A Novel Fault Diagnosis Method Based on Integrating Empirical Wavelet Transform and Fuzzy Entropy for Motor Bearing
Motor bearing is subjected to the joint effects of much more loads, transmissions, and shocks that cause bearing fault and machinery breakdown. A vibration signal analysis method is the most popular technique that is used to monitor and diagnose the fault of motor bearing. However, the application o...
Saved in:
Published in | IEEE access Vol. 6; pp. 35042 - 35056 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Motor bearing is subjected to the joint effects of much more loads, transmissions, and shocks that cause bearing fault and machinery breakdown. A vibration signal analysis method is the most popular technique that is used to monitor and diagnose the fault of motor bearing. However, the application of the vibration signal analysis method for motor bearing is very limited in engineering practice. In this paper, on the basis of comparing fault feature extraction by using empirical wavelet transform (EWT) and Hilbert transform with the theoretical calculation, a new motor bearing fault diagnosis method based on integrating EWT, fuzzy entropy, and support vector machine (SVM) called EWTFSFD is proposed. In the proposed method, a novel signal processing method called EWT is used to decompose vibration signal into multiple components in order to extract a series of amplitude modulated-frequency modulated (AM-FM) components with supporting Fourier spectrum under an orthogonal basis. Then, fuzzy entropy is utilized to measure the complexity of vibration signal, reflect the complexity changes of intrinsic oscillation, and compute the fuzzy entropy values of AM-FM components, which are regarded as the inputs of the SVM model to train and construct an SVM classifier for fulfilling fault pattern recognition. Finally, the effectiveness of the proposed method is validated by using the simulated signal and real motor bearing vibration signals. The experiment results show that the EWT outperforms empirical mode decomposition for decomposing the signal into multiple components, and the proposed EWTFSFD method can accurately and effectively achieve the fault diagnosis of motor bearing. |
---|---|
AbstractList | Motor bearing is subjected to the joint effects of much more loads, transmissions, and shocks that cause bearing fault and machinery breakdown. A vibration signal analysis method is the most popular technique that is used to monitor and diagnose the fault of motor bearing. However, the application of the vibration signal analysis method for motor bearing is very limited in engineering practice. In this paper, on the basis of comparing fault feature extraction by using empirical wavelet transform (EWT) and Hilbert transform with the theoretical calculation, a new motor bearing fault diagnosis method based on integrating EWT, fuzzy entropy, and support vector machine (SVM) called EWTFSFD is proposed. In the proposed method, a novel signal processing method called EWT is used to decompose vibration signal into multiple components in order to extract a series of amplitude modulated-frequency modulated (AM-FM) components with supporting Fourier spectrum under an orthogonal basis. Then, fuzzy entropy is utilized to measure the complexity of vibration signal, reflect the complexity changes of intrinsic oscillation, and compute the fuzzy entropy values of AM-FM components, which are regarded as the inputs of the SVM model to train and construct an SVM classifier for fulfilling fault pattern recognition. Finally, the effectiveness of the proposed method is validated by using the simulated signal and real motor bearing vibration signals. The experiment results show that the EWT outperforms empirical mode decomposition for decomposing the signal into multiple components, and the proposed EWTFSFD method can accurately and effectively achieve the fault diagnosis of motor bearing. |
Author | Zhao, Huimin Deng, Wu Yang, Xinhua Zhang, Shengjie |
Author_xml | – sequence: 1 givenname: Wu orcidid: 0000-0002-6524-6760 surname: Deng fullname: Deng, Wu organization: Software Institute, Dalian Jiaotong University, Dalian, China – sequence: 2 givenname: Shengjie surname: Zhang fullname: Zhang, Shengjie organization: School of Electronics and Information Engineering, Dalian Jiaotong University, Dalian, China – sequence: 3 givenname: Huimin surname: Zhao fullname: Zhao, Huimin email: hm_zhao1977@126.com organization: Software Institute, Dalian Jiaotong University, Dalian, China – sequence: 4 givenname: Xinhua surname: Yang fullname: Yang, Xinhua organization: Software Institute, Dalian Jiaotong University, Dalian, China |
BookMark | eNp9kUtvUzEQha9QkSilv6AbS6wT_H4s05BApBYWLWJpub5zg6MbO9gOUvrrcbkFIRZ44RkdzXc0mvO6O4spQtddETwnBJt3i-VydXc3p5joOdWMC45fdOeUSDNjgsmzv_pX3WUpO9yebpJQ511ZoE_pB4xo7Y5jRe-D28ZUQkG3UL-lHl27Aj1KEW1ihW12NcQtWu0PIQfvRvTVNRYqus8uliHlPXKxR-vj4-MJrWLN6XBCTUa3qbb_Glxu_Jvu5eDGApfP9aL7sl7dLz_Obj5_2CwXNzPPFa8zSYxnGktqPGmKZKC145RQ2WMPfnBUGY0pwVwaxaCXXHv8oAwXjngvFLvoNpNvn9zOHnLYu3yyyQX7S0h5a12uwY9gOe05ByYwYYxT3T8A641udaAKY-mb19vJ65DT9yOUanfpmGNb31IuhMFaUd6mzDTlcyolw2B9qO1mqZ3ChdESbJ8is1Nk9iky-xxZY9k_7O-N_09dTVQAgD-EZkIKRdlP7SWipA |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_3390_e21100959 crossref_primary_10_1109_ACCESS_2020_3039464 crossref_primary_10_1007_s11071_023_09126_x crossref_primary_10_1007_s11227_025_07075_3 crossref_primary_10_1109_ACCESS_2019_2956824 crossref_primary_10_1016_j_istruc_2024_106849 crossref_primary_10_1088_1742_6596_2437_1_012099 crossref_primary_10_3390_s18103323 crossref_primary_10_1016_j_measurement_2021_108976 crossref_primary_10_1007_s00500_019_04069_1 crossref_primary_10_1109_ACCESS_2020_2979007 crossref_primary_10_3233_JIFS_219075 crossref_primary_10_1109_JESTPE_2019_2930306 crossref_primary_10_1016_j_advengsoft_2022_103249 crossref_primary_10_1088_1361_6501_ad1cc4 crossref_primary_10_1109_TIM_2023_3314829 crossref_primary_10_1016_j_ast_2021_107220 crossref_primary_10_1109_ACCESS_2019_2892764 crossref_primary_10_1111_exsy_12455 crossref_primary_10_1088_1742_6596_2112_1_012020 crossref_primary_10_1177_1475921720948620 crossref_primary_10_3390_sym11060747 crossref_primary_10_1016_j_matpr_2020_12_160 crossref_primary_10_3390_s22207809 crossref_primary_10_1109_TIM_2022_3173631 crossref_primary_10_3390_app10082932 crossref_primary_10_1177_0954410019827657 crossref_primary_10_1088_1361_6501_ad4734 crossref_primary_10_1007_s00500_019_04648_2 crossref_primary_10_1007_s00500_021_06307_x crossref_primary_10_3390_en12071239 crossref_primary_10_21595_jve_2019_20132 crossref_primary_10_3390_su11082208 crossref_primary_10_1016_j_measurement_2021_109053 crossref_primary_10_1016_j_ymssp_2020_107334 crossref_primary_10_1016_j_ymssp_2023_110545 crossref_primary_10_1109_ACCESS_2024_3501583 crossref_primary_10_21595_jve_2018_20050 crossref_primary_10_21595_jme_2018_20046 crossref_primary_10_1109_JSEN_2021_3050461 crossref_primary_10_3390_app13042545 crossref_primary_10_1007_s00500_019_04387_4 crossref_primary_10_3390_app12031675 crossref_primary_10_1088_1742_6596_2861_1_012007 crossref_primary_10_1007_s00500_019_03756_3 crossref_primary_10_1109_TIM_2019_2902806 crossref_primary_10_1016_j_apacoust_2023_109500 crossref_primary_10_21595_jve_2018_19983 crossref_primary_10_1007_s00500_020_05201_2 crossref_primary_10_1016_j_ymssp_2019_01_008 crossref_primary_10_1109_TII_2021_3061555 crossref_primary_10_1109_ACCESS_2020_3027029 crossref_primary_10_1177_0954407019833521 crossref_primary_10_1088_1361_6501_abb620 crossref_primary_10_21595_jve_2018_19858 crossref_primary_10_21595_jve_2019_20118 crossref_primary_10_21595_jve_2019_20474 crossref_primary_10_1016_j_engappai_2020_103978 crossref_primary_10_1109_ACCESS_2021_3063555 crossref_primary_10_48084_etasr_6175 crossref_primary_10_3390_e21030319 crossref_primary_10_1007_s00500_019_04082_4 crossref_primary_10_3390_sym10120684 crossref_primary_10_3390_en12193603 crossref_primary_10_1109_ACCESS_2021_3056595 crossref_primary_10_1016_j_heliyon_2024_e40134 crossref_primary_10_1109_ACCESS_2019_2906935 crossref_primary_10_1109_ACCESS_2019_2893497 crossref_primary_10_1016_j_chaos_2019_06_022 crossref_primary_10_1016_j_knosys_2021_106883 crossref_primary_10_3390_sym11010052 crossref_primary_10_1049_iet_smt_2019_0043 crossref_primary_10_1007_s00500_019_04106_z crossref_primary_10_1016_j_measurement_2020_108389 crossref_primary_10_1088_1742_6596_2467_1_012024 crossref_primary_10_3390_e24050681 crossref_primary_10_1088_1361_6501_ada788 crossref_primary_10_1088_1742_6596_1738_1_012129 crossref_primary_10_21595_jve_2019_20697 crossref_primary_10_1016_j_measurement_2022_111576 crossref_primary_10_1088_1361_6501_ac5e61 crossref_primary_10_1109_ACCESS_2021_3132046 crossref_primary_10_1007_s00500_019_03883_x crossref_primary_10_1177_01423312231171664 crossref_primary_10_1177_09544089231174963 crossref_primary_10_1109_ACCESS_2022_3154410 crossref_primary_10_1016_j_ins_2019_11_010 crossref_primary_10_1007_s00170_022_10320_1 crossref_primary_10_1016_j_jsv_2019_02_028 crossref_primary_10_1038_s41598_024_75522_x crossref_primary_10_1371_journal_pone_0248515 crossref_primary_10_1007_s42417_022_00733_3 crossref_primary_10_3390_app9071439 crossref_primary_10_1007_s42417_022_00525_9 crossref_primary_10_1109_TSMC_2020_3018102 crossref_primary_10_21595_jve_2019_20589 crossref_primary_10_1007_s12206_021_0204_1 crossref_primary_10_1109_JSEN_2019_2911299 crossref_primary_10_3390_machines12060389 crossref_primary_10_1016_j_chaos_2019_05_001 crossref_primary_10_1007_s00170_019_03652_y crossref_primary_10_1007_s00343_019_8107_z crossref_primary_10_1007_s40430_019_1574_5 crossref_primary_10_1109_ACCESS_2021_3069566 crossref_primary_10_1177_0954410019861188 crossref_primary_10_21595_jve_2018_19814 crossref_primary_10_1007_s12518_022_00486_4 crossref_primary_10_1155_2019_4392785 crossref_primary_10_1007_s00500_020_05280_1 crossref_primary_10_1007_s11517_022_02691_0 crossref_primary_10_1007_s10462_020_09936_0 crossref_primary_10_1088_1361_6501_abbd11 crossref_primary_10_3390_app12105240 crossref_primary_10_3390_electronics11172746 crossref_primary_10_1109_ACCESS_2019_2940769 crossref_primary_10_1177_09544062241307888 crossref_primary_10_1177_14759217221077414 crossref_primary_10_3390_en12040661 crossref_primary_10_1007_s00500_019_04130_z crossref_primary_10_1515_nleng_2021_0032 crossref_primary_10_1109_ACCESS_2020_2998722 crossref_primary_10_3934_mbe_2022656 crossref_primary_10_1109_TIM_2024_3413149 crossref_primary_10_3390_electronics10111248 crossref_primary_10_1109_ACCESS_2018_2886061 crossref_primary_10_3390_e21010064 crossref_primary_10_1007_s13246_022_01132_4 crossref_primary_10_1016_j_ins_2019_09_005 crossref_primary_10_1109_ACCESS_2020_3034281 crossref_primary_10_1109_ACCESS_2023_3258399 crossref_primary_10_1007_s00500_019_04332_5 crossref_primary_10_1088_1361_6501_ac93a5 crossref_primary_10_3390_e23091128 crossref_primary_10_1007_s11063_022_11013_2 crossref_primary_10_1109_ACCESS_2019_2906976 crossref_primary_10_1007_s00170_020_05342_6 crossref_primary_10_3390_s19092178 crossref_primary_10_1016_j_jpdc_2021_10_005 crossref_primary_10_1109_ACCESS_2023_3275733 crossref_primary_10_3390_sym11080965 crossref_primary_10_1007_s00500_019_03944_1 crossref_primary_10_1109_ACCESS_2019_2940627 crossref_primary_10_1016_j_measurement_2020_108832 crossref_primary_10_1109_ACCESS_2020_2993010 crossref_primary_10_3390_act13100411 crossref_primary_10_1007_s41651_021_00078_7 crossref_primary_10_1007_s00521_021_06284_0 crossref_primary_10_1109_TIM_2020_2969092 crossref_primary_10_1007_s11760_021_02053_7 crossref_primary_10_3390_e20090682 crossref_primary_10_3390_e24101385 crossref_primary_10_3390_e26040299 crossref_primary_10_21595_jve_2019_20306 crossref_primary_10_1109_ACCESS_2020_3035157 crossref_primary_10_1177_0954406219834966 crossref_primary_10_3233_JIFS_224221 crossref_primary_10_1109_ACCESS_2019_2897580 crossref_primary_10_1007_s00500_019_03896_6 crossref_primary_10_1088_1361_6501_acf7dc crossref_primary_10_3390_e23111402 crossref_primary_10_3390_w11020300 crossref_primary_10_3390_e21080766 crossref_primary_10_3390_machines10111022 crossref_primary_10_3390_s23094512 crossref_primary_10_1109_ACCESS_2019_2924962 crossref_primary_10_3390_s24113540 crossref_primary_10_1109_ACCESS_2018_2885164 crossref_primary_10_1088_1361_6501_ab8fee crossref_primary_10_1177_1687814019852846 crossref_primary_10_1007_s12206_021_1103_1 crossref_primary_10_30724_1998_9903_2024_26_2_128_137 crossref_primary_10_1155_2021_9589412 crossref_primary_10_1016_j_ymssp_2021_108052 crossref_primary_10_1088_1361_6501_ad232d crossref_primary_10_1016_j_apacoust_2022_108889 crossref_primary_10_3390_app9153143 crossref_primary_10_1139_tcsme_2018_0195 crossref_primary_10_21595_jve_2019_20528 crossref_primary_10_1155_2022_6187912 crossref_primary_10_1007_s00500_019_04278_8 crossref_primary_10_2174_2666255815666220316154957 crossref_primary_10_1109_TMECH_2019_2928967 crossref_primary_10_1109_JSEN_2019_2899396 crossref_primary_10_3390_electronics13010108 crossref_primary_10_1177_0954407018816556 crossref_primary_10_1155_2019_7190568 crossref_primary_10_1109_JSEN_2023_3329770 crossref_primary_10_1088_1361_6501_ac8894 crossref_primary_10_1007_s12555_018_0758_6 crossref_primary_10_1121_10_0001220 crossref_primary_10_1007_s00500_019_04328_1 crossref_primary_10_1109_ACCESS_2020_2976832 crossref_primary_10_3390_s20174965 crossref_primary_10_1007_s11042_019_7438_2 crossref_primary_10_1109_ACCESS_2019_2898884 crossref_primary_10_1109_TFUZZ_2019_2899809 crossref_primary_10_1007_s12206_019_0811_2 crossref_primary_10_1177_00202940221107620 crossref_primary_10_3390_en16010296 crossref_primary_10_1109_ACCESS_2019_2922351 crossref_primary_10_1109_JSEN_2022_3164177 crossref_primary_10_1007_s12206_019_0505_9 crossref_primary_10_1016_j_egyr_2021_04_049 crossref_primary_10_3390_e21111061 crossref_primary_10_1109_TII_2020_3003353 crossref_primary_10_1109_TIM_2019_2963582 crossref_primary_10_1177_01423312241267043 crossref_primary_10_1007_s40430_019_1846_0 crossref_primary_10_3390_pr10071426 crossref_primary_10_3390_sym16020204 crossref_primary_10_3390_e22091044 crossref_primary_10_1016_j_measurement_2021_110348 crossref_primary_10_1109_ACCESS_2019_2929094 crossref_primary_10_1016_j_dt_2020_09_001 crossref_primary_10_1016_j_isatra_2021_11_013 |
Cites_doi | 10.1006/mssp.2000.1330 10.1007/s11045-017-0497-5 10.1016/j.measurement.2015.08.019 10.1016/j.ymssp.2013.08.004 10.1109/TNNLS.2014.2342533 10.1016/j.mechmachtheory.2013.08.014 10.1007/s00500-015-1851-x 10.1109/TPEL.2015.2414664 10.1504/IJSNET.2017.083532 10.1016/j.asoc.2017.06.004 10.1098/rspa.1998.0193 10.1109/TPEL.2017.2701784 10.1016/j.ymssp.2011.06.001 10.1016/j.ymssp.2007.10.003 10.1109/TIE.2015.2448066 10.1177/1077546313499391 10.1016/j.eswa.2008.09.033 10.1016/j.ymssp.2014.09.010 10.1109/CC.2016.7559082 10.1016/j.ymssp.2015.08.023 10.3390/e14081343 10.1137/0515056 10.1177/1077546314542187 10.1016/j.ymssp.2015.11.013 10.1109/TNNLS.2016.2544779 10.1109/TSP.2013.2265222 10.1002/sec.1582 10.1016/j.neucom.2017.05.047 10.1016/j.ymssp.2010.03.008 10.1016/j.eswa.2005.11.031 10.1016/j.sigpro.2013.04.015 10.1016/j.ymssp.2012.01.026 10.1007/s00500-017-2547-1 10.1007/s00500-016-2071-8 10.1016/j.ymssp.2015.03.002 10.1016/j.jsv.2014.02.038 10.1016/j.ymssp.2010.07.017 10.1007/s00500-017-2513-y 10.1016/j.ymssp.2013.04.006 10.1016/j.physa.2013.07.075 10.1109/CC.2016.7559071 10.1016/j.patrec.2008.12.012 10.3390/s140815022 10.2174/2212797609666160408154213 10.1177/1077546310361858 10.1016/j.measurement.2012.05.003 10.1016/j.ymssp.2013.07.006 10.1078/1434-8411-54100231 10.1016/j.ymssp.2012.09.015 10.1007/978-1-4757-2440-0 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2018.2834540 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) - NZ url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 35056 |
ExternalDocumentID | oai_doaj_org_article_42d44e350133428dbe3d988dbf27006c 10_1109_ACCESS_2018_2834540 8356572 |
Genre | orig-research |
GrantInformation_xml | – fundername: Research Fund of the Guangxi Key Lab of Multi-Source Information Mining and Security grantid: MIMS17-03 – fundername: National Natural Science Foundation of China grantid: 51605068; 51475065; 61771087 funderid: 10.13039/501100001809 – fundername: Open Project Program of the Sichuan Provincial Key Lab of Process Equipment and Control grantid: GK201613 – fundername: “Liaoning BaiQianWan Talents Program.” – fundername: Southwest Jiaotong University grantid: TPL1705; TPL1803 funderid: 10.13039/501100004536 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c474t-619c380629c1c4763e88a42126d0cecfa2798021046973ed648c0b7945a1cc573 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:32:14 EDT 2025 Sun Jun 29 15:55:56 EDT 2025 Tue Jul 01 02:17:35 EDT 2025 Thu Apr 24 23:00:57 EDT 2025 Wed Aug 27 02:48:58 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-619c380629c1c4763e88a42126d0cecfa2798021046973ed648c0b7945a1cc573 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6524-6760 |
OpenAccessLink | https://doaj.org/article/42d44e350133428dbe3d988dbf27006c |
PQID | 2455908724 |
PQPubID | 4845423 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_42d44e350133428dbe3d988dbf27006c crossref_citationtrail_10_1109_ACCESS_2018_2834540 proquest_journals_2455908724 ieee_primary_8356572 crossref_primary_10_1109_ACCESS_2018_2834540 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref53 qu (ref33) 2016; 13 ref11 ref54 ref10 ref17 ref16 ref19 ref18 deng (ref30) 2017 ref51 ref50 ref46 ref45 gu (ref49) 2015; 26 ref48 ref42 ref41 ref44 ref43 zhao (ref27) 2017; 19 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref32 ref2 ref1 ahn (ref39) 2014; 14 rong (ref26) 2018; 22 ref38 ref24 ref23 ref25 ref20 ref22 ref21 ref28 ref29 zhang (ref47) 2016; 20 (ref52) 2016 |
References_xml | – ident: ref12 doi: 10.1006/mssp.2000.1330 – ident: ref31 doi: 10.1007/s11045-017-0497-5 – ident: ref42 doi: 10.1016/j.measurement.2015.08.019 – ident: ref8 doi: 10.1016/j.ymssp.2013.08.004 – ident: ref48 doi: 10.1109/TNNLS.2014.2342533 – ident: ref43 doi: 10.1016/j.mechmachtheory.2013.08.014 – year: 2017 ident: ref30 article-title: A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm publication-title: Soft Comput – volume: 20 start-page: 1277 year: 2016 ident: ref47 article-title: Inclusion measure for typical hesitant fuzzy sets, the relative similarity measure and fuzzy entropy publication-title: Soft Comput doi: 10.1007/s00500-015-1851-x – ident: ref21 doi: 10.1109/TPEL.2015.2414664 – ident: ref29 doi: 10.1504/IJSNET.2017.083532 – ident: ref24 doi: 10.1016/j.asoc.2017.06.004 – ident: ref38 doi: 10.1098/rspa.1998.0193 – ident: ref2 doi: 10.1109/TPEL.2017.2701784 – ident: ref7 doi: 10.1016/j.ymssp.2011.06.001 – ident: ref13 doi: 10.1016/j.ymssp.2007.10.003 – ident: ref5 doi: 10.1109/TIE.2015.2448066 – ident: ref34 doi: 10.1177/1077546313499391 – volume: 19 start-page: 1 year: 2017 ident: ref27 article-title: A new feature extraction method based on EEMD and multi-scale fuzzy entropy for motor bearing publication-title: Entropy – ident: ref20 doi: 10.1016/j.eswa.2008.09.033 – ident: ref3 doi: 10.1016/j.ymssp.2014.09.010 – volume: 13 start-page: 108 year: 2016 ident: ref33 article-title: Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks publication-title: China Commun doi: 10.1109/CC.2016.7559082 – ident: ref35 doi: 10.1016/j.ymssp.2015.08.023 – ident: ref4 doi: 10.3390/e14081343 – ident: ref46 doi: 10.1137/0515056 – ident: ref18 doi: 10.1177/1077546314542187 – ident: ref54 doi: 10.1016/j.ymssp.2015.11.013 – ident: ref25 doi: 10.1109/TNNLS.2016.2544779 – ident: ref40 doi: 10.1109/TSP.2013.2265222 – volume: 26 start-page: 1241 year: 2015 ident: ref49 article-title: A robust regularization path algorithm for $\nu $ -support vector classification publication-title: IEEE Trans Neural Netw – ident: ref22 doi: 10.1002/sec.1582 – ident: ref28 doi: 10.1016/j.neucom.2017.05.047 – ident: ref11 doi: 10.1016/j.ymssp.2010.03.008 – ident: ref14 doi: 10.1016/j.eswa.2005.11.031 – year: 2016 ident: ref52 publication-title: Case Western Reserve University Bearing Data Center – ident: ref37 doi: 10.1016/j.sigpro.2013.04.015 – ident: ref36 doi: 10.1016/j.ymssp.2012.01.026 – ident: ref51 doi: 10.1007/s00500-017-2547-1 – ident: ref23 doi: 10.1007/s00500-016-2071-8 – ident: ref17 doi: 10.1016/j.ymssp.2015.03.002 – ident: ref15 doi: 10.1016/j.jsv.2014.02.038 – ident: ref1 doi: 10.1016/j.ymssp.2010.07.017 – volume: 22 start-page: 2583 year: 2018 ident: ref26 article-title: A novel subgraph $K^{+}$ -isomorphism method in social network based on graph similarity detection publication-title: Soft Comput doi: 10.1007/s00500-017-2513-y – ident: ref41 doi: 10.1016/j.ymssp.2013.04.006 – ident: ref6 doi: 10.1016/j.physa.2013.07.075 – ident: ref32 doi: 10.1109/CC.2016.7559071 – ident: ref9 doi: 10.1016/j.patrec.2008.12.012 – volume: 14 start-page: 15022 year: 2014 ident: ref39 article-title: Fault detection of a roller-bearing system through the EMD of a wavelet denoised signal publication-title: SENSORS doi: 10.3390/s140815022 – ident: ref53 doi: 10.2174/2212797609666160408154213 – ident: ref19 doi: 10.1177/1077546310361858 – ident: ref16 doi: 10.1016/j.measurement.2012.05.003 – ident: ref50 doi: 10.1016/j.ymssp.2013.07.006 – ident: ref10 doi: 10.1078/1434-8411-54100231 – ident: ref45 doi: 10.1016/j.ymssp.2012.09.015 – ident: ref44 doi: 10.1007/978-1-4757-2440-0 |
SSID | ssj0000816957 |
Score | 2.5385904 |
Snippet | Motor bearing is subjected to the joint effects of much more loads, transmissions, and shocks that cause bearing fault and machinery breakdown. A vibration... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 35042 |
SubjectTerms | AM-FM components Complexity Empirical analysis empirical wavelet transform Entropy Fault diagnosis Feature extraction Fourier spectrum segmentation fuzzy entropy Hilbert transformation Motor bearing Pattern recognition Signal analysis Signal processing support vector machine Support vector machines Transmissions (machine elements) Vibration analysis Vibration measurement Vibrations Wavelet transforms |
SummonAdditionalLinks | – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGTnDgayDKBvKB49K58UfsY1taDaTutIndovij0kRJKpogrX_93nPcaAKEOCWy_CJHP9vvw8-_R8inwB2SltgMyckzoZzMKqYYrKvAKsadtzned15dqcsb8fVW3h6R8-EuTAghJp-FMb7Gs3zfuA5DZRdgLShZwIb7BBy3_q7WEE_BAhJGFolYaMLMxXQ-h3_A7C09BiUqYoDjkfKJHP2pqMofO3FUL8sXZHUYWJ9V8n3ctXbs9r9xNv7vyF-S58nOpNN-YrwiR6F-TZ49Yh88IbspvWp-hQ1dVt2mpZ_7pLu7HV3FqtJ0BgrO06amXxKlBEjRxY_tXWQVod8qrFnR0uuD6Uur2tNlt9_f0wXmv2_vKTTTVQNuPZ3BigL5N-RmubieX2apBkPmRCFa8CyN45qp3LgJtCgetK7wFFl55oJbV3lhNPqN4GYXPHgltGMWFrmsJs7Jgr8lx3VTh3eEcsl8pZWV2qyF4xbkADJ418xqbeSI5AdwSpcIyrFOxqaMjgozZY9oiYiWCdEROR-Etj0_x7-7zxD1oSuSa8cGQKtMa7UUuRci4Ikr5-CdeRu4NxqeazylV25EThDh4SMJ3BE5O8yhMm0EuzIXEqvKF7l4_3epU_IUB9hHdc7IcfuzCx_AzmntxzjBHwDy3_ef priority: 102 providerName: IEEE |
Title | A Novel Fault Diagnosis Method Based on Integrating Empirical Wavelet Transform and Fuzzy Entropy for Motor Bearing |
URI | https://ieeexplore.ieee.org/document/8356572 https://www.proquest.com/docview/2455908724 https://doaj.org/article/42d44e350133428dbe3d988dbf27006c |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9swEBajT93DWNeNZWvLPexxXhVLlqXHJEvoBulTy_omZEmBQuaExSm0v753shICg-5lTzZCZ1u6O92ddP6OsS9ReAItaQoCJy-k8lXhuOKoV5E7LnxoSvrfeX6trm7lz7vq7qDUF-WE9fDA_cRdyjJIGen4Swh0lUMTRTAarws6MlWeVl-0eQfBVFqD9VCZqs4wQ0NuLkeTCY6Icrn0NzSpMm13HJiihNifS6z8tS4nYzN7y95kLxFG_dedsFexfcdeH2AHnrLNCK5XD3EJM7dddvC9T5m738A81YSGMZqnAKsWfmRACKSC6e_1fcIEgV-OKk50cLNzXMG1AWbbp6dHmFL2-voRsBnmKwzKYYz6gPTv2e1sejO5KnIFhcLLWnYYFxovNFel8UNsUSJq7egMWAXuo1-4sjaaoj4MkmsRg5La8wZVtHJD76tafGBH7aqNHxkgB4LTqqm0WUgvGqTDKcZ7zRutTTVg5W4yrc_w4lTlYmlTmMGN7TlgiQM2c2DAvu6J1j26xsvdx8SlfVeCxk4NKDA2C4z9l8AM2CnxeP8QdEFVVZcDdrbjuc1qvLGlrKgmfF3KT__j1Z_ZMQ2n38E5Y0fdn208R5-may6S-F6k3w-fAXUd7mM |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NjtMwEB4tywE48LcgCgv4ADfSdf2TOAcObbdVy2576oq9hcRxpRUlqWgCap-FV-HdGDtutALEbSUuSWR5rGTy2Z6xx98AvDFcW9KSLLDk5IEItQxSGlLsV4amlOs8Y_a882weTi7Eh0t5eQA_2rMwxhgXfGa69tHt5eelru1S2QlaC6GMmA-hPDPb7-igbd5PT_FvvmVsPFoMJ4HPIRBoEYkKPaNYc0VDFuseloTcKJXaXdAwp9roZcqiWFm_B93EiJs8FErTDEEq057WMuLY7i24jXaGZM3psHYFx6asiGXkqYx6ND7pD4eoNRsvpro4bQu3pHJtunNZAXwalz_GfjehjR_Az70qmjiWz926yrp69xtL5P-qq4dw31vSpN9A_xEcmOIx3LvGr3gEmz6Zl9_MiozTelWR0yas8GpDZi5vNhngFJ6TsiBTT5qBUmT0ZX3leFPIx9Rm5ajIYm_ck7TIybje7bZkZCP811uCxWRWVngdoApQ_glc3MhXP4XDoizMMyBc0jxVYSZVvBSaZyiHEMFnRTOlYtkBtgdDoj0Fu80EskqcK0bjpEFQYhGUeAR14F0rtG4YSP5dfWBR1la19OGuANGR-NEoESwXwtg9Zc7R_8wzw_NY4X1p4xBC3YEji6i2EQ-mDhzvMZv4oW6TMOwaMVURE8__LvUa7kwWs_PkfDo_ewF37cs2a1jHcFh9rc1LtOqq7JXrXAQ-3TRCfwFtKVGX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Fault+Diagnosis+Method+Based+on+Integrating+Empirical+Wavelet+Transform+and+Fuzzy+Entropy+for+Motor+Bearing&rft.jtitle=IEEE+access&rft.au=Deng%2C+Wu&rft.au=Zhang%2C+Shengjie&rft.au=Zhao%2C+Huimin&rft.au=Yang%2C+Xinhua&rft.date=2018-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=6&rft.spage=35042&rft_id=info:doi/10.1109%2FACCESS.2018.2834540&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |