Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future

This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defense...

Full description

Saved in:
Bibliographic Details
Published inMolecular plant-microbe interactions Vol. 31; no. 9; pp. 871 - 888
Main Authors Klessig, Daniel F., Choi, Hyong Woo, Dempsey, D’Maris Amick
Format Journal Article
LanguageEnglish
Published United States American Phytopathological Society 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen.
AbstractList This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen.
This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen.This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen.
This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions. Salicylic acid (SA) is a critical plant hormone that regulates numerous aspects of plant growth and development as well as the activation of defenses against biotic and abiotic stress. Here, we present a historical overview of the progress that has been made to date in elucidating the role of SA in signaling plant immune responses. The ability of plants to develop acquired immunity after pathogen infection was first proposed in 1933. However, most of our knowledge about plant immune signaling was generated over the last three decades, following the discovery that SA is an endogenous defense signal. During this timeframe, researchers have identified i) two pathways through which SA can be synthesized, ii) numerous proteins that regulate SA synthesis and metabolism, and iii) some of the signaling components that function downstream of SA, including a large number of SA targets or receptors. In addition, it has become increasingly evident that SA does not signal immune responses by itself but, rather, as part of an intricate network that involves many other plant hormones. Future efforts to develop a comprehensive understanding of SA-mediated immune signaling will therefore need to close knowledge gaps that exist within the SA pathway itself as well as clarify how crosstalk among the different hormone signaling pathways leads to an immune response that is both robust and optimized for maximal efficacy, depending on the identity of the attacking pathogen.
Author Dempsey, D’Maris Amick
Choi, Hyong Woo
Klessig, Daniel F.
Author_xml – sequence: 1
  givenname: Daniel F.
  orcidid: 0000-0002-1315-5920
  surname: Klessig
  fullname: Klessig, Daniel F.
  organization: Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, U.S.A
– sequence: 2
  givenname: Hyong Woo
  surname: Choi
  fullname: Choi, Hyong Woo
  organization: Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, U.S.A
– sequence: 3
  givenname: D’Maris Amick
  surname: Dempsey
  fullname: Dempsey, D’Maris Amick
  organization: Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, U.S.A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29781762$$D View this record in MEDLINE/PubMed
BookMark eNqF0btOHDEUBmArAoUF8gIp0Eg0KTCc49t46NAq3ARitSS15fF6JKPZGbA9xb59vAEaCih8Kb7zS_a_T3aGcfCE_EQ4RWjE2f3i_oYCp6gpgKrpfPmNzLARnNY1qB0yA90ICkyzPbKf0hMANkrK72SPNbXGWrEZuX3cpOzXwVUX7mUK0a-qpU8hZTs4X9lhVT3aPrhN_1-E1Xm1sCmfVIvokx_KZUsupzxFf0h2O9sn_-PtPCB_L3__mV_Tu4erm_nFHXWiFpkq21iJ3HVaOd-0qJTTLbdl6wSzzoFEAClQtlhM4zpkTrXYcc0QmZT8gPx6zX2O48vkUzbrkJzvezv4cUqGoeSKCwniawqCMa5R1YUef6BP4xSH8pASiKIsRF7U0Zua2rVfmecY1jZuzPuHFqBfgYtjStF3xoVscxiHHG3oDYLZdme23RngBrXZdmfmyzLKPoy-p38y9A_YrpmY
CitedBy_id crossref_primary_10_1007_s43938_025_00078_9
crossref_primary_10_1007_s10658_021_02263_2
crossref_primary_10_3390_biology11040619
crossref_primary_10_1016_j_heliyon_2025_e42342
crossref_primary_10_5423_PPJ_RW_12_2019_0295
crossref_primary_10_1016_j_biocontrol_2020_104240
crossref_primary_10_29133_yyutbd_1088049
crossref_primary_10_3389_frans_2022_1020111
crossref_primary_10_3390_horticulturae8010005
crossref_primary_10_7717_peerj_9960
crossref_primary_10_1515_opag_2022_0267
crossref_primary_10_1016_j_pestbp_2023_105512
crossref_primary_10_1093_jxb_erz222
crossref_primary_10_1111_nph_18558
crossref_primary_10_1093_jxb_eraa317
crossref_primary_10_1016_j_molp_2023_12_005
crossref_primary_10_3390_ijms20246365
crossref_primary_10_1038_s41467_020_20764_2
crossref_primary_10_1016_j_nanoso_2023_100974
crossref_primary_10_1093_pcp_pcz106
crossref_primary_10_1016_j_ijbiomac_2020_10_111
crossref_primary_10_1007_s11356_025_35952_0
crossref_primary_10_3390_agronomy14040827
crossref_primary_10_1016_j_postharvbio_2024_112866
crossref_primary_10_1016_j_plantsci_2020_110472
crossref_primary_10_1242_dev_201158
crossref_primary_10_1186_s12870_023_04391_9
crossref_primary_10_3389_fpls_2022_982715
crossref_primary_10_3390_biom14030319
crossref_primary_10_12677_AMB_2024_131002
crossref_primary_10_3389_fpls_2019_01115
crossref_primary_10_1094_MPMI_03_19_0066_R
crossref_primary_10_1094_MPMI_03_19_0089_R
crossref_primary_10_3390_ijms25137255
crossref_primary_10_3389_fpls_2022_1086057
crossref_primary_10_1111_nph_17442
crossref_primary_10_1111_nph_16111
crossref_primary_10_17660_ActaHortic_2023_1362_41
crossref_primary_10_3390_ijms232012217
crossref_primary_10_1016_j_pmpp_2025_102611
crossref_primary_10_1093_jxb_erac070
crossref_primary_10_1109_ACCESS_2019_2912114
crossref_primary_10_1371_journal_pone_0237975
crossref_primary_10_1007_s11104_022_05597_w
crossref_primary_10_1016_j_plaphy_2021_10_011
crossref_primary_10_1016_j_pbi_2020_101987
crossref_primary_10_1016_j_micpath_2024_107047
crossref_primary_10_3389_fpls_2023_1173695
crossref_primary_10_1016_j_envexpbot_2020_104117
crossref_primary_10_17660_ActaHortic_2024_1402_11
crossref_primary_10_3389_fpls_2023_1196456
crossref_primary_10_1590_2447_536x_v30_e242697
crossref_primary_10_3389_fmicb_2018_01596
crossref_primary_10_1007_s11829_020_09776_3
crossref_primary_10_1093_jxb_erab531
crossref_primary_10_1007_s00425_020_03370_w
crossref_primary_10_1111_pbi_13697
crossref_primary_10_3390_agriculture13040853
crossref_primary_10_1071_BT19124
crossref_primary_10_1016_j_plantsci_2022_111547
crossref_primary_10_1093_plcell_koae100
crossref_primary_10_3390_agronomy11081621
crossref_primary_10_1007_s10811_023_02933_0
crossref_primary_10_1186_s12870_020_2245_5
crossref_primary_10_1016_j_stress_2022_100103
crossref_primary_10_3390_plants11233365
crossref_primary_10_1016_j_plgene_2020_100264
crossref_primary_10_1016_j_scitotenv_2022_156641
crossref_primary_10_3390_jof7050341
crossref_primary_10_1094_PHP_09_23_0078_MR
crossref_primary_10_1016_j_scitotenv_2021_152840
crossref_primary_10_3390_biom10020341
crossref_primary_10_3390_ijms23137038
crossref_primary_10_3390_jof9121169
crossref_primary_10_1007_s00299_021_02732_2
crossref_primary_10_1094_PHYTO_12_21_0496_R
crossref_primary_10_1093_jxb_erae394
crossref_primary_10_32604_phyton_2022_023733
crossref_primary_10_1007_s10725_021_00794_6
crossref_primary_10_1111_plb_13030
crossref_primary_10_1016_j_cj_2022_02_005
crossref_primary_10_3390_ijms221910388
crossref_primary_10_1002_ps_5709
crossref_primary_10_1109_JSEN_2021_3113303
crossref_primary_10_3389_fpls_2021_779597
crossref_primary_10_3389_fpls_2021_672552
crossref_primary_10_1007_s10658_022_02469_y
crossref_primary_10_1128_mBio_03518_20
crossref_primary_10_4236_ajps_2020_118094
crossref_primary_10_1007_s00299_020_02658_1
crossref_primary_10_1094_MPMI_34_4
crossref_primary_10_1016_j_heliyon_2023_e13825
crossref_primary_10_3390_f11060705
crossref_primary_10_3390_f12081072
crossref_primary_10_1111_ppl_13596
crossref_primary_10_17660_ActaHortic_2023_1367_26
crossref_primary_10_3390_microorganisms10122516
crossref_primary_10_1042_EBC20210090
crossref_primary_10_3390_genes11091000
crossref_primary_10_2174_1389202922666210219113220
crossref_primary_10_1016_j_pbi_2021_102050
crossref_primary_10_1016_S2095_3119_20_63568_7
crossref_primary_10_3390_plants14020208
crossref_primary_10_1093_treephys_tpac088
crossref_primary_10_1007_s10142_023_01219_5
crossref_primary_10_1021_acschembio_2c00322
crossref_primary_10_3390_molecules25030540
crossref_primary_10_3390_plants13111490
crossref_primary_10_3390_cells7120252
crossref_primary_10_1038_s41396_023_01399_9
crossref_primary_10_17660_ActaHortic_2024_1404_63
crossref_primary_10_3390_insects15060404
crossref_primary_10_1007_s41348_024_00878_1
crossref_primary_10_1007_s00425_024_04355_9
crossref_primary_10_1016_j_jplph_2018_10_020
crossref_primary_10_1093_hr_uhab016
crossref_primary_10_2478_fhort_2021_0029
crossref_primary_10_3390_ijms22094938
crossref_primary_10_1016_j_plantsci_2019_110351
crossref_primary_10_29235_1029_8940_2020_65_3_263_274
crossref_primary_10_3390_agriculture15030264
crossref_primary_10_1002_smll_202205687
crossref_primary_10_1371_journal_pone_0227608
crossref_primary_10_3390_ijms23031502
crossref_primary_10_3389_fagro_2021_781027
crossref_primary_10_1007_s00425_018_03069_z
crossref_primary_10_1016_j_pestbp_2024_105896
crossref_primary_10_3390_agronomy11071341
crossref_primary_10_3390_bioengineering10111244
crossref_primary_10_3390_agronomy12123053
crossref_primary_10_1016_j_phytol_2023_08_010
crossref_primary_10_1007_s00299_021_02729_x
crossref_primary_10_1111_nph_16953
crossref_primary_10_1016_j_bioorg_2021_105248
crossref_primary_10_1093_plphys_kiae148
crossref_primary_10_1002_ps_6025
crossref_primary_10_1016_j_pmpp_2020_101483
crossref_primary_10_1007_s42360_024_00800_7
crossref_primary_10_1111_tpj_17242
crossref_primary_10_18016_ksutarimdoga_vi_683962
crossref_primary_10_1111_nph_18562
crossref_primary_10_1186_s12870_020_02769_7
crossref_primary_10_1126_science_aaw1720
crossref_primary_10_1016_j_radmp_2022_01_005
crossref_primary_10_1038_s41598_023_37041_z
crossref_primary_10_3389_fpls_2021_721193
crossref_primary_10_1016_j_chemosphere_2024_143397
crossref_primary_10_1016_j_pbi_2019_02_006
crossref_primary_10_1111_mpp_12906
crossref_primary_10_1016_j_plaphy_2020_04_034
crossref_primary_10_1016_j_molp_2019_11_001
crossref_primary_10_3389_fpls_2021_644870
crossref_primary_10_1016_j_plaphy_2020_10_026
crossref_primary_10_1016_j_cej_2024_149652
crossref_primary_10_3390_plants12071447
crossref_primary_10_1038_s41598_021_83067_6
crossref_primary_10_1038_s41598_019_47526_5
crossref_primary_10_1111_nph_16824
crossref_primary_10_3389_fpls_2019_01733
crossref_primary_10_3390_ijms21041443
crossref_primary_10_1007_s00344_024_11291_1
crossref_primary_10_1038_s41598_023_35205_5
crossref_primary_10_1094_MPMI_05_22_0104_R
crossref_primary_10_3390_ijms241713201
crossref_primary_10_1094_PHYTO_01_21_0017_R
crossref_primary_10_1016_j_jplph_2023_154041
crossref_primary_10_1094_MPMI_10_19_0302_R
crossref_primary_10_3390_ijms20102538
crossref_primary_10_1007_s00344_022_10613_5
crossref_primary_10_1007_s00344_020_10194_1
crossref_primary_10_1021_acsagscitech_1c00196
crossref_primary_10_1094_MPMI_01_19_0013_R
crossref_primary_10_1007_s11627_023_10335_7
crossref_primary_10_1016_j_tplants_2021_11_008
crossref_primary_10_1007_s42161_023_01527_6
crossref_primary_10_3389_fpls_2023_1125551
crossref_primary_10_3390_ijms25010569
crossref_primary_10_3389_fpls_2023_1217771
crossref_primary_10_1094_MPMI_09_19_0250_R
crossref_primary_10_1094_MPMI_10_20_0291_R
crossref_primary_10_2139_ssrn_4000311
crossref_primary_10_1039_D2MO00251E
crossref_primary_10_3390_ijms21207482
crossref_primary_10_3390_ijms21155285
crossref_primary_10_1080_07388551_2019_1710459
crossref_primary_10_1007_s42976_022_00272_3
crossref_primary_10_1093_plcell_koaa044
crossref_primary_10_1080_15592324_2023_2270835
crossref_primary_10_1016_j_scienta_2025_114059
crossref_primary_10_3390_md20010001
crossref_primary_10_15377_2409_9813_2023_10_1
crossref_primary_10_61186_jesi_44_1_5
crossref_primary_10_3390_ijms24021480
crossref_primary_10_3390_plants8080290
crossref_primary_10_1016_j_foodchem_2024_139545
crossref_primary_10_1094_MPMI_09_19_0262_R
crossref_primary_10_1016_j_jare_2023_06_011
crossref_primary_10_3390_ijms24065737
crossref_primary_10_1007_s13205_021_02866_w
crossref_primary_10_1111_pce_14288
crossref_primary_10_3390_ijms20122946
crossref_primary_10_3390_pathogens13020105
crossref_primary_10_1186_s12870_022_03939_5
crossref_primary_10_3390_ijms26031368
crossref_primary_10_1111_nph_18945
crossref_primary_10_1007_s41348_022_00574_y
crossref_primary_10_3389_fpls_2019_00423
crossref_primary_10_1016_j_scienta_2024_112969
crossref_primary_10_17660_ActaHortic_2019_1237_3
crossref_primary_10_1093_jxb_erad202
crossref_primary_10_3390_cimb45020072
crossref_primary_10_1111_mpp_13230
crossref_primary_10_1094_MPMI_07_23_0106_R
crossref_primary_10_1007_s10682_020_10044_2
crossref_primary_10_3390_biom11050705
crossref_primary_10_1007_s11357_021_00336_y
crossref_primary_10_3389_fpls_2021_756330
crossref_primary_10_1111_mpp_12817
crossref_primary_10_1007_s00344_023_10966_5
crossref_primary_10_1146_annurev_phyto_021621_121806
crossref_primary_10_1007_s00425_020_03410_5
crossref_primary_10_1111_mpp_13123
crossref_primary_10_3390_plants9020166
crossref_primary_10_1093_jxb_erab257
crossref_primary_10_3390_horticulturae9091041
crossref_primary_10_3390_ijms20235851
crossref_primary_10_3390_plants12244082
crossref_primary_10_3390_plants13162179
crossref_primary_10_1007_s11033_021_06344_7
crossref_primary_10_1111_pce_14019
crossref_primary_10_1007_s00122_021_03830_1
crossref_primary_10_1111_pce_14024
crossref_primary_10_1111_pce_14142
crossref_primary_10_1016_j_plantsci_2021_111082
crossref_primary_10_1016_j_biocontrol_2022_105040
crossref_primary_10_1186_s42483_024_00273_6
crossref_primary_10_1016_j_envexpbot_2023_105312
crossref_primary_10_3390_plants12030635
crossref_primary_10_1134_S1062359020040093
crossref_primary_10_1111_tpj_15110
crossref_primary_10_1007_s11033_024_09902_x
crossref_primary_10_3390_ijms25021308
crossref_primary_10_1111_ppa_13984
crossref_primary_10_3389_fpls_2021_724079
crossref_primary_10_3389_fmicb_2024_1422476
crossref_primary_10_3389_fpls_2021_748287
crossref_primary_10_3389_fpls_2021_615114
crossref_primary_10_3389_fimmu_2020_612452
crossref_primary_10_35860_iarej_1067660
crossref_primary_10_1007_s11032_024_01501_9
crossref_primary_10_1111_ppl_14044
crossref_primary_10_1021_acssuschemeng_4c07781
crossref_primary_10_1111_jipb_13215
crossref_primary_10_1016_j_coviro_2020_04_001
crossref_primary_10_1038_s41598_019_42731_8
crossref_primary_10_1016_j_plaphy_2024_108714
crossref_primary_10_1016_j_scienta_2022_111705
crossref_primary_10_1080_10406638_2023_2227316
crossref_primary_10_3390_stresses3010027
crossref_primary_10_1016_j_tplants_2020_02_002
crossref_primary_10_3390_metabo13050666
crossref_primary_10_1016_j_envres_2024_118664
crossref_primary_10_3390_agriculture15060605
crossref_primary_10_1111_nph_17776
crossref_primary_10_3389_fpls_2023_1146577
crossref_primary_10_1007_s11240_024_02711_x
crossref_primary_10_1007_s42250_022_00501_6
crossref_primary_10_1111_jph_12938
crossref_primary_10_3390_microorganisms9051029
crossref_primary_10_1016_j_lwt_2025_117530
crossref_primary_10_1007_s41348_024_00950_w
crossref_primary_10_1016_j_ecoenv_2020_111550
crossref_primary_10_1016_j_nantod_2023_101752
crossref_primary_10_3390_ijms21155514
crossref_primary_10_1111_ppl_13528
crossref_primary_10_3390_vaccines8030503
crossref_primary_10_1146_annurev_phyto_021621_120943
crossref_primary_10_1038_s41438_021_00468_4
crossref_primary_10_1016_j_ijbiomac_2021_05_097
crossref_primary_10_1007_s11101_024_10005_5
crossref_primary_10_1016_j_pbi_2022_102288
crossref_primary_10_3390_plants12162899
crossref_primary_10_1111_1462_2920_15356
crossref_primary_10_3389_fpls_2023_1124911
crossref_primary_10_1021_acs_jafc_3c01809
crossref_primary_10_1007_s12600_022_01010_5
crossref_primary_10_1016_j_scitotenv_2024_174577
crossref_primary_10_1021_acs_jafc_3c07350
crossref_primary_10_1007_s11101_022_09822_3
crossref_primary_10_2139_ssrn_4195425
crossref_primary_10_3390_ijms20163945
crossref_primary_10_1016_j_bbrc_2022_06_097
crossref_primary_10_1093_plcell_koaa052
crossref_primary_10_3390_microorganisms10081547
crossref_primary_10_3390_agronomy8080142
crossref_primary_10_1093_plphys_kiae302
crossref_primary_10_1093_plphys_kiae544
crossref_primary_10_1094_MPMI_09_19_0257_R
crossref_primary_10_3389_fpls_2024_1385477
crossref_primary_10_3390_agronomy11061031
crossref_primary_10_1016_j_jaap_2024_106851
crossref_primary_10_1093_plphys_kiab021
crossref_primary_10_3390_ijms20071598
crossref_primary_10_1016_j_tplants_2020_01_004
crossref_primary_10_3390_horticulturae10030227
crossref_primary_10_1186_s12870_019_2063_9
crossref_primary_10_1007_s11103_024_01478_1
crossref_primary_10_3389_fpls_2021_745422
crossref_primary_10_3390_plants12213720
crossref_primary_10_1016_j_cbi_2021_109494
crossref_primary_10_1186_s12864_024_11143_y
crossref_primary_10_1094_PDIS_12_22_2968_RE
crossref_primary_10_1021_acs_jafc_3c06939
crossref_primary_10_1111_pce_14460
crossref_primary_10_1186_s12870_019_2158_3
Cites_doi 10.1073/pnas.0307162100
10.1146/annurev.pp.43.060192.002255
10.1016/S0885-5765(05)80126-2
10.1016/S1360-1385(01)02186-0
10.1016/j.pmpp.2004.09.001
10.1038/35107108
10.1146/annurev.phyto.050908.135202
10.1094/MPMI-8-0863
10.3389/fpls.2014.00630
10.1146/annurev-arplant-042811-105606
10.1094/MPMI-19-1062
10.1016/j.celrep.2014.03.032
10.1186/s12915-017-0364-8
10.1126/science.261.5122.754
10.1016/0048-4059(75)90084-3
10.1038/nature05286
10.3389/fpls.2014.00004
10.1104/pp.113.4.1319
10.1105/tpc.010376
10.1105/tpc.11.8.1393
10.1111/j.1365-313X.2008.03618.x
10.1016/j.pbi.2014.04.006
10.1016/j.pbi.2015.08.008
10.1073/pnas.92.24.11312
10.1093/jxb/ers248
10.3389/fimmu.2016.00206
10.1111/tpj.12549
10.1105/tpc.110.082602
10.1038/s41598-017-02298-8
10.1016/j.chom.2015.07.005
10.1105/tpc.6.9.1191
10.3389/fpls.2014.00777
10.1073/pnas.86.7.2214
10.1126/science.250.4983.1002
10.1016/j.tplants.2015.01.005
10.1104/pp.108.119420
10.1016/j.tplants.2003.12.005
10.1104/pp.113.218156
10.1104/pp.17.00222
10.3389/fpls.2013.00088
10.1074/jbc.M806782200
10.1111/nph.14780
10.1104/pp.97.4.1342
10.1105/tpc.9.3.425
10.15252/embr.201643051
10.1111/j.1365-313X.2012.04981.x
10.1016/j.chom.2017.01.007
10.1016/0042-6822(61)90319-1
10.1016/S0092-8674(03)00429-X
10.1086/394440
10.1038/nri3141
10.1016/j.chom.2016.03.006
10.1046/j.1365-313X.2003.01954.x
10.1093/emboj/20.19.5400
10.1073/pnas.1511182112
10.1104/pp.107.106021
10.1126/science.1147113
10.1074/jbc.M109.092569
10.1371/journal.pgen.1006639
10.1371/journal.ppat.1005518
10.2307/3870006
10.1186/s12870-016-0771-y
10.1073/pnas.90.20.9533
10.3389/fpls.2013.00155
10.1371/journal.pgen.1004015
10.1042/BCJ20161069
10.1074/jbc.271.45.28492
10.1016/0042-6822(70)90395-8
10.1016/j.plantsci.2014.04.014
10.4161/psb.6.8.15843
10.1111/jipb.12537
10.3389/fpls.2013.00030
10.2174/1389203716666150330141638
10.1038/scientificamerican0191-84
10.1073/pnas.1005225107
10.1016/S0031-9422(97)00604-3
10.1371/journal.pgen.1000772
10.1038/nature21674
10.1016/j.cell.2018.02.049
10.1046/j.1365-313X.1996.10020281.x
10.1111/tpj.12464
10.1371/journal.ppat.1000970
10.1111/j.1365-313X.2007.03359.x
10.1104/pp.112.2.787
10.1038/nchembio.164
10.1099/0022-1317-23-1-1
10.1105/tpc.4.9.1131
10.1111/nph.14078
10.1111/tpj.12320
10.1007/s11103-005-5514-7
10.1094/MPMI-18-0913
10.1016/j.pbi.2014.05.012
10.1016/j.celrep.2012.05.008
10.1146/annurev.phyto.43.040204.135923
10.1021/jf404156x
10.1111/j.1365-313X.2011.04655.x
10.1126/science.1170025
10.1126/science.8266079
10.1126/science.250.4983.1004
10.1105/tpc.3.8.809
10.1105/tpc.112.103564
10.1073/pnas.92.14.6602
10.1073/pnas.0409227102
10.3389/fpls.2016.00566
10.1105/tpc.105.033910
10.1093/jxb/ert375
10.1105/tpc.000885
10.1111/tpj.12803
10.1016/j.pbi.2017.04.004
10.1146/annurev-phyto-080614-120132
10.1104/pp.010879
10.1105/tpc.15.00371
10.1038/nature11162
10.1111/j.1365-313X.2007.03067.x
10.1074/jbc.M806662200
10.1111/tpj.12016
10.1104/pp.111.187773
10.1146/annurev-phyto-073009-114447
10.1371/journal.pone.0143447
10.1105/tpc.15.00496
10.1074/jbc.M610524200
10.2119/molmed.2015.00148
10.1104/pp.54.6.899
10.1186/1471-2229-11-89
10.1126/science.1156970
10.1371/journal.ppat.1006376
10.1016/j.chom.2013.12.002
10.3389/fpls.2017.01720
10.1016/0042-6822(79)90019-9
10.1093/jxb/ert026
10.3389/fpls.2015.00171
10.1111/tpj.13141
10.1073/pnas.88.18.8179
10.1038/ncomms13099
10.1111/j.1364-3703.2005.00279.x
10.1371/journal.pgen.1000545
10.1111/nph.14302
10.1126/science.1211592
10.1094/MPMI-23-9-1151
10.1104/pp.110.157370
10.1179/030801897789765129
10.1371/journal.pone.0066530
10.1073/pnas.1612635113
10.1016/j.chom.2013.11.006
10.3389/fpls.2015.00170
10.1126/science.1211641
10.1016/j.cell.2009.03.038
10.1073/pnas.92.16.7143
10.1016/j.pbi.2017.04.021
10.1094/MPMI-10-16-0208-R
10.1126/science.266.5188.1247
10.1371/journal.pone.0089799
10.1111/tpj.12719
10.3389/fpls.2015.00228
10.1105/tpc.7.10.1691
10.1094/MPMI-06-17-0128-FI
10.3389/fpls.2014.00611
10.1038/ncomms1926
10.3389/fpls.2014.00697
10.1093/jxb/err031
10.1371/journal.ppat.1002318
10.1111/tpj.12114
10.1016/j.celrep.2013.03.030
10.1105/tpc.009159
10.1016/j.tplants.2014.10.002
10.1094/MPMI-23-4-0394
10.1016/j.envexpbot.2009.08.005
10.1111/j.1365-313X.2008.03747.x
10.1016/j.celrep.2014.10.069
10.1016/j.semcdb.2016.06.005
10.1104/pp.103.031039
10.1094/MPMI.1997.10.1.69
10.2307/3869945
10.1038/ng.798
10.1111/j.1365-313X.1992.tb00133.x
10.1016/j.pbi.2005.05.010
10.1016/j.cell.2006.02.008
10.1046/j.1365-313x.2000.00870.x
10.3389/fpls.2015.00462
10.1016/j.tplants.2012.05.011
10.1093/genetics/143.2.973
10.1094/MPMI-23-1-0082
10.1104/pp.54.6.904
10.1094/MPMI-06-14-0187-R
10.1016/j.tplants.2013.04.004
10.1105/tpc.109.066464
10.1073/pnas.1302702110
10.1199/tab.0156
10.1093/jxb/eru109
10.1094/MPMI-09-14-0259-R
10.1007/BF00016484
10.3389/fpls.2015.00235
10.1146/annurev-cellbio-092910-154055
10.1105/tpc.16.00486
10.1105/tpc.16.00898
10.1073/pnas.182427699
10.1080/07352689991309397
ContentType Journal Article
Copyright Copyright American Phytopathological Society Sep 2018
Copyright_xml – notice: Copyright American Phytopathological Society Sep 2018
DBID AAYXX
CITATION
NPM
K9.
7X8
7S9
L.6
DOI 10.1094/MPMI-03-18-0067-CR
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
AGRICOLA
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1943-7706
EndPage 888
ExternalDocumentID 29781762
10_1094_MPMI_03_18_0067_CR
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: IOS-0820405
GroupedDBID ---
123
29M
2WC
53G
7X2
7X7
88E
8AO
8CJ
8FE
8FH
8FI
8FJ
8FW
8R4
8R5
AAHBH
AAYJJ
AAYXX
ABDNZ
ABRJW
ABUWG
ACGFO
ACPRK
ACYGS
ADBBV
AENEX
AEUYN
AFKRA
AFRAH
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BAWUL
BBNVY
BENPR
BES
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CITATION
CS3
D1J
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYO
LK8
M0K
M1P
M7P
MVM
OK1
P2P
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RPS
S0X
TR2
UKHRP
~KM
3V.
88A
M0L
NPM
YCJ
K9.
7X8
7S9
L.6
ID FETCH-LOGICAL-c474t-6a9a513cf86ce9b166c8b3ac8bf42acc051005415b1cf89cf12c6b1f382112553
ISSN 0894-0282
IngestDate Thu Jul 10 17:35:03 EDT 2025
Fri Jul 11 03:17:43 EDT 2025
Mon Jun 30 10:56:17 EDT 2025
Wed Feb 19 02:42:01 EST 2025
Tue Jul 01 00:38:51 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-6a9a513cf86ce9b166c8b3ac8bf42acc051005415b1cf89cf12c6b1f382112553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1315-5920
OpenAccessLink https://apsjournals.apsnet.org/doi/pdf/10.1094/MPMI-03-18-0067-CR
PMID 29781762
PQID 2114211113
PQPubID 37269
PageCount 18
ParticipantIDs proquest_miscellaneous_2153634504
proquest_miscellaneous_2042238167
proquest_journals_2114211113
pubmed_primary_29781762
crossref_citationtrail_10_1094_MPMI_03_18_0067_CR
crossref_primary_10_1094_MPMI_03_18_0067_CR
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-00
20180901
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: St. Paul
PublicationSubtitle MPMI
PublicationTitle Molecular plant-microbe interactions
PublicationTitleAlternate Mol Plant Microbe Interact
PublicationYear 2018
Publisher American Phytopathological Society
Publisher_xml – name: American Phytopathological Society
References b10
b11
b14
b13
b16
b15
b18
b17
b19
b1
b2
b3
b4
b5
b6
b7
b8
b9
b21
b20
b23
b22
b25
b24
b27
b26
b29
b28
Kombrink E. (b81) 1996
b208
b205
b204
b201
b200
b30
b203
b202
b32
b31
b34
b111
b33
b110
b36
b35
b38
b37
b39
b117
b116
b119
b118
b113
b112
b41
b115
b40
b114
b43
b42
b45
b44
b46
b49
b48
b109
b106
b105
b108
b107
b50
b102
b101
b52
b104
b51
b54
b131
b53
b130
b56
b133
b55
b132
b58
b59
Métraux J. P. (b103) 1993
b139
b138
b61
b135
b60
b134
b63
b137
b62
b136
b65
b120
b64
b67
b122
b66
b121
b69
b68
b128
b127
b70
b129
b72
b124
b71
b123
b74
b126
b73
b125
b76
b153
b75
b152
b78
b155
b77
b154
Glazebrook J. (b57) 1996; 143
b79
b151
b150
b80
b83
b157
b82
b156
b85
b159
b84
b158
b142
b86
b141
b89
b144
b88
b143
b140
b90
b149
b92
b91
b94
b146
b93
b145
b96
b148
b95
b147
b98
b175
b97
b174
b177
b99
b176
b171
b170
b173
b172
Wang X. (b182) 2017; 8
b178
b164
b163
b166
b165
b160
b162
b161
b168
b167
b169
b197
b196
b199
b198
b193
b192
b195
b191
b190
b186
b185
b188
b187
b181
b184
b183
b180
b189
References_xml – ident: b84
  doi: 10.1073/pnas.0307162100
– ident: b129
  doi: 10.1146/annurev.pp.43.060192.002255
– ident: b152
  doi: 10.1016/S0885-5765(05)80126-2
– ident: b62
  doi: 10.1016/S1360-1385(01)02186-0
– ident: b114
  doi: 10.1016/j.pmpp.2004.09.001
– ident: b191
  doi: 10.1038/35107108
– ident: b174
  doi: 10.1146/annurev.phyto.050908.135202
– start-page: 483
  volume-title: Modern Fungicides and Antifungal Compounds
  year: 1996
  ident: b81
– ident: b85
  doi: 10.1094/MPMI-8-0863
– ident: b160
  doi: 10.3389/fpls.2014.00630
– ident: b48
  doi: 10.1146/annurev-arplant-042811-105606
– ident: b26
  doi: 10.1094/MPMI-19-1062
– ident: b178
  doi: 10.1016/j.celrep.2014.03.032
– ident: b34
  doi: 10.1186/s12915-017-0364-8
– ident: b50
  doi: 10.1126/science.261.5122.754
– ident: b166
  doi: 10.1016/0048-4059(75)90084-3
– ident: b72
  doi: 10.1038/nature05286
– ident: b108
  doi: 10.3389/fpls.2014.00004
– ident: b41
  doi: 10.1104/pp.113.4.1319
– ident: b115
  doi: 10.1105/tpc.010376
– ident: b116
  doi: 10.1105/tpc.11.8.1393
– ident: b175
  doi: 10.1111/j.1365-313X.2008.03618.x
– ident: b195
  doi: 10.1016/j.pbi.2014.04.006
– ident: b1
  doi: 10.1016/j.pbi.2015.08.008
– ident: b42
  doi: 10.1073/pnas.92.24.11312
– ident: b3
  doi: 10.1093/jxb/ers248
– ident: b78
  doi: 10.3389/fimmu.2016.00206
– ident: b173
  doi: 10.1111/tpj.12549
– ident: b161
  doi: 10.1105/tpc.110.082602
– ident: b106
  doi: 10.1038/s41598-017-02298-8
– ident: b139
  doi: 10.1016/j.chom.2015.07.005
– ident: b169
  doi: 10.1105/tpc.6.9.1191
– ident: b99
  doi: 10.3389/fpls.2014.00777
– ident: b130
  doi: 10.1073/pnas.86.7.2214
– ident: b96
  doi: 10.1126/science.250.4983.1002
– ident: b94
  doi: 10.1016/j.tplants.2015.01.005
– ident: b54
  doi: 10.1104/pp.108.119420
– ident: b112
  doi: 10.1016/j.tplants.2003.12.005
– ident: b141
  doi: 10.1104/pp.113.218156
– ident: b59
  doi: 10.1104/pp.17.00222
– ident: b63
  doi: 10.3389/fpls.2013.00088
– ident: b183
  doi: 10.1074/jbc.M806782200
– ident: b158
  doi: 10.1111/nph.14780
– ident: b131
  doi: 10.1104/pp.97.4.1342
– ident: b138
  doi: 10.1105/tpc.9.3.425
– ident: b105
  doi: 10.15252/embr.201643051
– ident: b14
  doi: 10.1111/j.1365-313X.2012.04981.x
– ident: b198
  doi: 10.1016/j.chom.2017.01.007
– ident: b137
  doi: 10.1016/0042-6822(61)90319-1
– ident: b111
  doi: 10.1016/S0092-8674(03)00429-X
– ident: b18
  doi: 10.1086/394440
– ident: b153
  doi: 10.1038/nri3141
– ident: b88
  doi: 10.1016/j.chom.2016.03.006
– ident: b102
  doi: 10.1046/j.1365-313X.2003.01954.x
– ident: b44
  doi: 10.1093/emboj/20.19.5400
– ident: b203
  doi: 10.1073/pnas.1511182112
– ident: b202
  doi: 10.1104/pp.107.106021
– ident: b124
  doi: 10.1126/science.1147113
– ident: b4
  doi: 10.1074/jbc.M109.092569
– ident: b65
  doi: 10.1371/journal.pgen.1006639
– ident: b20
  doi: 10.1371/journal.ppat.1005518
– ident: b172
  doi: 10.2307/3870006
– ident: b171
  doi: 10.1186/s12870-016-0771-y
– ident: b16
  doi: 10.1073/pnas.90.20.9533
– volume: 8
  start-page: 156
  year: 2017
  ident: b182
  publication-title: Front. Plant Sci.
– ident: b37
  doi: 10.3389/fpls.2013.00155
– ident: b164
  doi: 10.1371/journal.pgen.1004015
– ident: b95
  doi: 10.1042/BCJ20161069
– ident: b43
  doi: 10.1074/jbc.271.45.28492
– ident: b167
  doi: 10.1016/0042-6822(70)90395-8
– ident: b83
  doi: 10.1016/j.plantsci.2014.04.014
– ident: b79
  doi: 10.4161/psb.6.8.15843
– ident: b150
  doi: 10.1111/jipb.12537
– ident: b145
  doi: 10.3389/fpls.2013.00030
– ident: b196
  doi: 10.2174/1389203716666150330141638
– ident: b184
  doi: 10.1038/scientificamerican0191-84
– ident: b201
  doi: 10.1073/pnas.1005225107
– ident: b185
  doi: 10.1016/S0031-9422(97)00604-3
– ident: b165
  doi: 10.1371/journal.pgen.1000772
– ident: b188
  doi: 10.1038/nature21674
– ident: b208
  doi: 10.1016/j.cell.2018.02.049
– ident: b122
  doi: 10.1046/j.1365-313X.1996.10020281.x
– ident: b143
  doi: 10.1111/tpj.12464
– ident: b53
  doi: 10.1371/journal.ppat.1000970
– ident: b71
  doi: 10.1111/j.1365-313X.2007.03359.x
– ident: b109
  doi: 10.1104/pp.112.2.787
– ident: b126
  doi: 10.1038/nchembio.164
– ident: b55
  doi: 10.1099/0022-1317-23-1-1
– ident: b133
  doi: 10.1105/tpc.4.9.1131
– ident: b148
  doi: 10.1111/nph.14078
– ident: b110
  doi: 10.1111/tpj.12320
– ident: b25
  doi: 10.1007/s11103-005-5514-7
– ident: b132
  doi: 10.1094/MPMI-18-0913
– ident: b186
  doi: 10.1016/j.pbi.2014.05.012
– ident: b192
  doi: 10.1016/j.celrep.2012.05.008
– ident: b56
  doi: 10.1146/annurev.phyto.43.040204.135923
– ident: b58
  doi: 10.1021/jf404156x
– ident: b180
  doi: 10.1111/j.1365-313X.2011.04655.x
– ident: b73
  doi: 10.1126/science.1170025
– ident: b17
  doi: 10.1126/science.8266079
– ident: b104
  doi: 10.1126/science.250.4983.1004
– ident: b193
  doi: 10.1105/tpc.3.8.809
– ident: b113
  doi: 10.1105/tpc.112.103564
– ident: b31
  doi: 10.1073/pnas.92.14.6602
– ident: b46
  doi: 10.1073/pnas.0409227102
– ident: b70
  doi: 10.3389/fpls.2016.00566
– ident: b45
  doi: 10.1105/tpc.105.033910
– ident: b5
  doi: 10.1093/jxb/ert375
– ident: b157
  doi: 10.1105/tpc.000885
– ident: b181
  doi: 10.1111/tpj.12803
– ident: b8
  doi: 10.1016/j.pbi.2017.04.004
– ident: b27
  doi: 10.1146/annurev-phyto-080614-120132
– ident: b66
  doi: 10.1104/pp.010879
– ident: b86
  doi: 10.1105/tpc.15.00371
– ident: b49
  doi: 10.1038/nature11162
– ident: b107
  doi: 10.1111/j.1365-313X.2007.03067.x
– ident: b120
  doi: 10.1074/jbc.M806662200
– ident: b163
  doi: 10.1111/tpj.12016
– ident: b92
  doi: 10.1104/pp.111.187773
– ident: b136
  doi: 10.1146/annurev-phyto-073009-114447
– ident: b21
  doi: 10.1371/journal.pone.0143447
– ident: b6
  doi: 10.1105/tpc.15.00496
– ident: b123
  doi: 10.1074/jbc.M610524200
– ident: b22
  doi: 10.2119/molmed.2015.00148
– ident: b23
  doi: 10.1104/pp.54.6.899
– ident: b168
  doi: 10.1186/1471-2229-11-89
– ident: b159
  doi: 10.1126/science.1156970
– ident: b68
  doi: 10.1371/journal.ppat.1006376
– ident: b76
  doi: 10.1016/j.chom.2013.12.002
– ident: b80
  doi: 10.3389/fpls.2017.01720
– ident: b189
  doi: 10.1016/0042-6822(79)90019-9
– ident: b177
  doi: 10.1093/jxb/ert026
– ident: b64
  doi: 10.3389/fpls.2015.00171
– ident: b40
  doi: 10.1111/tpj.13141
– ident: b15
  doi: 10.1073/pnas.88.18.8179
– ident: b90
  doi: 10.1038/ncomms13099
– ident: b119
  doi: 10.1111/j.1364-3703.2005.00279.x
– ident: b170
  doi: 10.1371/journal.pgen.1000545
– ident: b29
  doi: 10.1111/nph.14302
– ident: b7
  doi: 10.1126/science.1211592
– ident: b101
  doi: 10.1094/MPMI-23-9-1151
– ident: b67
  doi: 10.1104/pp.110.157370
– ident: b125
  doi: 10.1179/030801897789765129
– ident: b69
  doi: 10.1371/journal.pone.0066530
– ident: b187
  doi: 10.1073/pnas.1612635113
– ident: b176
  doi: 10.1016/j.chom.2013.11.006
– ident: b9
  doi: 10.3389/fpls.2015.00170
– ident: b61
  doi: 10.1126/science.1211641
– start-page: 191
  volume-title: Biotechnology in Plant Disease Control
  year: 1993
  ident: b103
– ident: b155
  doi: 10.1016/j.cell.2009.03.038
– ident: b28
  doi: 10.1073/pnas.92.16.7143
– ident: b147
  doi: 10.1016/j.pbi.2017.04.021
– ident: b98
  doi: 10.1094/MPMI-10-16-0208-R
– ident: b32
  doi: 10.1126/science.266.5188.1247
– ident: b91
  doi: 10.1371/journal.pone.0089799
– ident: b199
  doi: 10.1111/tpj.12719
– ident: b52
  doi: 10.3389/fpls.2015.00228
– ident: b149
  doi: 10.1105/tpc.7.10.1691
– ident: b128
  doi: 10.1094/MPMI-06-17-0128-FI
– ident: b30
  doi: 10.3389/fpls.2014.00611
– ident: b117
  doi: 10.1038/ncomms1926
– ident: b142
  doi: 10.3389/fpls.2014.00697
– ident: b135
  doi: 10.1093/jxb/err031
– ident: b205
  doi: 10.1371/journal.ppat.1002318
– ident: b2
  doi: 10.1111/tpj.12114
– ident: b197
  doi: 10.1016/j.celrep.2013.03.030
– ident: b154
  doi: 10.1105/tpc.009159
– ident: b156
  doi: 10.1016/j.tplants.2014.10.002
– ident: b140
  doi: 10.1094/MPMI-23-4-0394
– ident: b60
  doi: 10.1016/j.envexpbot.2009.08.005
– ident: b204
  doi: 10.1111/j.1365-313X.2008.03747.x
– ident: b51
  doi: 10.1016/j.celrep.2014.10.069
– ident: b146
  doi: 10.1016/j.semcdb.2016.06.005
– ident: b118
  doi: 10.1104/pp.103.031039
– ident: b144
  doi: 10.1094/MPMI.1997.10.1.69
– ident: b10
  doi: 10.2307/3869945
– ident: b13
  doi: 10.1038/ng.798
– ident: b97
  doi: 10.1111/j.1365-313X.1992.tb00133.x
– ident: b190
  doi: 10.1016/j.pbi.2005.05.010
– ident: b19
  doi: 10.1016/j.cell.2006.02.008
– ident: b38
  doi: 10.1046/j.1365-313x.2000.00870.x
– ident: b74
  doi: 10.3389/fpls.2015.00462
– ident: b33
  doi: 10.1016/j.tplants.2012.05.011
– volume: 143
  start-page: 973
  year: 1996
  ident: b57
  publication-title: Genetics
  doi: 10.1093/genetics/143.2.973
– ident: b93
  doi: 10.1094/MPMI-23-1-0082
– ident: b24
  doi: 10.1104/pp.54.6.904
– ident: b11
  doi: 10.1094/MPMI-06-14-0187-R
– ident: b121
  doi: 10.1016/j.tplants.2013.04.004
– ident: b89
  doi: 10.1105/tpc.109.066464
– ident: b200
  doi: 10.1073/pnas.1302702110
– ident: b36
  doi: 10.1199/tab.0156
– ident: b75
  doi: 10.1093/jxb/eru109
– ident: b162
  doi: 10.1094/MPMI-09-14-0259-R
– ident: b77
  doi: 10.1007/BF00016484
– ident: b82
  doi: 10.3389/fpls.2015.00235
– ident: b127
  doi: 10.1146/annurev-cellbio-092910-154055
– ident: b39
  doi: 10.1105/tpc.16.00486
– ident: b134
  doi: 10.1105/tpc.16.00898
– ident: b151
  doi: 10.1073/pnas.182427699
– ident: b35
  doi: 10.1080/07352689991309397
SSID ssj0019655
Score 2.6637325
SecondaryResourceType review_article
Snippet This article is part of the Distinguished Review Article Series in Conceptual and Methodological Breakthroughs in Molecular Plant-Microbe Interactions....
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 871
SubjectTerms abiotic stress
Acid resistance
adaptive immunity
Crosstalk
growth and development
Hormones
Immune response
Immune system
Immunity
Metabolism
Pathogens
Plant growth
Plant hormones
Plant immunity
Proteins
Receptors
researchers
Salicylic acid
Signal transduction
Signaling
systemic acquired resistance
Title Systemic Acquired Resistance and Salicylic Acid: Past, Present, and Future
URI https://www.ncbi.nlm.nih.gov/pubmed/29781762
https://www.proquest.com/docview/2114211113
https://www.proquest.com/docview/2042238167
https://www.proquest.com/docview/2153634504
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKEBIcEIxfhYGCxK3LaGLHTbhVLVW70alim9jNil1nq9Q2VZcdypk_nPdiOykaVMDFqlK3sfy-PH-O33sfIR_ijMVTBduSKEtiHyh125c0k35CM8CQ5NNMYjby-JQPL9jxZXTZaPzYilq6LeSR-v7bvJL_sSpcA7tiluw_WLb6U7gAn8G-0IKFof0rG5ty4zPV6ioM6NWYaniDhNClAZylWPV3XvaYlWrOk9QmeZi0Ixe8OahKizimOna6uSg0vYTdMUbuSV3Wl1ibbIj6HGiOwbRXdcp6HS_cu86NLvYGRY2-5XnFnPViZQ-t-i7iIhmjJGKru3Cl-u3riCCu4q2KrQwA9N_XmyJHVeXKh9sw1G0Hh2WJQyM-dKSNA04YBcbf5tse2q4TBonJlruNjXzLnWUA9qxgu8VqMcNwMRwkLMq-WteLnjvoH3bPxKQ_EF9Gpyf3yP0QNhuog9EfnVRnUQkvtXOr0drUK7jHx7t3-JXe_GHPUnKX8yfksd10eF2DoKekoZf75FH3am0Lr-h98sCIkm6ekWOHKs-hyqtR5QFYvApVHqLqk4eYOvQsog7LLgZPz8nF4PN5b-hbxQ1fsQ4rfJ4maRRQlcVc6UQGnKtY0hSajIWpUujBgeMHkQygT6KyIFRcBhmNQ-DtUURfkL1lvtSviKeSaEp1lGrFKEvDJNWpBIdBKe9M2_GUN0ngJkooW44eVVHmwoRFMDGejEeiTUUQC5xc0fvaJK3qNytTjGVn7wM3_8I-tDcixNxxpAm0Sd5XX4NLxXOydKnzW-iDdfHwQL2zow8wBU5Z1GZN8tLYthpSiHXkgGS83j2AN-Rh_QAdkL1ifavfAsMt5LsSgD8BeeylAA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systemic+Acquired+Resistance+and+Salicylic+Acid%3A+Past%2C+Present%2C+and+Future&rft.jtitle=Molecular+plant-microbe+interactions&rft.au=Klessig%2C+Daniel+F&rft.au=Choi%2C+Hyong+Woo&rft.au=Dempsey%2C+D%E2%80%99Maris+Amick&rft.date=2018-09-01&rft.pub=American+Phytopathological+Society&rft.issn=0894-0282&rft.eissn=1943-7706&rft.volume=31&rft.issue=9&rft.spage=871&rft_id=info:doi/10.1094%2Fmpmi-03-18-0067-cr&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-0282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-0282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-0282&client=summon