Constrained Mixture Models of Soft Tissue Growth and Remodeling – Twenty Years After
Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstruc...
Saved in:
Published in | Journal of elasticity Vol. 145; no. 1-2; pp. 49 - 75 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.08.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0374-3535 1573-2681 |
DOI | 10.1007/s10659-020-09809-1 |
Cover
Loading…
Abstract | Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions. |
---|---|
AbstractList | Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions.Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions. Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions. |
Author | Humphrey, J. D. |
Author_xml | – sequence: 1 givenname: J. D. orcidid: 0000-0003-1011-2025 surname: Humphrey fullname: Humphrey, J. D. email: jay.humphrey@yale.edu organization: Department of Biomedical Engineering, Yale University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34483462$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1uFDEQhS0URCaBC7BAltiwaSi33W73BikaQUBKhAQDEivL4y5PHPXYwXYTsuMO3JCT0M0k_GSRVS3qe0-v6h2QvRADEvKYwXMG0L7IDGTTVVBDBZ2CrmL3yII1La9qqdgeWQBvRcUb3uyTg5zPASZMwAOyz4VQXMh6QT4tY8glGR-wp6f-WxkT0tPY45BpdPRDdIWufM4j0uMUL8sZNaGn73E7Iz5s6M_vP-jqEkO5op_RpEyPXMH0kNx3Zsj46Hoeko-vX62Wb6qTd8dvl0cnlRWtKJUUdm1QCbXu0NSqtU61pm1QWgeuWQMDW_fgeqlExy1Dhaq20DW8d044zvghebnzvRjXW-ztlCOZQV8kvzXpSkfj9f-b4M_0Jn7VSrCGSzkZPLs2SPHLiLnorc8Wh8EEjGPWdSM7ySTU3YQ-vYWexzGF6byZ4ky1UsFEPfk30Z8oNy-fALUDbIo5J3Ta-mKKj3NAP2gGem5X79rVU7v6d7t6vra-Jb1xv1PEd6I8wWGD6W_sO1S_ALJ_uFc |
CitedBy_id | crossref_primary_10_1016_j_compbiomed_2024_109595 crossref_primary_10_1038_s43856_021_00063_7 crossref_primary_10_1103_PhysRevE_110_035001 crossref_primary_10_1007_s10237_023_01744_z crossref_primary_10_1016_j_jbiomech_2024_112152 crossref_primary_10_1080_17476933_2025_2461562 crossref_primary_10_1007_s12551_021_00826_5 crossref_primary_10_1016_j_jmps_2023_105491 crossref_primary_10_1051_mmnp_2022022 crossref_primary_10_1007_s10237_023_01697_3 crossref_primary_10_1007_s10237_023_01750_1 crossref_primary_10_1016_j_cma_2024_117259 crossref_primary_10_1007_s10439_022_03037_5 crossref_primary_10_1007_s10237_022_01674_2 crossref_primary_10_1098_rspa_2023_0116 crossref_primary_10_1177_10812865231202024 crossref_primary_10_1007_s10439_025_03685_3 crossref_primary_10_1016_j_jbiomech_2024_112180 crossref_primary_10_1016_j_jmbbm_2023_105966 crossref_primary_10_3389_fbioe_2022_820921 crossref_primary_10_1016_j_finel_2024_104309 crossref_primary_10_1161_ATVBAHA_123_320117 crossref_primary_10_1007_s10237_022_01593_2 crossref_primary_10_1016_j_euromechsol_2025_105582 crossref_primary_10_1016_j_cma_2023_116312 crossref_primary_10_1007_s10237_025_01933_y crossref_primary_10_1016_j_pmatsci_2024_101363 crossref_primary_10_3390_app12083954 crossref_primary_10_1007_s12265_022_10316_y crossref_primary_10_3389_fbioe_2021_744560 crossref_primary_10_1016_j_compbiomed_2024_108604 crossref_primary_10_1007_s10237_023_01747_w crossref_primary_10_1016_j_jmbbm_2022_105337 crossref_primary_10_1016_j_jbiomech_2024_112059 crossref_primary_10_1007_s10439_024_03493_1 crossref_primary_10_1016_j_jmbbm_2023_105733 crossref_primary_10_1016_j_jbiomech_2022_111165 crossref_primary_10_1177_1358863X241238708 crossref_primary_10_1007_s10237_023_01800_8 crossref_primary_10_1016_j_cdev_2024_203971 crossref_primary_10_1098_rsif_2024_0361 crossref_primary_10_1016_j_compbiomed_2024_108976 crossref_primary_10_1152_ajpheart_00766_2023 crossref_primary_10_1177_10812865231219163 crossref_primary_10_1021_acsbiomaterials_1c01386 crossref_primary_10_1038_s41598_024_69422_3 crossref_primary_10_1016_j_est_2024_115217 crossref_primary_10_1016_j_jmps_2023_105443 crossref_primary_10_1007_s10237_023_01814_2 crossref_primary_10_1098_rsif_2022_0062 crossref_primary_10_3390_biomimetics9060362 crossref_primary_10_1016_j_actbio_2021_07_059 crossref_primary_10_1007_s10237_024_01851_5 crossref_primary_10_1016_j_actbio_2023_05_022 |
Cites_doi | 10.1002/zamm.201700302 10.1016/j.jmps.2018.12.013 10.1016/j.jbiomech.2006.09.003 10.1007/s10439-011-0363-9 10.1016/j.ijnonlinmec.2018.11.010 10.1016/j.jbiomech.2013.10.009 10.1007/s10237-004-0052-9 10.1126/scitranslmed.aan4587 10.1016/j.ijengsci.2019.05.014 10.1007/s00033-009-0037-8 10.1007/s00285-005-0363-1 10.1038/jcbfm.2012.84 10.1007/s11012-016-0472-5 10.1161/ATVBAHA.108.179705 10.1002/zamm.201700351 10.1007/978-0-387-87710-5 10.1098/rsif.2016.0995 10.1007/s00062-019-00776-2 10.1007/978-3-030-43209-6 10.1073/pnas.0907813106 10.1016/j.cobme.2017.03.004 10.1007/s10237-019-01184-8 10.1161/CIRCRESAHA.114.304936 10.1007/s10237-007-0101-2 10.1007/s10439-015-1287-6 10.1115/1.2132374 10.1016/j.jmbbm.2020.103943 10.1007/s10237-010-0265-z 10.1007/978-94-009-7538-5_23 10.1007/978-0-387-21576-1 10.1007/s10659-017-9630-9 10.1016/j.thromres.2012.04.009 10.1115/1.1560144 10.1016/0021-9290(94)90021-3 10.1161/CIRCRESAHA.115.307722 10.3390/ma10090994 10.1115/1.1762899 10.1161/01.HYP.0000185463.27209.b0 10.1007/s10237-003-0033-4 10.1016/j.ijengsci.2014.08.003 10.1159/000169701 10.1161/HYPERTENSIONAHA.118.11647 10.1016/j.jmbbm.2011.05.022 10.1016/j.jmps.2010.12.011 10.1002/cnm.2828 10.1146/annurev.bioeng.10.061807.160439 10.1098/rsif.2019.0708 10.1016/0021-9290(68)90024-9 10.1115/1.2798001 10.1146/annurev-bioeng-071910-124726 10.1159/000080699 10.1016/j.ijengsci.2010.06.033 10.1016/j.molcel.2014.03.030 10.1016/j.cma.2020.113156 10.1111/echo.13841 10.1007/s10237-017-0918-2 10.1126/scitranslmed.aax6919 10.1007/s10439-012-0707-0 10.1016/j.jbiomech.2014.07.003 10.1016/j.cma.2006.06.018 10.1007/BF02584301 10.1172/JCI61598 10.1089/ten.tea.2014.0524 10.1007/s10439-015-1354-z 10.1007/s10237-015-0687-8 10.1093/intbio/zyaa004 10.1098/rsif.2019.0233 10.1007/s10237-018-1041-8 10.1098/rsif.2012.0097 10.1016/j.actbio.2014.09.046 10.1142/S0218202502001714 10.1007/s10237-018-1037-4 10.1007/s10659-005-9004-6 10.1183/09031936.03.00038903 10.1115/1.4029021 10.1007/s10439-007-9322-x 10.1007/s10237-006-0070-x 10.1016/j.mechrescom.2012.02.003 10.1016/j.cma.2019.04.041 10.1161/HYPERTENSIONAHA.107.089409 10.1007/s10439-018-2086-7 10.1016/j.cma.2008.09.013 10.1007/s10237-009-0184-z 10.1098/rsif.2014.0680 10.1097/HCO.0000000000000218 10.1007/s10237-008-0146-x 10.1098/rsif.2008.0254 10.1007/s10659-017-9626-5 10.1098/rspa.2002.1060 10.1038/nature07201 10.1007/s12013-007-9002-3 10.1115/1.2800858 10.1007/s10237-016-0859-1 10.1016/j.mam.2016.04.007 10.1007/s10237-016-0790-5 10.1115/1.4034560 10.1007/BF00041724 10.1016/j.cma.2012.12.013 10.1098/rspa.2012.0556 10.1007/s10237-016-0770-9 10.1007/s10439-007-9321-y 10.1038/nrm3896 10.1007/s10439-011-0287-4 10.1016/j.molmed.2008.09.008 10.1016/j.jtbi.2008.11.024 10.1089/ten.tec.2019.0086 10.1152/physrev.00041.2008 10.3233/BIR-2009-0556 10.1002/cnm.2893 10.1016/j.jmbbm.2008.05.002 10.1161/ATVBAHA.116.303229 10.1007/s10439-013-0928-x 10.1042/CS20060337 10.1126/sciadv.abd3574 10.1016/j.cell.2015.02.010 10.1111/echo.14375 10.1016/j.jmbbm.2018.09.047 10.1016/j.medengphy.2010.09.012 10.1016/j.mechrescom.2012.02.007 10.1016/j.jbiomech.2011.11.021 10.1115/1.1412451 10.1115/1.3005109 10.1007/s10237-014-0569-5 10.1161/CIRCULATIONAHA.112.120410 10.1002/cnm.2555 10.1016/j.jmbbm.2019.03.029 10.1155/2017/5038602 10.1007/s10439-020-02713-8 10.1016/j.jmbbm.2020.104161 10.1371/journal.pcbi.1008273 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021 The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021. |
DBID | AAYXX CITATION NPM 7SR 7TB 8BQ 8FD FR3 JG9 KR7 7X8 5PM |
DOI | 10.1007/s10659-020-09809-1 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Physics |
EISSN | 1573-2681 |
EndPage | 75 |
ExternalDocumentID | PMC8415366 34483462 10_1007_s10659_020_09809_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIH grantid: P01 HL134605 – fundername: National Institutes of Health grantid: U01 HL142518; R01 HL139796 funderid: http://dx.doi.org/10.13039/100000002 – fundername: National Institutes of Health (US) grantid: R01 HL146723 – fundername: NHLBI NIH HHS grantid: R01 HL105297 – fundername: NHLBI NIH HHS grantid: R01 HL139796 – fundername: NHLBI NIH HHS grantid: R01 HL128602 – fundername: NHLBI NIH HHS grantid: R01 HL080415 – fundername: NHLBI NIH HHS grantid: P01 HL134605 – fundername: NHLBI NIH HHS grantid: U01 HL116323 – fundername: NHLBI NIH HHS grantid: R01 HL086418 – fundername: NHLBI NIH HHS grantid: R01 HL146723 – fundername: NHLBI NIH HHS grantid: R01 HL064372 – fundername: NHLBI NIH HHS grantid: U01 HL142518 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABEFU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP D-I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9P PF0 PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WH7 WJK WK8 YLTOR Z45 Z5O Z7S Z7Y Z7Z Z86 Z8N Z8S Z8T ZMTXR ZY4 ~02 ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION NPM 7SR 7TB 8BQ 8FD ABRTQ FR3 JG9 KR7 7X8 5PM |
ID | FETCH-LOGICAL-c474t-64cbae848b9ea287cf87a75e6cf0f5b010c2d0fd68493c1e8e82c0953dff4f313 |
IEDL.DBID | U2A |
ISSN | 0374-3535 |
IngestDate | Thu Aug 21 14:02:34 EDT 2025 Fri Jul 11 08:50:47 EDT 2025 Fri Jul 25 12:18:54 EDT 2025 Wed Feb 19 02:08:55 EST 2025 Tue Jul 01 00:20:27 EDT 2025 Thu Apr 24 23:06:06 EDT 2025 Fri Feb 21 02:47:56 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1-2 |
Keywords | 92C10 Tissue engineering Thrombus Mechanobiology Homeostasis Vein Artery mechanobiology homeostasis tissue engineering vein artery thrombus |
Language | English |
License | Terms of use and reuse: academic research for non-commercial purposes, see here for full terms. https://www.springer.com/aam-terms-v1 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-64cbae848b9ea287cf87a75e6cf0f5b010c2d0fd68493c1e8e82c0953dff4f313 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1011-2025 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8415366 |
PMID | 34483462 |
PQID | 2563187680 |
PQPubID | 326256 |
PageCount | 27 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8415366 proquest_miscellaneous_2569616029 proquest_journals_2563187680 pubmed_primary_34483462 crossref_citationtrail_10_1007_s10659_020_09809_1 crossref_primary_10_1007_s10659_020_09809_1 springer_journals_10_1007_s10659_020_09809_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Netherlands – name: Groningen |
PublicationSubtitle | The Physical and Mathematical Science of Solids |
PublicationTitle | Journal of elasticity |
PublicationTitleAbbrev | J Elast |
PublicationTitleAlternate | J Elast |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Maegdefessel, Azuma, Toh (CR31) 2012; 122 Rodbard (CR22) 1975; 60 Sciatti, Vizzardi, Castiello, Valentini, Bonadei, Gelsomino, Lorusso, Metra (CR65) 2018; 35 CR35 Niklason, Yeh, Calle, Bai, Valentin, Humphrey (CR72) 2010; 107 Rodriguez, Hoger, McCulloch (CR5) 1994; 27 Bellini, Ferruzzi, Roccabianca, DiMartino, Humphrey (CR10) 2014; 42 Ambrosi, Preziosi, Vitale (CR124) 2010; 61 Ramachandra, Humphrey, Marsden (CR49) 2017; 14 Baek, Gleason, Rajagopal, Humphrey (CR80) 2007; 196 Hayashi, Naiki (CR18) 2009; 2 Humphrey, Harrison, Figueroa, Lacolley, Laurent (CR53) 2016; 118 Morris (CR54) 2015; 30 Baek, Rajagopal, Humphrey (CR13) 2006; 128 Fung (CR7) 1991; 19 Dorfmuller (CR61) 2003; 22 Soares, Sacks (CR109) 2016; 15 Schriefl, Collins, Holzapfel, Niklason, Humphrey (CR36) 2012; 130 Menzel, Kuhl (CR128) 2012; 42 Nims, Ateshian (CR40) 2017; 129 Virag, Wilson, Humphrey, Karsaj (CR47) 2017; 33 Cowin, Hegedus (CR3) 1976; 6 Hsu (CR2) 1968; 1 Di Achille, Tellides, Figueroa, Humphrey (CR44) 2014; 470 Ramachandra, Latorre, Szafron, Marsden, Humphrey (CR51) 2020; 110 Emmert, Schmidt, Loerakker (CR100) 2018; 10 Skalak (CR4) 1981 Milewicz, Trybus, Guo, Sweeney, Regalado, Kamm, Stull (CR34) 2017; 37 Famaey, Vastmans, Fehervary, Maes, Vanderveken, Rega, Mousavi, Avril (CR112) 2018; 98 Horat, Virag, Holzapfel, Soric, Karsaj (CR88) 2019; 352 Ramachandra, Sankaran, Humphrey, Marsden (CR48) 2015; 137 Szafron, Ramachandra, Breuer, Marsden, Humphrey (CR77) 2019; 25 Karsaj, Humphrey (CR37) 2009; 46 Ateshian, Humphrey (CR127) 2012; 14 Ambrosi, Ben Amar, Cyron, DeSimona, Goriely, Humphrey, Kuhl (CR131) 2019; 16 Humphrey, Dufrense, Schwartz (CR99) 2014; 15 Szafron, Khosravi, Reinhardt, Best, Bersi, Yi, Breuer, Humphrey (CR75) 2018; 46 Wu, Shadden (CR82) 2015; 43 Khosravi, Miller, Best, Shih, Lee, Yi, Shinoka, Breuer, Humphrey (CR74) 2015; 21 Humphrey, Tellides, Schwartz, Milewicz (CR33) 2015; 116 Wilson, Humphrey (CR29) 2014; 47 Latorre, Bersi, Humphrey (CR70) 2019; 14 Humphrey (CR8) 2008; 50 Valentin, Humphrey (CR103) 2009; 367 Gasser, Grytsan (CR130) 2017; 1 Sheidaei, Hunley, Zeinali-Davarani, Raguin, Baek (CR81) 2011; 33 Wagenseil (CR98) 2011; 10 Lemon, King, Byrne, Jensen, Shakesheff (CR123) 2006; 52 Latorre, Humphrey (CR15) 2018; 98 Zou, Avril, Yang, Mousavi, Hackl, He (CR121) 2020; 17 Valentin, Humphrey, Holzapfel (CR87) 2013; 29 Libby (CR58) 2012; 32 Mousavi, Avril (CR111) 2017; 16 Humphrey (CR9) 1999; 121 Satha, Lindstrom, Klarbring (CR107) 2014; 13 Vorp (CR43) 2007; 40 Wilson, Baek, Humphrey (CR30) 2013; 469 Miller, Khosravi, Breuer, Humphrey (CR76) 2015; 11 Wang, Zhang, Jiang, Spinetti, Pintus, Monticone, Kolodgie, Virmani, Lakatta (CR63) 2007; 50 Taber (CR133) 2020 Klisch, Chen, Sah, Hoger (CR122) 2003; 125 Wu, Shadden (CR93) 2016; 15 Virag, Wilson, Humphrey, Karsaj (CR46) 2015; 43 Chalouhi (CR60) 2012; 32 Alford, Humphrey, Taber (CR102) 2008; 7 CR64 Cyron, Humphrey (CR92) 2014; 85 Sankaran, Humphrey, Marsden (CR50) 2013; 256 Ciurică, Lopez-Sublet, Loeys, Radhouani, Natarajan, Vikkula, Maas, Adlam, Persu (CR55) 2019; 73 Valentin, Holzapfel (CR106) 2012; 42 Weiss, Cavinato, Gray, Ramachandra, Avril, Humphrey, Latorre (CR57) 2020; 6 Wan, Hansen, Gleason (CR105) 2010; 9 Hill, Philp, Billington, Tatler, Johnson, O’Dea, Brook (CR113) 2018; 17 Humphrey, Taylor (CR23) 2008; 10 Gleason, Taber, Humphrey (CR19) 2004; 126 Watton, Hill, Heil (CR27) 2004; 3 Davies (CR94) 2016; 49 Bhogal, Pederzani, Grytsan, Loh, Brouwer, Andersson, Gundiah, Robertson, Watton, Soderman (CR114) 2019; 29 Figueroa, Baek, Taylor, Humphrey (CR79) 2009; 198 Baek, Valentin, Humphrey (CR42) 2007; 35 Maki-Petaja, Elkhawad, Cheriyan, Joshi, Ostor, Hall, Rudd, Wilkinson (CR66) 2012; 126 Ateshian (CR39) 2007; 6 Goriely (CR132) 2017 Vizzardi, Sciatti, Bondadei, Menottil, Prati, Scodro, Dallapellegrina, Berlendis, Poli, Padoan, Metra (CR67) 2019; 36 Latorre, Fast (CR91) 2020; 368 Braeu, Seitz, Aydin, Cyron (CR90) 2017; 16 Kotas, Medzhitov (CR71) 2015; 160 Di Achille, Tellides, Humphrey (CR45) 2017; 33 Kaunas, Hsu (CR85) 2009; 257 Hald, Timm, Alford (CR108) 2016; 138 Rausch, Humphrey (CR38) 2017; 129 Humphrey, Rajagopal (CR21) 2003; 2 Ambrosi, Ateshian, Arruda, Cowin, Dumais, Goriely, Holzapfel, Humphrey, Kemkemer, Kuhl, Olberding, Taber, Garikipati (CR126) 2011; 59 Latorre, Humphrey (CR69) 2018; 17 Cyron, Humphrey (CR129) 2017; 52 Rachev, Shazly (CR118) 2019; 90 CR84 Humphrey, Rajagopal (CR6) 2002; 12 Cyron, Wilson, Humphrey (CR32) 2014; 11 CR120 Gleason, Humphrey (CR20) 2004; 41 Dajnowiec, Langille (CR17) 2007; 113 Humphrey, Tellides (CR25) 2019; 316 Lin, Iafrati, Peattie, Dorfmann (CR115) 2019; 109 Chovatiya, Medzhitov (CR95) 2014; 54 Valentin, Humphrey, Holzapfel (CR52) 2011; 39 Drews, Pepper, Best, Szafron (CR78) 2020; 12 Baek, Rajagopal, Humphrey (CR26) 2005; 80 Cardamone, Valentin, Eberth, Humphrey (CR11) 2009; 8 Han, Chesnutt, Garcia, Liu, Wen (CR56) 2013; 41 Valentin, Cardamone, Baek, Humphrey (CR14) 2009; 6 Taber (CR125) 1995; 48 Wagneseil, Mecham (CR16) 2009; 89 Humphrey (CR1) 2003; 459 Humphrey (CR12) 2002 Wilson, Baek, Humphrey (CR28) 2012; 9 Latorre, Humphrey (CR96) 2019; 125 Mahmud, Freely (CR62) 2005; 46 Vernerey, Farsad (CR86) 2011; 4 Cyron, Aydin, Humphrey (CR89) 2016; 15 Karsaj, Humphrey (CR104) 2010; 48 Jagadesham (CR59) 2008; 14 Mousavi, Farzaneh, Avril (CR117) 2019; 18 Humphrey, Holzapfel (CR24) 2012; 45 Miller, Lee, Naito, Breuer, Humphrey (CR73) 2014; 47 Grytsan, Eriksson, Watton, Gasser (CR110) 2017; 10 Humphrey, Baek, Niklason (CR41) 2007; 35 Taber (CR97) 1998; 120 Taber, Humphrey (CR101) 2001; 123 Khosravi, Ramachandra, Szafron, Schiavazzi, Breuer, Humphrey (CR119) 2020; 12 Medzhitov (CR68) 2008; 454 Hayenga, Thorne, Peirce, Humphrey (CR83) 2011; 39 Maes, Fehervary, Vastmans, Mousavi, Avril, Famaey (CR116) 2019; 95 H.N. Hayenga (9809_CR83) 2011; 39 J.D. Humphrey (9809_CR1) 2003; 459 L. Virag (9809_CR47) 2017; 33 A. Valentin (9809_CR106) 2012; 42 C. Cyron (9809_CR92) 2014; 85 J. Wu (9809_CR82) 2015; 43 9809_CR120 J.D. Humphrey (9809_CR12) 2002 M. Latorre (9809_CR15) 2018; 98 M. Emmert (9809_CR100) 2018; 10 W.J. Lin (9809_CR115) 2019; 109 D. Weiss (9809_CR57) 2020; 6 M.R. Hill (9809_CR113) 2018; 17 P. Dorfmuller (9809_CR61) 2003; 22 R. Khosravi (9809_CR74) 2015; 21 K.J.A. Davies (9809_CR94) 2016; 49 J.D. Humphrey (9809_CR25) 2019; 316 M. Latorre (9809_CR69) 2018; 17 M. Rausch (9809_CR38) 2017; 129 A.B. Ramachandra (9809_CR48) 2015; 137 A. Ramachandra (9809_CR51) 2020; 110 S. Ciurică (9809_CR55) 2019; 73 K.S. Miller (9809_CR73) 2014; 47 S. Baek (9809_CR80) 2007; 196 F-H. Hsu (9809_CR2) 1968; 1 C. Cyron (9809_CR32) 2014; 11 S. Baek (9809_CR26) 2005; 80 V.P. Jagadesham (9809_CR59) 2008; 14 J.D. Humphrey (9809_CR23) 2008; 10 R.L. Gleason (9809_CR19) 2004; 126 C.A. Figueroa (9809_CR79) 2009; 198 G. Lemon (9809_CR123) 2006; 52 J.D. Humphrey (9809_CR41) 2007; 35 P.W. Alford (9809_CR102) 2008; 7 W. Wan (9809_CR105) 2010; 9 M. Latorre (9809_CR70) 2019; 14 D. Zou (9809_CR121) 2020; 17 J.M. Szafron (9809_CR77) 2019; 25 G. Satha (9809_CR107) 2014; 13 G. Ateshian (9809_CR127) 2012; 14 D. Ambrosi (9809_CR126) 2011; 59 R. Chovatiya (9809_CR95) 2014; 54 J.D. Humphrey (9809_CR21) 2003; 2 A. Valentin (9809_CR87) 2013; 29 J.D. Humphrey (9809_CR99) 2014; 15 J. Wu (9809_CR93) 2016; 15 D. Ambrosi (9809_CR131) 2019; 16 M. Latorre (9809_CR91) 2020; 368 N. Famaey (9809_CR112) 2018; 98 D. Dajnowiec (9809_CR17) 2007; 113 J.S. Soares (9809_CR109) 2016; 15 P. Bhogal (9809_CR114) 2019; 29 A. Rachev (9809_CR118) 2019; 90 L. Maes (9809_CR116) 2019; 95 A. Schriefl (9809_CR36) 2012; 130 D.A. Vorp (9809_CR43) 2007; 40 M.E. Kotas (9809_CR71) 2015; 160 P. Libby (9809_CR58) 2012; 32 9809_CR84 C. Cyron (9809_CR129) 2017; 52 H-C. Han (9809_CR56) 2013; 41 A. Mahmud (9809_CR62) 2005; 46 R. Khosravi (9809_CR119) 2020; 12 S.M. Klisch (9809_CR122) 2003; 125 S. Rodbard (9809_CR22) 1975; 60 P. Di Achille (9809_CR45) 2017; 33 L.A. Taber (9809_CR97) 1998; 120 Y.C. Fung (9809_CR7) 1991; 19 R. Medzhitov (9809_CR68) 2008; 454 L. Maegdefessel (9809_CR31) 2012; 122 M. Latorre (9809_CR96) 2019; 125 K.M. Maki-Petaja (9809_CR66) 2012; 126 R. Skalak (9809_CR4) 1981 G.A. Ateshian (9809_CR39) 2007; 6 J.D. Humphrey (9809_CR33) 2015; 116 F.A. Braeu (9809_CR90) 2017; 16 L.E. Niklason (9809_CR72) 2010; 107 A. Valentin (9809_CR103) 2009; 367 E. Sciatti (9809_CR65) 2018; 35 L.A. Taber (9809_CR101) 2001; 123 J.D. Humphrey (9809_CR8) 2008; 50 P.N. Watton (9809_CR27) 2004; 3 L.A. Taber (9809_CR125) 1995; 48 S.J. Mousavi (9809_CR117) 2019; 18 A. Grytsan (9809_CR110) 2017; 10 K.S. Miller (9809_CR76) 2015; 11 D.M. Milewicz (9809_CR34) 2017; 37 L. Cardamone (9809_CR11) 2009; 8 E.S. Hald (9809_CR108) 2016; 138 K. Hayashi (9809_CR18) 2009; 2 R.L. Gleason (9809_CR20) 2004; 41 J.S. Wilson (9809_CR28) 2012; 9 P. Di Achille (9809_CR44) 2014; 470 J.D. Humphrey (9809_CR9) 1999; 121 J.D. Humphrey (9809_CR6) 2002; 12 J.D. Humphrey (9809_CR53) 2016; 118 S.J. Mousavi (9809_CR111) 2017; 16 R.J. Nims (9809_CR40) 2017; 129 9809_CR64 L.A. Taber (9809_CR133) 2020 L. Virag (9809_CR46) 2015; 43 C. Cyron (9809_CR89) 2016; 15 D. Ambrosi (9809_CR124) 2010; 61 A. Valentin (9809_CR52) 2011; 39 M. Wang (9809_CR63) 2007; 50 J. Rodriguez (9809_CR5) 1994; 27 9809_CR35 S.C. Cowin (9809_CR3) 1976; 6 J. Drews (9809_CR78) 2020; 12 J.D. Humphrey (9809_CR24) 2012; 45 J.S. Wilson (9809_CR30) 2013; 469 C. Bellini (9809_CR10) 2014; 42 T.C. Gasser (9809_CR130) 2017; 1 S. Baek (9809_CR13) 2006; 128 A. Valentin (9809_CR14) 2009; 6 S. Sankaran (9809_CR50) 2013; 256 E. Vizzardi (9809_CR67) 2019; 36 R. Kaunas (9809_CR85) 2009; 257 S. Baek (9809_CR42) 2007; 35 A. Sheidaei (9809_CR81) 2011; 33 J.S. Wilson (9809_CR29) 2014; 47 A. Menzel (9809_CR128) 2012; 42 A. Goriely (9809_CR132) 2017 J.E. Wagneseil (9809_CR16) 2009; 89 F.J. Vernerey (9809_CR86) 2011; 4 J.E. Wagenseil (9809_CR98) 2011; 10 N. Chalouhi (9809_CR60) 2012; 32 J. Szafron (9809_CR75) 2018; 46 I. Karsaj (9809_CR37) 2009; 46 S.A. Morris (9809_CR54) 2015; 30 A.B. Ramachandra (9809_CR49) 2017; 14 N. Horat (9809_CR88) 2019; 352 I. Karsaj (9809_CR104) 2010; 48 |
References_xml | – volume: 98 start-page: 2048 year: 2018 end-page: 2071 ident: CR15 article-title: A mechanobiologically equilibrated constrained mixture model for growth and remodeling of soft tissues publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.201700302 – volume: 125 start-page: 298 year: 2019 end-page: 325 ident: CR96 article-title: Mechanobiological stability of biological soft tissues publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.12.013 – volume: 40 start-page: 1887 year: 2007 end-page: 1902 ident: CR43 article-title: Biomechanics of abdominal aortic aneurysm publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.09.003 – volume: 39 start-page: 2669 year: 2011 end-page: 2682 ident: CR83 article-title: Ensuring congruency in multiscale models: towards linking agent based and continuum biomechanical models of arterial adaptations publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-011-0363-9 – volume: 109 start-page: 172 year: 2019 end-page: 181 ident: CR115 article-title: Non-axisymmetric dilatation of a thick-walled aortic aneurysmal tissue publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2018.11.010 – volume: 47 start-page: 2080 year: 2014 end-page: 2087 ident: CR73 article-title: Computational model of the in vivo development of a tissue engineered vein from an implanted polymeric construct publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.10.009 – volume: 3 start-page: 98 year: 2004 end-page: 113 ident: CR27 article-title: A mathematical model for the growth of the abdominal aortic aneurysm publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-004-0052-9 – volume: 10 year: 2018 ident: CR100 article-title: Computational modeling guides tissue-engineered heart valve design for long-term in vivo performance in a translational sheep model publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aan4587 – volume: 14 start-page: 35 year: 2019 end-page: 46 ident: CR70 article-title: Computational modeling predicts immuno-mechanical mechanisms of maladaptative aortic remodeling in hypertension publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2019.05.014 – volume: 61 start-page: 177 year: 2010 end-page: 191 ident: CR124 article-title: The insight of mixtures theory for growth and remodeling publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-009-0037-8 – volume: 52 start-page: 571 year: 2006 end-page: 594 ident: CR123 article-title: Mathematical modeling of engineered tissue growth using multiphase porous flow mixture theory publication-title: J. Math. Biol. doi: 10.1007/s00285-005-0363-1 – volume: 32 start-page: 1659 year: 2012 end-page: 1676 ident: CR60 article-title: Biology of intracranial aneurysms: role of inflammation publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2012.84 – volume: 52 start-page: 645 year: 2017 end-page: 664 ident: CR129 article-title: Growth and remodeling of load-bearing biological soft tissues publication-title: Meccanica doi: 10.1007/s11012-016-0472-5 – volume: 32 start-page: 2045 year: 2012 end-page: 2051 ident: CR58 article-title: Inflammation in atherosclerosis publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.108.179705 – volume: 98 start-page: 2239 year: 2018 end-page: 2257 ident: CR112 article-title: Numerical simulation of arterial remodeling in pulmonary autografts publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.201700351 – year: 2017 ident: CR132 publication-title: The Mathematics and Mechanics of Biological Growth doi: 10.1007/978-0-387-87710-5 – volume: 14 year: 2017 ident: CR49 article-title: Gradual loading ameliorates maladaptation in computational simulations of vein growth and remodeling publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2016.0995 – volume: 29 start-page: 763 year: 2019 end-page: 774 ident: CR114 article-title: The unexplained success of stentplasty vasospasm treatment: insights using mechanistic mathematical modeling publication-title: Klin. Neuroradiol. doi: 10.1007/s00062-019-00776-2 – year: 2020 ident: CR133 publication-title: Continuum Modeling in Mechanobiology doi: 10.1007/978-3-030-43209-6 – volume: 107 start-page: 3335 year: 2010 end-page: 3339 ident: CR72 article-title: Enabling tools for engineering collagenous tissues, integrating bioreactors, intravital imaging, and biomechanical modeling publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0907813106 – volume: 1 start-page: 71 year: 2017 end-page: 77 ident: CR130 article-title: Biomechanical modeling the adaptation of soft biological tissue publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2017.03.004 – volume: 18 start-page: 1895 year: 2019 end-page: 1913 ident: CR117 article-title: Patient-specific predictions of aneurysm growth and remodeling in the ascending thoracic aorta using the homogenized constrained mixture model publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-019-01184-8 – volume: 116 start-page: 1448 year: 2015 end-page: 1461 ident: CR33 article-title: Role of mechanotransduction in vascular biology: focus on thoracic aortic aneurysms and dissections publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.114.304936 – volume: 7 start-page: 245 year: 2008 end-page: 262 ident: CR102 article-title: Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-007-0101-2 – volume: 43 start-page: 1543 year: 2015 end-page: 1554 ident: CR82 article-title: Coupled simulation of hemodynamics and vascular growth and remodeling in a subject-specific geometry publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1287-6 – volume: 128 start-page: 142 year: 2006 end-page: 149 ident: CR13 article-title: A theoretical model of enlarging intracranial fusiform aneurysms publication-title: J. Biomech. Eng. doi: 10.1115/1.2132374 – volume: 110 year: 2020 ident: CR51 article-title: Vascular adaptation in the presence of an external support – a modeling study publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2020.103943 – volume: 10 start-page: 671 year: 2011 end-page: 687 ident: CR98 article-title: A constrained mixture model for developing mouse aorta publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-010-0265-z – start-page: 347 year: 1981 end-page: 355 ident: CR4 article-title: Gowth as a finite displacement field publication-title: Proceed IUTAM Symposium Finite Elasticity doi: 10.1007/978-94-009-7538-5_23 – year: 2002 ident: CR12 publication-title: Cardiovascular Solid Mechanics: Cells, Tissues, and Organs doi: 10.1007/978-0-387-21576-1 – volume: 129 start-page: 69 year: 2017 end-page: 105 ident: CR40 article-title: Reactive constrained mixtures for modeling the solid matrix of biological tissues publication-title: J. Elast. doi: 10.1007/s10659-017-9630-9 – volume: 130 start-page: e139 year: 2012 end-page: 146 ident: CR36 article-title: Remodeling of thrombus and collagen in an Ang-II infusion ApoE-/- model of dissecting aortic aneurysms publication-title: Thromb. Res. doi: 10.1016/j.thromres.2012.04.009 – volume: 125 start-page: 169 year: 2003 end-page: 179 ident: CR122 article-title: A growth mixture theory for cartilage with application to growth-related experiments on cartilage explants publication-title: J. Biomech. Eng. doi: 10.1115/1.1560144 – volume: 27 start-page: 455 year: 1994 end-page: 467 ident: CR5 article-title: Stress-dependent finite growth in soft elastic tissues publication-title: J. Biomech. doi: 10.1016/0021-9290(94)90021-3 – volume: 367 start-page: 3585 year: 2009 end-page: 3606 ident: CR103 article-title: Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodeling publication-title: Philos. Trans. R. Soc. Lond. A – volume: 118 start-page: 379 year: 2016 end-page: 381 ident: CR53 article-title: Central artery stiffness in hypertension and aging: a problem with cause and consequence publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.307722 – volume: 10 start-page: 994 year: 2017 ident: CR110 article-title: Growth description for vessel wall adaptation: a thick-walled mixture model of abdominal aortic aneurysm evolution publication-title: Materials (Basel) doi: 10.3390/ma10090994 – volume: 126 start-page: 371 year: 2004 end-page: 381 ident: CR19 article-title: A 2-D model of flow-induced alterations in the geometry, structure and properties of carotid arteries publication-title: J. Biomech. Eng. doi: 10.1115/1.1762899 – volume: 46 start-page: 1118 year: 2005 end-page: 1122 ident: CR62 article-title: Arterial stiffness is related to systemic inflammation in essential hypertension publication-title: Hypertension doi: 10.1161/01.HYP.0000185463.27209.b0 – volume: 2 start-page: 109 year: 2003 end-page: 126 ident: CR21 article-title: A constrained mixture model for arterial adaptations to a sustained step-change in blood flow publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-003-0033-4 – volume: 470 year: 2014 ident: CR44 article-title: A haemodynamic predictor of intraluminal thrombus formation in abdominal aortic aneurysms publication-title: Proc. R. Soc. Lond. A – volume: 85 start-page: 203 year: 2014 end-page: 223 ident: CR92 article-title: Vascular homeostasis and the concept of mechanobiological stability publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2014.08.003 – volume: 60 start-page: 4 year: 1975 end-page: 49 ident: CR22 article-title: Vascular caliber publication-title: Cardiology doi: 10.1159/000169701 – volume: 73 start-page: 951 year: 2019 end-page: 960 ident: CR55 article-title: Arterial tortuosity: novel implications for an old phenotype publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.118.11647 – volume: 4 start-page: 1683 year: 2011 end-page: 1699 ident: CR86 article-title: A constrained mixture approach to mechano-sensing and force generation to contractile cells publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2011.05.022 – volume: 59 start-page: 863 year: 2011 end-page: 883 ident: CR126 article-title: Perspectives on biological growth and remodeling publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2010.12.011 – volume: 33 year: 2017 ident: CR45 article-title: Hemodynamics-driven deposition of intraluminal thrombus in abdominal aortic aneurysms publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2828 – volume: 10 start-page: 221 year: 2008 end-page: 246 ident: CR23 article-title: Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.10.061807.160439 – volume: 17 year: 2020 ident: CR121 article-title: Three-dimensional numerical simulation of soft-tissue wound healing using constrained-mixture anisotropic hyperelasticity and gradient-enhanced damage mechanics publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2019.0708 – volume: 1 start-page: 303 year: 1968 end-page: 311 ident: CR2 article-title: The influences of mechanical loads on the form of a growing elastic body publication-title: J. Biomech. doi: 10.1016/0021-9290(68)90024-9 – volume: 120 start-page: 348 year: 1998 end-page: 354 ident: CR97 article-title: A model for aortic growth based on fluid shear and fiber stresses publication-title: J. Biomech. Eng. doi: 10.1115/1.2798001 – volume: 14 start-page: 97 year: 2012 end-page: 111 ident: CR127 article-title: Continuum mixture models of soft tissue growth and remodeling: past successes and future challenges publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071910-124726 – volume: 41 start-page: 352 year: 2004 end-page: 363 ident: CR20 article-title: A mixture model of arterial growth and remodeling in hypertension: altered muscle tone and tissue turnover publication-title: J. Vasc. Res. doi: 10.1159/000080699 – volume: 48 start-page: 1357 year: 2010 end-page: 1372 ident: CR104 article-title: A 3-D framework for arterial growth and remodeling in response to altered hemodynamics publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2010.06.033 – volume: 54 start-page: 281 year: 2014 end-page: 288 ident: CR95 article-title: Stress, inflammation, and defense of homeostasis publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.03.030 – volume: 368 year: 2020 ident: CR91 article-title: rate-independent, finite element implementation of a 3D constrained mixture model of soft tissue growth and remodeling publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113156 – volume: 35 start-page: 798 year: 2018 end-page: 803 ident: CR65 article-title: The role of type 2 diabetes mellitus on hypertensive-related aortic stiffness publication-title: Echocardiography doi: 10.1111/echo.13841 – volume: 16 start-page: 1765 year: 2017 end-page: 1777 ident: CR111 article-title: Patient-specific stress analyses in the ascending thoracic aorta using a finite-element implementation of the constrained mixture theory publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-017-0918-2 – ident: CR120 – volume: 316 start-page: H169 year: 2019 end-page: 182 ident: CR25 article-title: Central artery stiffness and thoracic aortopathy publication-title: Am. J. Physiol. – volume: 12 year: 2020 ident: CR78 article-title: Spontaneous reversal of stenosis in tissue-engineered vascular grafts publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aax6919 – volume: 41 start-page: 1399 year: 2013 end-page: 1410 ident: CR56 article-title: Artery buckling: new phenotypes, models, and applications publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-012-0707-0 – volume: 47 start-page: 2995 year: 2014 end-page: 3002 ident: CR29 article-title: Evolving anisotropy resulting from elastolytic insults in abdominal aortic aneurysms: potential clinical relevance? publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.07.003 – volume: 196 start-page: 3070 year: 2007 end-page: 3078 ident: CR80 article-title: Theory of small on large: potential utility in computations of fluid-solid interactions in arteries publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2006.06.018 – volume: 19 start-page: 237 year: 1991 end-page: 249 ident: CR7 article-title: What are residual stresses doing in our blood vessels? publication-title: Ann. Biomed. Eng. doi: 10.1007/BF02584301 – volume: 122 start-page: 497 year: 2012 end-page: 506 ident: CR31 article-title: Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development publication-title: J. Clin. Invest. doi: 10.1172/JCI61598 – volume: 21 start-page: 1529 year: 2015 end-page: 1538 ident: CR74 article-title: Biomechanical diversity despite mechanobiological stability in tissue engineered vascular grafts two years post-implantation publication-title: Tissue Eng., Part A doi: 10.1089/ten.tea.2014.0524 – volume: 43 start-page: 2852 year: 2015 end-page: 2867 ident: CR46 article-title: A computational model of biochemomechanical effects of intraluminal thrombus on the enlargement of abdominal aortic aneurysms publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1354-z – volume: 15 start-page: 293 year: 2016 end-page: 316 ident: CR109 article-title: A triphasic constrained mixture model of engineered tissue formation under in vitro dynamic mechanical conditioning publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-015-0687-8 – volume: 12 start-page: 47 year: 2020 end-page: 63 ident: CR119 article-title: A computational bio-chemo-mechanical model of in vivo tissue-engineered vascular graft development publication-title: Integr. Biol. doi: 10.1093/intbio/zyaa004 – volume: 16 year: 2019 ident: CR131 article-title: Growth and remodeling of living systems: perspectives, challenges, and opportunities publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2019.0233 – volume: 17 start-page: 1497 year: 2018 end-page: 1511 ident: CR69 article-title: Modeling mechano-driven and immuno-mediated aortic maladaptation in hypertension publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-018-1041-8 – volume: 9 start-page: 2047 year: 2012 end-page: 2058 ident: CR28 article-title: Importance of initial aortic properties on the evolving regional anisotropy, stiffness, and wall thickness of human abdominal aortic aneurysms publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0097 – volume: 11 start-page: 283 year: 2015 end-page: 294 ident: CR76 article-title: A hypothesis-driven parametric study of the effects of polymeric scaffold properties on tissue engineered neovessel formation publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.09.046 – volume: 12 start-page: 407 year: 2002 end-page: 430 ident: CR6 article-title: A constrained mixture model for growth and remodeling of soft tissues publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202502001714 – ident: CR35 – volume: 17 start-page: 1451 year: 2018 end-page: 1470 ident: CR113 article-title: A theoretical model of inflammation- and mechanotransduction-driven asthmatic airway remodeling publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-018-1037-4 – ident: CR84 – volume: 80 start-page: 13 year: 2005 end-page: 31 ident: CR26 article-title: Competition between radial expansion and thickening in the enlargement of an intracranial saccular aneurysm publication-title: J. Elast. doi: 10.1007/s10659-005-9004-6 – volume: 22 start-page: 358 year: 2003 end-page: 363 ident: CR61 article-title: Inflammation in pulmonary arterial hypertension publication-title: Eur. Respir. J. doi: 10.1183/09031936.03.00038903 – volume: 137 year: 2015 ident: CR48 article-title: Computational simulation of the adaptive capacity of vein grafts in response to increased pressure publication-title: J. Biomech. Eng. doi: 10.1115/1.4029021 – volume: 35 start-page: 1498 year: 2007 end-page: 1509 ident: CR42 article-title: Biochemomechanics of cerebral vasospasm and its resolution: II. Constitutive relations and model simulations publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-007-9322-x – volume: 6 start-page: 423 year: 2007 end-page: 445 ident: CR39 article-title: On the theory of reactive mixtures for modeling biological growth publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-006-0070-x – volume: 42 start-page: 126 year: 2012 end-page: 133 ident: CR106 article-title: Constrained mixture models as tools for testing competing hypotheses in arterial biomechanics: a brief review publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2012.02.003 – volume: 352 start-page: 586 year: 2019 end-page: 605 ident: CR88 article-title: A finite element implementation of a growth and remodeling model for soft biological soft tissues: verification and application to abdominal aortic aneurysms publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.04.041 – volume: 50 start-page: 219 year: 2007 end-page: 227 ident: CR63 article-title: Proinflammatory profile within the grossly normal aged human aortic wall publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.107.089409 – volume: 46 start-page: 1938 year: 2018 end-page: 1950 ident: CR75 article-title: Immuno-driven and mechano-mediated neotissue formation in tissue engineered vascular grafts publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-018-2086-7 – volume: 198 start-page: 3583 year: 2009 end-page: 3602 ident: CR79 article-title: A computational framework for fluid-solid-growth modeling in cardiovascular simulations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.09.013 – volume: 9 start-page: 403 year: 2010 end-page: 419 ident: CR105 article-title: A 3-D constrained mixture model for mechanically mediated vascular growth and remodeling publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-009-0184-z – volume: 11 year: 2014 ident: CR32 article-title: Mechanobiological stability: a new paradigm to understand the enlargement of aneurysms publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2014.0680 – volume: 30 start-page: 587 year: 2015 end-page: 593 ident: CR54 article-title: Arterial tortuosity in genetic arteriopathies publication-title: Curr. Opin. Cardiol. doi: 10.1097/HCO.0000000000000218 – volume: 8 start-page: 431 year: 2009 end-page: 446 ident: CR11 article-title: Origin of axial prestress and residual stress in arteries publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-008-0146-x – volume: 6 start-page: 293 year: 2009 end-page: 306 ident: CR14 article-title: Complementary vasoactivity and matrix remodeling in arterial adaptations to altered flow and pressure publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2008.0254 – volume: 129 start-page: 125 year: 2017 end-page: 144 ident: CR38 article-title: A computational model of the biochemomechanics of an evolving occlusive thrombus publication-title: J. Elast. doi: 10.1007/s10659-017-9626-5 – volume: 459 start-page: 3 year: 2003 end-page: 46 ident: CR1 article-title: Continuum biomechanics of soft biological tissues publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2002.1060 – volume: 454 start-page: 428 year: 2008 end-page: 435 ident: CR68 article-title: Origin and physiological roles of inflammation publication-title: Nature doi: 10.1038/nature07201 – volume: 50 start-page: 53 year: 2008 end-page: 78 ident: CR8 article-title: Vascular adaptation and mechanical homeostasis at tissue, cellular, and sub-cellular levels publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-007-9002-3 – ident: CR64 – volume: 121 start-page: 591 year: 1999 end-page: 597 ident: CR9 article-title: Remodeling of a collagenous tissue at fixed lengths publication-title: J. Biomech. Eng. doi: 10.1115/1.2800858 – volume: 16 start-page: 889 year: 2017 end-page: 906 ident: CR90 article-title: Homogenized constrained mixture models for anisotropic volumetric growth and remodeling publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-016-0859-1 – volume: 49 start-page: 1 year: 2016 end-page: 7 ident: CR94 article-title: Adaptive homeostasis publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2016.04.007 – volume: 15 start-page: 1669 year: 2016 end-page: 1684 ident: CR93 article-title: Stability analysis of a continuum-based constrained mixture model for vascular growth and remodeling publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-016-0790-5 – volume: 138 year: 2016 ident: CR108 article-title: Amyloid beta influences vascular smooth muscle contractility and mechanoadaptation publication-title: J. Biomech. Eng. doi: 10.1115/1.4034560 – volume: 6 start-page: 313 year: 1976 end-page: 326 ident: CR3 article-title: Bone remodeling I: theory of adaptive elasticity publication-title: J. Elast. doi: 10.1007/BF00041724 – volume: 256 start-page: 200 year: 2013 end-page: 210 ident: CR50 article-title: Optimization and parameter sensitivity analysis for arterial growth and remodeling computations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2012.12.013 – volume: 469 year: 2013 ident: CR30 article-title: Parametric study of effects of collagen turnover in human abdominal aortic aneurysms publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2012.0556 – volume: 15 start-page: 1389 year: 2016 end-page: 1403 ident: CR89 article-title: A homogenized constrained mixture (and mechanical analog model) for growth and remodeling of soft tissue publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-016-0770-9 – volume: 35 start-page: 1485 year: 2007 end-page: 1497 ident: CR41 article-title: Biochemomechanics of cerebral vasospasm and its resolution: I. A new hypothesis and theoretical framework publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-007-9321-y – volume: 15 start-page: 802 year: 2014 end-page: 812 ident: CR99 article-title: Mechanotransduction and extracellular matrix homeostasis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3896 – volume: 39 start-page: 2027 year: 2011 end-page: 2045 ident: CR52 article-title: A multi-layered computational model of coupled elastin degradation, vasoactive dysfunction, and collagenous stiffening in aortic aging publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-011-0287-4 – volume: 14 start-page: 522 year: 2008 end-page: 529 ident: CR59 article-title: Abdominal aortic aneurysms: an autoimmune disease? publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2008.09.008 – volume: 257 start-page: 320 year: 2009 end-page: 330 ident: CR85 article-title: A kinematic model of stretch-induced stress fiber turnover and reorientation publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2008.11.024 – volume: 25 start-page: 561 year: 2019 end-page: 570 ident: CR77 article-title: Optimization of tissue engineered vascular graft design using computational modeling publication-title: Tissue Eng., Part C doi: 10.1089/ten.tec.2019.0086 – volume: 89 start-page: 957 year: 2009 end-page: 989 ident: CR16 article-title: Vascular extracellular matrix and arterial mechanics publication-title: Physiol. Rev. doi: 10.1152/physrev.00041.2008 – volume: 46 start-page: 509 year: 2009 end-page: 527 ident: CR37 article-title: A mathematical model of evolving mechanical properties of intraluminal thrombus publication-title: Biorheology doi: 10.3233/BIR-2009-0556 – volume: 33 year: 2017 ident: CR47 article-title: Potential biomechanical roles of risk factors in the evolution of thrombus-laden abdominal aortic aneurysms publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2893 – volume: 2 start-page: 3 year: 2009 end-page: 19 ident: CR18 article-title: Adaptation and remodeling of vascular wall; biomechanical response to hypertension publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2008.05.002 – volume: 37 start-page: 26 year: 2017 end-page: 34 ident: CR34 article-title: Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.116.303229 – volume: 42 start-page: 488 year: 2014 end-page: 502 ident: CR10 article-title: A microstructurally-motivated model of arterial wall mechanics with mechanobiological implications publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0928-x – volume: 113 start-page: 15 year: 2007 end-page: 23 ident: CR17 article-title: Arterial adaptations to chronic changes in haemodynamic function: coupling vasomotor tone to structural remodelling publication-title: Clin. Sci. (Lond.) doi: 10.1042/CS20060337 – volume: 6 year: 2020 ident: CR57 article-title: Mechanics-driven mechanobiological mechanisms of arterial tortuosity publication-title: Sci. Adv. doi: 10.1126/sciadv.abd3574 – volume: 160 start-page: 816 year: 2015 end-page: 827 ident: CR71 article-title: Homeostasis, inflammation, and disease susceptibility publication-title: Cell doi: 10.1016/j.cell.2015.02.010 – volume: 36 start-page: 1118 year: 2019 end-page: 1122 ident: CR67 article-title: Elastic aortic properties in cystic fibrosis adults without cardiovascular risk factors: a case-control study publication-title: Echocardiography doi: 10.1111/echo.14375 – volume: 90 start-page: 61 year: 2019 end-page: 72 ident: CR118 article-title: A structure-based constitutive model of arterial tissue considering individual natural configurations of elastin and collagen publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2018.09.047 – volume: 33 start-page: 80 year: 2011 end-page: 88 ident: CR81 article-title: Simulation of abdominal aortic aneurysm growth with updated hemodynamic loads using a realistic geometry publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.09.012 – volume: 42 start-page: 1 year: 2012 end-page: 14 ident: CR128 article-title: Frontiers in growth and remodeling publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2012.02.007 – volume: 45 start-page: 805 year: 2012 end-page: 814 ident: CR24 article-title: Mechanics, mechanobiology, and modeling of human abdominal aorta and aneurysms publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.11.021 – volume: 123 start-page: 528 year: 2001 end-page: 535 ident: CR101 article-title: Stress modulated growth, residual stress, and vascular heterogeneity publication-title: J. Biomech. Eng. doi: 10.1115/1.1412451 – volume: 48 start-page: 487 year: 1995 end-page: 545 ident: CR125 article-title: Biomechanics of growth, remodeling, and morphogenesis publication-title: Appl. Mech. Rev. doi: 10.1115/1.3005109 – volume: 13 start-page: 1243 year: 2014 end-page: 1259 ident: CR107 article-title: A goal function approach to remodeling of arteries uncovers mechanisms for growth instability publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-014-0569-5 – volume: 126 start-page: 2473 year: 2012 end-page: 2480 ident: CR66 article-title: Anti-tumor necrosis factor-a therapy reduces aortic inflammation and stiffness in patients with rheumatoid arthritis publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.112.120410 – volume: 29 start-page: 822 year: 2013 end-page: 849 ident: CR87 article-title: A finite element-based constrained mixture implementation for arterial growth, remodeling, and adaptation. Theory and numerical verification publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2555 – volume: 95 start-page: 124 year: 2019 end-page: 135 ident: CR116 article-title: Constrained mixture modeling affects material parameter identification from planar biaxial tests publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2019.03.029 – volume-title: The Mathematics and Mechanics of Biological Growth year: 2017 ident: 9809_CR132 doi: 10.1007/978-0-387-87710-5 – volume: 198 start-page: 3583 year: 2009 ident: 9809_CR79 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2008.09.013 – volume: 42 start-page: 488 year: 2014 ident: 9809_CR10 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0928-x – volume: 8 start-page: 431 year: 2009 ident: 9809_CR11 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-008-0146-x – volume: 39 start-page: 2027 year: 2011 ident: 9809_CR52 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-011-0287-4 – volume: 120 start-page: 348 year: 1998 ident: 9809_CR97 publication-title: J. Biomech. Eng. doi: 10.1115/1.2798001 – volume: 33 year: 2017 ident: 9809_CR45 publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2828 – volume: 196 start-page: 3070 year: 2007 ident: 9809_CR80 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2006.06.018 – volume: 118 start-page: 379 year: 2016 ident: 9809_CR53 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.115.307722 – volume: 48 start-page: 1357 year: 2010 ident: 9809_CR104 publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2010.06.033 – volume: 129 start-page: 69 year: 2017 ident: 9809_CR40 publication-title: J. Elast. doi: 10.1007/s10659-017-9630-9 – volume: 12 year: 2020 ident: 9809_CR78 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aax6919 – volume: 6 year: 2020 ident: 9809_CR57 publication-title: Sci. Adv. doi: 10.1126/sciadv.abd3574 – volume: 122 start-page: 497 year: 2012 ident: 9809_CR31 publication-title: J. Clin. Invest. doi: 10.1172/JCI61598 – volume: 95 start-page: 124 year: 2019 ident: 9809_CR116 publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2019.03.029 – volume-title: Continuum Modeling in Mechanobiology year: 2020 ident: 9809_CR133 doi: 10.1007/978-3-030-43209-6 – volume: 11 start-page: 283 year: 2015 ident: 9809_CR76 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2014.09.046 – volume: 2 start-page: 109 year: 2003 ident: 9809_CR21 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-003-0033-4 – volume: 39 start-page: 2669 year: 2011 ident: 9809_CR83 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-011-0363-9 – volume: 137 year: 2015 ident: 9809_CR48 publication-title: J. Biomech. Eng. doi: 10.1115/1.4029021 – ident: 9809_CR64 doi: 10.1155/2017/5038602 – volume: 60 start-page: 4 year: 1975 ident: 9809_CR22 publication-title: Cardiology doi: 10.1159/000169701 – volume: 116 start-page: 1448 year: 2015 ident: 9809_CR33 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.114.304936 – volume: 35 start-page: 1498 year: 2007 ident: 9809_CR42 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-007-9322-x – volume: 12 start-page: 407 year: 2002 ident: 9809_CR6 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202502001714 – volume: 46 start-page: 1938 year: 2018 ident: 9809_CR75 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-018-2086-7 – volume: 16 start-page: 889 year: 2017 ident: 9809_CR90 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-016-0859-1 – volume: 125 start-page: 298 year: 2019 ident: 9809_CR96 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.12.013 – volume: 7 start-page: 245 year: 2008 ident: 9809_CR102 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-007-0101-2 – volume: 9 start-page: 2047 year: 2012 ident: 9809_CR28 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2012.0097 – volume: 17 start-page: 1497 year: 2018 ident: 9809_CR69 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-018-1041-8 – volume: 61 start-page: 177 year: 2010 ident: 9809_CR124 publication-title: Z. Angew. Math. Phys. doi: 10.1007/s00033-009-0037-8 – volume: 52 start-page: 571 year: 2006 ident: 9809_CR123 publication-title: J. Math. Biol. doi: 10.1007/s00285-005-0363-1 – ident: 9809_CR84 doi: 10.1007/s10439-020-02713-8 – volume: 6 start-page: 293 year: 2009 ident: 9809_CR14 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2008.0254 – volume: 50 start-page: 53 year: 2008 ident: 9809_CR8 publication-title: Cell Biochem. Biophys. doi: 10.1007/s12013-007-9002-3 – volume: 15 start-page: 1669 year: 2016 ident: 9809_CR93 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-016-0790-5 – volume: 13 start-page: 1243 year: 2014 ident: 9809_CR107 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-014-0569-5 – volume: 17 year: 2020 ident: 9809_CR121 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2019.0708 – volume: 15 start-page: 1389 year: 2016 ident: 9809_CR89 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-016-0770-9 – volume: 43 start-page: 2852 year: 2015 ident: 9809_CR46 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1354-z – volume: 15 start-page: 293 year: 2016 ident: 9809_CR109 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-015-0687-8 – volume: 52 start-page: 645 year: 2017 ident: 9809_CR129 publication-title: Meccanica doi: 10.1007/s11012-016-0472-5 – volume: 19 start-page: 237 year: 1991 ident: 9809_CR7 publication-title: Ann. Biomed. Eng. doi: 10.1007/BF02584301 – volume: 27 start-page: 455 year: 1994 ident: 9809_CR5 publication-title: J. Biomech. doi: 10.1016/0021-9290(94)90021-3 – volume: 257 start-page: 320 year: 2009 ident: 9809_CR85 publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2008.11.024 – volume: 17 start-page: 1451 year: 2018 ident: 9809_CR113 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-018-1037-4 – volume: 125 start-page: 169 year: 2003 ident: 9809_CR122 publication-title: J. Biomech. Eng. doi: 10.1115/1.1560144 – volume: 9 start-page: 403 year: 2010 ident: 9809_CR105 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-009-0184-z – volume: 11 year: 2014 ident: 9809_CR32 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2014.0680 – volume: 4 start-page: 1683 year: 2011 ident: 9809_CR86 publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2011.05.022 – volume: 41 start-page: 352 year: 2004 ident: 9809_CR20 publication-title: J. Vasc. Res. doi: 10.1159/000080699 – volume: 25 start-page: 561 year: 2019 ident: 9809_CR77 publication-title: Tissue Eng., Part C doi: 10.1089/ten.tec.2019.0086 – volume: 368 year: 2020 ident: 9809_CR91 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113156 – volume: 47 start-page: 2080 year: 2014 ident: 9809_CR73 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.10.009 – volume: 45 start-page: 805 year: 2012 ident: 9809_CR24 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2011.11.021 – volume: 367 start-page: 3585 year: 2009 ident: 9809_CR103 publication-title: Philos. Trans. R. Soc. Lond. A – volume: 18 start-page: 1895 year: 2019 ident: 9809_CR117 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-019-01184-8 – volume: 130 start-page: e139 year: 2012 ident: 9809_CR36 publication-title: Thromb. Res. doi: 10.1016/j.thromres.2012.04.009 – volume: 129 start-page: 125 year: 2017 ident: 9809_CR38 publication-title: J. Elast. doi: 10.1007/s10659-017-9626-5 – volume: 29 start-page: 763 year: 2019 ident: 9809_CR114 publication-title: Klin. Neuroradiol. doi: 10.1007/s00062-019-00776-2 – volume: 37 start-page: 26 year: 2017 ident: 9809_CR34 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.116.303229 – volume: 85 start-page: 203 year: 2014 ident: 9809_CR92 publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2014.08.003 – volume: 46 start-page: 1118 year: 2005 ident: 9809_CR62 publication-title: Hypertension doi: 10.1161/01.HYP.0000185463.27209.b0 – volume: 90 start-page: 61 year: 2019 ident: 9809_CR118 publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2018.09.047 – volume: 10 start-page: 994 year: 2017 ident: 9809_CR110 publication-title: Materials (Basel) doi: 10.3390/ma10090994 – volume: 54 start-page: 281 year: 2014 ident: 9809_CR95 publication-title: Mol. Cell doi: 10.1016/j.molcel.2014.03.030 – volume: 33 year: 2017 ident: 9809_CR47 publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2893 – volume: 32 start-page: 1659 year: 2012 ident: 9809_CR60 publication-title: J. Cereb. Blood Flow Metab. doi: 10.1038/jcbfm.2012.84 – volume: 42 start-page: 1 year: 2012 ident: 9809_CR128 publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2012.02.007 – volume: 469 year: 2013 ident: 9809_CR30 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2012.0556 – volume: 3 start-page: 98 year: 2004 ident: 9809_CR27 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-004-0052-9 – volume: 160 start-page: 816 year: 2015 ident: 9809_CR71 publication-title: Cell doi: 10.1016/j.cell.2015.02.010 – volume: 48 start-page: 487 year: 1995 ident: 9809_CR125 publication-title: Appl. Mech. Rev. doi: 10.1115/1.3005109 – volume: 43 start-page: 1543 year: 2015 ident: 9809_CR82 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1287-6 – volume: 14 start-page: 97 year: 2012 ident: 9809_CR127 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev-bioeng-071910-124726 – volume: 6 start-page: 423 year: 2007 ident: 9809_CR39 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-006-0070-x – volume: 1 start-page: 71 year: 2017 ident: 9809_CR130 publication-title: Curr. Opin. Biomed. Eng. doi: 10.1016/j.cobme.2017.03.004 – volume: 126 start-page: 371 year: 2004 ident: 9809_CR19 publication-title: J. Biomech. Eng. doi: 10.1115/1.1762899 – volume: 42 start-page: 126 year: 2012 ident: 9809_CR106 publication-title: Mech. Res. Commun. doi: 10.1016/j.mechrescom.2012.02.003 – volume: 14 start-page: 35 year: 2019 ident: 9809_CR70 publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2019.05.014 – volume: 46 start-page: 509 year: 2009 ident: 9809_CR37 publication-title: Biorheology doi: 10.3233/BIR-2009-0556 – volume: 35 start-page: 1485 year: 2007 ident: 9809_CR41 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-007-9321-y – volume: 123 start-page: 528 year: 2001 ident: 9809_CR101 publication-title: J. Biomech. Eng. doi: 10.1115/1.1412451 – volume: 12 start-page: 47 year: 2020 ident: 9809_CR119 publication-title: Integr. Biol. doi: 10.1093/intbio/zyaa004 – volume: 16 year: 2019 ident: 9809_CR131 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2019.0233 – volume-title: Cardiovascular Solid Mechanics: Cells, Tissues, and Organs year: 2002 ident: 9809_CR12 doi: 10.1007/978-0-387-21576-1 – volume: 89 start-page: 957 year: 2009 ident: 9809_CR16 publication-title: Physiol. Rev. doi: 10.1152/physrev.00041.2008 – volume: 110 year: 2020 ident: 9809_CR51 publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2020.103943 – volume: 40 start-page: 1887 year: 2007 ident: 9809_CR43 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.09.003 – volume: 22 start-page: 358 year: 2003 ident: 9809_CR61 publication-title: Eur. Respir. J. doi: 10.1183/09031936.03.00038903 – volume: 80 start-page: 13 year: 2005 ident: 9809_CR26 publication-title: J. Elast. doi: 10.1007/s10659-005-9004-6 – volume: 10 start-page: 671 year: 2011 ident: 9809_CR98 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-010-0265-z – volume: 6 start-page: 313 year: 1976 ident: 9809_CR3 publication-title: J. Elast. doi: 10.1007/BF00041724 – volume: 454 start-page: 428 year: 2008 ident: 9809_CR68 publication-title: Nature doi: 10.1038/nature07201 – volume: 49 start-page: 1 year: 2016 ident: 9809_CR94 publication-title: Mol. Aspects Med. doi: 10.1016/j.mam.2016.04.007 – volume: 121 start-page: 591 year: 1999 ident: 9809_CR9 publication-title: J. Biomech. Eng. doi: 10.1115/1.2800858 – volume: 16 start-page: 1765 year: 2017 ident: 9809_CR111 publication-title: Biomech. Model. Mechanobiol. doi: 10.1007/s10237-017-0918-2 – volume: 256 start-page: 200 year: 2013 ident: 9809_CR50 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2012.12.013 – volume: 10 start-page: 221 year: 2008 ident: 9809_CR23 publication-title: Annu. Rev. Biomed. Eng. doi: 10.1146/annurev.bioeng.10.061807.160439 – ident: 9809_CR120 doi: 10.1016/j.jmbbm.2020.104161 – volume: 14 year: 2017 ident: 9809_CR49 publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2016.0995 – volume: 36 start-page: 1118 year: 2019 ident: 9809_CR67 publication-title: Echocardiography doi: 10.1111/echo.14375 – volume: 41 start-page: 1399 year: 2013 ident: 9809_CR56 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-012-0707-0 – volume: 59 start-page: 863 year: 2011 ident: 9809_CR126 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2010.12.011 – volume: 47 start-page: 2995 year: 2014 ident: 9809_CR29 publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2014.07.003 – volume: 33 start-page: 80 year: 2011 ident: 9809_CR81 publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2010.09.012 – volume: 352 start-page: 586 year: 2019 ident: 9809_CR88 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.04.041 – volume: 98 start-page: 2239 year: 2018 ident: 9809_CR112 publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.201700351 – volume: 316 start-page: H169 year: 2019 ident: 9809_CR25 publication-title: Am. J. Physiol. – volume: 35 start-page: 798 year: 2018 ident: 9809_CR65 publication-title: Echocardiography doi: 10.1111/echo.13841 – volume: 470 year: 2014 ident: 9809_CR44 publication-title: Proc. R. Soc. Lond. A – volume: 126 start-page: 2473 year: 2012 ident: 9809_CR66 publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.112.120410 – volume: 109 start-page: 172 year: 2019 ident: 9809_CR115 publication-title: Int. J. Non-Linear Mech. doi: 10.1016/j.ijnonlinmec.2018.11.010 – volume: 2 start-page: 3 year: 2009 ident: 9809_CR18 publication-title: J. Mech. Behav. Biomed. Mater. doi: 10.1016/j.jmbbm.2008.05.002 – volume: 73 start-page: 951 year: 2019 ident: 9809_CR55 publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.118.11647 – volume: 138 year: 2016 ident: 9809_CR108 publication-title: J. Biomech. Eng. doi: 10.1115/1.4034560 – ident: 9809_CR35 doi: 10.1371/journal.pcbi.1008273 – volume: 30 start-page: 587 year: 2015 ident: 9809_CR54 publication-title: Curr. Opin. Cardiol. doi: 10.1097/HCO.0000000000000218 – volume: 21 start-page: 1529 year: 2015 ident: 9809_CR74 publication-title: Tissue Eng., Part A doi: 10.1089/ten.tea.2014.0524 – volume: 98 start-page: 2048 year: 2018 ident: 9809_CR15 publication-title: Z. Angew. Math. Mech. doi: 10.1002/zamm.201700302 – volume: 14 start-page: 522 year: 2008 ident: 9809_CR59 publication-title: Trends Mol. Med. doi: 10.1016/j.molmed.2008.09.008 – volume: 1 start-page: 303 year: 1968 ident: 9809_CR2 publication-title: J. Biomech. doi: 10.1016/0021-9290(68)90024-9 – volume: 32 start-page: 2045 year: 2012 ident: 9809_CR58 publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.108.179705 – volume: 10 year: 2018 ident: 9809_CR100 publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aan4587 – volume: 15 start-page: 802 year: 2014 ident: 9809_CR99 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3896 – volume: 50 start-page: 219 year: 2007 ident: 9809_CR63 publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.107.089409 – start-page: 347 volume-title: Proceed IUTAM Symposium Finite Elasticity year: 1981 ident: 9809_CR4 doi: 10.1007/978-94-009-7538-5_23 – volume: 128 start-page: 142 year: 2006 ident: 9809_CR13 publication-title: J. Biomech. Eng. doi: 10.1115/1.2132374 – volume: 29 start-page: 822 year: 2013 ident: 9809_CR87 publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.2555 – volume: 459 start-page: 3 year: 2003 ident: 9809_CR1 publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2002.1060 – volume: 113 start-page: 15 year: 2007 ident: 9809_CR17 publication-title: Clin. Sci. (Lond.) doi: 10.1042/CS20060337 – volume: 107 start-page: 3335 year: 2010 ident: 9809_CR72 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0907813106 |
SSID | ssj0009840 |
Score | 2.5007818 |
Snippet | Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations,... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 49 |
SubjectTerms | Automotive Engineering Blood vessels Classical Mechanics Homeostasis Material properties Physics Physics and Astronomy Soft tissues |
Title | Constrained Mixture Models of Soft Tissue Growth and Remodeling – Twenty Years After |
URI | https://link.springer.com/article/10.1007/s10659-020-09809-1 https://www.ncbi.nlm.nih.gov/pubmed/34483462 https://www.proquest.com/docview/2563187680 https://www.proquest.com/docview/2569616029 https://pubmed.ncbi.nlm.nih.gov/PMC8415366 |
Volume | 145 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB5BKyQ4FLptIaVUrsSNWkr8F_u4Qv0RCA7tLmpPUeLYaqUqi8hWwI134A37JB17k90uLUicPXHsfB57JjP-BuAtmuA2Q0Oc8joXVHguqfEypZZpVXnOKl3HbIvP6ngsPpzJs-5SWNtnu_chybhT37nspqShwd1JjQ4k_o9hVQbfHVfxmA0XVLs6XoMMxCqUSy67qzIP97F8HN2zMe-nSv4RL43H0OELWOvsRzKcAb4Oj1wzgOedLUk6TW0H8OwO0eAAnsRET9tuwJdQoTPWhUDxT5c_QgCBhIJoVy2ZeHKKuzIZRTDIEXro0wtSNjU5cbFiDvZFbn79JqPvOM6f5By1pCXDUGV8E8aHB6P3x7SrrUCtyMWUKmGr0mmhK-NK9Jqs13mZS6esT72s0EuzrE59rbQw3GZOO81s4KarvUdEM74FK82kca-ApLkTzlTMGccEL40ps0rl3DGfpXUtfAJZ_4kL2xGPh3leFQvK5ABLgbAUEZYiS-Dd_JmvM9qNf0rv9MgVnQq2BdpyuF-hN5UmsDdvRuUJEZGycZPrKGNUplJmEng5A3r-Oi7Cf1bFEsiXlsBcIBBzL7c0lxeRoFujVcSVSmC_XyyLYf19Ftv_J_4anrKQXxOTEXdgZfrt2r1BA2la7cLq8Oj848Fu1Itb29wIfA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RTxQxEJ4IhqAPCgfqCmJNeNMmu2232z5eCHAq8KB3BJ82u902kJA94x5R3_wP_kN_idPe7h0nQsJzZ7vtTqf9Zmf6DcAuQnCTIBCnvMoEFY6nVLs0poYpWTrOSlWFbIsTORiJD2fpWXsprOmy3buQZNipr112k6mm3t2JtfIk_kvwEMGA8olcI9afU-2qcA3SE6tQnvK0vSrz_z4Wj6MbGPNmquQ_8dJwDB2swZMWP5L-VOHr8MDWPXjaYknSWmrTg8fXiAZ7sBISPU2zAae-QmeoC4Hixxc_fACB-IJolw0ZO_IZd2UyDMogh-ihT85JUVfkkw0Vc7Av8ufXbzL8juP8Sb6glTSk76uMb8LoYH-4N6BtbQVqRCYmVApTFlYJVWpboNdknMqKLLXSuNilJXpphlWxq6QSmpvEKquY8dx0lXOo0YQ_g-V6XNsXQOLMCqtLZrVlghdaF0kpM26ZS-KqEi6CpPvEuWmJx_08L_M5ZbJXS45qyYNa8iSCt7Nnvk5pN-6U3u40l7cm2OSI5XC_Qm8qjuDNrBmNx0dEitqOr4KMlomMmY7g-VTRs9dx4f-zShZBtrAEZgKemHuxpb44DwTdClERlzKCd91imQ_r9lm8vJ_4a1gdDI-P8qP3Jx-34BHzuTYhMXEbliffruwrBEuTcifYxl8uIwnb |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB5BEQgeOJYrUMBIvEHU-IhjP64KS7kqBLuoPEWJD7VSla1IKuCN_9B_2F_SsTd7UUDi2RPHznjsb-KZbwCeIQQ3FIF4ym0hUuF5nmqfZ6lhStaes1rZGG2xK3cm4u1evreSxR-j3edXkrOchsDS1HRbR9ZvrSS-yVynwfXJtAqE_hfhEm7HNKzrCRsuaXdVTIkMJCspz3nep838uY_1o-kc3jwfNvnb3Wk8kkY34XqPJclwpvxbcME1A7jR40rSW207gGsrpIMDuByDPk17G76Eap2xRgSKfzj4ES4TSCiOdtiSqSefcYcm46gY8hq99W6fVI0ln1ysnoN9kdNfJ2T8Hcf5k3xFi2nJMFQcvwOT0avx9k7a11lIjShEl0ph6sopoWrtKvSgjFdFVeROGp_5vEaPzTCbeSuV0NxQp5xiJvDUWe9Ru5TfhY1m2rj7QLLCCadr5rRjgldaV7SWBXfM08xa4ROg809cmp6EPMzzsFzSJwe1lKiWMqqlpAk8XzxzNKPg-Kf05lxzZW-ObYm4Dvcu9KyyBJ4umtGQwu1I1bjpcZTRksqM6QTuzRS9eB0X4Z-rZAkUa0tgIRBIutdbmoP9SNatECFxKRN4MV8sy2H9fRYP_k_8CVz5-HJUvn-z--4hXGUh7CbGKG7CRvft2D1C3NTVj6NpnAFDXQ4X |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Constrained+Mixture+Models+of+Soft+Tissue+Growth+and+Remodeling+%E2%80%93+Twenty+Years+After&rft.jtitle=Journal+of+elasticity&rft.au=Humphrey%2C+J.+D.&rft.date=2021-08-01&rft.pub=Springer+Netherlands&rft.issn=0374-3535&rft.eissn=1573-2681&rft.volume=145&rft.issue=1-2&rft.spage=49&rft.epage=75&rft_id=info:doi/10.1007%2Fs10659-020-09809-1&rft.externalDocID=10_1007_s10659_020_09809_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0374-3535&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0374-3535&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0374-3535&client=summon |