Regulation of Rep helicase unwinding by an auto-inhibitory subdomain

Abstract Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity o...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 47; no. 5; pp. 2523 - 2532
Main Authors Makurath, Monika A, Whitley, Kevin D, Nguyen, Binh, Lohman, Timothy M, Chemla, Yann R
Format Journal Article
LanguageEnglish
Published England Oxford University Press 18.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by 'strand-switching'-during which the helicases alternate between strands of the duplex-which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases.
AbstractList Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by 'strand-switching'-during which the helicases alternate between strands of the duplex-which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases.Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by 'strand-switching'-during which the helicases alternate between strands of the duplex-which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases.
Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by ‘strand-switching’—during which the helicases alternate between strands of the duplex—which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases.
Abstract Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by 'strand-switching'-during which the helicases alternate between strands of the duplex-which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases.
Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by 'strand-switching'-during which the helicases alternate between strands of the duplex-which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases.
Author Makurath, Monika A
Whitley, Kevin D
Lohman, Timothy M
Nguyen, Binh
Chemla, Yann R
AuthorAffiliation 2 Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
3 Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
4 Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
1 Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
AuthorAffiliation_xml – name: 1 Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– name: 3 Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– name: 4 Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
– name: 2 Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Author_xml – sequence: 1
  givenname: Monika A
  surname: Makurath
  fullname: Makurath, Monika A
  organization: Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 2
  givenname: Kevin D
  surname: Whitley
  fullname: Whitley, Kevin D
  organization: Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
– sequence: 3
  givenname: Binh
  surname: Nguyen
  fullname: Nguyen, Binh
  organization: Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 4
  givenname: Timothy M
  surname: Lohman
  fullname: Lohman, Timothy M
  organization: Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
– sequence: 5
  givenname: Yann R
  surname: Chemla
  fullname: Chemla, Yann R
  email: ychemla@illinois.edu
  organization: Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30690484$$D View this record in MEDLINE/PubMed
BookMark eNp9kV9LwzAUxYMouqkvfgDpiyBC3U2adM2LIPMvCILoc0ib2y3aJbNplfnprW4TFfHpwr2_ew6c0yfrzjskZI_CMQWZDJyuB-OnN2DJGunRJGUxlylbJz1IQMQUeLZF-iE8AlBOBd8kWwmkslvzHjm7w3Fb6cZ6F_kyusNZNMHKFjpg1LpX64x14yifR9pFum18bN3E5rbx9TwKbW78VFu3QzZKXQXcXc5t8nBxfj-6im9uL69HpzdxwYe8iYUxwkCuRWog0wiIIKhMaFqaVGDGclZmkkmUTBguBchCYK4zmeSiYGWKyTY5WejO2nyKpkDX1LpSs9pOdT1XXlv18-LsRI39i0o5ZZRCJ3C4FKj9c4uhUVMbCqwq7dC3QTE6lJwB57xD9797fZmsousAWABF7UOosVSFbT6D7KxtpSioj3ZU145atNO9HP16Wan-CR8sYN_O_uPeAcq1n68
CitedBy_id crossref_primary_10_1016_j_jbc_2024_107894
crossref_primary_10_1016_j_jmb_2021_167072
crossref_primary_10_1016_j_bpj_2020_02_014
crossref_primary_10_1016_j_dnarep_2021_103229
crossref_primary_10_1021_acs_jpcb_3c00778
crossref_primary_10_1073_pnas_2202489119
crossref_primary_10_1073_pnas_1905513116
crossref_primary_10_1016_j_ijporl_2025_112248
crossref_primary_10_1016_j_jmb_2024_168578
crossref_primary_10_1021_acs_chemrev_9b00361
crossref_primary_10_1016_j_ymeth_2021_11_001
crossref_primary_10_1093_nar_gkz298
crossref_primary_10_1016_j_dnarep_2023_103542
crossref_primary_10_1021_acssynbio_3c00452
crossref_primary_10_3788_CJL221542
crossref_primary_10_2142_biophysico_bppb_v19_0006
crossref_primary_10_1073_pnas_1915654116
crossref_primary_10_1038_s41467_021_27304_6
crossref_primary_10_1021_jacs_3c05254
crossref_primary_10_1073_pnas_2422330122
crossref_primary_10_1073_pnas_2114501119
crossref_primary_10_1093_nar_gkad186
Cites_doi 10.1016/S0021-9258(18)81778-1
10.1038/nature04049
10.1073/pnas.0306713101
10.1038/ncomms2882
10.1146/annurev.genom.1.1.409
10.1016/j.bpj.2009.07.048
10.1038/nrm951
10.1038/nmeth.1574
10.1073/pnas.0603342103
10.1016/j.molcel.2009.11.009
10.1073/pnas.0502886102
10.1126/science.aaa0445
10.1021/bi952959i
10.1126/science.256.5055.350
10.1016/S0022-2836(02)01277-9
10.1017/S0033583502003864
10.1126/science.aaa0130
10.1016/j.cell.2006.10.049
10.1073/pnas.1712882114
10.1006/jmbi.2001.4758
10.1021/nn301895c
10.1017/S0033583502003852
10.1002/pro.3136
10.1016/S0092-8674(00)80716-3
10.1074/jbc.M704399200
10.1038/nature01083
10.1016/j.bpj.2015.05.020
10.1016/j.sbi.2010.03.011
10.1038/nrm2394
10.1038/sj.emboj.7600485
10.1074/jbc.M507224200
10.1073/pnas.242479399
10.1146/annurev.bi.65.070196.001125
10.1016/j.bpj.2013.01.014
10.1038/nrc2682
10.1016/j.jmb.2004.10.005
10.1016/j.jmb.2011.06.019
10.1016/S0092-8674(00)80525-5
10.1073/pnas.74.1.193
10.1016/j.jmb.2018.08.022
10.1042/BST0390413
10.1128/JB.00290-12
10.1146/annurev.biochem.76.052305.115300
10.1016/S0021-9258(18)42558-6
10.1073/pnas.0511048103
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019
The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkz023
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 2532
ExternalDocumentID PMC6412110
30690484
10_1093_nar_gkz023
10.1093/nar/gkz023
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R01 GM045948; R01 GM120353
  funderid: 10.13039/100000002
– fundername: National Science Foundation
  grantid: PHY-1430124
  funderid: 10.13039/100000001
– fundername: NIGMS NIH HHS
  grantid: R01 GM045948
– fundername: NIGMS NIH HHS
  grantid: R01 GM120353
– fundername: ; ;
  grantid: R01 GM045948; R01 GM120353
– fundername: ; ;
  grantid: PHY-1430124
GroupedDBID ---
-DZ
-~X
.I3
0R~
123
18M
1TH
29N
2WC
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPPN
AAPXW
AAUQX
AAVAP
ABPTD
ABQLI
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADHZD
AEGXH
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFULF
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AOIJS
BAWUL
BAYMD
BCNDV
BTTYL
CAG
CIDKT
CS3
CZ4
DIK
DU5
D~K
E3Z
EBD
EBS
EMOBN
ESTFP
F5P
GROUPED_DOAJ
GX1
H13
HH5
HYE
HZ~
IH2
KAQDR
KQ8
KSI
M49
M~E
NU-
OAWHX
OBC
OBS
OEB
OES
OJQWA
P2P
PEELM
PQQKQ
R44
RD5
RNS
ROL
ROX
ROZ
RPM
RXO
SV3
TN5
TOX
TR2
WG7
WOQ
X7H
XSB
YSK
ZKX
~91
~D7
~KM
AAYXX
ABEJV
ABGNP
ACUTJ
AFYAG
AMNDL
CITATION
OVT
ADIXU
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c474t-5dd5d0ba56d08ae0ee0519316fd65e82b2f8929e925d49509c5eba893b5c2f6e3
IEDL.DBID TOX
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 18:05:37 EDT 2025
Fri Jul 11 07:12:19 EDT 2025
Wed Feb 19 02:30:48 EST 2025
Tue Jul 01 02:07:19 EDT 2025
Thu Apr 24 23:03:14 EDT 2025
Wed Aug 28 03:19:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
http://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-5dd5d0ba56d08ae0ee0519316fd65e82b2f8929e925d49509c5eba893b5c2f6e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://dx.doi.org/10.1093/nar/gkz023
PMID 30690484
PQID 2179420444
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6412110
proquest_miscellaneous_2179420444
pubmed_primary_30690484
crossref_citationtrail_10_1093_nar_gkz023
crossref_primary_10_1093_nar_gkz023
oup_primary_10_1093_nar_gkz023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-18
PublicationDateYYYYMMDD 2019-03-18
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-18
  day: 18
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Scott ( key 2019031203560981600_B49) 1977; 74
Whitley ( key 2019031203560981600_B40) 2017
Ordabayev ( key 2019031203560981600_B37) 2018; 430
Arslan ( key 2019031203560981600_B25) 2015; 348
Lee ( key 2019031203560981600_B18) 2006; 127
Wong ( key 2019031203560981600_B30) 1992; 256
Jia ( key 2019031203560981600_B24) 2011; 411
Delagoutte ( key 2019031203560981600_B5) 2003; 36
Chu ( key 2019031203560981600_B7) 2009; 9
Ha ( key 2019031203560981600_B34) 2002; 419
Heller ( key 2019031203560981600_B13) 2005; 280
Dessinges ( key 2019031203560981600_B11) 2004; 101
Wong ( key 2019031203560981600_B31) 1996; 35
Comstock ( key 2019031203560981600_B39) 2011; 8
Chao ( key 2019031203560981600_B28) 1991; 221
Moffitt ( key 2019031203560981600_B41) 2006; 103
Guy ( key 2019031203560981600_B14) 2009; 36
Lee ( key 2019031203560981600_B36) 2013; 4
Landry ( key 2019031203560981600_B42) 2009; 97
Swoboda ( key 2019031203560981600_B43) 2012; 6
Yokota ( key 2019031203560981600_B33) 2013; 104
Pincus ( key 2019031203560981600_B46) 2015; 109
Dillingham ( key 2019031203560981600_B19) 2011; 39
Courcelle ( key 2019031203560981600_B48) 2012; 194
Velankar ( key 2019031203560981600_B17) 1999; 97
Wong ( key 2019031203560981600_B29) 1992; 267
Delagoutte ( key 2019031203560981600_B4) 2002; 35
Lohman ( key 2019031203560981600_B38) 1989; 264
Brendza ( key 2019031203560981600_B20) 2005; 102
Lin ( key 2019031203560981600_B10) 2017; 26
Niedziela-Majka ( key 2019031203560981600_B22) 2007; 282
Cheng ( key 2019031203560981600_B27) 2002; 99
Lohman ( key 2019031203560981600_B1) 2008; 9
Maluf ( key 2019031203560981600_B35) 2003; 325
Veaute ( key 2019031203560981600_B9) 2005; 24
McGlynn ( key 2019031203560981600_B47) 2002; 3
Brabant ( key 2019031203560981600_B6) 2000; 1
Myong ( key 2019031203560981600_B8) 2005; 437
Singleton ( key 2019031203560981600_B3) 2007; 76
Betterton ( key 2019031203560981600_B45) 2005; 71
Korolev ( key 2019031203560981600_B16) 1997; 90
Comstock ( key 2019031203560981600_B23) 2015; 348
Brüning ( key 2019031203560981600_B15) 2018; 1
Nguyen ( key 2019031203560981600_B26) 2017; 114
Fischer ( key 2019031203560981600_B21) 2004; 344
Cheng ( key 2019031203560981600_B32) 2001; 310
Woodside ( key 2019031203560981600_B44) 2006; 103
Fairman-Williams ( key 2019031203560981600_B12) 2010; 20
Lohman ( key 2019031203560981600_B2) 1996; 65
References_xml – volume: 264
  start-page: 10139
  year: 1989
  ident: key 2019031203560981600_B38
  article-title: Large-scale purification and characterization of the Escherichia coli rep gene product
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)81778-1
– volume: 437
  start-page: 1321
  year: 2005
  ident: key 2019031203560981600_B8
  article-title: Repetitive shuttling of a motor protein on DNA
  publication-title: Nature
  doi: 10.1038/nature04049
– volume: 101
  start-page: 6439
  year: 2004
  ident: key 2019031203560981600_B11
  article-title: Single-molecule assay reveals strand switching and enhanced processivity of UvrD
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0306713101
– volume: 4
  start-page: 1
  year: 2013
  ident: key 2019031203560981600_B36
  article-title: Direct imaging of single UvrD helicase dynamics on long single-stranded DNA
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2882
– volume: 1
  start-page: 409
  year: 2000
  ident: key 2019031203560981600_B6
  article-title: DNA helicases, genomic instability and human genetic disease
  publication-title: Annu. Rev. Genomics Hum. Genet.
  doi: 10.1146/annurev.genom.1.1.409
– volume: 97
  start-page: 2128
  year: 2009
  ident: key 2019031203560981600_B42
  article-title: Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2009.07.048
– volume: 3
  start-page: 859
  year: 2002
  ident: key 2019031203560981600_B47
  article-title: Recombinational repair and restart of damaged replication forks
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm951
– start-page: 137
  volume-title: Methods in Enzymology
  year: 2017
  ident: key 2019031203560981600_B40
  article-title: High-resolution optical tweezers combined with single-molecule confocal microscopy
– volume: 8
  start-page: 335
  year: 2011
  ident: key 2019031203560981600_B39
  article-title: Ultrahigh-resolution optical trap with single-fluorophore sensitivity
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1574
– volume: 103
  start-page: 9006
  year: 2006
  ident: key 2019031203560981600_B41
  article-title: Differential detection of dual traps improves the spatial resolution of optical tweezers
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0603342103
– volume: 71
  start-page: 1
  year: 2005
  ident: key 2019031203560981600_B45
  article-title: Opening of nucleic-acid double strands by helicases: active versus passive opening
  publication-title: Phys. Rev. E - Stat. NonlinearSoft Matter Phys.
– volume: 36
  start-page: 654
  year: 2009
  ident: key 2019031203560981600_B14
  article-title: Rep provides a second motor at the replisome to promote duplication of protein-bound DNA
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2009.11.009
– volume: 102
  start-page: 10076
  year: 2005
  ident: key 2019031203560981600_B20
  article-title: Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0502886102
– volume: 348
  start-page: 344
  year: 2015
  ident: key 2019031203560981600_B25
  article-title: Engineering of a superhelicase through conformational control
  publication-title: Science
  doi: 10.1126/science.aaa0445
– volume: 35
  start-page: 5726
  year: 1996
  ident: key 2019031203560981600_B31
  article-title: ATPase activity of Escherichia coli Rep helicase is dramatically dependent on DNA ligation and protein oligomeric states
  publication-title: Biochemistry
  doi: 10.1021/bi952959i
– volume: 256
  start-page: 350
  year: 1992
  ident: key 2019031203560981600_B30
  article-title: Allosteric effects of nucleotide cofactors on Escherichia coli Rep helicase & DNA binding
  publication-title: Science
  doi: 10.1126/science.256.5055.350
– volume: 325
  start-page: 913
  year: 2003
  ident: key 2019031203560981600_B35
  article-title: A dimer of Escherichia coli UvrD is the active form of the helicase in vitro
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)01277-9
– volume: 36
  start-page: 1
  year: 2003
  ident: key 2019031203560981600_B5
  article-title: Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: Integration of helicases into cellular processes
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583502003864
– volume: 348
  start-page: 352
  year: 2015
  ident: key 2019031203560981600_B23
  article-title: Direct observation of structure-function relationship in a nucleic acid-processing enzyme
  publication-title: Science
  doi: 10.1126/science.aaa0130
– volume: 127
  start-page: 1349
  year: 2006
  ident: key 2019031203560981600_B18
  article-title: UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke
  publication-title: Cell
  doi: 10.1016/j.cell.2006.10.049
– volume: 114
  start-page: 12178
  year: 2017
  ident: key 2019031203560981600_B26
  article-title: Large domain movements upon UvrD dimerization and helicase activation
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1712882114
– volume: 310
  start-page: 327
  year: 2001
  ident: key 2019031203560981600_B32
  article-title: E. coli Rep oligomers are required to initiate DNA unwinding in vitro
  publication-title: J. Mol. Biol.
  doi: 10.1006/jmbi.2001.4758
– volume: 6
  start-page: 6364
  year: 2012
  ident: key 2019031203560981600_B43
  article-title: Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments
  publication-title: ACS Nano
  doi: 10.1021/nn301895c
– volume: 35
  start-page: 431
  year: 2002
  ident: key 2019031203560981600_B4
  article-title: Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: Structures and properties of isolated helicases
  publication-title: Q. Rev. Biophys.
  doi: 10.1017/S0033583502003852
– volume: 26
  start-page: 1391
  year: 2017
  ident: key 2019031203560981600_B10
  article-title: Single-molecule imaging reveals the translocation and DNA looping dynamics of hepatitis C virus NS3 helicase
  publication-title: Protein Sci.
  doi: 10.1002/pro.3136
– volume: 97
  start-page: 75
  year: 1999
  ident: key 2019031203560981600_B17
  article-title: Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80716-3
– volume: 282
  start-page: 27076
  year: 2007
  ident: key 2019031203560981600_B22
  article-title: Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M704399200
– volume: 419
  start-page: 638
  year: 2002
  ident: key 2019031203560981600_B34
  article-title: Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase
  publication-title: Nature
  doi: 10.1038/nature01083
– volume: 109
  start-page: 220
  year: 2015
  ident: key 2019031203560981600_B46
  article-title: Helicase processivity and not the unwinding velocity exhibits universal increase with force
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.05.020
– volume: 20
  start-page: 313
  year: 2010
  ident: key 2019031203560981600_B12
  article-title: SF1 and SF2 helicases: family matters
  publication-title: Curr. Opin. Struct. Biol.
  doi: 10.1016/j.sbi.2010.03.011
– volume: 9
  start-page: 391
  year: 2008
  ident: key 2019031203560981600_B1
  article-title: Non-hexameric DNA helicases and translocases: mechanisms and regulation
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm2394
– volume: 24
  start-page: 180
  year: 2005
  ident: key 2019031203560981600_B9
  article-title: UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600485
– volume: 280
  start-page: 34143
  year: 2005
  ident: key 2019031203560981600_B13
  article-title: Unwinding of the nascent lagging strand by Rep and PriA enables the direct restart of stalled replication forks
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M507224200
– volume: 221
  start-page: 1165
  year: 1991
  ident: key 2019031203560981600_B28
  article-title: DNA-induced dimerization of the Escherichia coli Rep helicase
  publication-title: J. Biol. Chem.
– volume: 99
  start-page: 16006
  year: 2002
  ident: key 2019031203560981600_B27
  article-title: The 2B domain of the Escherichia coli Rep protein is not required for DNA helicase activity
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.242479399
– volume: 65
  start-page: 169
  year: 1996
  ident: key 2019031203560981600_B2
  article-title: Mechanisms of helicase-catalyzed DNA unwinding
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.65.070196.001125
– volume: 104
  start-page: 924
  year: 2013
  ident: key 2019031203560981600_B33
  article-title: Single-molecule imaging of the oligomer formation of the nonhexameric escherichia coli UvrD helicase
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.01.014
– volume: 9
  start-page: 644
  year: 2009
  ident: key 2019031203560981600_B7
  article-title: RecQ helicases: multifunctional genome caretakers
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2682
– volume: 344
  start-page: 1287
  year: 2004
  ident: key 2019031203560981600_B21
  article-title: Mechanism of ATP-dependent translocation of E. coli UvrD monomers along single-stranded DNA
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2004.10.005
– volume: 411
  start-page: 633
  year: 2011
  ident: key 2019031203560981600_B24
  article-title: Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2011.06.019
– volume: 90
  start-page: 635
  year: 1997
  ident: key 2019031203560981600_B16
  article-title: Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP
  publication-title: Cell
  doi: 10.1016/S0092-8674(00)80525-5
– volume: 74
  start-page: 193
  year: 1977
  ident: key 2019031203560981600_B49
  article-title: A mechanism of duplex DNA replication revealed by enzymatic studies of phage phi X174: catalytic strand separation in advance of replication
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.74.1.193
– volume: 430
  start-page: 4260
  year: 2018
  ident: key 2019031203560981600_B37
  article-title: Regulation of UvrD helicase activity by MutL
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2018.08.022
– volume: 1
  start-page: 1
  year: 2018
  ident: key 2019031203560981600_B15
  article-title: The 2B subdomain of Rep helicase links translocation along DNA with protein displacement
  publication-title: Nucleic Acids Res.
– volume: 39
  start-page: 413
  year: 2011
  ident: key 2019031203560981600_B19
  article-title: Superfamily I helicases as modular components of DNA-processing machines
  publication-title: Biochem. Soc. Trans.
  doi: 10.1042/BST0390413
– volume: 194
  start-page: 3977
  year: 2012
  ident: key 2019031203560981600_B48
  article-title: Cellular characterization of the primosome and Rep helicase in processing and restoration of replication following arrest by UV-induced DNA damage in Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00290-12
– volume: 76
  start-page: 23
  year: 2007
  ident: key 2019031203560981600_B3
  article-title: Structure and mechanism of helicases and nucleic acid translocases
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.76.052305.115300
– volume: 267
  start-page: 7596
  year: 1992
  ident: key 2019031203560981600_B29
  article-title: DNA-induced dimerization of the Escherichia coli Rep helicase. Allosteric effects of single-stranded and duplex DNA
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)42558-6
– volume: 103
  start-page: 6190
  year: 2006
  ident: key 2019031203560981600_B44
  article-title: Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.0511048103
SSID ssj0014154
Score 2.4086077
Snippet Abstract Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity....
Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli...
Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2523
SubjectTerms Adenosine Triphosphatases - genetics
DNA - chemistry
DNA - genetics
DNA Helicases - chemistry
DNA Helicases - genetics
DNA Replication - genetics
DNA, Single-Stranded
Escherichia coli - enzymology
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Kinetics
Models, Molecular
Mutation - genetics
Nucleic Acid Conformation
Nucleic Acid Enzymes
Protein Domains - genetics
Title Regulation of Rep helicase unwinding by an auto-inhibitory subdomain
URI https://www.ncbi.nlm.nih.gov/pubmed/30690484
https://www.proquest.com/docview/2179420444
https://pubmed.ncbi.nlm.nih.gov/PMC6412110
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA66F30R3fwxf4yIIvhQ1qVJ1z6OuTEEFWSDvZWkSV1RU3ErMv96L-k2Vhn63GsodyXfd7nLdwhdU95mhMWx6Z5iDmWJ73AuAkdSpgAxpCdtof3h0R-M6P2YjRdNNNMNJfzQa2r-2Xx5_QZwgZ0W0Nco5A-fxqtaAUBQIRJlNTVpsBQhLb1agp3SVbY1Rvm7MXINafr7aG9BEXGniOkB2lK6imodDenx-xzfYNu0aU_Dq2inuxzYVkN3z8VcefA0zhIM1BpPlDmTmyqc66_U3l_BYo65xjyfZU6qJ6lITZUdT3Mhs3ee6kM06veG3YGzGJLgxLRNZw6TkklXcOZLN-DKVcqSspafSJ-pgAiSBECBVEiYhGTIDWOmBAeWIlhMEl95R6iiM61OEG6RFpecCQEL08TY0DCBjCzmIeB4QurodunDKF4oiJtBFm9RUcn2IvB3VPi7jq5Wth-FbsZGqwaE4k-Dy2WUIvCmKWZwrbJ8GhGzkxCjdldHx0XUVut4Rn6ZBvCkXYrnysBoapef6HRitbV9ajTv3NP_PuwM7QJ1Ck03Wis4R5XZZ64ugJ7MRANtt91ewyb3Dfun_gCoAOav
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Rep+helicase+unwinding+by+an+auto-inhibitory+subdomain&rft.jtitle=Nucleic+acids+research&rft.au=Makurath%2C+Monika+A&rft.au=Whitley%2C+Kevin+D&rft.au=Nguyen%2C+Binh&rft.au=Lohman%2C+Timothy+M&rft.date=2019-03-18&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=47&rft.issue=5&rft.spage=2523&rft_id=info:doi/10.1093%2Fnar%2Fgkz023&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon