAW5s76_cclMmJiDDFu_PGjmAFePIz8UGKahlSkba8LI1tNFSUDDhbO_SZA5s_32B-E7iHL-xsk76yS1oPP6Al53KBGmmzUfEQe2OIpOZlsaKfXXTrdRVEtu_SETnaE1OtnZDHSv24pAER7BR42O23y3la0mQ68bGIxqSoM_eYcm9bbw2m6rsqqvFloQOq0dDQpqkVemjU7vV6d07Qsfq5wEo4m5-C049nyOZmNhtP0jDUpFpjmkldMaA6eqOppFWF6QdkPpJM94aRUTgoTSvTItLY6UlxwY5SWsudCG0hjAJmY8AU5KMrCviI0VIJb0DWHPoIbkceh8QFbAQAAL8z2jUf87T_PdMM_jmkwLrMdczLqKQM9ZbWeshuPfGivudqwb_xT-niryqyxxGUWiAD6JIRlHnnXVoMN4cKIKmy5QhnAPUhGxT3ycqP59nFIqA-gKfaI3GsTrQDyc-_XFIuLmqc7jjG_sO-R7rb17F7r71_x-v_E35BHAUZk1LNCx-Sgul7Zt4CTqrxDHsq57JDDZDQYjLH89OPLEMrBcDz53qnNB46zIPkNwzcRug |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAL4o1LgUWCXsiqsbP2OgeEooQopQ96SKXcjLO7DkGVnSaOiP8UF_4Hv4kZPxUqeuvN0m4Sb2Z25pvZnW8A3kXKeJ5G5DYVU5cLI20ehlJzaXeViPwuDlFC__TMG12ILxN3sgO_qloYulZZ2cTcUOtEUY780PEc1C1yr58WV5y6RtHpatVCo1CLY5P9xJBt9fFogPJ97zjDz-P-iJddBbgSUqTcUwKDr7CtQpc66smuIyPZ9iIpw0h6uiMpCFHKKDcUntA6VFK2o45xpNbojHUHv_cO3EXH26ZgT07qAI-8a05XJR2BVkbYZZFOUapnt_NaaLrAZLs-32w7wmvo9volzX9OanMHOHwID0rkynqFqj2CHRM_hoPzgvo6a7FxU8m1arEDdt6QYmdPYD5Uf34zBKlmgVE-H5S9d1NWpiQvy3pQFsaafY0iPs6vqLN-liZpspkrjBZYErFenM6nic74YLmesX4S_1hTIpD1ZrOloafVU7i4FYE8g904ic0LYJ3QEwb1TaCdEtqb-h1tI75DEIKRoOlqC-zqPw9UyYFOrTgug4a9meQUoJyCXE7BxoIP9WcWBQPIjbP3K1EGpTVYBY3uWvC2HsZ9TIczYWySNc1B7EWEWMKC54Xk658jUn8Ebr4Fcksn6gnEEb49Es-_51zhvk89jm0LWpX2NK_1_1Xs3byKN3BvND49CU6Ozo5fwn2HKkLyrNQ-7KbLtXmFOC2dvs43B4Nvt70b_wKWe06C |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVEJcEG9cCiwS9EJWje2N1zkgFJJGLYUQoVTqzTi765CqskPiiPh3ceNH8JuY8SsKFb31Fmk3D2dmZ76ZnfkG4HWkjOdpRG4TMWlzYaTNw1BqLu2OEpHfwSVK6H8eesdn4uN5-3wHfle9MFRWWdnE3FDrRFGO_NDxHNQtcq-HUVkWMeoP3s9_cJogRTet1TiNQkVOTfYTw7flu5M-yvqN4wyOxr1jXk4Y4EpIkXJPCQzEwpYK2zRdT3YcGcmWF0kZRtLTrqSARCmj2qHwhNahkrIVucaRWqNj1i5-7i3YlRQVNWD3w9Fw9LX2A-hrc_Iq6Qi0OcIuW3aKxj27lXdGUzmT3fb5etstXsG6V0s2_7m3zd3h4B7cLXEs6xaKdx92TPwADkYFEXbWZONNX9eyyQ7YaEORnT2E2UD9-cUQspo5xvy8X07iTVmZoLwsu0NZGGv2JYr4OC9YZ70sTdJkPVMYO7AkYt04nU0SnfH-YjVlvSS-WFFakHWn04WhV8tHcHYjInkMjTiJzVNgbugJg9on0GoJ7U18V9uI9hCSYFxoOtoCu_rPA1UyotNgjstgw-VMcgpQTkEup2Btwdv6PfOCD-Ta3fuVKIPSNiyDjSZb8KpexlNNVzVhbJIV7UEkRvRYwoInheTrryOKf4RxvgVySyfqDcQYvr0Sz77nzOG-TxOPbQualfZsftb_n2Lv-qd4CbfxJAafToanz-COQ-0heYpqHxrpYmWeI2hLJy_K08Hg200fyL_2M1Qd |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fc%CE%B3+Receptor-Dependent+Internalization+and+Off-Target+Cytotoxicity+of+Antibody-Drug+Conjugate+Aggregates&rft.jtitle=Pharmaceutical+research&rft.au=Aoyama%2C+Michihiko&rft.au=Tada%2C+Minoru&rft.au=Yokoo%2C+Hidetomo&rft.au=Demizu%2C+Yosuke&rft.date=2022-01-01&rft.issn=0724-8741&rft.eissn=1573-904X&rft.volume=39&rft.issue=1&rft.spage=89&rft.epage=103&rft_id=info:doi/10.1007%2Fs11095-021-03158-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11095_021_03158_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0724-8741&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0724-8741&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0724-8741&client=summon |