Phase-driven charge manipulation in Hybrid Single-Electron Transistor

Phase-tunable hybrid devices, built upon nanostructures combining normal metal and superconductors, have been the subject of intense studies due to their numerous combinations of different charge and heat transport configurations. They exhibit solid applications in quantum metrology and coherent cal...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 13492 - 7
Main Authors Enrico, Emanuele, Strambini, Elia, Giazotto, Francesco
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 18.10.2017
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-017-13894-z

Cover

Loading…
Abstract Phase-tunable hybrid devices, built upon nanostructures combining normal metal and superconductors, have been the subject of intense studies due to their numerous combinations of different charge and heat transport configurations. They exhibit solid applications in quantum metrology and coherent caloritronics. Here we propose and realize a new kind of hybrid device with potential application in single charge manipulation and quantized current generation. We show that by tuning superconductivity on two proximized nanowires, coupled via a Coulombic normal-metal island, we are able to control its charge state configuration. This device supports a one-control-parameter cycle being actuated by the sole magnetic flux. In a voltage biased regime, the phase-tunable superconducting gaps can act as energy barriers for charge quanta leading to an additional degree of freedom in single electronics. The resulting configuration is fully electrostatic and the current across the device is governed by the quasiparticle populations in the source and drain leads. Notably, the proposed device can be realized using standard nanotechniques opening the possibility to a straightforward coupling with the nowadays well developed superconducting electronics.
AbstractList Phase-tunable hybrid devices, built upon nanostructures combining normal metal and superconductors, have been the subject of intense studies due to their numerous combinations of different charge and heat transport configurations. They exhibit solid applications in quantum metrology and coherent caloritronics. Here we propose and realize a new kind of hybrid device with potential application in single charge manipulation and quantized current generation. We show that by tuning superconductivity on two proximized nanowires, coupled via a Coulombic normal-metal island, we are able to control its charge state configuration. This device supports a one-control-parameter cycle being actuated by the sole magnetic flux. In a voltage biased regime, the phase-tunable superconducting gaps can act as energy barriers for charge quanta leading to an additional degree of freedom in single electronics. The resulting configuration is fully electrostatic and the current across the device is governed by the quasiparticle populations in the source and drain leads. Notably, the proposed device can be realized using standard nanotechniques opening the possibility to a straightforward coupling with the nowadays well developed superconducting electronics.
Phase-tunable hybrid devices, built upon nanostructures combining normal metal and superconductors, have been the subject of intense studies due to their numerous combinations of different charge and heat transport configurations. They exhibit solid applications in quantum metrology and coherent caloritronics. Here we propose and realize a new kind of hybrid device with potential application in single charge manipulation and quantized current generation. We show that by tuning superconductivity on two proximized nanowires, coupled via a Coulombic normal-metal island, we are able to control its charge state configuration. This device supports a one-control-parameter cycle being actuated by the sole magnetic flux. In a voltage biased regime, the phase-tunable superconducting gaps can act as energy barriers for charge quanta leading to an additional degree of freedom in single electronics. The resulting configuration is fully electrostatic and the current across the device is governed by the quasiparticle populations in the source and drain leads. Notably, the proposed device can be realized using standard nanotechniques opening the possibility to a straightforward coupling with the nowadays well developed superconducting electronics.Phase-tunable hybrid devices, built upon nanostructures combining normal metal and superconductors, have been the subject of intense studies due to their numerous combinations of different charge and heat transport configurations. They exhibit solid applications in quantum metrology and coherent caloritronics. Here we propose and realize a new kind of hybrid device with potential application in single charge manipulation and quantized current generation. We show that by tuning superconductivity on two proximized nanowires, coupled via a Coulombic normal-metal island, we are able to control its charge state configuration. This device supports a one-control-parameter cycle being actuated by the sole magnetic flux. In a voltage biased regime, the phase-tunable superconducting gaps can act as energy barriers for charge quanta leading to an additional degree of freedom in single electronics. The resulting configuration is fully electrostatic and the current across the device is governed by the quasiparticle populations in the source and drain leads. Notably, the proposed device can be realized using standard nanotechniques opening the possibility to a straightforward coupling with the nowadays well developed superconducting electronics.
Phase-tunable hybrid devices, built upon nanostructures combining normal metal and superconductors, have been the subject of intense studies due to their numerous combinations of different charge and heat transport configurations. They exhibit solid applications in quantum metrology and coherent caloritronics. Here we propose and realize a new kind of hybrid device with potential application in single charge manipulation and quantized current generation. We show that by tuning superconductivity on two proximized nanowires, coupled via a Coulombic normal-metal island, we are able to control its charge state configuration. This device supports a one-control-parameter cycle being actuated by the sole magnetic flux. In a voltage biased regime, the phase-tunable superconducting gaps can act as energy barriers for charge quanta leading to an additional degree of freedom in single electronics. The resulting configuration is fully electrostatic and the current across the device is governed by the quasiparticle populations in the source and drain leads. Notably, the proposed device can be realized using standard nanotechniques opening the possibility to a straightforward coupling with the nowadays well developed superconducting electronics.
ArticleNumber 13492
Author Enrico, Emanuele
Giazotto, Francesco
Strambini, Elia
Author_xml – sequence: 1
  givenname: Emanuele
  orcidid: 0000-0002-2125-5200
  surname: Enrico
  fullname: Enrico, Emanuele
  email: e.enrico@inrim.it
  organization: INRIM, Istituto Nazionale di Ricerca Metrologica, Strada delle Cacce 91
– sequence: 2
  givenname: Elia
  surname: Strambini
  fullname: Strambini, Elia
  organization: NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12
– sequence: 3
  givenname: Francesco
  surname: Giazotto
  fullname: Giazotto, Francesco
  organization: NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29044174$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1PGzEUtCpQ-Sh_gANaqZdeXPy5a18qVSgtSEggkbvl9b4kjjZ2au8ihV-PS4DSHOKLLb2ZeeOZE3QQYgCEzin5TglXl1lQqRUmtMGUKy3w0yd0zIiQmHHGDj68j9BZzktSjmRaUP0ZHTFNhKCNOEaT-4XNgLvkHyFUbmHTHKqVDX499nbwMVQ-VNebNvmuevBh3gOe9OCGVCbTZEP2eYjpCzqc2T7D2et9iqa_JtOra3x79_vm6uctdqIRA64F5aRjTms7Uwy0otLWurOKNEwrKVsmoBFO6U4oDoK3nJK6bTVvFVPM8VP0Yyu7HtsVdA7CkGxv1smvbNqYaL35fxL8wszjo5F12U91Efj2KpDinxHyYFY-O-h7GyCO2VAtWQmpqWWBft2BLuOYQvmdYZRR0VApSUFdfHT0buUt4AJQW4BLMecEM-P88BJsMeh7Q4n5W6fZ1mlKnealTvNUqGyH-qa-l8S3pFzAYQ7pn-09rGezA7H2
CitedBy_id crossref_primary_10_1103_PhysRevApplied_10_014027
crossref_primary_10_1103_PhysRevApplied_18_014037
crossref_primary_10_1109_TASC_2021_3059983
crossref_primary_10_1063_5_0084168
crossref_primary_10_1103_PhysRevApplied_11_044073
crossref_primary_10_1063_1_5109100
Cites_doi 10.1103/PhysRevB.66.184513
10.1103/PhysRevApplied.6.054002
10.1103/PhysRevB.53.13682
10.1038/nphys808
10.3390/app6020035
10.1103/PhysRevApplied.2.024005
10.1038/nnano.2015.11
10.1103/PhysRevLett.99.027203
10.1103/RevModPhys.85.1421
10.1103/PhysRevLett.53.2437
10.1103/PhysRevLett.98.037201
10.1007/BF00683469
10.1063/1.4804550
10.1103/RevModPhys.78.217
10.1063/1.117492
10.1016/0921-4526(91)90332-9
10.1103/PhysRevLett.64.2691
10.1103/PhysRevLett.100.177201
10.1063/1.2709967
10.1103/PhysRevApplied.5.064020
10.1103/PhysRevLett.103.120801
10.1038/ncomms1935
10.1038/nphys1537
10.1126/science.1102156
10.1017/CBO9780511976667
10.1103/PhysRevLett.91.177003
10.1103/PhysRevLett.59.109
10.1063/1.4930934
10.1063/1.2808874
10.1038/nphys2053
10.1063/1.4750068
10.1038/nnano.2016.157
10.1103/PhysRevB.64.235418
10.1103/PhysRevLett.105.026803
ContentType Journal Article
Copyright The Author(s) 2017
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2017
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-017-13894-z
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection (Hollins)
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
Publicly Available Content Database
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 7
ExternalDocumentID PMC5647419
29044174
10_1038_s41598_017_13894_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-64130d2c99af82e9815a69da80729855b24e74c89d483e43b3106bb93b8282c3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 18:21:32 EDT 2025
Fri Jul 11 16:07:50 EDT 2025
Wed Aug 13 04:54:58 EDT 2025
Thu Jan 02 22:59:37 EST 2025
Thu Apr 24 22:50:54 EDT 2025
Tue Jul 01 02:41:15 EDT 2025
Fri Feb 21 02:39:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-64130d2c99af82e9815a69da80729855b24e74c89d483e43b3106bb93b8282c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2125-5200
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-017-13894-z
PMID 29044174
PQID 2121471550
PQPubID 2041939
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5647419
proquest_miscellaneous_1952529765
proquest_journals_2121471550
pubmed_primary_29044174
crossref_citationtrail_10_1038_s41598_017_13894_z
crossref_primary_10_1038_s41598_017_13894_z
springer_journals_10_1038_s41598_017_13894_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-10-18
PublicationDateYYYYMMDD 2017-10-18
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-18
  day: 18
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Jalali-Jafari, B., Lotkhov, S. V. & Zorin, A. B. Detection of on-chip generated weak microwave radiation using superconducting normal-metal set. Applied Sciences6 (2016).
EnricoEGiazottoFSuperconducting quantum interference single-electron transistorPhys. Rev. Applied201652016PhRvP...5f4020E10.1103/PhysRevApplied.5.064020
FultonTADolanGJObservation of single-electron charging effects in small tunnel junctionsPhys. Rev. Lett.1987591091121987PhRvL..59..109F1:STN:280:DC%2BC2sfot1CktA%3D%3D10.1103/PhysRevLett.59.10910035115
ZorinABBackground charge noise in metallic single-electron tunneling devicesPhys. Rev. B19965313682136871996PhRvB..5313682Z1:CAS:528:DyaK28XjtlWnsLo%3D10.1103/PhysRevB.53.13682
AverinDVLikharevKKCoulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctionsJournal of Low Temperature Physics1986623453731986JLTP...62..345A10.1007/BF00683469
PekolaJPHybrid single-electron transistor as a source of quantized electric currentNat Phys200841201241:CAS:528:DC%2BD1cXhs1WmsrY%3D10.1038/nphys808
GiazottoFPeltonenJTMeschkeMPekolaJPSuperconducting quantum interference proximity transistorNat Phys201062542591:CAS:528:DC%2BC3cXktFChsLc%3D10.1038/nphys1537
DynesRCGarnoJPHertelGBOrlandoTPTunneling study of superconductivity near the metal-insulator transitionPhys. Rev. Lett.198453243724401984PhRvL..53.2437D1:CAS:528:DyaL2MXjslyhug%3D%3D10.1103/PhysRevLett.53.2437
KafanovSSingle-electronic radio-frequency refrigeratorPhys. Rev. Lett.20091032009PhRvL.103l0801K1:STN:280:DC%2BD1MnlvVyrsA%3D%3D10.1103/PhysRevLett.103.12080119792419
PekolaJPEnvironment-assisted tunneling as an origin of the dynes density of statesPhys. Rev. Lett.20101052010PhRvL.105b6803P1:STN:280:DC%2BC3cfltFGitg%3D%3D10.1103/PhysRevLett.105.02680320867725
FlowersJThe route to atomic and quantum standardsScience2004306132413302004Sci...306.1324F1:CAS:528:DC%2BD2cXpvVekurs%3D10.1126/science.110215615550660
VartiainenJJMöttönenMPekolaJPKemppinenA Nanoampere pumping of cooper pairsApplied Physics Letters2007902007ApPhL..90h2102V10.1063/1.2709967
KellerMWMartinisJMZimmermanNMSteinbachAHAccuracy of electron counting using a 7-junction electron pumpApplied Physics Letters199669180418061996ApPhL..69.1804K1:CAS:528:DyaK28Xls1Gksr4%3D10.1063/1.117492
GiazottoFMartÃnez-PérezMJPhase-controlled superconducting heat-flux quantum modulatorApplied Physics Letters20121012012ApPhL.101j2601G10.1063/1.4750068
PekolaJPGiazottoFSairaO-PRadio-frequency single-electron refrigeratorPhys. Rev. Lett.2007982007PhRvL..98c7201P10.1103/PhysRevLett.98.03720117358719
Martínez-PérezMJFornieriAGiazottoFRectification of electronic heat current by a hybrid thermal diodeNat Nano20151030330710.1038/nnano.2015.11
VirtanenPRonzaniAGiazottoFSpectral characteristics of a fully superconducting squiptPhys. Rev. Applied201662016PhRvP...6e4002V10.1103/PhysRevApplied.6.054002
GiblinSPTowards a quantum representation of the ampere using single electron pumpsNature Communications2012310.1038/ncomms1935
MartÃnez-PérezMJGiazottoFEfficient phase-tunable josephson thermal rectifierApplied Physics Letters20131022013ApPhL.102r2602M10.1063/1.4804550
Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, New York, NY, USA, 2011), 10th edn.
HeikkiläTTSärkkäJWilhelmFKSupercurrent-carrying density of states in diffusive mesoscopic josephson weak linksPhys. Rev. B2002662002PhRvB..66r4513H10.1103/PhysRevB.66.184513
GeerligsLJFrequency-locked turnstile device for single electronsPhys. Rev. Lett.199064269126941990PhRvL..64.2691G1:CAS:528:DyaK3cXksFSku7k%3D10.1103/PhysRevLett.64.269110041785
MöttönenMVartiainenJJPekolaJPExperimental determination of the berry phase in a superconducting charge pumpPhys. Rev. Lett.20081002008PhRvL.100q7201M10.1103/PhysRevLett.100.17720118518328
PothierHSingle electron pump fabricated with ultrasmall normal tunnel junctionsPhysica B: Condensed Matter19911695735741991PhyB..169..573P10.1016/0921-4526(91)90332-9
GiazottoFHeikkiläTTLuukanenASavinAMPekolaJPOpportunities for mesoscopics in thermometry and refrigeration: Physics and applicationsRev. Mod. Phys.2006782172742006RvMP...78..217G1:CAS:528:DC%2BD28Xls1SksLs%3D10.1103/RevModPhys.78.217
Grabert, H., Devoret, M. & Division, N. A. T. O. S. A. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures. Advances in Experimental Medicine & Biology (Springer, 1992).
StrambiniEThe-SQUIPT as a tool to phase-engineer Josephson topological materialsNature Nanotechnology201611105510592016NatNa..11.1055S1:CAS:528:DC%2BC28XhsV2rtbzF27618256
GiazottoFA josephson quantum electron pumpNat Phys201178578611:CAS:528:DC%2BC3MXhtF2isbzK10.1038/nphys2053
NiskanenAOPekolaJPSeppäHFast and accurate single-island charge pump: Implementation of a cooper pair pumpPhys. Rev. Lett.2003912003PhRvL..91q7003N10.1103/PhysRevLett.91.17700314611371
PekolaJPSingle-electron current sources: Toward a refined definition of the ampereRev. Mod. Phys.201385142114722013RvMP...85.1421P10.1103/RevModPhys.85.1421
ShimadaHOotukaYMagnetic-field-driven single-electron pumpPhys. Rev. B2001642001PhRvB..64w5418S10.1103/PhysRevB.64.235418
SairaO-PHeat transistor: Demonstration of gate-controlled electronic refrigerationPhys. Rev. Lett.2007992007PhRvL..99b7203S10.1103/PhysRevLett.99.02720317678252
RonzaniAAltimirasCGiazottoFHighly sensitive superconducting quantum-interference proximity transistorPhys. Rev. Applied201422014PhRvP...2b4005R10.1103/PhysRevApplied.2.024005
D’AmbrosioSMeissnerMBlancCRonzaniAGiazottoFNormal metal tunnel junction-based superconducting quantum interference proximity transistorApplied Physics Letters20151072015ApPhL.107k3110D10.1063/1.4930934
H Pothier (13894_CR12) 1991; 169
F Giazotto (13894_CR5) 2011; 7
JJ Vartiainen (13894_CR18) 2007; 90
P Virtanen (13894_CR30) 2016; 6
F Giazotto (13894_CR19) 2010; 6
J Flowers (13894_CR24) 2004; 306
S D’Ambrosio (13894_CR28) 2015; 107
TA Fulton (13894_CR32) 1987; 59
13894_CR1
AO Niskanen (13894_CR16) 2003; 91
13894_CR27
O-P Saira (13894_CR6) 2007; 99
13894_CR13
A Ronzani (13894_CR22) 2014; 2
JP Pekola (13894_CR4) 2008; 4
MW Keller (13894_CR14) 1996; 69
JP Pekola (13894_CR8) 2007; 98
LJ Geerligs (13894_CR31) 1990; 64
E Enrico (13894_CR20) 2016; 5
JP Pekola (13894_CR10) 2013; 85
F Giazotto (13894_CR21) 2012; 101
E Strambini (13894_CR29) 2016; 11
RC Dynes (13894_CR33) 1984; 53
AB Zorin (13894_CR2) 1996; 53
MJ MartÃnez-Pérez (13894_CR25) 2013; 102
M Möttönen (13894_CR17) 2008; 100
S Kafanov (13894_CR7) 2009; 103
F Giazotto (13894_CR9) 2006; 78
MJ Martínez-Pérez (13894_CR26) 2015; 10
TT Heikkilä (13894_CR23) 2002; 66
JP Pekola (13894_CR34) 2010; 105
SP Giblin (13894_CR11) 2012; 3
H Shimada (13894_CR15) 2001; 64
DV Averin (13894_CR3) 1986; 62
References_xml – reference: PothierHSingle electron pump fabricated with ultrasmall normal tunnel junctionsPhysica B: Condensed Matter19911695735741991PhyB..169..573P10.1016/0921-4526(91)90332-9
– reference: MartÃnez-PérezMJGiazottoFEfficient phase-tunable josephson thermal rectifierApplied Physics Letters20131022013ApPhL.102r2602M10.1063/1.4804550
– reference: PekolaJPSingle-electron current sources: Toward a refined definition of the ampereRev. Mod. Phys.201385142114722013RvMP...85.1421P10.1103/RevModPhys.85.1421
– reference: PekolaJPHybrid single-electron transistor as a source of quantized electric currentNat Phys200841201241:CAS:528:DC%2BD1cXhs1WmsrY%3D10.1038/nphys808
– reference: GiazottoFMartÃnez-PérezMJPhase-controlled superconducting heat-flux quantum modulatorApplied Physics Letters20121012012ApPhL.101j2601G10.1063/1.4750068
– reference: ZorinABBackground charge noise in metallic single-electron tunneling devicesPhys. Rev. B19965313682136871996PhRvB..5313682Z1:CAS:528:DyaK28XjtlWnsLo%3D10.1103/PhysRevB.53.13682
– reference: RonzaniAAltimirasCGiazottoFHighly sensitive superconducting quantum-interference proximity transistorPhys. Rev. Applied201422014PhRvP...2b4005R10.1103/PhysRevApplied.2.024005
– reference: D’AmbrosioSMeissnerMBlancCRonzaniAGiazottoFNormal metal tunnel junction-based superconducting quantum interference proximity transistorApplied Physics Letters20151072015ApPhL.107k3110D10.1063/1.4930934
– reference: Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, New York, NY, USA, 2011), 10th edn.
– reference: MöttönenMVartiainenJJPekolaJPExperimental determination of the berry phase in a superconducting charge pumpPhys. Rev. Lett.20081002008PhRvL.100q7201M10.1103/PhysRevLett.100.17720118518328
– reference: GiazottoFA josephson quantum electron pumpNat Phys201178578611:CAS:528:DC%2BC3MXhtF2isbzK10.1038/nphys2053
– reference: Martínez-PérezMJFornieriAGiazottoFRectification of electronic heat current by a hybrid thermal diodeNat Nano20151030330710.1038/nnano.2015.11
– reference: FultonTADolanGJObservation of single-electron charging effects in small tunnel junctionsPhys. Rev. Lett.1987591091121987PhRvL..59..109F1:STN:280:DC%2BC2sfot1CktA%3D%3D10.1103/PhysRevLett.59.10910035115
– reference: AverinDVLikharevKKCoulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctionsJournal of Low Temperature Physics1986623453731986JLTP...62..345A10.1007/BF00683469
– reference: HeikkiläTTSärkkäJWilhelmFKSupercurrent-carrying density of states in diffusive mesoscopic josephson weak linksPhys. Rev. B2002662002PhRvB..66r4513H10.1103/PhysRevB.66.184513
– reference: GiazottoFHeikkiläTTLuukanenASavinAMPekolaJPOpportunities for mesoscopics in thermometry and refrigeration: Physics and applicationsRev. Mod. Phys.2006782172742006RvMP...78..217G1:CAS:528:DC%2BD28Xls1SksLs%3D10.1103/RevModPhys.78.217
– reference: Jalali-Jafari, B., Lotkhov, S. V. & Zorin, A. B. Detection of on-chip generated weak microwave radiation using superconducting normal-metal set. Applied Sciences6 (2016).
– reference: Grabert, H., Devoret, M. & Division, N. A. T. O. S. A. Single Charge Tunneling: Coulomb Blockade Phenomena in Nanostructures. Advances in Experimental Medicine & Biology (Springer, 1992).
– reference: FlowersJThe route to atomic and quantum standardsScience2004306132413302004Sci...306.1324F1:CAS:528:DC%2BD2cXpvVekurs%3D10.1126/science.110215615550660
– reference: DynesRCGarnoJPHertelGBOrlandoTPTunneling study of superconductivity near the metal-insulator transitionPhys. Rev. Lett.198453243724401984PhRvL..53.2437D1:CAS:528:DyaL2MXjslyhug%3D%3D10.1103/PhysRevLett.53.2437
– reference: VartiainenJJMöttönenMPekolaJPKemppinenA Nanoampere pumping of cooper pairsApplied Physics Letters2007902007ApPhL..90h2102V10.1063/1.2709967
– reference: KafanovSSingle-electronic radio-frequency refrigeratorPhys. Rev. Lett.20091032009PhRvL.103l0801K1:STN:280:DC%2BD1MnlvVyrsA%3D%3D10.1103/PhysRevLett.103.12080119792419
– reference: PekolaJPEnvironment-assisted tunneling as an origin of the dynes density of statesPhys. Rev. Lett.20101052010PhRvL.105b6803P1:STN:280:DC%2BC3cfltFGitg%3D%3D10.1103/PhysRevLett.105.02680320867725
– reference: PekolaJPGiazottoFSairaO-PRadio-frequency single-electron refrigeratorPhys. Rev. Lett.2007982007PhRvL..98c7201P10.1103/PhysRevLett.98.03720117358719
– reference: EnricoEGiazottoFSuperconducting quantum interference single-electron transistorPhys. Rev. Applied201652016PhRvP...5f4020E10.1103/PhysRevApplied.5.064020
– reference: GiblinSPTowards a quantum representation of the ampere using single electron pumpsNature Communications2012310.1038/ncomms1935
– reference: KellerMWMartinisJMZimmermanNMSteinbachAHAccuracy of electron counting using a 7-junction electron pumpApplied Physics Letters199669180418061996ApPhL..69.1804K1:CAS:528:DyaK28Xls1Gksr4%3D10.1063/1.117492
– reference: ShimadaHOotukaYMagnetic-field-driven single-electron pumpPhys. Rev. B2001642001PhRvB..64w5418S10.1103/PhysRevB.64.235418
– reference: GiazottoFPeltonenJTMeschkeMPekolaJPSuperconducting quantum interference proximity transistorNat Phys201062542591:CAS:528:DC%2BC3cXktFChsLc%3D10.1038/nphys1537
– reference: StrambiniEThe-SQUIPT as a tool to phase-engineer Josephson topological materialsNature Nanotechnology201611105510592016NatNa..11.1055S1:CAS:528:DC%2BC28XhsV2rtbzF27618256
– reference: GeerligsLJFrequency-locked turnstile device for single electronsPhys. Rev. Lett.199064269126941990PhRvL..64.2691G1:CAS:528:DyaK3cXksFSku7k%3D10.1103/PhysRevLett.64.269110041785
– reference: SairaO-PHeat transistor: Demonstration of gate-controlled electronic refrigerationPhys. Rev. Lett.2007992007PhRvL..99b7203S10.1103/PhysRevLett.99.02720317678252
– reference: NiskanenAOPekolaJPSeppäHFast and accurate single-island charge pump: Implementation of a cooper pair pumpPhys. Rev. Lett.2003912003PhRvL..91q7003N10.1103/PhysRevLett.91.17700314611371
– reference: VirtanenPRonzaniAGiazottoFSpectral characteristics of a fully superconducting squiptPhys. Rev. Applied201662016PhRvP...6e4002V10.1103/PhysRevApplied.6.054002
– volume: 66
  year: 2002
  ident: 13894_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.66.184513
– volume: 6
  year: 2016
  ident: 13894_CR30
  publication-title: Phys. Rev. Applied
  doi: 10.1103/PhysRevApplied.6.054002
– volume: 53
  start-page: 13682
  year: 1996
  ident: 13894_CR2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.53.13682
– volume: 4
  start-page: 120
  year: 2008
  ident: 13894_CR4
  publication-title: Nat Phys
  doi: 10.1038/nphys808
– ident: 13894_CR13
  doi: 10.3390/app6020035
– volume: 2
  year: 2014
  ident: 13894_CR22
  publication-title: Phys. Rev. Applied
  doi: 10.1103/PhysRevApplied.2.024005
– volume: 10
  start-page: 303
  year: 2015
  ident: 13894_CR26
  publication-title: Nat Nano
  doi: 10.1038/nnano.2015.11
– volume: 99
  year: 2007
  ident: 13894_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.027203
– volume: 85
  start-page: 1421
  year: 2013
  ident: 13894_CR10
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.85.1421
– volume: 53
  start-page: 2437
  year: 1984
  ident: 13894_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.53.2437
– volume: 98
  year: 2007
  ident: 13894_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.037201
– volume: 62
  start-page: 345
  year: 1986
  ident: 13894_CR3
  publication-title: Journal of Low Temperature Physics
  doi: 10.1007/BF00683469
– volume: 102
  year: 2013
  ident: 13894_CR25
  publication-title: Applied Physics Letters
  doi: 10.1063/1.4804550
– volume: 78
  start-page: 217
  year: 2006
  ident: 13894_CR9
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.78.217
– volume: 69
  start-page: 1804
  year: 1996
  ident: 13894_CR14
  publication-title: Applied Physics Letters
  doi: 10.1063/1.117492
– volume: 169
  start-page: 573
  year: 1991
  ident: 13894_CR12
  publication-title: Physica B: Condensed Matter
  doi: 10.1016/0921-4526(91)90332-9
– volume: 64
  start-page: 2691
  year: 1990
  ident: 13894_CR31
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.2691
– volume: 100
  year: 2008
  ident: 13894_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.177201
– volume: 90
  year: 2007
  ident: 13894_CR18
  publication-title: Applied Physics Letters
  doi: 10.1063/1.2709967
– volume: 5
  year: 2016
  ident: 13894_CR20
  publication-title: Phys. Rev. Applied
  doi: 10.1103/PhysRevApplied.5.064020
– volume: 103
  year: 2009
  ident: 13894_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.120801
– volume: 3
  year: 2012
  ident: 13894_CR11
  publication-title: Nature Communications
  doi: 10.1038/ncomms1935
– volume: 6
  start-page: 254
  year: 2010
  ident: 13894_CR19
  publication-title: Nat Phys
  doi: 10.1038/nphys1537
– volume: 306
  start-page: 1324
  year: 2004
  ident: 13894_CR24
  publication-title: Science
  doi: 10.1126/science.1102156
– ident: 13894_CR27
  doi: 10.1017/CBO9780511976667
– volume: 91
  year: 2003
  ident: 13894_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.177003
– volume: 59
  start-page: 109
  year: 1987
  ident: 13894_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.59.109
– volume: 107
  year: 2015
  ident: 13894_CR28
  publication-title: Applied Physics Letters
  doi: 10.1063/1.4930934
– ident: 13894_CR1
  doi: 10.1063/1.2808874
– volume: 7
  start-page: 857
  year: 2011
  ident: 13894_CR5
  publication-title: Nat Phys
  doi: 10.1038/nphys2053
– volume: 101
  year: 2012
  ident: 13894_CR21
  publication-title: Applied Physics Letters
  doi: 10.1063/1.4750068
– volume: 11
  start-page: 1055
  year: 2016
  ident: 13894_CR29
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2016.157
– volume: 64
  year: 2001
  ident: 13894_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.64.235418
– volume: 105
  year: 2010
  ident: 13894_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.026803
SSID ssj0000529419
Score 2.2615764
Snippet Phase-tunable hybrid devices, built upon nanostructures combining normal metal and superconductors, have been the subject of intense studies due to their...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 13492
SubjectTerms 142/126
639/766/119/1003
639/766/483/1255
Aluminum
Electrodes
Energy
Energy charge
Heat transport
Humanities and Social Sciences
Magnetic fields
multidisciplinary
Nanotechnology
Nanowires
Science
Science (multidisciplinary)
Transistors
SummonAdditionalLinks – databaseName: ProQuest_Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3alEIvpUm_3CbFhd5akbU0tqVTKWXDUkgpNIW9CUuWSSB4k-zmkPz6zsiywzY0Z8vImpFmxnrSewCffKuk8bUUAbETKKUTWrZK1LJxDjGotmNE9_hntfiDP5blMm24rdOxyjEmxkDdrjzvkR9SiC0okFJB_fXiUrBqFKOrSULjMTxh6jI-0lUv62mPhVEsLEy6KzNT-nBN-YrvlFFoZoQOxe12PrpXZN4_K_kPYBrz0NELeJ4KyPzb4PFdeBT6PXg6SErevIT5r1PKS6K94iiWRx6kkDPHxajTlZ_1-eKG72nlv6mD8yDmSQknj3kr0oa8gpOj-cn3hUhSCcJjjRtRcS5qpTem6bQMRhdlU5m20UwMrsvSSQw1em1a1CqgclTVVc4Z5eiPS3r1Gnb6VR_eQs4MYEUXnNOosPRUToSOajZKdA0t7ZnJoBjtZX2iEWc1i3Mb4Wyl7WBjSza20cb2NoPP0zsXA4nGg633RzfYtKDW9s79GXycHtNSYHyj6cPqem1pBkjyeF2VGbwZvDZ1J82MxdYwg3rLn1MDptneftKfnUa67bIiExc08C-j5-8-6_-jePfwKN7DMxlnISPr-7CzuboOB1TebNyHOIf_AvJD9qY
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB7sidAXsdrWVVtW8M2G3iazu8ljOU6OQouggm9hs5tFQVbxzgfvr3cm-0OuasHnTUgyM8k32cl8A3BUVkqaMpfCI9YCpXRCy0qJXBbOIXpV1RzR_fM3m13g78v0cg1knwsTHu0HSstwTPevw37OCWg4GYzOVA6toVh-gHWmbmernmST4b8KR64wMV1-zFjpV7quYtALx_Ll-8h_gqQBe062YLNzGuNf7TQ_wZpvtmGjLSP5uAPT0yvCIlHd88kVB-4jHzOvRV-bK75u4tkj52bFZzTAjRfTrvpNHLAqUIV8hvOT6flkJrryCKLEHBciY_ypZGlMUWvpjU7SIjNVoZkMXKepk-hzLLWpUCuPypEnlzlnlKNblizVFxg1t43fhZhZv5LaO6dRYVqSC-Fr8tMI3ArazmMTQdLLy5YddThXsLixIYSttG1lbEnGNsjYLiM4HvrctcQZ_2190KvBdptobglVE8JOukNFcDh8JvPnmEbR-NuHuU1MKknjeZZG8LXV2jCcNGMusIYR5Cv6HBowtfbql-b6KlBspxmJOKGF_-g1_zytt1ex977m-_BRBqvk6PoBjBb3D_4buTgL9z3Y9BO5v_Uu
  priority: 102
  providerName: Springer Nature
Title Phase-driven charge manipulation in Hybrid Single-Electron Transistor
URI https://link.springer.com/article/10.1038/s41598-017-13894-z
https://www.ncbi.nlm.nih.gov/pubmed/29044174
https://www.proquest.com/docview/2121471550
https://www.proquest.com/docview/1952529765
https://pubmed.ncbi.nlm.nih.gov/PMC5647419
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED_6wWAvo91XvXbBg71t2mpJtqSHMbKQEgItZW0hb8KyZVoI7pak0PSv751sZ6Ttxp4M_pJ9J-l38vl-P4CPRSm4KRRnXsqKSc4d07wUTPHcOSm9KCvK6B6fZKMLOZ6kkw3o5I5aA86fXNqRntTFbPrl9vfyOw74b03JuP46RxCiQjGcbyntJtndJmwjMikaqMdtuN9wfXMjg9YHkbAzDCZ4W0fz9G3WsepRAPr4P8oHydSAUUc78KINLuN-0xt2YcPXL-FZIze5fAXD00vELFbOaIaLA0eSj4n_otPwiq_qeLSkGq74DBuYejZsVXLigGmBUuQ1nB8Nzwcj1soosEIquWAZ4VTJC2PySnNvdJLmmSlzTaThOk0dl17JQptSauGlcBjxZc4Z4XA1xgvxBrbq69rvQUzsYEnlndNSyLTAUMNXGM8hCOY47A9NBElnL1u0FOOkdDG1IdUttG1sbNHGNtjY3kXwaXXNr4Zg459nH3RusF1fsYi-CWIsrrUi-LA6jMOEch957a9v5jYxKUfvqyyN4G3jtVVz3BySEJuMQK35c3UCUXCvH6mvLgMVd5qhiRN88c-d5_881t_f4t1_POY-POehK1Lq_QC2FrMb_x7jn4XrwaaaqB5s9_vjszFufwxPTn_i3kE26IVvCr3Q7e8B3mAEEA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEM8SKBAkOIHVje0k9gEhHlttabuqYJF6s2LHUStV2dLdCm3_E_-RGedRLRW99RwnjmfGM2N_9jcAb1wpuHY5Z17KiknOLVO8FCznhbVSelFWhOjuT7LxT_ntMD1cgz_dXRg6Vtn5xOCoy5mjPfItdLEJOlJMqD-e_mJUNYrQ1a6ERmMWu375G5ds8w87X1G_bznfHk2_jFlbVYA5mcsFy8htl9xpXVSKe62StMh0WSji0FZparn0uXRKl1IJL4XFBCizVguLixPuBH72FqxLgSuZAax_Hk0OvvebOgSbyUS3l3OGQm3NMUDSJTaMBQQJSnaxGgCvZLVXD2f-g9CGwLd9H-61GWv8qTGxB7Dm64dwu6lhuXwEo4MjDISsPCO3GQfiJR8TqUZXGCw-ruPxki6GxT-wgxPPRm3pnTgEysBT8himNyHFJzCoZ7V_CjFRjiWVt1ZJIVOH-YuvMEnEyFqgLxnqCJJOXsa1vOVUPuPEBPxcKNPI2KCMTZCxuYjgXf_OacPacW3rzU4Npp3Bc3NpbxG87h_j3CNApaj97HxuEp1y1HiepRFsNFrru-N6SNXdZAT5ij77BsTrvfqkPj4K_N5phiJOcODvO81f_tb_R_Hs-lG8gjvj6f6e2duZ7D6HuzxYJMH6mzBYnJ37F5hbLezL1qJjMDc8h_4CV3AyQg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxQxEJ8gRsMLwS9YRV0TfdKG27a72z4YYuQuhyghEZN7a7bdbiAhe8gdIcd_5n_nTPeDnETeeG53u53v7XR-A_DelYJrl3PmpayY5NwyxUvBcl5YK6UXZUUZ3R-H2fiX_DZJJyvwp6uFoWuVnU0MhrqcOjoj30ETm6AhJVTtqr0WcbQ32j3_zaiDFGVau3YajYgc-MUV_r7NPu_vIa8_cD4aHn8ds7bDAHMyl3OWkQkvudO6qBT3WiVpkemyUISnrdLUculz6ZQupRJeCovBUGatFhZ_VLgT-NoH8DAXaUIqlk_y_niHEmgy0W2ZzkConRm6SipnQ69AyUHJrpdd4a349vY1zX9ytcEFjjZgvY1d4y-NsD2BFV8_hUdNN8vFMxgenaBLZOUFGdA4QDD5mOA1uhZh8WkdjxdUIhb_xAXOPBu2TXji4DIDYslzOL4PGr6A1Xpa-y2ICXwsqby1SgqZOoxkfIXhIvrYAq3KQEeQdPQyrkUwp0YaZyZk0oUyDY0N0tgEGpvrCD72z5w3-B13zt7u2GBaXZ6ZG8mL4F0_jFpIqZWi9tPLmUl0ypHjeZZGsNlwrV-O6wH1eZMR5Ev87CcQwvfySH16EpC-0wxJnODGP3Wcv_ms_-_i5d27eAuPUXPM9_3Dg1ewxoNAUn5_G1bnF5f-NQZZc_smiHMM5p7V5y9wMTUS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-driven+charge+manipulation+in+Hybrid+Single-Electron+Transistor&rft.jtitle=Scientific+reports&rft.au=Enrico%2C+Emanuele&rft.au=Strambini%2C+Elia&rft.au=Giazotto%2C+Francesco&rft.date=2017-10-18&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=7&rft.issue=1&rft.spage=13492&rft_id=info:doi/10.1038%2Fs41598-017-13894-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon