A Novel Fault Diagnosis Method Based on Integrating Empirical Wavelet Transform and Fuzzy Entropy for Motor Bearing

Motor bearing is subjected to the joint effects of much more loads, transmissions, and shocks that cause bearing fault and machinery breakdown. A vibration signal analysis method is the most popular technique that is used to monitor and diagnose the fault of motor bearing. However, the application o...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 6; pp. 35042 - 35056
Main Authors Deng, Wu, Zhang, Shengjie, Zhao, Huimin, Yang, Xinhua
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Motor bearing is subjected to the joint effects of much more loads, transmissions, and shocks that cause bearing fault and machinery breakdown. A vibration signal analysis method is the most popular technique that is used to monitor and diagnose the fault of motor bearing. However, the application of the vibration signal analysis method for motor bearing is very limited in engineering practice. In this paper, on the basis of comparing fault feature extraction by using empirical wavelet transform (EWT) and Hilbert transform with the theoretical calculation, a new motor bearing fault diagnosis method based on integrating EWT, fuzzy entropy, and support vector machine (SVM) called EWTFSFD is proposed. In the proposed method, a novel signal processing method called EWT is used to decompose vibration signal into multiple components in order to extract a series of amplitude modulated-frequency modulated (AM-FM) components with supporting Fourier spectrum under an orthogonal basis. Then, fuzzy entropy is utilized to measure the complexity of vibration signal, reflect the complexity changes of intrinsic oscillation, and compute the fuzzy entropy values of AM-FM components, which are regarded as the inputs of the SVM model to train and construct an SVM classifier for fulfilling fault pattern recognition. Finally, the effectiveness of the proposed method is validated by using the simulated signal and real motor bearing vibration signals. The experiment results show that the EWT outperforms empirical mode decomposition for decomposing the signal into multiple components, and the proposed EWTFSFD method can accurately and effectively achieve the fault diagnosis of motor bearing.
AbstractList Motor bearing is subjected to the joint effects of much more loads, transmissions, and shocks that cause bearing fault and machinery breakdown. A vibration signal analysis method is the most popular technique that is used to monitor and diagnose the fault of motor bearing. However, the application of the vibration signal analysis method for motor bearing is very limited in engineering practice. In this paper, on the basis of comparing fault feature extraction by using empirical wavelet transform (EWT) and Hilbert transform with the theoretical calculation, a new motor bearing fault diagnosis method based on integrating EWT, fuzzy entropy, and support vector machine (SVM) called EWTFSFD is proposed. In the proposed method, a novel signal processing method called EWT is used to decompose vibration signal into multiple components in order to extract a series of amplitude modulated-frequency modulated (AM-FM) components with supporting Fourier spectrum under an orthogonal basis. Then, fuzzy entropy is utilized to measure the complexity of vibration signal, reflect the complexity changes of intrinsic oscillation, and compute the fuzzy entropy values of AM-FM components, which are regarded as the inputs of the SVM model to train and construct an SVM classifier for fulfilling fault pattern recognition. Finally, the effectiveness of the proposed method is validated by using the simulated signal and real motor bearing vibration signals. The experiment results show that the EWT outperforms empirical mode decomposition for decomposing the signal into multiple components, and the proposed EWTFSFD method can accurately and effectively achieve the fault diagnosis of motor bearing.
Author Zhao, Huimin
Deng, Wu
Yang, Xinhua
Zhang, Shengjie
Author_xml – sequence: 1
  givenname: Wu
  orcidid: 0000-0002-6524-6760
  surname: Deng
  fullname: Deng, Wu
  organization: Software Institute, Dalian Jiaotong University, Dalian, China
– sequence: 2
  givenname: Shengjie
  surname: Zhang
  fullname: Zhang, Shengjie
  organization: School of Electronics and Information Engineering, Dalian Jiaotong University, Dalian, China
– sequence: 3
  givenname: Huimin
  surname: Zhao
  fullname: Zhao, Huimin
  email: hm_zhao1977@126.com
  organization: Software Institute, Dalian Jiaotong University, Dalian, China
– sequence: 4
  givenname: Xinhua
  surname: Yang
  fullname: Yang, Xinhua
  organization: Software Institute, Dalian Jiaotong University, Dalian, China
BookMark eNp9kUtvUzEQha9QkSilv6AbS6wT_H4s05BApBYWLWJpub5zg6MbO9gOUvrrcbkFIRZ44RkdzXc0mvO6O4spQtddETwnBJt3i-VydXc3p5joOdWMC45fdOeUSDNjgsmzv_pX3WUpO9yebpJQ511ZoE_pB4xo7Y5jRe-D28ZUQkG3UL-lHl27Aj1KEW1ihW12NcQtWu0PIQfvRvTVNRYqus8uliHlPXKxR-vj4-MJrWLN6XBCTUa3qbb_Glxu_Jvu5eDGApfP9aL7sl7dLz_Obj5_2CwXNzPPFa8zSYxnGktqPGmKZKC145RQ2WMPfnBUGY0pwVwaxaCXXHv8oAwXjngvFLvoNpNvn9zOHnLYu3yyyQX7S0h5a12uwY9gOe05ByYwYYxT3T8A641udaAKY-mb19vJ65DT9yOUanfpmGNb31IuhMFaUd6mzDTlcyolw2B9qO1mqZ3ChdESbJ8is1Nk9iky-xxZY9k_7O-N_09dTVQAgD-EZkIKRdlP7SWipA
CODEN IAECCG
CitedBy_id crossref_primary_10_3390_e21100959
crossref_primary_10_1109_ACCESS_2020_3039464
crossref_primary_10_1007_s11071_023_09126_x
crossref_primary_10_1007_s11227_025_07075_3
crossref_primary_10_1109_ACCESS_2019_2956824
crossref_primary_10_1016_j_istruc_2024_106849
crossref_primary_10_1088_1742_6596_2437_1_012099
crossref_primary_10_3390_s18103323
crossref_primary_10_1016_j_measurement_2021_108976
crossref_primary_10_1007_s00500_019_04069_1
crossref_primary_10_1109_ACCESS_2020_2979007
crossref_primary_10_3233_JIFS_219075
crossref_primary_10_1109_JESTPE_2019_2930306
crossref_primary_10_1016_j_advengsoft_2022_103249
crossref_primary_10_1088_1361_6501_ad1cc4
crossref_primary_10_1109_TIM_2023_3314829
crossref_primary_10_1016_j_ast_2021_107220
crossref_primary_10_1109_ACCESS_2019_2892764
crossref_primary_10_1111_exsy_12455
crossref_primary_10_1088_1742_6596_2112_1_012020
crossref_primary_10_1177_1475921720948620
crossref_primary_10_3390_sym11060747
crossref_primary_10_1016_j_matpr_2020_12_160
crossref_primary_10_3390_s22207809
crossref_primary_10_1109_TIM_2022_3173631
crossref_primary_10_3390_app10082932
crossref_primary_10_1177_0954410019827657
crossref_primary_10_1088_1361_6501_ad4734
crossref_primary_10_1007_s00500_019_04648_2
crossref_primary_10_1007_s00500_021_06307_x
crossref_primary_10_3390_en12071239
crossref_primary_10_21595_jve_2019_20132
crossref_primary_10_3390_su11082208
crossref_primary_10_1016_j_measurement_2021_109053
crossref_primary_10_1016_j_ymssp_2020_107334
crossref_primary_10_1016_j_ymssp_2023_110545
crossref_primary_10_1109_ACCESS_2024_3501583
crossref_primary_10_21595_jve_2018_20050
crossref_primary_10_21595_jme_2018_20046
crossref_primary_10_1109_JSEN_2021_3050461
crossref_primary_10_3390_app13042545
crossref_primary_10_1007_s00500_019_04387_4
crossref_primary_10_3390_app12031675
crossref_primary_10_1088_1742_6596_2861_1_012007
crossref_primary_10_1007_s00500_019_03756_3
crossref_primary_10_1109_TIM_2019_2902806
crossref_primary_10_1016_j_apacoust_2023_109500
crossref_primary_10_21595_jve_2018_19983
crossref_primary_10_1007_s00500_020_05201_2
crossref_primary_10_1016_j_ymssp_2019_01_008
crossref_primary_10_1109_TII_2021_3061555
crossref_primary_10_1109_ACCESS_2020_3027029
crossref_primary_10_1177_0954407019833521
crossref_primary_10_1088_1361_6501_abb620
crossref_primary_10_21595_jve_2018_19858
crossref_primary_10_21595_jve_2019_20118
crossref_primary_10_21595_jve_2019_20474
crossref_primary_10_1016_j_engappai_2020_103978
crossref_primary_10_1109_ACCESS_2021_3063555
crossref_primary_10_48084_etasr_6175
crossref_primary_10_3390_e21030319
crossref_primary_10_1007_s00500_019_04082_4
crossref_primary_10_3390_sym10120684
crossref_primary_10_3390_en12193603
crossref_primary_10_1109_ACCESS_2021_3056595
crossref_primary_10_1016_j_heliyon_2024_e40134
crossref_primary_10_1109_ACCESS_2019_2906935
crossref_primary_10_1109_ACCESS_2019_2893497
crossref_primary_10_1016_j_chaos_2019_06_022
crossref_primary_10_1016_j_knosys_2021_106883
crossref_primary_10_3390_sym11010052
crossref_primary_10_1049_iet_smt_2019_0043
crossref_primary_10_1007_s00500_019_04106_z
crossref_primary_10_1016_j_measurement_2020_108389
crossref_primary_10_1088_1742_6596_2467_1_012024
crossref_primary_10_3390_e24050681
crossref_primary_10_1088_1361_6501_ada788
crossref_primary_10_1088_1742_6596_1738_1_012129
crossref_primary_10_21595_jve_2019_20697
crossref_primary_10_1016_j_measurement_2022_111576
crossref_primary_10_1088_1361_6501_ac5e61
crossref_primary_10_1109_ACCESS_2021_3132046
crossref_primary_10_1007_s00500_019_03883_x
crossref_primary_10_1177_01423312231171664
crossref_primary_10_1177_09544089231174963
crossref_primary_10_1109_ACCESS_2022_3154410
crossref_primary_10_1016_j_ins_2019_11_010
crossref_primary_10_1007_s00170_022_10320_1
crossref_primary_10_1016_j_jsv_2019_02_028
crossref_primary_10_1038_s41598_024_75522_x
crossref_primary_10_1371_journal_pone_0248515
crossref_primary_10_1007_s42417_022_00733_3
crossref_primary_10_3390_app9071439
crossref_primary_10_1007_s42417_022_00525_9
crossref_primary_10_1109_TSMC_2020_3018102
crossref_primary_10_21595_jve_2019_20589
crossref_primary_10_1007_s12206_021_0204_1
crossref_primary_10_1109_JSEN_2019_2911299
crossref_primary_10_3390_machines12060389
crossref_primary_10_1016_j_chaos_2019_05_001
crossref_primary_10_1007_s00170_019_03652_y
crossref_primary_10_1007_s00343_019_8107_z
crossref_primary_10_1007_s40430_019_1574_5
crossref_primary_10_1109_ACCESS_2021_3069566
crossref_primary_10_1177_0954410019861188
crossref_primary_10_21595_jve_2018_19814
crossref_primary_10_1007_s12518_022_00486_4
crossref_primary_10_1155_2019_4392785
crossref_primary_10_1007_s00500_020_05280_1
crossref_primary_10_1007_s11517_022_02691_0
crossref_primary_10_1007_s10462_020_09936_0
crossref_primary_10_1088_1361_6501_abbd11
crossref_primary_10_3390_app12105240
crossref_primary_10_3390_electronics11172746
crossref_primary_10_1109_ACCESS_2019_2940769
crossref_primary_10_1177_09544062241307888
crossref_primary_10_1177_14759217221077414
crossref_primary_10_3390_en12040661
crossref_primary_10_1007_s00500_019_04130_z
crossref_primary_10_1515_nleng_2021_0032
crossref_primary_10_1109_ACCESS_2020_2998722
crossref_primary_10_3934_mbe_2022656
crossref_primary_10_1109_TIM_2024_3413149
crossref_primary_10_3390_electronics10111248
crossref_primary_10_1109_ACCESS_2018_2886061
crossref_primary_10_3390_e21010064
crossref_primary_10_1007_s13246_022_01132_4
crossref_primary_10_1016_j_ins_2019_09_005
crossref_primary_10_1109_ACCESS_2020_3034281
crossref_primary_10_1109_ACCESS_2023_3258399
crossref_primary_10_1007_s00500_019_04332_5
crossref_primary_10_1088_1361_6501_ac93a5
crossref_primary_10_3390_e23091128
crossref_primary_10_1007_s11063_022_11013_2
crossref_primary_10_1109_ACCESS_2019_2906976
crossref_primary_10_1007_s00170_020_05342_6
crossref_primary_10_3390_s19092178
crossref_primary_10_1016_j_jpdc_2021_10_005
crossref_primary_10_1109_ACCESS_2023_3275733
crossref_primary_10_3390_sym11080965
crossref_primary_10_1007_s00500_019_03944_1
crossref_primary_10_1109_ACCESS_2019_2940627
crossref_primary_10_1016_j_measurement_2020_108832
crossref_primary_10_1109_ACCESS_2020_2993010
crossref_primary_10_3390_act13100411
crossref_primary_10_1007_s41651_021_00078_7
crossref_primary_10_1007_s00521_021_06284_0
crossref_primary_10_1109_TIM_2020_2969092
crossref_primary_10_1007_s11760_021_02053_7
crossref_primary_10_3390_e20090682
crossref_primary_10_3390_e24101385
crossref_primary_10_3390_e26040299
crossref_primary_10_21595_jve_2019_20306
crossref_primary_10_1109_ACCESS_2020_3035157
crossref_primary_10_1177_0954406219834966
crossref_primary_10_3233_JIFS_224221
crossref_primary_10_1109_ACCESS_2019_2897580
crossref_primary_10_1007_s00500_019_03896_6
crossref_primary_10_1088_1361_6501_acf7dc
crossref_primary_10_3390_e23111402
crossref_primary_10_3390_w11020300
crossref_primary_10_3390_e21080766
crossref_primary_10_3390_machines10111022
crossref_primary_10_3390_s23094512
crossref_primary_10_1109_ACCESS_2019_2924962
crossref_primary_10_3390_s24113540
crossref_primary_10_1109_ACCESS_2018_2885164
crossref_primary_10_1088_1361_6501_ab8fee
crossref_primary_10_1177_1687814019852846
crossref_primary_10_1007_s12206_021_1103_1
crossref_primary_10_30724_1998_9903_2024_26_2_128_137
crossref_primary_10_1155_2021_9589412
crossref_primary_10_1016_j_ymssp_2021_108052
crossref_primary_10_1088_1361_6501_ad232d
crossref_primary_10_1016_j_apacoust_2022_108889
crossref_primary_10_3390_app9153143
crossref_primary_10_1139_tcsme_2018_0195
crossref_primary_10_21595_jve_2019_20528
crossref_primary_10_1155_2022_6187912
crossref_primary_10_1007_s00500_019_04278_8
crossref_primary_10_2174_2666255815666220316154957
crossref_primary_10_1109_TMECH_2019_2928967
crossref_primary_10_1109_JSEN_2019_2899396
crossref_primary_10_3390_electronics13010108
crossref_primary_10_1177_0954407018816556
crossref_primary_10_1155_2019_7190568
crossref_primary_10_1109_JSEN_2023_3329770
crossref_primary_10_1088_1361_6501_ac8894
crossref_primary_10_1007_s12555_018_0758_6
crossref_primary_10_1121_10_0001220
crossref_primary_10_1007_s00500_019_04328_1
crossref_primary_10_1109_ACCESS_2020_2976832
crossref_primary_10_3390_s20174965
crossref_primary_10_1007_s11042_019_7438_2
crossref_primary_10_1109_ACCESS_2019_2898884
crossref_primary_10_1109_TFUZZ_2019_2899809
crossref_primary_10_1007_s12206_019_0811_2
crossref_primary_10_1177_00202940221107620
crossref_primary_10_3390_en16010296
crossref_primary_10_1109_ACCESS_2019_2922351
crossref_primary_10_1109_JSEN_2022_3164177
crossref_primary_10_1007_s12206_019_0505_9
crossref_primary_10_1016_j_egyr_2021_04_049
crossref_primary_10_3390_e21111061
crossref_primary_10_1109_TII_2020_3003353
crossref_primary_10_1109_TIM_2019_2963582
crossref_primary_10_1177_01423312241267043
crossref_primary_10_1007_s40430_019_1846_0
crossref_primary_10_3390_pr10071426
crossref_primary_10_3390_sym16020204
crossref_primary_10_3390_e22091044
crossref_primary_10_1016_j_measurement_2021_110348
crossref_primary_10_1109_ACCESS_2019_2929094
crossref_primary_10_1016_j_dt_2020_09_001
crossref_primary_10_1016_j_isatra_2021_11_013
Cites_doi 10.1006/mssp.2000.1330
10.1007/s11045-017-0497-5
10.1016/j.measurement.2015.08.019
10.1016/j.ymssp.2013.08.004
10.1109/TNNLS.2014.2342533
10.1016/j.mechmachtheory.2013.08.014
10.1007/s00500-015-1851-x
10.1109/TPEL.2015.2414664
10.1504/IJSNET.2017.083532
10.1016/j.asoc.2017.06.004
10.1098/rspa.1998.0193
10.1109/TPEL.2017.2701784
10.1016/j.ymssp.2011.06.001
10.1016/j.ymssp.2007.10.003
10.1109/TIE.2015.2448066
10.1177/1077546313499391
10.1016/j.eswa.2008.09.033
10.1016/j.ymssp.2014.09.010
10.1109/CC.2016.7559082
10.1016/j.ymssp.2015.08.023
10.3390/e14081343
10.1137/0515056
10.1177/1077546314542187
10.1016/j.ymssp.2015.11.013
10.1109/TNNLS.2016.2544779
10.1109/TSP.2013.2265222
10.1002/sec.1582
10.1016/j.neucom.2017.05.047
10.1016/j.ymssp.2010.03.008
10.1016/j.eswa.2005.11.031
10.1016/j.sigpro.2013.04.015
10.1016/j.ymssp.2012.01.026
10.1007/s00500-017-2547-1
10.1007/s00500-016-2071-8
10.1016/j.ymssp.2015.03.002
10.1016/j.jsv.2014.02.038
10.1016/j.ymssp.2010.07.017
10.1007/s00500-017-2513-y
10.1016/j.ymssp.2013.04.006
10.1016/j.physa.2013.07.075
10.1109/CC.2016.7559071
10.1016/j.patrec.2008.12.012
10.3390/s140815022
10.2174/2212797609666160408154213
10.1177/1077546310361858
10.1016/j.measurement.2012.05.003
10.1016/j.ymssp.2013.07.006
10.1078/1434-8411-54100231
10.1016/j.ymssp.2012.09.015
10.1007/978-1-4757-2440-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2018.2834540
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL) - NZ
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 35056
ExternalDocumentID oai_doaj_org_article_42d44e350133428dbe3d988dbf27006c
10_1109_ACCESS_2018_2834540
8356572
Genre orig-research
GrantInformation_xml – fundername: Research Fund of the Guangxi Key Lab of Multi-Source Information Mining and Security
  grantid: MIMS17-03
– fundername: National Natural Science Foundation of China
  grantid: 51605068; 51475065; 61771087
  funderid: 10.13039/501100001809
– fundername: Open Project Program of the Sichuan Provincial Key Lab of Process Equipment and Control
  grantid: GK201613
– fundername: “Liaoning BaiQianWan Talents Program.”
– fundername: Southwest Jiaotong University
  grantid: TPL1705; TPL1803
  funderid: 10.13039/501100004536
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c474t-619c380629c1c4763e88a42126d0cecfa2798021046973ed648c0b7945a1cc573
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 01:32:14 EDT 2025
Sun Jun 29 15:55:56 EDT 2025
Tue Jul 01 02:17:35 EDT 2025
Thu Apr 24 23:00:57 EDT 2025
Wed Aug 27 02:48:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-619c380629c1c4763e88a42126d0cecfa2798021046973ed648c0b7945a1cc573
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6524-6760
OpenAccessLink https://doaj.org/article/42d44e350133428dbe3d988dbf27006c
PQID 2455908724
PQPubID 4845423
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_42d44e350133428dbe3d988dbf27006c
crossref_citationtrail_10_1109_ACCESS_2018_2834540
proquest_journals_2455908724
ieee_primary_8356572
crossref_primary_10_1109_ACCESS_2018_2834540
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
qu (ref33) 2016; 13
ref11
ref54
ref10
ref17
ref16
ref19
ref18
deng (ref30) 2017
ref51
ref50
ref46
ref45
gu (ref49) 2015; 26
ref48
ref42
ref41
ref44
ref43
zhao (ref27) 2017; 19
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref32
ref2
ref1
ahn (ref39) 2014; 14
rong (ref26) 2018; 22
ref38
ref24
ref23
ref25
ref20
ref22
ref21
ref28
ref29
zhang (ref47) 2016; 20
(ref52) 2016
References_xml – ident: ref12
  doi: 10.1006/mssp.2000.1330
– ident: ref31
  doi: 10.1007/s11045-017-0497-5
– ident: ref42
  doi: 10.1016/j.measurement.2015.08.019
– ident: ref8
  doi: 10.1016/j.ymssp.2013.08.004
– ident: ref48
  doi: 10.1109/TNNLS.2014.2342533
– ident: ref43
  doi: 10.1016/j.mechmachtheory.2013.08.014
– year: 2017
  ident: ref30
  article-title: A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm
  publication-title: Soft Comput
– volume: 20
  start-page: 1277
  year: 2016
  ident: ref47
  article-title: Inclusion measure for typical hesitant fuzzy sets, the relative similarity measure and fuzzy entropy
  publication-title: Soft Comput
  doi: 10.1007/s00500-015-1851-x
– ident: ref21
  doi: 10.1109/TPEL.2015.2414664
– ident: ref29
  doi: 10.1504/IJSNET.2017.083532
– ident: ref24
  doi: 10.1016/j.asoc.2017.06.004
– ident: ref38
  doi: 10.1098/rspa.1998.0193
– ident: ref2
  doi: 10.1109/TPEL.2017.2701784
– ident: ref7
  doi: 10.1016/j.ymssp.2011.06.001
– ident: ref13
  doi: 10.1016/j.ymssp.2007.10.003
– ident: ref5
  doi: 10.1109/TIE.2015.2448066
– ident: ref34
  doi: 10.1177/1077546313499391
– volume: 19
  start-page: 1
  year: 2017
  ident: ref27
  article-title: A new feature extraction method based on EEMD and multi-scale fuzzy entropy for motor bearing
  publication-title: Entropy
– ident: ref20
  doi: 10.1016/j.eswa.2008.09.033
– ident: ref3
  doi: 10.1016/j.ymssp.2014.09.010
– volume: 13
  start-page: 108
  year: 2016
  ident: ref33
  article-title: Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks
  publication-title: China Commun
  doi: 10.1109/CC.2016.7559082
– ident: ref35
  doi: 10.1016/j.ymssp.2015.08.023
– ident: ref4
  doi: 10.3390/e14081343
– ident: ref46
  doi: 10.1137/0515056
– ident: ref18
  doi: 10.1177/1077546314542187
– ident: ref54
  doi: 10.1016/j.ymssp.2015.11.013
– ident: ref25
  doi: 10.1109/TNNLS.2016.2544779
– ident: ref40
  doi: 10.1109/TSP.2013.2265222
– volume: 26
  start-page: 1241
  year: 2015
  ident: ref49
  article-title: A robust regularization path algorithm for $\nu $ -support vector classification
  publication-title: IEEE Trans Neural Netw
– ident: ref22
  doi: 10.1002/sec.1582
– ident: ref28
  doi: 10.1016/j.neucom.2017.05.047
– ident: ref11
  doi: 10.1016/j.ymssp.2010.03.008
– ident: ref14
  doi: 10.1016/j.eswa.2005.11.031
– year: 2016
  ident: ref52
  publication-title: Case Western Reserve University Bearing Data Center
– ident: ref37
  doi: 10.1016/j.sigpro.2013.04.015
– ident: ref36
  doi: 10.1016/j.ymssp.2012.01.026
– ident: ref51
  doi: 10.1007/s00500-017-2547-1
– ident: ref23
  doi: 10.1007/s00500-016-2071-8
– ident: ref17
  doi: 10.1016/j.ymssp.2015.03.002
– ident: ref15
  doi: 10.1016/j.jsv.2014.02.038
– ident: ref1
  doi: 10.1016/j.ymssp.2010.07.017
– volume: 22
  start-page: 2583
  year: 2018
  ident: ref26
  article-title: A novel subgraph $K^{+}$ -isomorphism method in social network based on graph similarity detection
  publication-title: Soft Comput
  doi: 10.1007/s00500-017-2513-y
– ident: ref41
  doi: 10.1016/j.ymssp.2013.04.006
– ident: ref6
  doi: 10.1016/j.physa.2013.07.075
– ident: ref32
  doi: 10.1109/CC.2016.7559071
– ident: ref9
  doi: 10.1016/j.patrec.2008.12.012
– volume: 14
  start-page: 15022
  year: 2014
  ident: ref39
  article-title: Fault detection of a roller-bearing system through the EMD of a wavelet denoised signal
  publication-title: SENSORS
  doi: 10.3390/s140815022
– ident: ref53
  doi: 10.2174/2212797609666160408154213
– ident: ref19
  doi: 10.1177/1077546310361858
– ident: ref16
  doi: 10.1016/j.measurement.2012.05.003
– ident: ref50
  doi: 10.1016/j.ymssp.2013.07.006
– ident: ref10
  doi: 10.1078/1434-8411-54100231
– ident: ref45
  doi: 10.1016/j.ymssp.2012.09.015
– ident: ref44
  doi: 10.1007/978-1-4757-2440-0
SSID ssj0000816957
Score 2.5385904
Snippet Motor bearing is subjected to the joint effects of much more loads, transmissions, and shocks that cause bearing fault and machinery breakdown. A vibration...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35042
SubjectTerms AM-FM components
Complexity
Empirical analysis
empirical wavelet transform
Entropy
Fault diagnosis
Feature extraction
Fourier spectrum segmentation
fuzzy entropy
Hilbert transformation
Motor bearing
Pattern recognition
Signal analysis
Signal processing
support vector machine
Support vector machines
Transmissions (machine elements)
Vibration analysis
Vibration measurement
Vibrations
Wavelet transforms
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFLfGTnDgayDKBvKB49K58UfsY1taDaTutIndovij0kRJKpogrX_93nPcaAKEOCWy_CJHP9vvw8-_R8inwB2SltgMyckzoZzMKqYYrKvAKsadtzned15dqcsb8fVW3h6R8-EuTAghJp-FMb7Gs3zfuA5DZRdgLShZwIb7BBy3_q7WEE_BAhJGFolYaMLMxXQ-h3_A7C09BiUqYoDjkfKJHP2pqMofO3FUL8sXZHUYWJ9V8n3ctXbs9r9xNv7vyF-S58nOpNN-YrwiR6F-TZ49Yh88IbspvWp-hQ1dVt2mpZ_7pLu7HV3FqtJ0BgrO06amXxKlBEjRxY_tXWQVod8qrFnR0uuD6Uur2tNlt9_f0wXmv2_vKTTTVQNuPZ3BigL5N-RmubieX2apBkPmRCFa8CyN45qp3LgJtCgetK7wFFl55oJbV3lhNPqN4GYXPHgltGMWFrmsJs7Jgr8lx3VTh3eEcsl8pZWV2qyF4xbkADJ418xqbeSI5AdwSpcIyrFOxqaMjgozZY9oiYiWCdEROR-Etj0_x7-7zxD1oSuSa8cGQKtMa7UUuRci4Ikr5-CdeRu4NxqeazylV25EThDh4SMJ3BE5O8yhMm0EuzIXEqvKF7l4_3epU_IUB9hHdc7IcfuzCx_AzmntxzjBHwDy3_ef
  priority: 102
  providerName: IEEE
Title A Novel Fault Diagnosis Method Based on Integrating Empirical Wavelet Transform and Fuzzy Entropy for Motor Bearing
URI https://ieeexplore.ieee.org/document/8356572
https://www.proquest.com/docview/2455908724
https://doaj.org/article/42d44e350133428dbe3d988dbf27006c
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Ra9swEBajT93DWNeNZWvLPexxXhVLlqXHJEvoBulTy_omZEmBQuaExSm0v753shICg-5lTzZCZ1u6O92ddP6OsS9ReAItaQoCJy-k8lXhuOKoV5E7LnxoSvrfeX6trm7lz7vq7qDUF-WE9fDA_cRdyjJIGen4Swh0lUMTRTAarws6MlWeVl-0eQfBVFqD9VCZqs4wQ0NuLkeTCY6Icrn0NzSpMm13HJiihNifS6z8tS4nYzN7y95kLxFG_dedsFexfcdeH2AHnrLNCK5XD3EJM7dddvC9T5m738A81YSGMZqnAKsWfmRACKSC6e_1fcIEgV-OKk50cLNzXMG1AWbbp6dHmFL2-voRsBnmKwzKYYz6gPTv2e1sejO5KnIFhcLLWnYYFxovNFel8UNsUSJq7egMWAXuo1-4sjaaoj4MkmsRg5La8wZVtHJD76tafGBH7aqNHxkgB4LTqqm0WUgvGqTDKcZ7zRutTTVg5W4yrc_w4lTlYmlTmMGN7TlgiQM2c2DAvu6J1j26xsvdx8SlfVeCxk4NKDA2C4z9l8AM2CnxeP8QdEFVVZcDdrbjuc1qvLGlrKgmfF3KT__j1Z_ZMQ2n38E5Y0fdn208R5-may6S-F6k3w-fAXUd7mM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV3NjtMwEB4tywE48LcgCgv4ADfSdf2TOAcObbdVy2576oq9hcRxpRUlqWgCap-FV-HdGDtutALEbSUuSWR5rGTy2Z6xx98AvDFcW9KSLLDk5IEItQxSGlLsV4amlOs8Y_a882weTi7Eh0t5eQA_2rMwxhgXfGa69tHt5eelru1S2QlaC6GMmA-hPDPb7-igbd5PT_FvvmVsPFoMJ4HPIRBoEYkKPaNYc0VDFuseloTcKJXaXdAwp9roZcqiWFm_B93EiJs8FErTDEEq057WMuLY7i24jXaGZM3psHYFx6asiGXkqYx6ND7pD4eoNRsvpro4bQu3pHJtunNZAXwalz_GfjehjR_Az70qmjiWz926yrp69xtL5P-qq4dw31vSpN9A_xEcmOIx3LvGr3gEmz6Zl9_MiozTelWR0yas8GpDZi5vNhngFJ6TsiBTT5qBUmT0ZX3leFPIx9Rm5ajIYm_ck7TIybje7bZkZCP811uCxWRWVngdoApQ_glc3MhXP4XDoizMMyBc0jxVYSZVvBSaZyiHEMFnRTOlYtkBtgdDoj0Fu80EskqcK0bjpEFQYhGUeAR14F0rtG4YSP5dfWBR1la19OGuANGR-NEoESwXwtg9Zc7R_8wzw_NY4X1p4xBC3YEji6i2EQ-mDhzvMZv4oW6TMOwaMVURE8__LvUa7kwWs_PkfDo_ewF37cs2a1jHcFh9rc1LtOqq7JXrXAQ-3TRCfwFtKVGX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Fault+Diagnosis+Method+Based+on+Integrating+Empirical+Wavelet+Transform+and+Fuzzy+Entropy+for+Motor+Bearing&rft.jtitle=IEEE+access&rft.au=Deng%2C+Wu&rft.au=Zhang%2C+Shengjie&rft.au=Zhao%2C+Huimin&rft.au=Yang%2C+Xinhua&rft.date=2018-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=6&rft.spage=35042&rft_id=info:doi/10.1109%2FACCESS.2018.2834540&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon