Constrained Mixture Models of Soft Tissue Growth and Remodeling – Twenty Years After

Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstruc...

Full description

Saved in:
Bibliographic Details
Published inJournal of elasticity Vol. 145; no. 1-2; pp. 49 - 75
Main Author Humphrey, J. D.
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.08.2021
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0374-3535
1573-2681
DOI10.1007/s10659-020-09809-1

Cover

Loading…
Abstract Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions.
AbstractList Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions.Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions.
Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions.
Author Humphrey, J. D.
Author_xml – sequence: 1
  givenname: J. D.
  orcidid: 0000-0003-1011-2025
  surname: Humphrey
  fullname: Humphrey, J. D.
  email: jay.humphrey@yale.edu
  organization: Department of Biomedical Engineering, Yale University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34483462$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1uFDEQhS0URCaBC7BAltiwaSi33W73BikaQUBKhAQDEivL4y5PHPXYwXYTsuMO3JCT0M0k_GSRVS3qe0-v6h2QvRADEvKYwXMG0L7IDGTTVVBDBZ2CrmL3yII1La9qqdgeWQBvRcUb3uyTg5zPASZMwAOyz4VQXMh6QT4tY8glGR-wp6f-WxkT0tPY45BpdPRDdIWufM4j0uMUL8sZNaGn73E7Iz5s6M_vP-jqEkO5op_RpEyPXMH0kNx3Zsj46Hoeko-vX62Wb6qTd8dvl0cnlRWtKJUUdm1QCbXu0NSqtU61pm1QWgeuWQMDW_fgeqlExy1Dhaq20DW8d044zvghebnzvRjXW-ztlCOZQV8kvzXpSkfj9f-b4M_0Jn7VSrCGSzkZPLs2SPHLiLnorc8Wh8EEjGPWdSM7ySTU3YQ-vYWexzGF6byZ4ky1UsFEPfk30Z8oNy-fALUDbIo5J3Ta-mKKj3NAP2gGem5X79rVU7v6d7t6vra-Jb1xv1PEd6I8wWGD6W_sO1S_ALJ_uFc
CitedBy_id crossref_primary_10_1016_j_compbiomed_2024_109595
crossref_primary_10_1038_s43856_021_00063_7
crossref_primary_10_1103_PhysRevE_110_035001
crossref_primary_10_1007_s10237_023_01744_z
crossref_primary_10_1016_j_jbiomech_2024_112152
crossref_primary_10_1080_17476933_2025_2461562
crossref_primary_10_1007_s12551_021_00826_5
crossref_primary_10_1016_j_jmps_2023_105491
crossref_primary_10_1051_mmnp_2022022
crossref_primary_10_1007_s10237_023_01697_3
crossref_primary_10_1007_s10237_023_01750_1
crossref_primary_10_1016_j_cma_2024_117259
crossref_primary_10_1007_s10439_022_03037_5
crossref_primary_10_1007_s10237_022_01674_2
crossref_primary_10_1098_rspa_2023_0116
crossref_primary_10_1177_10812865231202024
crossref_primary_10_1007_s10439_025_03685_3
crossref_primary_10_1016_j_jbiomech_2024_112180
crossref_primary_10_1016_j_jmbbm_2023_105966
crossref_primary_10_3389_fbioe_2022_820921
crossref_primary_10_1016_j_finel_2024_104309
crossref_primary_10_1161_ATVBAHA_123_320117
crossref_primary_10_1007_s10237_022_01593_2
crossref_primary_10_1016_j_euromechsol_2025_105582
crossref_primary_10_1016_j_cma_2023_116312
crossref_primary_10_1007_s10237_025_01933_y
crossref_primary_10_1016_j_pmatsci_2024_101363
crossref_primary_10_3390_app12083954
crossref_primary_10_1007_s12265_022_10316_y
crossref_primary_10_3389_fbioe_2021_744560
crossref_primary_10_1016_j_compbiomed_2024_108604
crossref_primary_10_1007_s10237_023_01747_w
crossref_primary_10_1016_j_jmbbm_2022_105337
crossref_primary_10_1016_j_jbiomech_2024_112059
crossref_primary_10_1007_s10439_024_03493_1
crossref_primary_10_1016_j_jmbbm_2023_105733
crossref_primary_10_1016_j_jbiomech_2022_111165
crossref_primary_10_1177_1358863X241238708
crossref_primary_10_1007_s10237_023_01800_8
crossref_primary_10_1016_j_cdev_2024_203971
crossref_primary_10_1098_rsif_2024_0361
crossref_primary_10_1016_j_compbiomed_2024_108976
crossref_primary_10_1152_ajpheart_00766_2023
crossref_primary_10_1177_10812865231219163
crossref_primary_10_1021_acsbiomaterials_1c01386
crossref_primary_10_1038_s41598_024_69422_3
crossref_primary_10_1016_j_est_2024_115217
crossref_primary_10_1016_j_jmps_2023_105443
crossref_primary_10_1007_s10237_023_01814_2
crossref_primary_10_1098_rsif_2022_0062
crossref_primary_10_3390_biomimetics9060362
crossref_primary_10_1016_j_actbio_2021_07_059
crossref_primary_10_1007_s10237_024_01851_5
crossref_primary_10_1016_j_actbio_2023_05_022
Cites_doi 10.1002/zamm.201700302
10.1016/j.jmps.2018.12.013
10.1016/j.jbiomech.2006.09.003
10.1007/s10439-011-0363-9
10.1016/j.ijnonlinmec.2018.11.010
10.1016/j.jbiomech.2013.10.009
10.1007/s10237-004-0052-9
10.1126/scitranslmed.aan4587
10.1016/j.ijengsci.2019.05.014
10.1007/s00033-009-0037-8
10.1007/s00285-005-0363-1
10.1038/jcbfm.2012.84
10.1007/s11012-016-0472-5
10.1161/ATVBAHA.108.179705
10.1002/zamm.201700351
10.1007/978-0-387-87710-5
10.1098/rsif.2016.0995
10.1007/s00062-019-00776-2
10.1007/978-3-030-43209-6
10.1073/pnas.0907813106
10.1016/j.cobme.2017.03.004
10.1007/s10237-019-01184-8
10.1161/CIRCRESAHA.114.304936
10.1007/s10237-007-0101-2
10.1007/s10439-015-1287-6
10.1115/1.2132374
10.1016/j.jmbbm.2020.103943
10.1007/s10237-010-0265-z
10.1007/978-94-009-7538-5_23
10.1007/978-0-387-21576-1
10.1007/s10659-017-9630-9
10.1016/j.thromres.2012.04.009
10.1115/1.1560144
10.1016/0021-9290(94)90021-3
10.1161/CIRCRESAHA.115.307722
10.3390/ma10090994
10.1115/1.1762899
10.1161/01.HYP.0000185463.27209.b0
10.1007/s10237-003-0033-4
10.1016/j.ijengsci.2014.08.003
10.1159/000169701
10.1161/HYPERTENSIONAHA.118.11647
10.1016/j.jmbbm.2011.05.022
10.1016/j.jmps.2010.12.011
10.1002/cnm.2828
10.1146/annurev.bioeng.10.061807.160439
10.1098/rsif.2019.0708
10.1016/0021-9290(68)90024-9
10.1115/1.2798001
10.1146/annurev-bioeng-071910-124726
10.1159/000080699
10.1016/j.ijengsci.2010.06.033
10.1016/j.molcel.2014.03.030
10.1016/j.cma.2020.113156
10.1111/echo.13841
10.1007/s10237-017-0918-2
10.1126/scitranslmed.aax6919
10.1007/s10439-012-0707-0
10.1016/j.jbiomech.2014.07.003
10.1016/j.cma.2006.06.018
10.1007/BF02584301
10.1172/JCI61598
10.1089/ten.tea.2014.0524
10.1007/s10439-015-1354-z
10.1007/s10237-015-0687-8
10.1093/intbio/zyaa004
10.1098/rsif.2019.0233
10.1007/s10237-018-1041-8
10.1098/rsif.2012.0097
10.1016/j.actbio.2014.09.046
10.1142/S0218202502001714
10.1007/s10237-018-1037-4
10.1007/s10659-005-9004-6
10.1183/09031936.03.00038903
10.1115/1.4029021
10.1007/s10439-007-9322-x
10.1007/s10237-006-0070-x
10.1016/j.mechrescom.2012.02.003
10.1016/j.cma.2019.04.041
10.1161/HYPERTENSIONAHA.107.089409
10.1007/s10439-018-2086-7
10.1016/j.cma.2008.09.013
10.1007/s10237-009-0184-z
10.1098/rsif.2014.0680
10.1097/HCO.0000000000000218
10.1007/s10237-008-0146-x
10.1098/rsif.2008.0254
10.1007/s10659-017-9626-5
10.1098/rspa.2002.1060
10.1038/nature07201
10.1007/s12013-007-9002-3
10.1115/1.2800858
10.1007/s10237-016-0859-1
10.1016/j.mam.2016.04.007
10.1007/s10237-016-0790-5
10.1115/1.4034560
10.1007/BF00041724
10.1016/j.cma.2012.12.013
10.1098/rspa.2012.0556
10.1007/s10237-016-0770-9
10.1007/s10439-007-9321-y
10.1038/nrm3896
10.1007/s10439-011-0287-4
10.1016/j.molmed.2008.09.008
10.1016/j.jtbi.2008.11.024
10.1089/ten.tec.2019.0086
10.1152/physrev.00041.2008
10.3233/BIR-2009-0556
10.1002/cnm.2893
10.1016/j.jmbbm.2008.05.002
10.1161/ATVBAHA.116.303229
10.1007/s10439-013-0928-x
10.1042/CS20060337
10.1126/sciadv.abd3574
10.1016/j.cell.2015.02.010
10.1111/echo.14375
10.1016/j.jmbbm.2018.09.047
10.1016/j.medengphy.2010.09.012
10.1016/j.mechrescom.2012.02.007
10.1016/j.jbiomech.2011.11.021
10.1115/1.1412451
10.1115/1.3005109
10.1007/s10237-014-0569-5
10.1161/CIRCULATIONAHA.112.120410
10.1002/cnm.2555
10.1016/j.jmbbm.2019.03.029
10.1155/2017/5038602
10.1007/s10439-020-02713-8
10.1016/j.jmbbm.2020.104161
10.1371/journal.pcbi.1008273
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021
The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021.
DBID AAYXX
CITATION
NPM
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
7X8
5PM
DOI 10.1007/s10659-020-09809-1
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1573-2681
EndPage 75
ExternalDocumentID PMC8415366
34483462
10_1007_s10659_020_09809_1
Genre Journal Article
GrantInformation_xml – fundername: NIH
  grantid: P01 HL134605
– fundername: National Institutes of Health
  grantid: U01 HL142518; R01 HL139796
  funderid: http://dx.doi.org/10.13039/100000002
– fundername: National Institutes of Health (US)
  grantid: R01 HL146723
– fundername: NHLBI NIH HHS
  grantid: R01 HL105297
– fundername: NHLBI NIH HHS
  grantid: R01 HL139796
– fundername: NHLBI NIH HHS
  grantid: R01 HL128602
– fundername: NHLBI NIH HHS
  grantid: R01 HL080415
– fundername: NHLBI NIH HHS
  grantid: P01 HL134605
– fundername: NHLBI NIH HHS
  grantid: U01 HL116323
– fundername: NHLBI NIH HHS
  grantid: R01 HL086418
– fundername: NHLBI NIH HHS
  grantid: R01 HL146723
– fundername: NHLBI NIH HHS
  grantid: R01 HL064372
– fundername: NHLBI NIH HHS
  grantid: U01 HL142518
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABEFU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9P
PF0
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WH7
WJK
WK8
YLTOR
Z45
Z5O
Z7S
Z7Y
Z7Z
Z86
Z8N
Z8S
Z8T
ZMTXR
ZY4
~02
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
NPM
7SR
7TB
8BQ
8FD
ABRTQ
FR3
JG9
KR7
7X8
5PM
ID FETCH-LOGICAL-c474t-64cbae848b9ea287cf87a75e6cf0f5b010c2d0fd68493c1e8e82c0953dff4f313
IEDL.DBID U2A
ISSN 0374-3535
IngestDate Thu Aug 21 14:02:34 EDT 2025
Fri Jul 11 08:50:47 EDT 2025
Fri Jul 25 12:18:54 EDT 2025
Wed Feb 19 02:08:55 EST 2025
Tue Jul 01 00:20:27 EDT 2025
Thu Apr 24 23:06:06 EDT 2025
Fri Feb 21 02:47:56 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords 92C10
Tissue engineering
Thrombus
Mechanobiology
Homeostasis
Vein
Artery
mechanobiology
homeostasis
tissue engineering
vein
artery
thrombus
Language English
License Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.springer.com/aam-terms-v1
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-64cbae848b9ea287cf87a75e6cf0f5b010c2d0fd68493c1e8e82c0953dff4f313
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1011-2025
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8415366
PMID 34483462
PQID 2563187680
PQPubID 326256
PageCount 27
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8415366
proquest_miscellaneous_2569616029
proquest_journals_2563187680
pubmed_primary_34483462
crossref_citationtrail_10_1007_s10659_020_09809_1
crossref_primary_10_1007_s10659_020_09809_1
springer_journals_10_1007_s10659_020_09809_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
– name: Groningen
PublicationSubtitle The Physical and Mathematical Science of Solids
PublicationTitle Journal of elasticity
PublicationTitleAbbrev J Elast
PublicationTitleAlternate J Elast
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Maegdefessel, Azuma, Toh (CR31) 2012; 122
Rodbard (CR22) 1975; 60
Sciatti, Vizzardi, Castiello, Valentini, Bonadei, Gelsomino, Lorusso, Metra (CR65) 2018; 35
CR35
Niklason, Yeh, Calle, Bai, Valentin, Humphrey (CR72) 2010; 107
Rodriguez, Hoger, McCulloch (CR5) 1994; 27
Bellini, Ferruzzi, Roccabianca, DiMartino, Humphrey (CR10) 2014; 42
Ambrosi, Preziosi, Vitale (CR124) 2010; 61
Ramachandra, Humphrey, Marsden (CR49) 2017; 14
Baek, Gleason, Rajagopal, Humphrey (CR80) 2007; 196
Hayashi, Naiki (CR18) 2009; 2
Humphrey, Harrison, Figueroa, Lacolley, Laurent (CR53) 2016; 118
Morris (CR54) 2015; 30
Baek, Rajagopal, Humphrey (CR13) 2006; 128
Fung (CR7) 1991; 19
Dorfmuller (CR61) 2003; 22
Soares, Sacks (CR109) 2016; 15
Schriefl, Collins, Holzapfel, Niklason, Humphrey (CR36) 2012; 130
Menzel, Kuhl (CR128) 2012; 42
Nims, Ateshian (CR40) 2017; 129
Virag, Wilson, Humphrey, Karsaj (CR47) 2017; 33
Cowin, Hegedus (CR3) 1976; 6
Hsu (CR2) 1968; 1
Di Achille, Tellides, Figueroa, Humphrey (CR44) 2014; 470
Ramachandra, Latorre, Szafron, Marsden, Humphrey (CR51) 2020; 110
Emmert, Schmidt, Loerakker (CR100) 2018; 10
Skalak (CR4) 1981
Milewicz, Trybus, Guo, Sweeney, Regalado, Kamm, Stull (CR34) 2017; 37
Famaey, Vastmans, Fehervary, Maes, Vanderveken, Rega, Mousavi, Avril (CR112) 2018; 98
Horat, Virag, Holzapfel, Soric, Karsaj (CR88) 2019; 352
Ramachandra, Sankaran, Humphrey, Marsden (CR48) 2015; 137
Szafron, Ramachandra, Breuer, Marsden, Humphrey (CR77) 2019; 25
Karsaj, Humphrey (CR37) 2009; 46
Ateshian, Humphrey (CR127) 2012; 14
Ambrosi, Ben Amar, Cyron, DeSimona, Goriely, Humphrey, Kuhl (CR131) 2019; 16
Humphrey, Dufrense, Schwartz (CR99) 2014; 15
Szafron, Khosravi, Reinhardt, Best, Bersi, Yi, Breuer, Humphrey (CR75) 2018; 46
Wu, Shadden (CR82) 2015; 43
Khosravi, Miller, Best, Shih, Lee, Yi, Shinoka, Breuer, Humphrey (CR74) 2015; 21
Humphrey, Tellides, Schwartz, Milewicz (CR33) 2015; 116
Wilson, Humphrey (CR29) 2014; 47
Latorre, Bersi, Humphrey (CR70) 2019; 14
Humphrey (CR8) 2008; 50
Valentin, Humphrey (CR103) 2009; 367
Gasser, Grytsan (CR130) 2017; 1
Sheidaei, Hunley, Zeinali-Davarani, Raguin, Baek (CR81) 2011; 33
Wagenseil (CR98) 2011; 10
Lemon, King, Byrne, Jensen, Shakesheff (CR123) 2006; 52
Latorre, Humphrey (CR15) 2018; 98
Zou, Avril, Yang, Mousavi, Hackl, He (CR121) 2020; 17
Valentin, Humphrey, Holzapfel (CR87) 2013; 29
Libby (CR58) 2012; 32
Mousavi, Avril (CR111) 2017; 16
Humphrey (CR9) 1999; 121
Satha, Lindstrom, Klarbring (CR107) 2014; 13
Vorp (CR43) 2007; 40
Wilson, Baek, Humphrey (CR30) 2013; 469
Miller, Khosravi, Breuer, Humphrey (CR76) 2015; 11
Wang, Zhang, Jiang, Spinetti, Pintus, Monticone, Kolodgie, Virmani, Lakatta (CR63) 2007; 50
Taber (CR133) 2020
Klisch, Chen, Sah, Hoger (CR122) 2003; 125
Wu, Shadden (CR93) 2016; 15
Virag, Wilson, Humphrey, Karsaj (CR46) 2015; 43
Chalouhi (CR60) 2012; 32
Alford, Humphrey, Taber (CR102) 2008; 7
CR64
Cyron, Humphrey (CR92) 2014; 85
Sankaran, Humphrey, Marsden (CR50) 2013; 256
Ciurică, Lopez-Sublet, Loeys, Radhouani, Natarajan, Vikkula, Maas, Adlam, Persu (CR55) 2019; 73
Valentin, Holzapfel (CR106) 2012; 42
Weiss, Cavinato, Gray, Ramachandra, Avril, Humphrey, Latorre (CR57) 2020; 6
Wan, Hansen, Gleason (CR105) 2010; 9
Hill, Philp, Billington, Tatler, Johnson, O’Dea, Brook (CR113) 2018; 17
Humphrey, Taylor (CR23) 2008; 10
Gleason, Taber, Humphrey (CR19) 2004; 126
Watton, Hill, Heil (CR27) 2004; 3
Davies (CR94) 2016; 49
Bhogal, Pederzani, Grytsan, Loh, Brouwer, Andersson, Gundiah, Robertson, Watton, Soderman (CR114) 2019; 29
Figueroa, Baek, Taylor, Humphrey (CR79) 2009; 198
Baek, Valentin, Humphrey (CR42) 2007; 35
Maki-Petaja, Elkhawad, Cheriyan, Joshi, Ostor, Hall, Rudd, Wilkinson (CR66) 2012; 126
Ateshian (CR39) 2007; 6
Goriely (CR132) 2017
Vizzardi, Sciatti, Bondadei, Menottil, Prati, Scodro, Dallapellegrina, Berlendis, Poli, Padoan, Metra (CR67) 2019; 36
Latorre, Fast (CR91) 2020; 368
Braeu, Seitz, Aydin, Cyron (CR90) 2017; 16
Kotas, Medzhitov (CR71) 2015; 160
Di Achille, Tellides, Humphrey (CR45) 2017; 33
Kaunas, Hsu (CR85) 2009; 257
Hald, Timm, Alford (CR108) 2016; 138
Rausch, Humphrey (CR38) 2017; 129
Humphrey, Rajagopal (CR21) 2003; 2
Ambrosi, Ateshian, Arruda, Cowin, Dumais, Goriely, Holzapfel, Humphrey, Kemkemer, Kuhl, Olberding, Taber, Garikipati (CR126) 2011; 59
Latorre, Humphrey (CR69) 2018; 17
Cyron, Humphrey (CR129) 2017; 52
Rachev, Shazly (CR118) 2019; 90
CR84
Humphrey, Rajagopal (CR6) 2002; 12
Cyron, Wilson, Humphrey (CR32) 2014; 11
CR120
Gleason, Humphrey (CR20) 2004; 41
Dajnowiec, Langille (CR17) 2007; 113
Humphrey, Tellides (CR25) 2019; 316
Lin, Iafrati, Peattie, Dorfmann (CR115) 2019; 109
Chovatiya, Medzhitov (CR95) 2014; 54
Valentin, Humphrey, Holzapfel (CR52) 2011; 39
Drews, Pepper, Best, Szafron (CR78) 2020; 12
Baek, Rajagopal, Humphrey (CR26) 2005; 80
Cardamone, Valentin, Eberth, Humphrey (CR11) 2009; 8
Han, Chesnutt, Garcia, Liu, Wen (CR56) 2013; 41
Valentin, Cardamone, Baek, Humphrey (CR14) 2009; 6
Taber (CR125) 1995; 48
Wagneseil, Mecham (CR16) 2009; 89
Humphrey (CR1) 2003; 459
Humphrey (CR12) 2002
Wilson, Baek, Humphrey (CR28) 2012; 9
Latorre, Humphrey (CR96) 2019; 125
Mahmud, Freely (CR62) 2005; 46
Vernerey, Farsad (CR86) 2011; 4
Cyron, Aydin, Humphrey (CR89) 2016; 15
Karsaj, Humphrey (CR104) 2010; 48
Jagadesham (CR59) 2008; 14
Mousavi, Farzaneh, Avril (CR117) 2019; 18
Humphrey, Holzapfel (CR24) 2012; 45
Miller, Lee, Naito, Breuer, Humphrey (CR73) 2014; 47
Grytsan, Eriksson, Watton, Gasser (CR110) 2017; 10
Humphrey, Baek, Niklason (CR41) 2007; 35
Taber (CR97) 1998; 120
Taber, Humphrey (CR101) 2001; 123
Khosravi, Ramachandra, Szafron, Schiavazzi, Breuer, Humphrey (CR119) 2020; 12
Medzhitov (CR68) 2008; 454
Hayenga, Thorne, Peirce, Humphrey (CR83) 2011; 39
Maes, Fehervary, Vastmans, Mousavi, Avril, Famaey (CR116) 2019; 95
H.N. Hayenga (9809_CR83) 2011; 39
J.D. Humphrey (9809_CR1) 2003; 459
L. Virag (9809_CR47) 2017; 33
A. Valentin (9809_CR106) 2012; 42
C. Cyron (9809_CR92) 2014; 85
J. Wu (9809_CR82) 2015; 43
9809_CR120
J.D. Humphrey (9809_CR12) 2002
M. Latorre (9809_CR15) 2018; 98
M. Emmert (9809_CR100) 2018; 10
W.J. Lin (9809_CR115) 2019; 109
D. Weiss (9809_CR57) 2020; 6
M.R. Hill (9809_CR113) 2018; 17
P. Dorfmuller (9809_CR61) 2003; 22
R. Khosravi (9809_CR74) 2015; 21
K.J.A. Davies (9809_CR94) 2016; 49
J.D. Humphrey (9809_CR25) 2019; 316
M. Latorre (9809_CR69) 2018; 17
M. Rausch (9809_CR38) 2017; 129
A.B. Ramachandra (9809_CR48) 2015; 137
A. Ramachandra (9809_CR51) 2020; 110
S. Ciurică (9809_CR55) 2019; 73
K.S. Miller (9809_CR73) 2014; 47
S. Baek (9809_CR80) 2007; 196
F-H. Hsu (9809_CR2) 1968; 1
C. Cyron (9809_CR32) 2014; 11
S. Baek (9809_CR26) 2005; 80
V.P. Jagadesham (9809_CR59) 2008; 14
J.D. Humphrey (9809_CR23) 2008; 10
R.L. Gleason (9809_CR19) 2004; 126
C.A. Figueroa (9809_CR79) 2009; 198
G. Lemon (9809_CR123) 2006; 52
J.D. Humphrey (9809_CR41) 2007; 35
P.W. Alford (9809_CR102) 2008; 7
W. Wan (9809_CR105) 2010; 9
M. Latorre (9809_CR70) 2019; 14
D. Zou (9809_CR121) 2020; 17
J.M. Szafron (9809_CR77) 2019; 25
G. Satha (9809_CR107) 2014; 13
G. Ateshian (9809_CR127) 2012; 14
D. Ambrosi (9809_CR126) 2011; 59
R. Chovatiya (9809_CR95) 2014; 54
J.D. Humphrey (9809_CR21) 2003; 2
A. Valentin (9809_CR87) 2013; 29
J.D. Humphrey (9809_CR99) 2014; 15
J. Wu (9809_CR93) 2016; 15
D. Ambrosi (9809_CR131) 2019; 16
M. Latorre (9809_CR91) 2020; 368
N. Famaey (9809_CR112) 2018; 98
D. Dajnowiec (9809_CR17) 2007; 113
J.S. Soares (9809_CR109) 2016; 15
P. Bhogal (9809_CR114) 2019; 29
A. Rachev (9809_CR118) 2019; 90
L. Maes (9809_CR116) 2019; 95
A. Schriefl (9809_CR36) 2012; 130
D.A. Vorp (9809_CR43) 2007; 40
M.E. Kotas (9809_CR71) 2015; 160
P. Libby (9809_CR58) 2012; 32
9809_CR84
C. Cyron (9809_CR129) 2017; 52
H-C. Han (9809_CR56) 2013; 41
A. Mahmud (9809_CR62) 2005; 46
R. Khosravi (9809_CR119) 2020; 12
S.M. Klisch (9809_CR122) 2003; 125
S. Rodbard (9809_CR22) 1975; 60
P. Di Achille (9809_CR45) 2017; 33
L.A. Taber (9809_CR97) 1998; 120
Y.C. Fung (9809_CR7) 1991; 19
R. Medzhitov (9809_CR68) 2008; 454
L. Maegdefessel (9809_CR31) 2012; 122
M. Latorre (9809_CR96) 2019; 125
K.M. Maki-Petaja (9809_CR66) 2012; 126
R. Skalak (9809_CR4) 1981
G.A. Ateshian (9809_CR39) 2007; 6
J.D. Humphrey (9809_CR33) 2015; 116
F.A. Braeu (9809_CR90) 2017; 16
L.E. Niklason (9809_CR72) 2010; 107
A. Valentin (9809_CR103) 2009; 367
E. Sciatti (9809_CR65) 2018; 35
L.A. Taber (9809_CR101) 2001; 123
J.D. Humphrey (9809_CR8) 2008; 50
P.N. Watton (9809_CR27) 2004; 3
L.A. Taber (9809_CR125) 1995; 48
S.J. Mousavi (9809_CR117) 2019; 18
A. Grytsan (9809_CR110) 2017; 10
K.S. Miller (9809_CR76) 2015; 11
D.M. Milewicz (9809_CR34) 2017; 37
L. Cardamone (9809_CR11) 2009; 8
E.S. Hald (9809_CR108) 2016; 138
K. Hayashi (9809_CR18) 2009; 2
R.L. Gleason (9809_CR20) 2004; 41
J.S. Wilson (9809_CR28) 2012; 9
P. Di Achille (9809_CR44) 2014; 470
J.D. Humphrey (9809_CR9) 1999; 121
J.D. Humphrey (9809_CR6) 2002; 12
J.D. Humphrey (9809_CR53) 2016; 118
S.J. Mousavi (9809_CR111) 2017; 16
R.J. Nims (9809_CR40) 2017; 129
9809_CR64
L.A. Taber (9809_CR133) 2020
L. Virag (9809_CR46) 2015; 43
C. Cyron (9809_CR89) 2016; 15
D. Ambrosi (9809_CR124) 2010; 61
A. Valentin (9809_CR52) 2011; 39
M. Wang (9809_CR63) 2007; 50
J. Rodriguez (9809_CR5) 1994; 27
9809_CR35
S.C. Cowin (9809_CR3) 1976; 6
J. Drews (9809_CR78) 2020; 12
J.D. Humphrey (9809_CR24) 2012; 45
J.S. Wilson (9809_CR30) 2013; 469
C. Bellini (9809_CR10) 2014; 42
T.C. Gasser (9809_CR130) 2017; 1
S. Baek (9809_CR13) 2006; 128
A. Valentin (9809_CR14) 2009; 6
S. Sankaran (9809_CR50) 2013; 256
E. Vizzardi (9809_CR67) 2019; 36
R. Kaunas (9809_CR85) 2009; 257
S. Baek (9809_CR42) 2007; 35
A. Sheidaei (9809_CR81) 2011; 33
J.S. Wilson (9809_CR29) 2014; 47
A. Menzel (9809_CR128) 2012; 42
A. Goriely (9809_CR132) 2017
J.E. Wagneseil (9809_CR16) 2009; 89
F.J. Vernerey (9809_CR86) 2011; 4
J.E. Wagenseil (9809_CR98) 2011; 10
N. Chalouhi (9809_CR60) 2012; 32
J. Szafron (9809_CR75) 2018; 46
I. Karsaj (9809_CR37) 2009; 46
S.A. Morris (9809_CR54) 2015; 30
A.B. Ramachandra (9809_CR49) 2017; 14
N. Horat (9809_CR88) 2019; 352
I. Karsaj (9809_CR104) 2010; 48
References_xml – volume: 98
  start-page: 2048
  year: 2018
  end-page: 2071
  ident: CR15
  article-title: A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.201700302
– volume: 125
  start-page: 298
  year: 2019
  end-page: 325
  ident: CR96
  article-title: Mechanobiological stability of biological soft tissues
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.12.013
– volume: 40
  start-page: 1887
  year: 2007
  end-page: 1902
  ident: CR43
  article-title: Biomechanics of abdominal aortic aneurysm
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.09.003
– volume: 39
  start-page: 2669
  year: 2011
  end-page: 2682
  ident: CR83
  article-title: Ensuring congruency in multiscale models: towards linking agent based and continuum biomechanical models of arterial adaptations
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-011-0363-9
– volume: 109
  start-page: 172
  year: 2019
  end-page: 181
  ident: CR115
  article-title: Non-axisymmetric dilatation of a thick-walled aortic aneurysmal tissue
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2018.11.010
– volume: 47
  start-page: 2080
  year: 2014
  end-page: 2087
  ident: CR73
  article-title: Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.10.009
– volume: 3
  start-page: 98
  year: 2004
  end-page: 113
  ident: CR27
  article-title: A mathematical model for the growth of the abdominal aortic aneurysm
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-004-0052-9
– volume: 10
  year: 2018
  ident: CR100
  article-title: Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aan4587
– volume: 14
  start-page: 35
  year: 2019
  end-page: 46
  ident: CR70
  article-title: Computational modeling predicts immuno-mechanical mechanisms of maladaptative aortic remodeling in hypertension
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2019.05.014
– volume: 61
  start-page: 177
  year: 2010
  end-page: 191
  ident: CR124
  article-title: The insight of mixtures theory for growth and remodeling
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-009-0037-8
– volume: 52
  start-page: 571
  year: 2006
  end-page: 594
  ident: CR123
  article-title: Mathematical modeling of engineered tissue growth using multiphase porous flow mixture theory
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-005-0363-1
– volume: 32
  start-page: 1659
  year: 2012
  end-page: 1676
  ident: CR60
  article-title: Biology of intracranial aneurysms: role of inflammation
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2012.84
– volume: 52
  start-page: 645
  year: 2017
  end-page: 664
  ident: CR129
  article-title: Growth and remodeling of load-bearing biological soft tissues
  publication-title: Meccanica
  doi: 10.1007/s11012-016-0472-5
– volume: 32
  start-page: 2045
  year: 2012
  end-page: 2051
  ident: CR58
  article-title: Inflammation in atherosclerosis
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.108.179705
– volume: 98
  start-page: 2239
  year: 2018
  end-page: 2257
  ident: CR112
  article-title: Numerical simulation of arterial remodeling in pulmonary autografts
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.201700351
– year: 2017
  ident: CR132
  publication-title: The Mathematics and Mechanics of Biological Growth
  doi: 10.1007/978-0-387-87710-5
– volume: 14
  year: 2017
  ident: CR49
  article-title: Gradual loading ameliorates maladaptation in computational simulations of vein growth and remodeling
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2016.0995
– volume: 29
  start-page: 763
  year: 2019
  end-page: 774
  ident: CR114
  article-title: The unexplained success of stentplasty vasospasm treatment: insights using mechanistic mathematical modeling
  publication-title: Klin. Neuroradiol.
  doi: 10.1007/s00062-019-00776-2
– year: 2020
  ident: CR133
  publication-title: Continuum Modeling in Mechanobiology
  doi: 10.1007/978-3-030-43209-6
– volume: 107
  start-page: 3335
  year: 2010
  end-page: 3339
  ident: CR72
  article-title: Enabling tools for engineering collagenous tissues, integrating bioreactors, intravital imaging, and biomechanical modeling
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0907813106
– volume: 1
  start-page: 71
  year: 2017
  end-page: 77
  ident: CR130
  article-title: Biomechanical modeling the adaptation of soft biological tissue
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2017.03.004
– volume: 18
  start-page: 1895
  year: 2019
  end-page: 1913
  ident: CR117
  article-title: Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-019-01184-8
– volume: 116
  start-page: 1448
  year: 2015
  end-page: 1461
  ident: CR33
  article-title: Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.114.304936
– volume: 7
  start-page: 245
  year: 2008
  end-page: 262
  ident: CR102
  article-title: Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-007-0101-2
– volume: 43
  start-page: 1543
  year: 2015
  end-page: 1554
  ident: CR82
  article-title: Coupled simulation of hemodynamics and vascular growth and remodeling in a subject-specific geometry
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1287-6
– volume: 128
  start-page: 142
  year: 2006
  end-page: 149
  ident: CR13
  article-title: A theoretical model of enlarging intracranial fusiform aneurysms
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2132374
– volume: 110
  year: 2020
  ident: CR51
  article-title: Vascular adaptation in the presence of an external support – a modeling study
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2020.103943
– volume: 10
  start-page: 671
  year: 2011
  end-page: 687
  ident: CR98
  article-title: A constrained mixture model for developing mouse aorta
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-010-0265-z
– start-page: 347
  year: 1981
  end-page: 355
  ident: CR4
  article-title: Gowth as a finite displacement field
  publication-title: Proceed IUTAM Symposium Finite Elasticity
  doi: 10.1007/978-94-009-7538-5_23
– year: 2002
  ident: CR12
  publication-title: Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
  doi: 10.1007/978-0-387-21576-1
– volume: 129
  start-page: 69
  year: 2017
  end-page: 105
  ident: CR40
  article-title: Reactive constrained mixtures for modeling the solid matrix of biological tissues
  publication-title: J. Elast.
  doi: 10.1007/s10659-017-9630-9
– volume: 130
  start-page: e139
  year: 2012
  end-page: 146
  ident: CR36
  article-title: Remodeling of thrombus and collagen in an Ang-II infusion ApoE-/- model of dissecting aortic aneurysms
  publication-title: Thromb. Res.
  doi: 10.1016/j.thromres.2012.04.009
– volume: 125
  start-page: 169
  year: 2003
  end-page: 179
  ident: CR122
  article-title: A growth mixture theory for cartilage with application to growth-related experiments on cartilage explants
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1560144
– volume: 27
  start-page: 455
  year: 1994
  end-page: 467
  ident: CR5
  article-title: Stress-dependent finite growth in soft elastic tissues
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)90021-3
– volume: 367
  start-page: 3585
  year: 2009
  end-page: 3606
  ident: CR103
  article-title: Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodeling
  publication-title: Philos. Trans. R. Soc. Lond. A
– volume: 118
  start-page: 379
  year: 2016
  end-page: 381
  ident: CR53
  article-title: Central artery stiffness in hypertension and aging: a problem with cause and consequence
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.307722
– volume: 10
  start-page: 994
  year: 2017
  ident: CR110
  article-title: Growth description for vessel wall adaptation: a thick-walled mixture model of abdominal aortic aneurysm evolution
  publication-title: Materials (Basel)
  doi: 10.3390/ma10090994
– volume: 126
  start-page: 371
  year: 2004
  end-page: 381
  ident: CR19
  article-title: A 2-D model of flow-induced alterations in the geometry, structure and properties of carotid arteries
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1762899
– volume: 46
  start-page: 1118
  year: 2005
  end-page: 1122
  ident: CR62
  article-title: Arterial stiffness is related to systemic inflammation in essential hypertension
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000185463.27209.b0
– volume: 2
  start-page: 109
  year: 2003
  end-page: 126
  ident: CR21
  article-title: A constrained mixture model for arterial adaptations to a sustained step-change in blood flow
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-003-0033-4
– volume: 470
  year: 2014
  ident: CR44
  article-title: A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms
  publication-title: Proc. R. Soc. Lond. A
– volume: 85
  start-page: 203
  year: 2014
  end-page: 223
  ident: CR92
  article-title: Vascular homeostasis and the concept of mechanobiological stability
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2014.08.003
– volume: 60
  start-page: 4
  year: 1975
  end-page: 49
  ident: CR22
  article-title: Vascular caliber
  publication-title: Cardiology
  doi: 10.1159/000169701
– volume: 73
  start-page: 951
  year: 2019
  end-page: 960
  ident: CR55
  article-title: Arterial tortuosity: novel implications for an old phenotype
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.118.11647
– volume: 4
  start-page: 1683
  year: 2011
  end-page: 1699
  ident: CR86
  article-title: A constrained mixture approach to mechano-sensing and force generation to contractile cells
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2011.05.022
– volume: 59
  start-page: 863
  year: 2011
  end-page: 883
  ident: CR126
  article-title: Perspectives on biological growth and remodeling
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2010.12.011
– volume: 33
  year: 2017
  ident: CR45
  article-title: Hemodynamics-driven deposition of intraluminal thrombus in abdominal aortic aneurysms
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2828
– volume: 10
  start-page: 221
  year: 2008
  end-page: 246
  ident: CR23
  article-title: Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.10.061807.160439
– volume: 17
  year: 2020
  ident: CR121
  article-title: Three-dimensional numerical simulation of soft-tissue wound healing using constrained-mixture anisotropic hyperelasticity and gradient-enhanced damage mechanics
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2019.0708
– volume: 1
  start-page: 303
  year: 1968
  end-page: 311
  ident: CR2
  article-title: The influences of mechanical loads on the form of a growing elastic body
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(68)90024-9
– volume: 120
  start-page: 348
  year: 1998
  end-page: 354
  ident: CR97
  article-title: A model for aortic growth based on fluid shear and fiber stresses
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2798001
– volume: 14
  start-page: 97
  year: 2012
  end-page: 111
  ident: CR127
  article-title: Continuum mixture models of soft tissue growth and remodeling: past successes and future challenges
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071910-124726
– volume: 41
  start-page: 352
  year: 2004
  end-page: 363
  ident: CR20
  article-title: A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover
  publication-title: J. Vasc. Res.
  doi: 10.1159/000080699
– volume: 48
  start-page: 1357
  year: 2010
  end-page: 1372
  ident: CR104
  article-title: A 3-D framework for arterial growth and remodeling in response to altered hemodynamics
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2010.06.033
– volume: 54
  start-page: 281
  year: 2014
  end-page: 288
  ident: CR95
  article-title: Stress, inflammation, and defense of homeostasis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.03.030
– volume: 368
  year: 2020
  ident: CR91
  article-title: rate-independent, finite element implementation of a 3D constrained mixture model of soft tissue growth and remodeling
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113156
– volume: 35
  start-page: 798
  year: 2018
  end-page: 803
  ident: CR65
  article-title: The role of type 2 diabetes mellitus on hypertensive-related aortic stiffness
  publication-title: Echocardiography
  doi: 10.1111/echo.13841
– volume: 16
  start-page: 1765
  year: 2017
  end-page: 1777
  ident: CR111
  article-title: Patient-specific stress analyses in the ascending thoracic aorta using a finite-element implementation of the constrained mixture theory
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-017-0918-2
– ident: CR120
– volume: 316
  start-page: H169
  year: 2019
  end-page: 182
  ident: CR25
  article-title: Central artery stiffness and thoracic aortopathy
  publication-title: Am. J. Physiol.
– volume: 12
  year: 2020
  ident: CR78
  article-title: Spontaneous reversal of stenosis in tissue-engineered vascular grafts
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aax6919
– volume: 41
  start-page: 1399
  year: 2013
  end-page: 1410
  ident: CR56
  article-title: Artery buckling: new phenotypes, models, and applications
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-012-0707-0
– volume: 47
  start-page: 2995
  year: 2014
  end-page: 3002
  ident: CR29
  article-title: Evolving anisotropy resulting from elastolytic insults in abdominal aortic aneurysms: potential clinical relevance?
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.07.003
– volume: 196
  start-page: 3070
  year: 2007
  end-page: 3078
  ident: CR80
  article-title: Theory of small on large: potential utility in computations of fluid-solid interactions in arteries
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2006.06.018
– volume: 19
  start-page: 237
  year: 1991
  end-page: 249
  ident: CR7
  article-title: What are residual stresses doing in our blood vessels?
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/BF02584301
– volume: 122
  start-page: 497
  year: 2012
  end-page: 506
  ident: CR31
  article-title: Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI61598
– volume: 21
  start-page: 1529
  year: 2015
  end-page: 1538
  ident: CR74
  article-title: Biomechanical diversity despite mechanobiological stability in tissue engineered vascular grafts two years post-implantation
  publication-title: Tissue Eng., Part A
  doi: 10.1089/ten.tea.2014.0524
– volume: 43
  start-page: 2852
  year: 2015
  end-page: 2867
  ident: CR46
  article-title: A computational model of biochemomechanical effects of intraluminal thrombus on the enlargement of abdominal aortic aneurysms
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1354-z
– volume: 15
  start-page: 293
  year: 2016
  end-page: 316
  ident: CR109
  article-title: A triphasic constrained mixture model of engineered tissue formation under in vitro dynamic mechanical conditioning
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-015-0687-8
– volume: 12
  start-page: 47
  year: 2020
  end-page: 63
  ident: CR119
  article-title: A computational bio-chemo-mechanical model of in vivo tissue-engineered vascular graft development
  publication-title: Integr. Biol.
  doi: 10.1093/intbio/zyaa004
– volume: 16
  year: 2019
  ident: CR131
  article-title: Growth and remodeling of living systems: perspectives, challenges, and opportunities
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2019.0233
– volume: 17
  start-page: 1497
  year: 2018
  end-page: 1511
  ident: CR69
  article-title: Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-018-1041-8
– volume: 9
  start-page: 2047
  year: 2012
  end-page: 2058
  ident: CR28
  article-title: Importance of initial aortic properties on the evolving regional anisotropy, stiffness, and wall thickness of human abdominal aortic aneurysms
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0097
– volume: 11
  start-page: 283
  year: 2015
  end-page: 294
  ident: CR76
  article-title: A hypothesis-driven parametric study of the effects of polymeric scaffold properties on tissue engineered neovessel formation
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.09.046
– volume: 12
  start-page: 407
  year: 2002
  end-page: 430
  ident: CR6
  article-title: A constrained mixture model for growth and remodeling of soft tissues
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202502001714
– ident: CR35
– volume: 17
  start-page: 1451
  year: 2018
  end-page: 1470
  ident: CR113
  article-title: A theoretical model of inflammation- and mechanotransduction-driven asthmatic airway remodeling
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-018-1037-4
– ident: CR84
– volume: 80
  start-page: 13
  year: 2005
  end-page: 31
  ident: CR26
  article-title: Competition between radial expansion and thickening in the enlargement of an intracranial saccular aneurysm
  publication-title: J. Elast.
  doi: 10.1007/s10659-005-9004-6
– volume: 22
  start-page: 358
  year: 2003
  end-page: 363
  ident: CR61
  article-title: Inflammation in pulmonary arterial hypertension
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.03.00038903
– volume: 137
  year: 2015
  ident: CR48
  article-title: Computational simulation of the adaptive capacity of vein grafts in response to increased pressure
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4029021
– volume: 35
  start-page: 1498
  year: 2007
  end-page: 1509
  ident: CR42
  article-title: Biochemomechanics of cerebral vasospasm and its resolution: II. Constitutive relations and model simulations
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-007-9322-x
– volume: 6
  start-page: 423
  year: 2007
  end-page: 445
  ident: CR39
  article-title: On the theory of reactive mixtures for modeling biological growth
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-006-0070-x
– volume: 42
  start-page: 126
  year: 2012
  end-page: 133
  ident: CR106
  article-title: Constrained mixture models as tools for testing competing hypotheses in arterial biomechanics: a brief review
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2012.02.003
– volume: 352
  start-page: 586
  year: 2019
  end-page: 605
  ident: CR88
  article-title: A finite element implementation of a growth and remodeling model for soft biological soft tissues: verification and application to abdominal aortic aneurysms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.04.041
– volume: 50
  start-page: 219
  year: 2007
  end-page: 227
  ident: CR63
  article-title: Proinflammatory profile within the grossly normal aged human aortic wall
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.107.089409
– volume: 46
  start-page: 1938
  year: 2018
  end-page: 1950
  ident: CR75
  article-title: Immuno-driven and mechano-mediated neotissue formation in tissue engineered vascular grafts
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-2086-7
– volume: 198
  start-page: 3583
  year: 2009
  end-page: 3602
  ident: CR79
  article-title: A computational framework for fluid-solid-growth modeling in cardiovascular simulations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.09.013
– volume: 9
  start-page: 403
  year: 2010
  end-page: 419
  ident: CR105
  article-title: A 3-D constrained mixture model for mechanically mediated vascular growth and remodeling
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-009-0184-z
– volume: 11
  year: 2014
  ident: CR32
  article-title: Mechanobiological stability: a new paradigm to understand the enlargement of aneurysms
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2014.0680
– volume: 30
  start-page: 587
  year: 2015
  end-page: 593
  ident: CR54
  article-title: Arterial tortuosity in genetic arteriopathies
  publication-title: Curr. Opin. Cardiol.
  doi: 10.1097/HCO.0000000000000218
– volume: 8
  start-page: 431
  year: 2009
  end-page: 446
  ident: CR11
  article-title: Origin of axial prestress and residual stress in arteries
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-008-0146-x
– volume: 6
  start-page: 293
  year: 2009
  end-page: 306
  ident: CR14
  article-title: Complementary vasoactivity and matrix remodeling in arterial adaptations to altered flow and pressure
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2008.0254
– volume: 129
  start-page: 125
  year: 2017
  end-page: 144
  ident: CR38
  article-title: A computational model of the biochemomechanics of an evolving occlusive thrombus
  publication-title: J. Elast.
  doi: 10.1007/s10659-017-9626-5
– volume: 459
  start-page: 3
  year: 2003
  end-page: 46
  ident: CR1
  article-title: Continuum biomechanics of soft biological tissues
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2002.1060
– volume: 454
  start-page: 428
  year: 2008
  end-page: 435
  ident: CR68
  article-title: Origin and physiological roles of inflammation
  publication-title: Nature
  doi: 10.1038/nature07201
– volume: 50
  start-page: 53
  year: 2008
  end-page: 78
  ident: CR8
  article-title: Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-007-9002-3
– ident: CR64
– volume: 121
  start-page: 591
  year: 1999
  end-page: 597
  ident: CR9
  article-title: Remodeling of a collagenous tissue at fixed lengths
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2800858
– volume: 16
  start-page: 889
  year: 2017
  end-page: 906
  ident: CR90
  article-title: Homogenized constrained mixture models for anisotropic volumetric growth and remodeling
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-016-0859-1
– volume: 49
  start-page: 1
  year: 2016
  end-page: 7
  ident: CR94
  article-title: Adaptive homeostasis
  publication-title: Mol. Aspects Med.
  doi: 10.1016/j.mam.2016.04.007
– volume: 15
  start-page: 1669
  year: 2016
  end-page: 1684
  ident: CR93
  article-title: Stability analysis of a continuum-based constrained mixture model for vascular growth and remodeling
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-016-0790-5
– volume: 138
  year: 2016
  ident: CR108
  article-title: Amyloid beta influences vascular smooth muscle contractility and mechanoadaptation
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4034560
– volume: 6
  start-page: 313
  year: 1976
  end-page: 326
  ident: CR3
  article-title: Bone remodeling I: theory of adaptive elasticity
  publication-title: J. Elast.
  doi: 10.1007/BF00041724
– volume: 256
  start-page: 200
  year: 2013
  end-page: 210
  ident: CR50
  article-title: Optimization and parameter sensitivity analysis for arterial growth and remodeling computations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.12.013
– volume: 469
  year: 2013
  ident: CR30
  article-title: Parametric study of effects of collagen turnover in human abdominal aortic aneurysms
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2012.0556
– volume: 15
  start-page: 1389
  year: 2016
  end-page: 1403
  ident: CR89
  article-title: A homogenized constrained mixture (and mechanical analog model) for growth and remodeling of soft tissue
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-016-0770-9
– volume: 35
  start-page: 1485
  year: 2007
  end-page: 1497
  ident: CR41
  article-title: Biochemomechanics of cerebral vasospasm and its resolution: I. A new hypothesis and theoretical framework
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-007-9321-y
– volume: 15
  start-page: 802
  year: 2014
  end-page: 812
  ident: CR99
  article-title: Mechanotransduction and extracellular matrix homeostasis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3896
– volume: 39
  start-page: 2027
  year: 2011
  end-page: 2045
  ident: CR52
  article-title: A multi-layered computational model of coupled elastin degradation, vasoactive dysfunction, and collagenous stiffening in aortic aging
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-011-0287-4
– volume: 14
  start-page: 522
  year: 2008
  end-page: 529
  ident: CR59
  article-title: Abdominal aortic aneurysms: an autoimmune disease?
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2008.09.008
– volume: 257
  start-page: 320
  year: 2009
  end-page: 330
  ident: CR85
  article-title: A kinematic model of stretch-induced stress fiber turnover and reorientation
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2008.11.024
– volume: 25
  start-page: 561
  year: 2019
  end-page: 570
  ident: CR77
  article-title: Optimization of tissue engineered vascular graft design using computational modeling
  publication-title: Tissue Eng., Part C
  doi: 10.1089/ten.tec.2019.0086
– volume: 89
  start-page: 957
  year: 2009
  end-page: 989
  ident: CR16
  article-title: Vascular extracellular matrix and arterial mechanics
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00041.2008
– volume: 46
  start-page: 509
  year: 2009
  end-page: 527
  ident: CR37
  article-title: A mathematical model of evolving mechanical properties of intraluminal thrombus
  publication-title: Biorheology
  doi: 10.3233/BIR-2009-0556
– volume: 33
  year: 2017
  ident: CR47
  article-title: Potential biomechanical roles of risk factors in the evolution of thrombus-laden abdominal aortic aneurysms
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2893
– volume: 2
  start-page: 3
  year: 2009
  end-page: 19
  ident: CR18
  article-title: Adaptation and remodeling of vascular wall; biomechanical response to hypertension
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2008.05.002
– volume: 37
  start-page: 26
  year: 2017
  end-page: 34
  ident: CR34
  article-title: Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.116.303229
– volume: 42
  start-page: 488
  year: 2014
  end-page: 502
  ident: CR10
  article-title: A microstructurally-motivated model of arterial wall mechanics with mechanobiological implications
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0928-x
– volume: 113
  start-page: 15
  year: 2007
  end-page: 23
  ident: CR17
  article-title: Arterial adaptations to chronic changes in haemodynamic function: coupling vasomotor tone to structural remodelling
  publication-title: Clin. Sci. (Lond.)
  doi: 10.1042/CS20060337
– volume: 6
  year: 2020
  ident: CR57
  article-title: Mechanics-driven mechanobiological mechanisms of arterial tortuosity
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd3574
– volume: 160
  start-page: 816
  year: 2015
  end-page: 827
  ident: CR71
  article-title: Homeostasis, inflammation, and disease susceptibility
  publication-title: Cell
  doi: 10.1016/j.cell.2015.02.010
– volume: 36
  start-page: 1118
  year: 2019
  end-page: 1122
  ident: CR67
  article-title: Elastic aortic properties in cystic fibrosis adults without cardiovascular risk factors: a case-control study
  publication-title: Echocardiography
  doi: 10.1111/echo.14375
– volume: 90
  start-page: 61
  year: 2019
  end-page: 72
  ident: CR118
  article-title: A structure-based constitutive model of arterial tissue considering individual natural configurations of elastin and collagen
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.09.047
– volume: 33
  start-page: 80
  year: 2011
  end-page: 88
  ident: CR81
  article-title: Simulation of abdominal aortic aneurysm growth with updated hemodynamic loads using a realistic geometry
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.09.012
– volume: 42
  start-page: 1
  year: 2012
  end-page: 14
  ident: CR128
  article-title: Frontiers in growth and remodeling
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2012.02.007
– volume: 45
  start-page: 805
  year: 2012
  end-page: 814
  ident: CR24
  article-title: Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.11.021
– volume: 123
  start-page: 528
  year: 2001
  end-page: 535
  ident: CR101
  article-title: Stress modulated growth, residual stress, and vascular heterogeneity
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1412451
– volume: 48
  start-page: 487
  year: 1995
  end-page: 545
  ident: CR125
  article-title: Biomechanics of growth, remodeling, and morphogenesis
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.3005109
– volume: 13
  start-page: 1243
  year: 2014
  end-page: 1259
  ident: CR107
  article-title: A goal function approach to remodeling of arteries uncovers mechanisms for growth instability
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-014-0569-5
– volume: 126
  start-page: 2473
  year: 2012
  end-page: 2480
  ident: CR66
  article-title: Anti-tumor necrosis factor-a therapy reduces aortic inflammation and stiffness in patients with rheumatoid arthritis
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.112.120410
– volume: 29
  start-page: 822
  year: 2013
  end-page: 849
  ident: CR87
  article-title: A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation. Theory and numerical verification
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2555
– volume: 95
  start-page: 124
  year: 2019
  end-page: 135
  ident: CR116
  article-title: Constrained mixture modeling affects material parameter identification from planar biaxial tests
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2019.03.029
– volume-title: The Mathematics and Mechanics of Biological Growth
  year: 2017
  ident: 9809_CR132
  doi: 10.1007/978-0-387-87710-5
– volume: 198
  start-page: 3583
  year: 2009
  ident: 9809_CR79
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.09.013
– volume: 42
  start-page: 488
  year: 2014
  ident: 9809_CR10
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0928-x
– volume: 8
  start-page: 431
  year: 2009
  ident: 9809_CR11
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-008-0146-x
– volume: 39
  start-page: 2027
  year: 2011
  ident: 9809_CR52
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-011-0287-4
– volume: 120
  start-page: 348
  year: 1998
  ident: 9809_CR97
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2798001
– volume: 33
  year: 2017
  ident: 9809_CR45
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2828
– volume: 196
  start-page: 3070
  year: 2007
  ident: 9809_CR80
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2006.06.018
– volume: 118
  start-page: 379
  year: 2016
  ident: 9809_CR53
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.115.307722
– volume: 48
  start-page: 1357
  year: 2010
  ident: 9809_CR104
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2010.06.033
– volume: 129
  start-page: 69
  year: 2017
  ident: 9809_CR40
  publication-title: J. Elast.
  doi: 10.1007/s10659-017-9630-9
– volume: 12
  year: 2020
  ident: 9809_CR78
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aax6919
– volume: 6
  year: 2020
  ident: 9809_CR57
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abd3574
– volume: 122
  start-page: 497
  year: 2012
  ident: 9809_CR31
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI61598
– volume: 95
  start-page: 124
  year: 2019
  ident: 9809_CR116
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2019.03.029
– volume-title: Continuum Modeling in Mechanobiology
  year: 2020
  ident: 9809_CR133
  doi: 10.1007/978-3-030-43209-6
– volume: 11
  start-page: 283
  year: 2015
  ident: 9809_CR76
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2014.09.046
– volume: 2
  start-page: 109
  year: 2003
  ident: 9809_CR21
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-003-0033-4
– volume: 39
  start-page: 2669
  year: 2011
  ident: 9809_CR83
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-011-0363-9
– volume: 137
  year: 2015
  ident: 9809_CR48
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4029021
– ident: 9809_CR64
  doi: 10.1155/2017/5038602
– volume: 60
  start-page: 4
  year: 1975
  ident: 9809_CR22
  publication-title: Cardiology
  doi: 10.1159/000169701
– volume: 116
  start-page: 1448
  year: 2015
  ident: 9809_CR33
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.114.304936
– volume: 35
  start-page: 1498
  year: 2007
  ident: 9809_CR42
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-007-9322-x
– volume: 12
  start-page: 407
  year: 2002
  ident: 9809_CR6
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202502001714
– volume: 46
  start-page: 1938
  year: 2018
  ident: 9809_CR75
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-2086-7
– volume: 16
  start-page: 889
  year: 2017
  ident: 9809_CR90
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-016-0859-1
– volume: 125
  start-page: 298
  year: 2019
  ident: 9809_CR96
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2018.12.013
– volume: 7
  start-page: 245
  year: 2008
  ident: 9809_CR102
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-007-0101-2
– volume: 9
  start-page: 2047
  year: 2012
  ident: 9809_CR28
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2012.0097
– volume: 17
  start-page: 1497
  year: 2018
  ident: 9809_CR69
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-018-1041-8
– volume: 61
  start-page: 177
  year: 2010
  ident: 9809_CR124
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-009-0037-8
– volume: 52
  start-page: 571
  year: 2006
  ident: 9809_CR123
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-005-0363-1
– ident: 9809_CR84
  doi: 10.1007/s10439-020-02713-8
– volume: 6
  start-page: 293
  year: 2009
  ident: 9809_CR14
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2008.0254
– volume: 50
  start-page: 53
  year: 2008
  ident: 9809_CR8
  publication-title: Cell Biochem. Biophys.
  doi: 10.1007/s12013-007-9002-3
– volume: 15
  start-page: 1669
  year: 2016
  ident: 9809_CR93
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-016-0790-5
– volume: 13
  start-page: 1243
  year: 2014
  ident: 9809_CR107
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-014-0569-5
– volume: 17
  year: 2020
  ident: 9809_CR121
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2019.0708
– volume: 15
  start-page: 1389
  year: 2016
  ident: 9809_CR89
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-016-0770-9
– volume: 43
  start-page: 2852
  year: 2015
  ident: 9809_CR46
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1354-z
– volume: 15
  start-page: 293
  year: 2016
  ident: 9809_CR109
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-015-0687-8
– volume: 52
  start-page: 645
  year: 2017
  ident: 9809_CR129
  publication-title: Meccanica
  doi: 10.1007/s11012-016-0472-5
– volume: 19
  start-page: 237
  year: 1991
  ident: 9809_CR7
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/BF02584301
– volume: 27
  start-page: 455
  year: 1994
  ident: 9809_CR5
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)90021-3
– volume: 257
  start-page: 320
  year: 2009
  ident: 9809_CR85
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2008.11.024
– volume: 17
  start-page: 1451
  year: 2018
  ident: 9809_CR113
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-018-1037-4
– volume: 125
  start-page: 169
  year: 2003
  ident: 9809_CR122
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1560144
– volume: 9
  start-page: 403
  year: 2010
  ident: 9809_CR105
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-009-0184-z
– volume: 11
  year: 2014
  ident: 9809_CR32
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2014.0680
– volume: 4
  start-page: 1683
  year: 2011
  ident: 9809_CR86
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2011.05.022
– volume: 41
  start-page: 352
  year: 2004
  ident: 9809_CR20
  publication-title: J. Vasc. Res.
  doi: 10.1159/000080699
– volume: 25
  start-page: 561
  year: 2019
  ident: 9809_CR77
  publication-title: Tissue Eng., Part C
  doi: 10.1089/ten.tec.2019.0086
– volume: 368
  year: 2020
  ident: 9809_CR91
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113156
– volume: 47
  start-page: 2080
  year: 2014
  ident: 9809_CR73
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.10.009
– volume: 45
  start-page: 805
  year: 2012
  ident: 9809_CR24
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2011.11.021
– volume: 367
  start-page: 3585
  year: 2009
  ident: 9809_CR103
  publication-title: Philos. Trans. R. Soc. Lond. A
– volume: 18
  start-page: 1895
  year: 2019
  ident: 9809_CR117
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-019-01184-8
– volume: 130
  start-page: e139
  year: 2012
  ident: 9809_CR36
  publication-title: Thromb. Res.
  doi: 10.1016/j.thromres.2012.04.009
– volume: 129
  start-page: 125
  year: 2017
  ident: 9809_CR38
  publication-title: J. Elast.
  doi: 10.1007/s10659-017-9626-5
– volume: 29
  start-page: 763
  year: 2019
  ident: 9809_CR114
  publication-title: Klin. Neuroradiol.
  doi: 10.1007/s00062-019-00776-2
– volume: 37
  start-page: 26
  year: 2017
  ident: 9809_CR34
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.116.303229
– volume: 85
  start-page: 203
  year: 2014
  ident: 9809_CR92
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2014.08.003
– volume: 46
  start-page: 1118
  year: 2005
  ident: 9809_CR62
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000185463.27209.b0
– volume: 90
  start-page: 61
  year: 2019
  ident: 9809_CR118
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2018.09.047
– volume: 10
  start-page: 994
  year: 2017
  ident: 9809_CR110
  publication-title: Materials (Basel)
  doi: 10.3390/ma10090994
– volume: 54
  start-page: 281
  year: 2014
  ident: 9809_CR95
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2014.03.030
– volume: 33
  year: 2017
  ident: 9809_CR47
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2893
– volume: 32
  start-page: 1659
  year: 2012
  ident: 9809_CR60
  publication-title: J. Cereb. Blood Flow Metab.
  doi: 10.1038/jcbfm.2012.84
– volume: 42
  start-page: 1
  year: 2012
  ident: 9809_CR128
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2012.02.007
– volume: 469
  year: 2013
  ident: 9809_CR30
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2012.0556
– volume: 3
  start-page: 98
  year: 2004
  ident: 9809_CR27
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-004-0052-9
– volume: 160
  start-page: 816
  year: 2015
  ident: 9809_CR71
  publication-title: Cell
  doi: 10.1016/j.cell.2015.02.010
– volume: 48
  start-page: 487
  year: 1995
  ident: 9809_CR125
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.3005109
– volume: 43
  start-page: 1543
  year: 2015
  ident: 9809_CR82
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1287-6
– volume: 14
  start-page: 97
  year: 2012
  ident: 9809_CR127
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev-bioeng-071910-124726
– volume: 6
  start-page: 423
  year: 2007
  ident: 9809_CR39
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-006-0070-x
– volume: 1
  start-page: 71
  year: 2017
  ident: 9809_CR130
  publication-title: Curr. Opin. Biomed. Eng.
  doi: 10.1016/j.cobme.2017.03.004
– volume: 126
  start-page: 371
  year: 2004
  ident: 9809_CR19
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1762899
– volume: 42
  start-page: 126
  year: 2012
  ident: 9809_CR106
  publication-title: Mech. Res. Commun.
  doi: 10.1016/j.mechrescom.2012.02.003
– volume: 14
  start-page: 35
  year: 2019
  ident: 9809_CR70
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2019.05.014
– volume: 46
  start-page: 509
  year: 2009
  ident: 9809_CR37
  publication-title: Biorheology
  doi: 10.3233/BIR-2009-0556
– volume: 35
  start-page: 1485
  year: 2007
  ident: 9809_CR41
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-007-9321-y
– volume: 123
  start-page: 528
  year: 2001
  ident: 9809_CR101
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.1412451
– volume: 12
  start-page: 47
  year: 2020
  ident: 9809_CR119
  publication-title: Integr. Biol.
  doi: 10.1093/intbio/zyaa004
– volume: 16
  year: 2019
  ident: 9809_CR131
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2019.0233
– volume-title: Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
  year: 2002
  ident: 9809_CR12
  doi: 10.1007/978-0-387-21576-1
– volume: 89
  start-page: 957
  year: 2009
  ident: 9809_CR16
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00041.2008
– volume: 110
  year: 2020
  ident: 9809_CR51
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2020.103943
– volume: 40
  start-page: 1887
  year: 2007
  ident: 9809_CR43
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.09.003
– volume: 22
  start-page: 358
  year: 2003
  ident: 9809_CR61
  publication-title: Eur. Respir. J.
  doi: 10.1183/09031936.03.00038903
– volume: 80
  start-page: 13
  year: 2005
  ident: 9809_CR26
  publication-title: J. Elast.
  doi: 10.1007/s10659-005-9004-6
– volume: 10
  start-page: 671
  year: 2011
  ident: 9809_CR98
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-010-0265-z
– volume: 6
  start-page: 313
  year: 1976
  ident: 9809_CR3
  publication-title: J. Elast.
  doi: 10.1007/BF00041724
– volume: 454
  start-page: 428
  year: 2008
  ident: 9809_CR68
  publication-title: Nature
  doi: 10.1038/nature07201
– volume: 49
  start-page: 1
  year: 2016
  ident: 9809_CR94
  publication-title: Mol. Aspects Med.
  doi: 10.1016/j.mam.2016.04.007
– volume: 121
  start-page: 591
  year: 1999
  ident: 9809_CR9
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2800858
– volume: 16
  start-page: 1765
  year: 2017
  ident: 9809_CR111
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-017-0918-2
– volume: 256
  start-page: 200
  year: 2013
  ident: 9809_CR50
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.12.013
– volume: 10
  start-page: 221
  year: 2008
  ident: 9809_CR23
  publication-title: Annu. Rev. Biomed. Eng.
  doi: 10.1146/annurev.bioeng.10.061807.160439
– ident: 9809_CR120
  doi: 10.1016/j.jmbbm.2020.104161
– volume: 14
  year: 2017
  ident: 9809_CR49
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2016.0995
– volume: 36
  start-page: 1118
  year: 2019
  ident: 9809_CR67
  publication-title: Echocardiography
  doi: 10.1111/echo.14375
– volume: 41
  start-page: 1399
  year: 2013
  ident: 9809_CR56
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-012-0707-0
– volume: 59
  start-page: 863
  year: 2011
  ident: 9809_CR126
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2010.12.011
– volume: 47
  start-page: 2995
  year: 2014
  ident: 9809_CR29
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2014.07.003
– volume: 33
  start-page: 80
  year: 2011
  ident: 9809_CR81
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2010.09.012
– volume: 352
  start-page: 586
  year: 2019
  ident: 9809_CR88
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.04.041
– volume: 98
  start-page: 2239
  year: 2018
  ident: 9809_CR112
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.201700351
– volume: 316
  start-page: H169
  year: 2019
  ident: 9809_CR25
  publication-title: Am. J. Physiol.
– volume: 35
  start-page: 798
  year: 2018
  ident: 9809_CR65
  publication-title: Echocardiography
  doi: 10.1111/echo.13841
– volume: 470
  year: 2014
  ident: 9809_CR44
  publication-title: Proc. R. Soc. Lond. A
– volume: 126
  start-page: 2473
  year: 2012
  ident: 9809_CR66
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.112.120410
– volume: 109
  start-page: 172
  year: 2019
  ident: 9809_CR115
  publication-title: Int. J. Non-Linear Mech.
  doi: 10.1016/j.ijnonlinmec.2018.11.010
– volume: 2
  start-page: 3
  year: 2009
  ident: 9809_CR18
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2008.05.002
– volume: 73
  start-page: 951
  year: 2019
  ident: 9809_CR55
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.118.11647
– volume: 138
  year: 2016
  ident: 9809_CR108
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4034560
– ident: 9809_CR35
  doi: 10.1371/journal.pcbi.1008273
– volume: 30
  start-page: 587
  year: 2015
  ident: 9809_CR54
  publication-title: Curr. Opin. Cardiol.
  doi: 10.1097/HCO.0000000000000218
– volume: 21
  start-page: 1529
  year: 2015
  ident: 9809_CR74
  publication-title: Tissue Eng., Part A
  doi: 10.1089/ten.tea.2014.0524
– volume: 98
  start-page: 2048
  year: 2018
  ident: 9809_CR15
  publication-title: Z. Angew. Math. Mech.
  doi: 10.1002/zamm.201700302
– volume: 14
  start-page: 522
  year: 2008
  ident: 9809_CR59
  publication-title: Trends Mol. Med.
  doi: 10.1016/j.molmed.2008.09.008
– volume: 1
  start-page: 303
  year: 1968
  ident: 9809_CR2
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(68)90024-9
– volume: 32
  start-page: 2045
  year: 2012
  ident: 9809_CR58
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.108.179705
– volume: 10
  year: 2018
  ident: 9809_CR100
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aan4587
– volume: 15
  start-page: 802
  year: 2014
  ident: 9809_CR99
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3896
– volume: 50
  start-page: 219
  year: 2007
  ident: 9809_CR63
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.107.089409
– start-page: 347
  volume-title: Proceed IUTAM Symposium Finite Elasticity
  year: 1981
  ident: 9809_CR4
  doi: 10.1007/978-94-009-7538-5_23
– volume: 128
  start-page: 142
  year: 2006
  ident: 9809_CR13
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.2132374
– volume: 29
  start-page: 822
  year: 2013
  ident: 9809_CR87
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2555
– volume: 459
  start-page: 3
  year: 2003
  ident: 9809_CR1
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2002.1060
– volume: 113
  start-page: 15
  year: 2007
  ident: 9809_CR17
  publication-title: Clin. Sci. (Lond.)
  doi: 10.1042/CS20060337
– volume: 107
  start-page: 3335
  year: 2010
  ident: 9809_CR72
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0907813106
SSID ssj0009840
Score 2.5007818
Snippet Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 49
SubjectTerms Automotive Engineering
Blood vessels
Classical Mechanics
Homeostasis
Material properties
Physics
Physics and Astronomy
Soft tissues
Title Constrained Mixture Models of Soft Tissue Growth and Remodeling – Twenty Years After
URI https://link.springer.com/article/10.1007/s10659-020-09809-1
https://www.ncbi.nlm.nih.gov/pubmed/34483462
https://www.proquest.com/docview/2563187680
https://www.proquest.com/docview/2569616029
https://pubmed.ncbi.nlm.nih.gov/PMC8415366
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BKyQ4FLptIaVUrsSNWkr8F_u4Qv0RCA7tLmpPUeLYaqUqi8hWwI134A37JB17k90uLUicPXHsfB57JjP-BuAtmuA2Q0Oc8joXVHguqfEypZZpVXnOKl3HbIvP6ngsPpzJs-5SWNtnu_chybhT37nspqShwd1JjQ4k_o9hVQbfHVfxmA0XVLs6XoMMxCqUSy67qzIP97F8HN2zMe-nSv4RL43H0OELWOvsRzKcAb4Oj1wzgOedLUk6TW0H8OwO0eAAnsRET9tuwJdQoTPWhUDxT5c_QgCBhIJoVy2ZeHKKuzIZRTDIEXro0wtSNjU5cbFiDvZFbn79JqPvOM6f5By1pCXDUGV8E8aHB6P3x7SrrUCtyMWUKmGr0mmhK-NK9Jqs13mZS6esT72s0EuzrE59rbQw3GZOO81s4KarvUdEM74FK82kca-ApLkTzlTMGccEL40ps0rl3DGfpXUtfAJZ_4kL2xGPh3leFQvK5ABLgbAUEZYiS-Dd_JmvM9qNf0rv9MgVnQq2BdpyuF-hN5UmsDdvRuUJEZGycZPrKGNUplJmEng5A3r-Oi7Cf1bFEsiXlsBcIBBzL7c0lxeRoFujVcSVSmC_XyyLYf19Ftv_J_4anrKQXxOTEXdgZfrt2r1BA2la7cLq8Oj848Fu1Itb29wIfA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxQxEJ4IhqAPCgfqCmJNeNMmu2232z5eCHAq8KB3BJ82u902kJA94x5R3_wP_kN_idPe7h0nQsJzZ7vtTqf9Zmf6DcAuQnCTIBCnvMoEFY6nVLs0poYpWTrOSlWFbIsTORiJD2fpWXsprOmy3buQZNipr112k6mm3t2JtfIk_kvwEMGA8olcI9afU-2qcA3SE6tQnvK0vSrz_z4Wj6MbGPNmquQ_8dJwDB2swZMWP5L-VOHr8MDWPXjaYknSWmrTg8fXiAZ7sBISPU2zAae-QmeoC4Hixxc_fACB-IJolw0ZO_IZd2UyDMogh-ihT85JUVfkkw0Vc7Av8ufXbzL8juP8Sb6glTSk76uMb8LoYH-4N6BtbQVqRCYmVApTFlYJVWpboNdknMqKLLXSuNilJXpphlWxq6QSmpvEKquY8dx0lXOo0YQ_g-V6XNsXQOLMCqtLZrVlghdaF0kpM26ZS-KqEi6CpPvEuWmJx_08L_M5ZbJXS45qyYNa8iSCt7Nnvk5pN-6U3u40l7cm2OSI5XC_Qm8qjuDNrBmNx0dEitqOr4KMlomMmY7g-VTRs9dx4f-zShZBtrAEZgKemHuxpb44DwTdClERlzKCd91imQ_r9lm8vJ_4a1gdDI-P8qP3Jx-34BHzuTYhMXEbliffruwrBEuTcifYxl8uIwnb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BEQgeOJYrUMBIvEHU-IhjP64KS7kqBLuoPEWJD7VSla1IKuCN_9B_2F_SsTd7UUDi2RPHznjsb-KZbwCeIQQ3FIF4ym0hUuF5nmqfZ6lhStaes1rZGG2xK3cm4u1evreSxR-j3edXkrOchsDS1HRbR9ZvrSS-yVynwfXJtAqE_hfhEm7HNKzrCRsuaXdVTIkMJCspz3nep838uY_1o-kc3jwfNvnb3Wk8kkY34XqPJclwpvxbcME1A7jR40rSW207gGsrpIMDuByDPk17G76Eap2xRgSKfzj4ES4TSCiOdtiSqSefcYcm46gY8hq99W6fVI0ln1ysnoN9kdNfJ2T8Hcf5k3xFi2nJMFQcvwOT0avx9k7a11lIjShEl0ph6sopoWrtKvSgjFdFVeROGp_5vEaPzTCbeSuV0NxQp5xiJvDUWe9Ru5TfhY1m2rj7QLLCCadr5rRjgldaV7SWBXfM08xa4ROg809cmp6EPMzzsFzSJwe1lKiWMqqlpAk8XzxzNKPg-Kf05lxzZW-ObYm4Dvcu9KyyBJ4umtGQwu1I1bjpcZTRksqM6QTuzRS9eB0X4Z-rZAkUa0tgIRBIutdbmoP9SNatECFxKRN4MV8sy2H9fRYP_k_8CVz5-HJUvn-z--4hXGUh7CbGKG7CRvft2D1C3NTVj6NpnAFDXQ4X
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Mixture+Models+of+Soft+Tissue+Growth+and+Remodeling+%E2%80%93+Twenty+Years+After&rft.jtitle=Journal+of+elasticity&rft.au=Humphrey%2C+J.+D.&rft.date=2021-08-01&rft.pub=Springer+Netherlands&rft.issn=0374-3535&rft.eissn=1573-2681&rft.volume=145&rft.issue=1-2&rft.spage=49&rft.epage=75&rft_id=info:doi/10.1007%2Fs10659-020-09809-1&rft.externalDocID=10_1007_s10659_020_09809_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-3535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-3535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-3535&client=summon