Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future
This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defense...
Saved in:
Published in | Molecular plant-microbe interactions Vol. 31; no. 9; pp. 871 - 888 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
American Phytopathological Society
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions.
Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen. |
---|---|
AbstractList | This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions.
Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen. This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen.This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen. This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen. |
Author | Dempsey, D’Maris Amick Choi, Hyong Woo Klessig, Daniel F. |
Author_xml | – sequence: 1 givenname: Daniel F. orcidid: 0000-0002-1315-5920 surname: Klessig fullname: Klessig, Daniel F. organization: Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, U.S.A – sequence: 2 givenname: Hyong Woo surname: Choi fullname: Choi, Hyong Woo organization: Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, U.S.A – sequence: 3 givenname: D’Maris Amick surname: Dempsey fullname: Dempsey, D’Maris Amick organization: Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, U.S.A |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29781762$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0btOHDEUBmArAoUF8gIp0Eg0KTCc49t46NAq3ARitSS15fF6JKPZGbA9xb59vAEaCih8Kb7zS_a_T3aGcfCE_EQ4RWjE2f3i_oYCp6gpgKrpfPmNzLARnNY1qB0yA90ICkyzPbKf0hMANkrK72SPNbXGWrEZuX3cpOzXwVUX7mUK0a-qpU8hZTs4X9lhVT3aPrhN_1-E1Xm1sCmfVIvokx_KZUsupzxFf0h2O9sn_-PtPCB_L3__mV_Tu4erm_nFHXWiFpkq21iJ3HVaOd-0qJTTLbdl6wSzzoFEAClQtlhM4zpkTrXYcc0QmZT8gPx6zX2O48vkUzbrkJzvezv4cUqGoeSKCwniawqCMa5R1YUef6BP4xSH8pASiKIsRF7U0Zua2rVfmecY1jZuzPuHFqBfgYtjStF3xoVscxiHHG3oDYLZdme23RngBrXZdmfmyzLKPoy-p38y9A_YrpmY |
CitedBy_id | crossref_primary_10_1007_s43938_025_00078_9 crossref_primary_10_1007_s10658_021_02263_2 crossref_primary_10_3390_biology11040619 crossref_primary_10_1016_j_heliyon_2025_e42342 crossref_primary_10_5423_PPJ_RW_12_2019_0295 crossref_primary_10_1016_j_biocontrol_2020_104240 crossref_primary_10_29133_yyutbd_1088049 crossref_primary_10_3389_frans_2022_1020111 crossref_primary_10_3390_horticulturae8010005 crossref_primary_10_7717_peerj_9960 crossref_primary_10_1515_opag_2022_0267 crossref_primary_10_1016_j_pestbp_2023_105512 crossref_primary_10_1093_jxb_erz222 crossref_primary_10_1111_nph_18558 crossref_primary_10_1093_jxb_eraa317 crossref_primary_10_1016_j_molp_2023_12_005 crossref_primary_10_3390_ijms20246365 crossref_primary_10_1038_s41467_020_20764_2 crossref_primary_10_1016_j_nanoso_2023_100974 crossref_primary_10_1093_pcp_pcz106 crossref_primary_10_1016_j_ijbiomac_2020_10_111 crossref_primary_10_1007_s11356_025_35952_0 crossref_primary_10_3390_agronomy14040827 crossref_primary_10_1016_j_postharvbio_2024_112866 crossref_primary_10_1016_j_plantsci_2020_110472 crossref_primary_10_1242_dev_201158 crossref_primary_10_1186_s12870_023_04391_9 crossref_primary_10_3389_fpls_2022_982715 crossref_primary_10_3390_biom14030319 crossref_primary_10_12677_AMB_2024_131002 crossref_primary_10_3389_fpls_2019_01115 crossref_primary_10_1094_MPMI_03_19_0066_R crossref_primary_10_1094_MPMI_03_19_0089_R crossref_primary_10_3390_ijms25137255 crossref_primary_10_3389_fpls_2022_1086057 crossref_primary_10_1111_nph_17442 crossref_primary_10_1111_nph_16111 crossref_primary_10_17660_ActaHortic_2023_1362_41 crossref_primary_10_3390_ijms232012217 crossref_primary_10_1016_j_pmpp_2025_102611 crossref_primary_10_1093_jxb_erac070 crossref_primary_10_1109_ACCESS_2019_2912114 crossref_primary_10_1371_journal_pone_0237975 crossref_primary_10_1007_s11104_022_05597_w crossref_primary_10_1016_j_plaphy_2021_10_011 crossref_primary_10_1016_j_pbi_2020_101987 crossref_primary_10_1016_j_micpath_2024_107047 crossref_primary_10_3389_fpls_2023_1173695 crossref_primary_10_1016_j_envexpbot_2020_104117 crossref_primary_10_17660_ActaHortic_2024_1402_11 crossref_primary_10_3389_fpls_2023_1196456 crossref_primary_10_1590_2447_536x_v30_e242697 crossref_primary_10_3389_fmicb_2018_01596 crossref_primary_10_1007_s11829_020_09776_3 crossref_primary_10_1093_jxb_erab531 crossref_primary_10_1007_s00425_020_03370_w crossref_primary_10_1111_pbi_13697 crossref_primary_10_3390_agriculture13040853 crossref_primary_10_1071_BT19124 crossref_primary_10_1016_j_plantsci_2022_111547 crossref_primary_10_1093_plcell_koae100 crossref_primary_10_3390_agronomy11081621 crossref_primary_10_1007_s10811_023_02933_0 crossref_primary_10_1186_s12870_020_2245_5 crossref_primary_10_1016_j_stress_2022_100103 crossref_primary_10_3390_plants11233365 crossref_primary_10_1016_j_plgene_2020_100264 crossref_primary_10_1016_j_scitotenv_2022_156641 crossref_primary_10_3390_jof7050341 crossref_primary_10_1094_PHP_09_23_0078_MR crossref_primary_10_1016_j_scitotenv_2021_152840 crossref_primary_10_3390_biom10020341 crossref_primary_10_3390_ijms23137038 crossref_primary_10_3390_jof9121169 crossref_primary_10_1007_s00299_021_02732_2 crossref_primary_10_1094_PHYTO_12_21_0496_R crossref_primary_10_1093_jxb_erae394 crossref_primary_10_32604_phyton_2022_023733 crossref_primary_10_1007_s10725_021_00794_6 crossref_primary_10_1111_plb_13030 crossref_primary_10_1016_j_cj_2022_02_005 crossref_primary_10_3390_ijms221910388 crossref_primary_10_1002_ps_5709 crossref_primary_10_1109_JSEN_2021_3113303 crossref_primary_10_3389_fpls_2021_779597 crossref_primary_10_3389_fpls_2021_672552 crossref_primary_10_1007_s10658_022_02469_y crossref_primary_10_1128_mBio_03518_20 crossref_primary_10_4236_ajps_2020_118094 crossref_primary_10_1007_s00299_020_02658_1 crossref_primary_10_1094_MPMI_34_4 crossref_primary_10_1016_j_heliyon_2023_e13825 crossref_primary_10_3390_f11060705 crossref_primary_10_3390_f12081072 crossref_primary_10_1111_ppl_13596 crossref_primary_10_17660_ActaHortic_2023_1367_26 crossref_primary_10_3390_microorganisms10122516 crossref_primary_10_1042_EBC20210090 crossref_primary_10_3390_genes11091000 crossref_primary_10_2174_1389202922666210219113220 crossref_primary_10_1016_j_pbi_2021_102050 crossref_primary_10_1016_S2095_3119_20_63568_7 crossref_primary_10_3390_plants14020208 crossref_primary_10_1093_treephys_tpac088 crossref_primary_10_1007_s10142_023_01219_5 crossref_primary_10_1021_acschembio_2c00322 crossref_primary_10_3390_molecules25030540 crossref_primary_10_3390_plants13111490 crossref_primary_10_3390_cells7120252 crossref_primary_10_1038_s41396_023_01399_9 crossref_primary_10_17660_ActaHortic_2024_1404_63 crossref_primary_10_3390_insects15060404 crossref_primary_10_1007_s41348_024_00878_1 crossref_primary_10_1007_s00425_024_04355_9 crossref_primary_10_1016_j_jplph_2018_10_020 crossref_primary_10_1093_hr_uhab016 crossref_primary_10_2478_fhort_2021_0029 crossref_primary_10_3390_ijms22094938 crossref_primary_10_1016_j_plantsci_2019_110351 crossref_primary_10_29235_1029_8940_2020_65_3_263_274 crossref_primary_10_3390_agriculture15030264 crossref_primary_10_1002_smll_202205687 crossref_primary_10_1371_journal_pone_0227608 crossref_primary_10_3390_ijms23031502 crossref_primary_10_3389_fagro_2021_781027 crossref_primary_10_1007_s00425_018_03069_z crossref_primary_10_1016_j_pestbp_2024_105896 crossref_primary_10_3390_agronomy11071341 crossref_primary_10_3390_bioengineering10111244 crossref_primary_10_3390_agronomy12123053 crossref_primary_10_1016_j_phytol_2023_08_010 crossref_primary_10_1007_s00299_021_02729_x crossref_primary_10_1111_nph_16953 crossref_primary_10_1016_j_bioorg_2021_105248 crossref_primary_10_1093_plphys_kiae148 crossref_primary_10_1002_ps_6025 crossref_primary_10_1016_j_pmpp_2020_101483 crossref_primary_10_1007_s42360_024_00800_7 crossref_primary_10_1111_tpj_17242 crossref_primary_10_18016_ksutarimdoga_vi_683962 crossref_primary_10_1111_nph_18562 crossref_primary_10_1186_s12870_020_02769_7 crossref_primary_10_1126_science_aaw1720 crossref_primary_10_1016_j_radmp_2022_01_005 crossref_primary_10_1038_s41598_023_37041_z crossref_primary_10_3389_fpls_2021_721193 crossref_primary_10_1016_j_chemosphere_2024_143397 crossref_primary_10_1016_j_pbi_2019_02_006 crossref_primary_10_1111_mpp_12906 crossref_primary_10_1016_j_plaphy_2020_04_034 crossref_primary_10_1016_j_molp_2019_11_001 crossref_primary_10_3389_fpls_2021_644870 crossref_primary_10_1016_j_plaphy_2020_10_026 crossref_primary_10_1016_j_cej_2024_149652 crossref_primary_10_3390_plants12071447 crossref_primary_10_1038_s41598_021_83067_6 crossref_primary_10_1038_s41598_019_47526_5 crossref_primary_10_1111_nph_16824 crossref_primary_10_3389_fpls_2019_01733 crossref_primary_10_3390_ijms21041443 crossref_primary_10_1007_s00344_024_11291_1 crossref_primary_10_1038_s41598_023_35205_5 crossref_primary_10_1094_MPMI_05_22_0104_R crossref_primary_10_3390_ijms241713201 crossref_primary_10_1094_PHYTO_01_21_0017_R crossref_primary_10_1016_j_jplph_2023_154041 crossref_primary_10_1094_MPMI_10_19_0302_R crossref_primary_10_3390_ijms20102538 crossref_primary_10_1007_s00344_022_10613_5 crossref_primary_10_1007_s00344_020_10194_1 crossref_primary_10_1021_acsagscitech_1c00196 crossref_primary_10_1094_MPMI_01_19_0013_R crossref_primary_10_1007_s11627_023_10335_7 crossref_primary_10_1016_j_tplants_2021_11_008 crossref_primary_10_1007_s42161_023_01527_6 crossref_primary_10_3389_fpls_2023_1125551 crossref_primary_10_3390_ijms25010569 crossref_primary_10_3389_fpls_2023_1217771 crossref_primary_10_1094_MPMI_09_19_0250_R crossref_primary_10_1094_MPMI_10_20_0291_R crossref_primary_10_2139_ssrn_4000311 crossref_primary_10_1039_D2MO00251E crossref_primary_10_3390_ijms21207482 crossref_primary_10_3390_ijms21155285 crossref_primary_10_1080_07388551_2019_1710459 crossref_primary_10_1007_s42976_022_00272_3 crossref_primary_10_1093_plcell_koaa044 crossref_primary_10_1080_15592324_2023_2270835 crossref_primary_10_1016_j_scienta_2025_114059 crossref_primary_10_3390_md20010001 crossref_primary_10_15377_2409_9813_2023_10_1 crossref_primary_10_61186_jesi_44_1_5 crossref_primary_10_3390_ijms24021480 crossref_primary_10_3390_plants8080290 crossref_primary_10_1016_j_foodchem_2024_139545 crossref_primary_10_1094_MPMI_09_19_0262_R crossref_primary_10_1016_j_jare_2023_06_011 crossref_primary_10_3390_ijms24065737 crossref_primary_10_1007_s13205_021_02866_w crossref_primary_10_1111_pce_14288 crossref_primary_10_3390_ijms20122946 crossref_primary_10_3390_pathogens13020105 crossref_primary_10_1186_s12870_022_03939_5 crossref_primary_10_3390_ijms26031368 crossref_primary_10_1111_nph_18945 crossref_primary_10_1007_s41348_022_00574_y crossref_primary_10_3389_fpls_2019_00423 crossref_primary_10_1016_j_scienta_2024_112969 crossref_primary_10_17660_ActaHortic_2019_1237_3 crossref_primary_10_1093_jxb_erad202 crossref_primary_10_3390_cimb45020072 crossref_primary_10_1111_mpp_13230 crossref_primary_10_1094_MPMI_07_23_0106_R crossref_primary_10_1007_s10682_020_10044_2 crossref_primary_10_3390_biom11050705 crossref_primary_10_1007_s11357_021_00336_y crossref_primary_10_3389_fpls_2021_756330 crossref_primary_10_1111_mpp_12817 crossref_primary_10_1007_s00344_023_10966_5 crossref_primary_10_1146_annurev_phyto_021621_121806 crossref_primary_10_1007_s00425_020_03410_5 crossref_primary_10_1111_mpp_13123 crossref_primary_10_3390_plants9020166 crossref_primary_10_1093_jxb_erab257 crossref_primary_10_3390_horticulturae9091041 crossref_primary_10_3390_ijms20235851 crossref_primary_10_3390_plants12244082 crossref_primary_10_3390_plants13162179 crossref_primary_10_1007_s11033_021_06344_7 crossref_primary_10_1111_pce_14019 crossref_primary_10_1007_s00122_021_03830_1 crossref_primary_10_1111_pce_14024 crossref_primary_10_1111_pce_14142 crossref_primary_10_1016_j_plantsci_2021_111082 crossref_primary_10_1016_j_biocontrol_2022_105040 crossref_primary_10_1186_s42483_024_00273_6 crossref_primary_10_1016_j_envexpbot_2023_105312 crossref_primary_10_3390_plants12030635 crossref_primary_10_1134_S1062359020040093 crossref_primary_10_1111_tpj_15110 crossref_primary_10_1007_s11033_024_09902_x crossref_primary_10_3390_ijms25021308 crossref_primary_10_1111_ppa_13984 crossref_primary_10_3389_fpls_2021_724079 crossref_primary_10_3389_fmicb_2024_1422476 crossref_primary_10_3389_fpls_2021_748287 crossref_primary_10_3389_fpls_2021_615114 crossref_primary_10_3389_fimmu_2020_612452 crossref_primary_10_35860_iarej_1067660 crossref_primary_10_1007_s11032_024_01501_9 crossref_primary_10_1111_ppl_14044 crossref_primary_10_1021_acssuschemeng_4c07781 crossref_primary_10_1111_jipb_13215 crossref_primary_10_1016_j_coviro_2020_04_001 crossref_primary_10_1038_s41598_019_42731_8 crossref_primary_10_1016_j_plaphy_2024_108714 crossref_primary_10_1016_j_scienta_2022_111705 crossref_primary_10_1080_10406638_2023_2227316 crossref_primary_10_3390_stresses3010027 crossref_primary_10_1016_j_tplants_2020_02_002 crossref_primary_10_3390_metabo13050666 crossref_primary_10_1016_j_envres_2024_118664 crossref_primary_10_3390_agriculture15060605 crossref_primary_10_1111_nph_17776 crossref_primary_10_3389_fpls_2023_1146577 crossref_primary_10_1007_s11240_024_02711_x crossref_primary_10_1007_s42250_022_00501_6 crossref_primary_10_1111_jph_12938 crossref_primary_10_3390_microorganisms9051029 crossref_primary_10_1016_j_lwt_2025_117530 crossref_primary_10_1007_s41348_024_00950_w crossref_primary_10_1016_j_ecoenv_2020_111550 crossref_primary_10_1016_j_nantod_2023_101752 crossref_primary_10_3390_ijms21155514 crossref_primary_10_1111_ppl_13528 crossref_primary_10_3390_vaccines8030503 crossref_primary_10_1146_annurev_phyto_021621_120943 crossref_primary_10_1038_s41438_021_00468_4 crossref_primary_10_1016_j_ijbiomac_2021_05_097 crossref_primary_10_1007_s11101_024_10005_5 crossref_primary_10_1016_j_pbi_2022_102288 crossref_primary_10_3390_plants12162899 crossref_primary_10_1111_1462_2920_15356 crossref_primary_10_3389_fpls_2023_1124911 crossref_primary_10_1021_acs_jafc_3c01809 crossref_primary_10_1007_s12600_022_01010_5 crossref_primary_10_1016_j_scitotenv_2024_174577 crossref_primary_10_1021_acs_jafc_3c07350 crossref_primary_10_1007_s11101_022_09822_3 crossref_primary_10_2139_ssrn_4195425 crossref_primary_10_3390_ijms20163945 crossref_primary_10_1016_j_bbrc_2022_06_097 crossref_primary_10_1093_plcell_koaa052 crossref_primary_10_3390_microorganisms10081547 crossref_primary_10_3390_agronomy8080142 crossref_primary_10_1093_plphys_kiae302 crossref_primary_10_1093_plphys_kiae544 crossref_primary_10_1094_MPMI_09_19_0257_R crossref_primary_10_3389_fpls_2024_1385477 crossref_primary_10_3390_agronomy11061031 crossref_primary_10_1016_j_jaap_2024_106851 crossref_primary_10_1093_plphys_kiab021 crossref_primary_10_3390_ijms20071598 crossref_primary_10_1016_j_tplants_2020_01_004 crossref_primary_10_3390_horticulturae10030227 crossref_primary_10_1186_s12870_019_2063_9 crossref_primary_10_1007_s11103_024_01478_1 crossref_primary_10_3389_fpls_2021_745422 crossref_primary_10_3390_plants12213720 crossref_primary_10_1016_j_cbi_2021_109494 crossref_primary_10_1186_s12864_024_11143_y crossref_primary_10_1094_PDIS_12_22_2968_RE crossref_primary_10_1021_acs_jafc_3c06939 crossref_primary_10_1111_pce_14460 crossref_primary_10_1186_s12870_019_2158_3 |
Cites_doi | 10.1073/pnas.0307162100 10.1146/annurev.pp.43.060192.002255 10.1016/S0885-5765(05)80126-2 10.1016/S1360-1385(01)02186-0 10.1016/j.pmpp.2004.09.001 10.1038/35107108 10.1146/annurev.phyto.050908.135202 10.1094/MPMI-8-0863 10.3389/fpls.2014.00630 10.1146/annurev-arplant-042811-105606 10.1094/MPMI-19-1062 10.1016/j.celrep.2014.03.032 10.1186/s12915-017-0364-8 10.1126/science.261.5122.754 10.1016/0048-4059(75)90084-3 10.1038/nature05286 10.3389/fpls.2014.00004 10.1104/pp.113.4.1319 10.1105/tpc.010376 10.1105/tpc.11.8.1393 10.1111/j.1365-313X.2008.03618.x 10.1016/j.pbi.2014.04.006 10.1016/j.pbi.2015.08.008 10.1073/pnas.92.24.11312 10.1093/jxb/ers248 10.3389/fimmu.2016.00206 10.1111/tpj.12549 10.1105/tpc.110.082602 10.1038/s41598-017-02298-8 10.1016/j.chom.2015.07.005 10.1105/tpc.6.9.1191 10.3389/fpls.2014.00777 10.1073/pnas.86.7.2214 10.1126/science.250.4983.1002 10.1016/j.tplants.2015.01.005 10.1104/pp.108.119420 10.1016/j.tplants.2003.12.005 10.1104/pp.113.218156 10.1104/pp.17.00222 10.3389/fpls.2013.00088 10.1074/jbc.M806782200 10.1111/nph.14780 10.1104/pp.97.4.1342 10.1105/tpc.9.3.425 10.15252/embr.201643051 10.1111/j.1365-313X.2012.04981.x 10.1016/j.chom.2017.01.007 10.1016/0042-6822(61)90319-1 10.1016/S0092-8674(03)00429-X 10.1086/394440 10.1038/nri3141 10.1016/j.chom.2016.03.006 10.1046/j.1365-313X.2003.01954.x 10.1093/emboj/20.19.5400 10.1073/pnas.1511182112 10.1104/pp.107.106021 10.1126/science.1147113 10.1074/jbc.M109.092569 10.1371/journal.pgen.1006639 10.1371/journal.ppat.1005518 10.2307/3870006 10.1186/s12870-016-0771-y 10.1073/pnas.90.20.9533 10.3389/fpls.2013.00155 10.1371/journal.pgen.1004015 10.1042/BCJ20161069 10.1074/jbc.271.45.28492 10.1016/0042-6822(70)90395-8 10.1016/j.plantsci.2014.04.014 10.4161/psb.6.8.15843 10.1111/jipb.12537 10.3389/fpls.2013.00030 10.2174/1389203716666150330141638 10.1038/scientificamerican0191-84 10.1073/pnas.1005225107 10.1016/S0031-9422(97)00604-3 10.1371/journal.pgen.1000772 10.1038/nature21674 10.1016/j.cell.2018.02.049 10.1046/j.1365-313X.1996.10020281.x 10.1111/tpj.12464 10.1371/journal.ppat.1000970 10.1111/j.1365-313X.2007.03359.x 10.1104/pp.112.2.787 10.1038/nchembio.164 10.1099/0022-1317-23-1-1 10.1105/tpc.4.9.1131 10.1111/nph.14078 10.1111/tpj.12320 10.1007/s11103-005-5514-7 10.1094/MPMI-18-0913 10.1016/j.pbi.2014.05.012 10.1016/j.celrep.2012.05.008 10.1146/annurev.phyto.43.040204.135923 10.1021/jf404156x 10.1111/j.1365-313X.2011.04655.x 10.1126/science.1170025 10.1126/science.8266079 10.1126/science.250.4983.1004 10.1105/tpc.3.8.809 10.1105/tpc.112.103564 10.1073/pnas.92.14.6602 10.1073/pnas.0409227102 10.3389/fpls.2016.00566 10.1105/tpc.105.033910 10.1093/jxb/ert375 10.1105/tpc.000885 10.1111/tpj.12803 10.1016/j.pbi.2017.04.004 10.1146/annurev-phyto-080614-120132 10.1104/pp.010879 10.1105/tpc.15.00371 10.1038/nature11162 10.1111/j.1365-313X.2007.03067.x 10.1074/jbc.M806662200 10.1111/tpj.12016 10.1104/pp.111.187773 10.1146/annurev-phyto-073009-114447 10.1371/journal.pone.0143447 10.1105/tpc.15.00496 10.1074/jbc.M610524200 10.2119/molmed.2015.00148 10.1104/pp.54.6.899 10.1186/1471-2229-11-89 10.1126/science.1156970 10.1371/journal.ppat.1006376 10.1016/j.chom.2013.12.002 10.3389/fpls.2017.01720 10.1016/0042-6822(79)90019-9 10.1093/jxb/ert026 10.3389/fpls.2015.00171 10.1111/tpj.13141 10.1073/pnas.88.18.8179 10.1038/ncomms13099 10.1111/j.1364-3703.2005.00279.x 10.1371/journal.pgen.1000545 10.1111/nph.14302 10.1126/science.1211592 10.1094/MPMI-23-9-1151 10.1104/pp.110.157370 10.1179/030801897789765129 10.1371/journal.pone.0066530 10.1073/pnas.1612635113 10.1016/j.chom.2013.11.006 10.3389/fpls.2015.00170 10.1126/science.1211641 10.1016/j.cell.2009.03.038 10.1073/pnas.92.16.7143 10.1016/j.pbi.2017.04.021 10.1094/MPMI-10-16-0208-R 10.1126/science.266.5188.1247 10.1371/journal.pone.0089799 10.1111/tpj.12719 10.3389/fpls.2015.00228 10.1105/tpc.7.10.1691 10.1094/MPMI-06-17-0128-FI 10.3389/fpls.2014.00611 10.1038/ncomms1926 10.3389/fpls.2014.00697 10.1093/jxb/err031 10.1371/journal.ppat.1002318 10.1111/tpj.12114 10.1016/j.celrep.2013.03.030 10.1105/tpc.009159 10.1016/j.tplants.2014.10.002 10.1094/MPMI-23-4-0394 10.1016/j.envexpbot.2009.08.005 10.1111/j.1365-313X.2008.03747.x 10.1016/j.celrep.2014.10.069 10.1016/j.semcdb.2016.06.005 10.1104/pp.103.031039 10.1094/MPMI.1997.10.1.69 10.2307/3869945 10.1038/ng.798 10.1111/j.1365-313X.1992.tb00133.x 10.1016/j.pbi.2005.05.010 10.1016/j.cell.2006.02.008 10.1046/j.1365-313x.2000.00870.x 10.3389/fpls.2015.00462 10.1016/j.tplants.2012.05.011 10.1093/genetics/143.2.973 10.1094/MPMI-23-1-0082 10.1104/pp.54.6.904 10.1094/MPMI-06-14-0187-R 10.1016/j.tplants.2013.04.004 10.1105/tpc.109.066464 10.1073/pnas.1302702110 10.1199/tab.0156 10.1093/jxb/eru109 10.1094/MPMI-09-14-0259-R 10.1007/BF00016484 10.3389/fpls.2015.00235 10.1146/annurev-cellbio-092910-154055 10.1105/tpc.16.00486 10.1105/tpc.16.00898 10.1073/pnas.182427699 10.1080/07352689991309397 |
ContentType | Journal Article |
Copyright | Copyright American Phytopathological Society Sep 2018 |
Copyright_xml | – notice: Copyright American Phytopathological Society Sep 2018 |
DBID | AAYXX CITATION NPM K9. 7X8 7S9 L.6 |
DOI | 10.1094/MPMI-03-18-0067-CR |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) AGRICOLA PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1943-7706 |
EndPage | 888 |
ExternalDocumentID | 29781762 10_1094_MPMI_03_18_0067_CR |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GrantInformation_xml | – fundername: National Science Foundation grantid: IOS-0820405 |
GroupedDBID | --- 123 29M 2WC 53G 7X2 7X7 88E 8AO 8CJ 8FE 8FH 8FI 8FJ 8FW 8R4 8R5 AAHBH AAYJJ AAYXX ABDNZ ABRJW ABUWG ACGFO ACPRK ACYGS ADBBV AENEX AEUYN AFKRA AFRAH ALIPV ALMA_UNASSIGNED_HOLDINGS ATCPS BAWUL BBNVY BENPR BES BHPHI BPHCQ BVXVI C1A CCPQU CITATION CS3 D1J DIK DU5 E3Z EBS EJD F5P FRP FYUFA GROUPED_DOAJ HCIFZ HMCUK HYO LK8 M0K M1P M7P MVM OK1 P2P PHGZM PHGZT PQQKQ PROAC PSQYO Q2X RPS S0X TR2 UKHRP ~KM 3V. 88A M0L NPM YCJ K9. 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c474t-6a9a513cf86ce9b166c8b3ac8bf42acc051005415b1cf89cf12c6b1f382112553 |
ISSN | 0894-0282 |
IngestDate | Thu Jul 10 17:35:03 EDT 2025 Fri Jul 11 03:17:43 EDT 2025 Mon Jun 30 10:56:17 EDT 2025 Wed Feb 19 02:42:01 EST 2025 Tue Jul 01 00:38:51 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c474t-6a9a513cf86ce9b166c8b3ac8bf42acc051005415b1cf89cf12c6b1f382112553 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1315-5920 |
OpenAccessLink | https://apsjournals.apsnet.org/doi/pdf/10.1094/MPMI-03-18-0067-CR |
PMID | 29781762 |
PQID | 2114211113 |
PQPubID | 37269 |
PageCount | 18 |
ParticipantIDs | proquest_miscellaneous_2153634504 proquest_miscellaneous_2042238167 proquest_journals_2114211113 pubmed_primary_29781762 crossref_citationtrail_10_1094_MPMI_03_18_0067_CR crossref_primary_10_1094_MPMI_03_18_0067_CR |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-00 20180901 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: St. Paul |
PublicationSubtitle | MPMI |
PublicationTitle | Molecular plant-microbe interactions |
PublicationTitleAlternate | Mol Plant Microbe Interact |
PublicationYear | 2018 |
Publisher | American Phytopathological Society |
Publisher_xml | – name: American Phytopathological Society |
References | b10 b11 b14 b13 b16 b15 b18 b17 b19 b1 b2 b3 b4 b5 b6 b7 b8 b9 b21 b20 b23 b22 b25 b24 b27 b26 b29 b28 Kombrink E. (b81) 1996 b208 b205 b204 b201 b200 b30 b203 b202 b32 b31 b34 b111 b33 b110 b36 b35 b38 b37 b39 b117 b116 b119 b118 b113 b112 b41 b115 b40 b114 b43 b42 b45 b44 b46 b49 b48 b109 b106 b105 b108 b107 b50 b102 b101 b52 b104 b51 b54 b131 b53 b130 b56 b133 b55 b132 b58 b59 Métraux J. P. (b103) 1993 b139 b138 b61 b135 b60 b134 b63 b137 b62 b136 b65 b120 b64 b67 b122 b66 b121 b69 b68 b128 b127 b70 b129 b72 b124 b71 b123 b74 b126 b73 b125 b76 b153 b75 b152 b78 b155 b77 b154 Glazebrook J. (b57) 1996; 143 b79 b151 b150 b80 b83 b157 b82 b156 b85 b159 b84 b158 b142 b86 b141 b89 b144 b88 b143 b140 b90 b149 b92 b91 b94 b146 b93 b145 b96 b148 b95 b147 b98 b175 b97 b174 b177 b99 b176 b171 b170 b173 b172 Wang X. (b182) 2017; 8 b178 b164 b163 b166 b165 b160 b162 b161 b168 b167 b169 b197 b196 b199 b198 b193 b192 b195 b191 b190 b186 b185 b188 b187 b181 b184 b183 b180 b189 |
References_xml | – ident: b84 doi: 10.1073/pnas.0307162100 – ident: b129 doi: 10.1146/annurev.pp.43.060192.002255 – ident: b152 doi: 10.1016/S0885-5765(05)80126-2 – ident: b62 doi: 10.1016/S1360-1385(01)02186-0 – ident: b114 doi: 10.1016/j.pmpp.2004.09.001 – ident: b191 doi: 10.1038/35107108 – ident: b174 doi: 10.1146/annurev.phyto.050908.135202 – start-page: 483 volume-title: Modern Fungicides and Antifungal Compounds year: 1996 ident: b81 – ident: b85 doi: 10.1094/MPMI-8-0863 – ident: b160 doi: 10.3389/fpls.2014.00630 – ident: b48 doi: 10.1146/annurev-arplant-042811-105606 – ident: b26 doi: 10.1094/MPMI-19-1062 – ident: b178 doi: 10.1016/j.celrep.2014.03.032 – ident: b34 doi: 10.1186/s12915-017-0364-8 – ident: b50 doi: 10.1126/science.261.5122.754 – ident: b166 doi: 10.1016/0048-4059(75)90084-3 – ident: b72 doi: 10.1038/nature05286 – ident: b108 doi: 10.3389/fpls.2014.00004 – ident: b41 doi: 10.1104/pp.113.4.1319 – ident: b115 doi: 10.1105/tpc.010376 – ident: b116 doi: 10.1105/tpc.11.8.1393 – ident: b175 doi: 10.1111/j.1365-313X.2008.03618.x – ident: b195 doi: 10.1016/j.pbi.2014.04.006 – ident: b1 doi: 10.1016/j.pbi.2015.08.008 – ident: b42 doi: 10.1073/pnas.92.24.11312 – ident: b3 doi: 10.1093/jxb/ers248 – ident: b78 doi: 10.3389/fimmu.2016.00206 – ident: b173 doi: 10.1111/tpj.12549 – ident: b161 doi: 10.1105/tpc.110.082602 – ident: b106 doi: 10.1038/s41598-017-02298-8 – ident: b139 doi: 10.1016/j.chom.2015.07.005 – ident: b169 doi: 10.1105/tpc.6.9.1191 – ident: b99 doi: 10.3389/fpls.2014.00777 – ident: b130 doi: 10.1073/pnas.86.7.2214 – ident: b96 doi: 10.1126/science.250.4983.1002 – ident: b94 doi: 10.1016/j.tplants.2015.01.005 – ident: b54 doi: 10.1104/pp.108.119420 – ident: b112 doi: 10.1016/j.tplants.2003.12.005 – ident: b141 doi: 10.1104/pp.113.218156 – ident: b59 doi: 10.1104/pp.17.00222 – ident: b63 doi: 10.3389/fpls.2013.00088 – ident: b183 doi: 10.1074/jbc.M806782200 – ident: b158 doi: 10.1111/nph.14780 – ident: b131 doi: 10.1104/pp.97.4.1342 – ident: b138 doi: 10.1105/tpc.9.3.425 – ident: b105 doi: 10.15252/embr.201643051 – ident: b14 doi: 10.1111/j.1365-313X.2012.04981.x – ident: b198 doi: 10.1016/j.chom.2017.01.007 – ident: b137 doi: 10.1016/0042-6822(61)90319-1 – ident: b111 doi: 10.1016/S0092-8674(03)00429-X – ident: b18 doi: 10.1086/394440 – ident: b153 doi: 10.1038/nri3141 – ident: b88 doi: 10.1016/j.chom.2016.03.006 – ident: b102 doi: 10.1046/j.1365-313X.2003.01954.x – ident: b44 doi: 10.1093/emboj/20.19.5400 – ident: b203 doi: 10.1073/pnas.1511182112 – ident: b202 doi: 10.1104/pp.107.106021 – ident: b124 doi: 10.1126/science.1147113 – ident: b4 doi: 10.1074/jbc.M109.092569 – ident: b65 doi: 10.1371/journal.pgen.1006639 – ident: b20 doi: 10.1371/journal.ppat.1005518 – ident: b172 doi: 10.2307/3870006 – ident: b171 doi: 10.1186/s12870-016-0771-y – ident: b16 doi: 10.1073/pnas.90.20.9533 – volume: 8 start-page: 156 year: 2017 ident: b182 publication-title: Front. Plant Sci. – ident: b37 doi: 10.3389/fpls.2013.00155 – ident: b164 doi: 10.1371/journal.pgen.1004015 – ident: b95 doi: 10.1042/BCJ20161069 – ident: b43 doi: 10.1074/jbc.271.45.28492 – ident: b167 doi: 10.1016/0042-6822(70)90395-8 – ident: b83 doi: 10.1016/j.plantsci.2014.04.014 – ident: b79 doi: 10.4161/psb.6.8.15843 – ident: b150 doi: 10.1111/jipb.12537 – ident: b145 doi: 10.3389/fpls.2013.00030 – ident: b196 doi: 10.2174/1389203716666150330141638 – ident: b184 doi: 10.1038/scientificamerican0191-84 – ident: b201 doi: 10.1073/pnas.1005225107 – ident: b185 doi: 10.1016/S0031-9422(97)00604-3 – ident: b165 doi: 10.1371/journal.pgen.1000772 – ident: b188 doi: 10.1038/nature21674 – ident: b208 doi: 10.1016/j.cell.2018.02.049 – ident: b122 doi: 10.1046/j.1365-313X.1996.10020281.x – ident: b143 doi: 10.1111/tpj.12464 – ident: b53 doi: 10.1371/journal.ppat.1000970 – ident: b71 doi: 10.1111/j.1365-313X.2007.03359.x – ident: b109 doi: 10.1104/pp.112.2.787 – ident: b126 doi: 10.1038/nchembio.164 – ident: b55 doi: 10.1099/0022-1317-23-1-1 – ident: b133 doi: 10.1105/tpc.4.9.1131 – ident: b148 doi: 10.1111/nph.14078 – ident: b110 doi: 10.1111/tpj.12320 – ident: b25 doi: 10.1007/s11103-005-5514-7 – ident: b132 doi: 10.1094/MPMI-18-0913 – ident: b186 doi: 10.1016/j.pbi.2014.05.012 – ident: b192 doi: 10.1016/j.celrep.2012.05.008 – ident: b56 doi: 10.1146/annurev.phyto.43.040204.135923 – ident: b58 doi: 10.1021/jf404156x – ident: b180 doi: 10.1111/j.1365-313X.2011.04655.x – ident: b73 doi: 10.1126/science.1170025 – ident: b17 doi: 10.1126/science.8266079 – ident: b104 doi: 10.1126/science.250.4983.1004 – ident: b193 doi: 10.1105/tpc.3.8.809 – ident: b113 doi: 10.1105/tpc.112.103564 – ident: b31 doi: 10.1073/pnas.92.14.6602 – ident: b46 doi: 10.1073/pnas.0409227102 – ident: b70 doi: 10.3389/fpls.2016.00566 – ident: b45 doi: 10.1105/tpc.105.033910 – ident: b5 doi: 10.1093/jxb/ert375 – ident: b157 doi: 10.1105/tpc.000885 – ident: b181 doi: 10.1111/tpj.12803 – ident: b8 doi: 10.1016/j.pbi.2017.04.004 – ident: b27 doi: 10.1146/annurev-phyto-080614-120132 – ident: b66 doi: 10.1104/pp.010879 – ident: b86 doi: 10.1105/tpc.15.00371 – ident: b49 doi: 10.1038/nature11162 – ident: b107 doi: 10.1111/j.1365-313X.2007.03067.x – ident: b120 doi: 10.1074/jbc.M806662200 – ident: b163 doi: 10.1111/tpj.12016 – ident: b92 doi: 10.1104/pp.111.187773 – ident: b136 doi: 10.1146/annurev-phyto-073009-114447 – ident: b21 doi: 10.1371/journal.pone.0143447 – ident: b6 doi: 10.1105/tpc.15.00496 – ident: b123 doi: 10.1074/jbc.M610524200 – ident: b22 doi: 10.2119/molmed.2015.00148 – ident: b23 doi: 10.1104/pp.54.6.899 – ident: b168 doi: 10.1186/1471-2229-11-89 – ident: b159 doi: 10.1126/science.1156970 – ident: b68 doi: 10.1371/journal.ppat.1006376 – ident: b76 doi: 10.1016/j.chom.2013.12.002 – ident: b80 doi: 10.3389/fpls.2017.01720 – ident: b189 doi: 10.1016/0042-6822(79)90019-9 – ident: b177 doi: 10.1093/jxb/ert026 – ident: b64 doi: 10.3389/fpls.2015.00171 – ident: b40 doi: 10.1111/tpj.13141 – ident: b15 doi: 10.1073/pnas.88.18.8179 – ident: b90 doi: 10.1038/ncomms13099 – ident: b119 doi: 10.1111/j.1364-3703.2005.00279.x – ident: b170 doi: 10.1371/journal.pgen.1000545 – ident: b29 doi: 10.1111/nph.14302 – ident: b7 doi: 10.1126/science.1211592 – ident: b101 doi: 10.1094/MPMI-23-9-1151 – ident: b67 doi: 10.1104/pp.110.157370 – ident: b125 doi: 10.1179/030801897789765129 – ident: b69 doi: 10.1371/journal.pone.0066530 – ident: b187 doi: 10.1073/pnas.1612635113 – ident: b176 doi: 10.1016/j.chom.2013.11.006 – ident: b9 doi: 10.3389/fpls.2015.00170 – ident: b61 doi: 10.1126/science.1211641 – start-page: 191 volume-title: Biotechnology in Plant Disease Control year: 1993 ident: b103 – ident: b155 doi: 10.1016/j.cell.2009.03.038 – ident: b28 doi: 10.1073/pnas.92.16.7143 – ident: b147 doi: 10.1016/j.pbi.2017.04.021 – ident: b98 doi: 10.1094/MPMI-10-16-0208-R – ident: b32 doi: 10.1126/science.266.5188.1247 – ident: b91 doi: 10.1371/journal.pone.0089799 – ident: b199 doi: 10.1111/tpj.12719 – ident: b52 doi: 10.3389/fpls.2015.00228 – ident: b149 doi: 10.1105/tpc.7.10.1691 – ident: b128 doi: 10.1094/MPMI-06-17-0128-FI – ident: b30 doi: 10.3389/fpls.2014.00611 – ident: b117 doi: 10.1038/ncomms1926 – ident: b142 doi: 10.3389/fpls.2014.00697 – ident: b135 doi: 10.1093/jxb/err031 – ident: b205 doi: 10.1371/journal.ppat.1002318 – ident: b2 doi: 10.1111/tpj.12114 – ident: b197 doi: 10.1016/j.celrep.2013.03.030 – ident: b154 doi: 10.1105/tpc.009159 – ident: b156 doi: 10.1016/j.tplants.2014.10.002 – ident: b140 doi: 10.1094/MPMI-23-4-0394 – ident: b60 doi: 10.1016/j.envexpbot.2009.08.005 – ident: b204 doi: 10.1111/j.1365-313X.2008.03747.x – ident: b51 doi: 10.1016/j.celrep.2014.10.069 – ident: b146 doi: 10.1016/j.semcdb.2016.06.005 – ident: b118 doi: 10.1104/pp.103.031039 – ident: b144 doi: 10.1094/MPMI.1997.10.1.69 – ident: b10 doi: 10.2307/3869945 – ident: b13 doi: 10.1038/ng.798 – ident: b97 doi: 10.1111/j.1365-313X.1992.tb00133.x – ident: b190 doi: 10.1016/j.pbi.2005.05.010 – ident: b19 doi: 10.1016/j.cell.2006.02.008 – ident: b38 doi: 10.1046/j.1365-313x.2000.00870.x – ident: b74 doi: 10.3389/fpls.2015.00462 – ident: b33 doi: 10.1016/j.tplants.2012.05.011 – volume: 143 start-page: 973 year: 1996 ident: b57 publication-title: Genetics doi: 10.1093/genetics/143.2.973 – ident: b93 doi: 10.1094/MPMI-23-1-0082 – ident: b24 doi: 10.1104/pp.54.6.904 – ident: b11 doi: 10.1094/MPMI-06-14-0187-R – ident: b121 doi: 10.1016/j.tplants.2013.04.004 – ident: b89 doi: 10.1105/tpc.109.066464 – ident: b200 doi: 10.1073/pnas.1302702110 – ident: b36 doi: 10.1199/tab.0156 – ident: b75 doi: 10.1093/jxb/eru109 – ident: b162 doi: 10.1094/MPMI-09-14-0259-R – ident: b77 doi: 10.1007/BF00016484 – ident: b82 doi: 10.3389/fpls.2015.00235 – ident: b127 doi: 10.1146/annurev-cellbio-092910-154055 – ident: b39 doi: 10.1105/tpc.16.00486 – ident: b134 doi: 10.1105/tpc.16.00898 – ident: b151 doi: 10.1073/pnas.182427699 – ident: b35 doi: 10.1080/07352689991309397 |
SSID | ssj0019655 |
Score | 2.6637325 |
SecondaryResourceType | review_article |
Snippet | This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 871 |
SubjectTerms | abiotic stress Acid resistance adaptive immunity Crosstalk growth and development Hormones Immune response Immune system Immunity Metabolism Pathogens Plant growth Plant hormones Plant immunity Proteins Receptors researchers Salicylic acid Signal transduction Signaling systemic acquired resistance |
Title | Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29781762 https://www.proquest.com/docview/2114211113 https://www.proquest.com/docview/2042238167 https://www.proquest.com/docview/2153634504 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKEBIcEIxfhYGCxK3LaGLHTbhVLVW70alim9jNil1nq9Q2VZcdypk_nPdiOykaVMDFqlK3sfy-PH-O33sfIR_ijMVTBduSKEtiHyh125c0k35CM8CQ5NNMYjby-JQPL9jxZXTZaPzYilq6LeSR-v7bvJL_sSpcA7tiluw_WLb6U7gAn8G-0IKFof0rG5ty4zPV6ioM6NWYaniDhNClAZylWPV3XvaYlWrOk9QmeZi0Ixe8OahKizimOna6uSg0vYTdMUbuSV3Wl1ibbIj6HGiOwbRXdcp6HS_cu86NLvYGRY2-5XnFnPViZQ-t-i7iIhmjJGKru3Cl-u3riCCu4q2KrQwA9N_XmyJHVeXKh9sw1G0Hh2WJQyM-dKSNA04YBcbf5tse2q4TBonJlruNjXzLnWUA9qxgu8VqMcNwMRwkLMq-WteLnjvoH3bPxKQ_EF9Gpyf3yP0QNhuog9EfnVRnUQkvtXOr0drUK7jHx7t3-JXe_GHPUnKX8yfksd10eF2DoKekoZf75FH3am0Lr-h98sCIkm6ekWOHKs-hyqtR5QFYvApVHqLqk4eYOvQsog7LLgZPz8nF4PN5b-hbxQ1fsQ4rfJ4maRRQlcVc6UQGnKtY0hSajIWpUujBgeMHkQygT6KyIFRcBhmNQ-DtUURfkL1lvtSviKeSaEp1lGrFKEvDJNWpBIdBKe9M2_GUN0ngJkooW44eVVHmwoRFMDGejEeiTUUQC5xc0fvaJK3qNytTjGVn7wM3_8I-tDcixNxxpAm0Sd5XX4NLxXOydKnzW-iDdfHwQL2zow8wBU5Z1GZN8tLYthpSiHXkgGS83j2AN-Rh_QAdkL1ifavfAsMt5LsSgD8BeeylAA |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systemic+Acquired+Resistance+and+Salicylic+Acid%3A+Past%2C+Present%2C+and+Future&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Klessig%2C+Daniel+F&rft.au=Choi%2C+Hyong+Woo&rft.au=Dempsey%2C+D%E2%80%99Maris+Amick&rft.date=2018-09-01&rft.pub=American+Phytopathological+Society&rft.issn=0894-0282&rft.eissn=1943-7706&rft.volume=31&rft.issue=9&rft.spage=871&rft_id=info:doi/10.1094%2Fmpmi-03-18-0067-cr&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon |