Regulation of Rep helicase unwinding by an auto-inhibitory subdomain
Abstract Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity o...
Saved in:
Published in | Nucleic acids research Vol. 47; no. 5; pp. 2523 - 2532 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
18.03.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by 'strand-switching'-during which the helicases alternate between strands of the duplex-which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases. |
---|---|
AbstractList | Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by 'strand-switching'-during which the helicases alternate between strands of the duplex-which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases.Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by 'strand-switching'-during which the helicases alternate between strands of the duplex-which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases. Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by ‘strand-switching’—during which the helicases alternate between strands of the duplex—which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases. Abstract Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by 'strand-switching'-during which the helicases alternate between strands of the duplex-which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases. Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli Rep helicase, whose primary role is to help restart stalled replication, serves as a model for Superfamily I helicases. The activity of Rep-like helicases is regulated by two factors: their oligomeric state, and the conformation of the flexible subdomain 2B. However, the mechanism of control is not well understood. To understand the factors that regulate the active state of Rep, here we investigate the behavior of a 2B-deficient variant (RepΔ2B) in relation to wild-type Rep (wtRep). Using a single-molecule optical tweezers assay, we explore the effects of oligomeric state, DNA geometry, and duplex stability on wtRep and RepΔ2B unwinding activity. We find that monomeric RepΔ2B unwinds more processively and at a higher speed than the activated, dimeric form of wtRep. The unwinding processivity of RepΔ2B and wtRep is primarily limited by 'strand-switching'-during which the helicases alternate between strands of the duplex-which does not require the 2B subdomain, contrary to a previous proposal. We provide a quantitative model of the factors that enhance unwinding processivity. Our work sheds light on the mechanisms of regulation of unwinding by Rep-like helicases. |
Author | Makurath, Monika A Whitley, Kevin D Lohman, Timothy M Nguyen, Binh Chemla, Yann R |
AuthorAffiliation | 2 Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 3 Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 4 Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA 1 Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA |
AuthorAffiliation_xml | – name: 1 Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – name: 3 Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – name: 4 Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA – name: 2 Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA |
Author_xml | – sequence: 1 givenname: Monika A surname: Makurath fullname: Makurath, Monika A organization: Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 2 givenname: Kevin D surname: Whitley fullname: Whitley, Kevin D organization: Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA – sequence: 3 givenname: Binh surname: Nguyen fullname: Nguyen, Binh organization: Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 4 givenname: Timothy M surname: Lohman fullname: Lohman, Timothy M organization: Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA – sequence: 5 givenname: Yann R surname: Chemla fullname: Chemla, Yann R email: ychemla@illinois.edu organization: Department of Physics, Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30690484$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kV9LwzAUxYMouqkvfgDpiyBC3U2adM2LIPMvCILoc0ib2y3aJbNplfnprW4TFfHpwr2_ew6c0yfrzjskZI_CMQWZDJyuB-OnN2DJGunRJGUxlylbJz1IQMQUeLZF-iE8AlBOBd8kWwmkslvzHjm7w3Fb6cZ6F_kyusNZNMHKFjpg1LpX64x14yifR9pFum18bN3E5rbx9TwKbW78VFu3QzZKXQXcXc5t8nBxfj-6im9uL69HpzdxwYe8iYUxwkCuRWog0wiIIKhMaFqaVGDGclZmkkmUTBguBchCYK4zmeSiYGWKyTY5WejO2nyKpkDX1LpSs9pOdT1XXlv18-LsRI39i0o5ZZRCJ3C4FKj9c4uhUVMbCqwq7dC3QTE6lJwB57xD9797fZmsousAWABF7UOosVSFbT6D7KxtpSioj3ZU145atNO9HP16Wan-CR8sYN_O_uPeAcq1n68 |
CitedBy_id | crossref_primary_10_1016_j_jbc_2024_107894 crossref_primary_10_1016_j_jmb_2021_167072 crossref_primary_10_1016_j_bpj_2020_02_014 crossref_primary_10_1016_j_dnarep_2021_103229 crossref_primary_10_1021_acs_jpcb_3c00778 crossref_primary_10_1073_pnas_2202489119 crossref_primary_10_1073_pnas_1905513116 crossref_primary_10_1016_j_ijporl_2025_112248 crossref_primary_10_1016_j_jmb_2024_168578 crossref_primary_10_1021_acs_chemrev_9b00361 crossref_primary_10_1016_j_ymeth_2021_11_001 crossref_primary_10_1093_nar_gkz298 crossref_primary_10_1016_j_dnarep_2023_103542 crossref_primary_10_1021_acssynbio_3c00452 crossref_primary_10_3788_CJL221542 crossref_primary_10_2142_biophysico_bppb_v19_0006 crossref_primary_10_1073_pnas_1915654116 crossref_primary_10_1038_s41467_021_27304_6 crossref_primary_10_1021_jacs_3c05254 crossref_primary_10_1073_pnas_2422330122 crossref_primary_10_1073_pnas_2114501119 crossref_primary_10_1093_nar_gkad186 |
Cites_doi | 10.1016/S0021-9258(18)81778-1 10.1038/nature04049 10.1073/pnas.0306713101 10.1038/ncomms2882 10.1146/annurev.genom.1.1.409 10.1016/j.bpj.2009.07.048 10.1038/nrm951 10.1038/nmeth.1574 10.1073/pnas.0603342103 10.1016/j.molcel.2009.11.009 10.1073/pnas.0502886102 10.1126/science.aaa0445 10.1021/bi952959i 10.1126/science.256.5055.350 10.1016/S0022-2836(02)01277-9 10.1017/S0033583502003864 10.1126/science.aaa0130 10.1016/j.cell.2006.10.049 10.1073/pnas.1712882114 10.1006/jmbi.2001.4758 10.1021/nn301895c 10.1017/S0033583502003852 10.1002/pro.3136 10.1016/S0092-8674(00)80716-3 10.1074/jbc.M704399200 10.1038/nature01083 10.1016/j.bpj.2015.05.020 10.1016/j.sbi.2010.03.011 10.1038/nrm2394 10.1038/sj.emboj.7600485 10.1074/jbc.M507224200 10.1073/pnas.242479399 10.1146/annurev.bi.65.070196.001125 10.1016/j.bpj.2013.01.014 10.1038/nrc2682 10.1016/j.jmb.2004.10.005 10.1016/j.jmb.2011.06.019 10.1016/S0092-8674(00)80525-5 10.1073/pnas.74.1.193 10.1016/j.jmb.2018.08.022 10.1042/BST0390413 10.1128/JB.00290-12 10.1146/annurev.biochem.76.052305.115300 10.1016/S0021-9258(18)42558-6 10.1073/pnas.0511048103 |
ContentType | Journal Article |
Copyright | The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019 The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. |
Copyright_xml | – notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. 2019 – notice: The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkz023 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 2532 |
ExternalDocumentID | PMC6412110 30690484 10_1093_nar_gkz023 10.1093/nar/gkz023 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health grantid: R01 GM045948; R01 GM120353 funderid: 10.13039/100000002 – fundername: National Science Foundation grantid: PHY-1430124 funderid: 10.13039/100000001 – fundername: NIGMS NIH HHS grantid: R01 GM045948 – fundername: NIGMS NIH HHS grantid: R01 GM120353 – fundername: ; ; grantid: R01 GM045948; R01 GM120353 – fundername: ; ; grantid: PHY-1430124 |
GroupedDBID | --- -DZ -~X .I3 0R~ 123 18M 1TH 29N 2WC 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPPN AAPXW AAUQX AAVAP ABPTD ABQLI ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADHZD AEGXH AENEX AENZO AFFNX AFPKN AFRAH AFULF AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AOIJS BAWUL BAYMD BCNDV BTTYL CAG CIDKT CS3 CZ4 DIK DU5 D~K E3Z EBD EBS EMOBN ESTFP F5P GROUPED_DOAJ GX1 H13 HH5 HYE HZ~ IH2 KAQDR KQ8 KSI M49 M~E NU- OAWHX OBC OBS OEB OES OJQWA P2P PEELM PQQKQ R44 RD5 RNS ROL ROX ROZ RPM RXO SV3 TN5 TOX TR2 WG7 WOQ X7H XSB YSK ZKX ~91 ~D7 ~KM AAYXX ABEJV ABGNP ACUTJ AFYAG AMNDL CITATION OVT ADIXU CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c474t-5dd5d0ba56d08ae0ee0519316fd65e82b2f8929e925d49509c5eba893b5c2f6e3 |
IEDL.DBID | TOX |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 18:05:37 EDT 2025 Fri Jul 11 07:12:19 EDT 2025 Wed Feb 19 02:30:48 EST 2025 Tue Jul 01 02:07:19 EDT 2025 Thu Apr 24 23:03:14 EDT 2025 Wed Aug 28 03:19:13 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com http://creativecommons.org/licenses/by-nc/4.0 The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-5dd5d0ba56d08ae0ee0519316fd65e82b2f8929e925d49509c5eba893b5c2f6e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://dx.doi.org/10.1093/nar/gkz023 |
PMID | 30690484 |
PQID | 2179420444 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6412110 proquest_miscellaneous_2179420444 pubmed_primary_30690484 crossref_citationtrail_10_1093_nar_gkz023 crossref_primary_10_1093_nar_gkz023 oup_primary_10_1093_nar_gkz023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-18 |
PublicationDateYYYYMMDD | 2019-03-18 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-18 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2019 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Scott ( key 2019031203560981600_B49) 1977; 74 Whitley ( key 2019031203560981600_B40) 2017 Ordabayev ( key 2019031203560981600_B37) 2018; 430 Arslan ( key 2019031203560981600_B25) 2015; 348 Lee ( key 2019031203560981600_B18) 2006; 127 Wong ( key 2019031203560981600_B30) 1992; 256 Jia ( key 2019031203560981600_B24) 2011; 411 Delagoutte ( key 2019031203560981600_B5) 2003; 36 Chu ( key 2019031203560981600_B7) 2009; 9 Ha ( key 2019031203560981600_B34) 2002; 419 Heller ( key 2019031203560981600_B13) 2005; 280 Dessinges ( key 2019031203560981600_B11) 2004; 101 Wong ( key 2019031203560981600_B31) 1996; 35 Comstock ( key 2019031203560981600_B39) 2011; 8 Chao ( key 2019031203560981600_B28) 1991; 221 Moffitt ( key 2019031203560981600_B41) 2006; 103 Guy ( key 2019031203560981600_B14) 2009; 36 Lee ( key 2019031203560981600_B36) 2013; 4 Landry ( key 2019031203560981600_B42) 2009; 97 Swoboda ( key 2019031203560981600_B43) 2012; 6 Yokota ( key 2019031203560981600_B33) 2013; 104 Pincus ( key 2019031203560981600_B46) 2015; 109 Dillingham ( key 2019031203560981600_B19) 2011; 39 Courcelle ( key 2019031203560981600_B48) 2012; 194 Velankar ( key 2019031203560981600_B17) 1999; 97 Wong ( key 2019031203560981600_B29) 1992; 267 Delagoutte ( key 2019031203560981600_B4) 2002; 35 Lohman ( key 2019031203560981600_B38) 1989; 264 Brendza ( key 2019031203560981600_B20) 2005; 102 Lin ( key 2019031203560981600_B10) 2017; 26 Niedziela-Majka ( key 2019031203560981600_B22) 2007; 282 Cheng ( key 2019031203560981600_B27) 2002; 99 Lohman ( key 2019031203560981600_B1) 2008; 9 Maluf ( key 2019031203560981600_B35) 2003; 325 Veaute ( key 2019031203560981600_B9) 2005; 24 McGlynn ( key 2019031203560981600_B47) 2002; 3 Brabant ( key 2019031203560981600_B6) 2000; 1 Myong ( key 2019031203560981600_B8) 2005; 437 Singleton ( key 2019031203560981600_B3) 2007; 76 Betterton ( key 2019031203560981600_B45) 2005; 71 Korolev ( key 2019031203560981600_B16) 1997; 90 Comstock ( key 2019031203560981600_B23) 2015; 348 Brüning ( key 2019031203560981600_B15) 2018; 1 Nguyen ( key 2019031203560981600_B26) 2017; 114 Fischer ( key 2019031203560981600_B21) 2004; 344 Cheng ( key 2019031203560981600_B32) 2001; 310 Woodside ( key 2019031203560981600_B44) 2006; 103 Fairman-Williams ( key 2019031203560981600_B12) 2010; 20 Lohman ( key 2019031203560981600_B2) 1996; 65 |
References_xml | – volume: 264 start-page: 10139 year: 1989 ident: key 2019031203560981600_B38 article-title: Large-scale purification and characterization of the Escherichia coli rep gene product publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)81778-1 – volume: 437 start-page: 1321 year: 2005 ident: key 2019031203560981600_B8 article-title: Repetitive shuttling of a motor protein on DNA publication-title: Nature doi: 10.1038/nature04049 – volume: 101 start-page: 6439 year: 2004 ident: key 2019031203560981600_B11 article-title: Single-molecule assay reveals strand switching and enhanced processivity of UvrD publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0306713101 – volume: 4 start-page: 1 year: 2013 ident: key 2019031203560981600_B36 article-title: Direct imaging of single UvrD helicase dynamics on long single-stranded DNA publication-title: Nat. Commun. doi: 10.1038/ncomms2882 – volume: 1 start-page: 409 year: 2000 ident: key 2019031203560981600_B6 article-title: DNA helicases, genomic instability and human genetic disease publication-title: Annu. Rev. Genomics Hum. Genet. doi: 10.1146/annurev.genom.1.1.409 – volume: 97 start-page: 2128 year: 2009 ident: key 2019031203560981600_B42 article-title: Characterization of photoactivated singlet oxygen damage in single-molecule optical trap experiments publication-title: Biophys. J. doi: 10.1016/j.bpj.2009.07.048 – volume: 3 start-page: 859 year: 2002 ident: key 2019031203560981600_B47 article-title: Recombinational repair and restart of damaged replication forks publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm951 – start-page: 137 volume-title: Methods in Enzymology year: 2017 ident: key 2019031203560981600_B40 article-title: High-resolution optical tweezers combined with single-molecule confocal microscopy – volume: 8 start-page: 335 year: 2011 ident: key 2019031203560981600_B39 article-title: Ultrahigh-resolution optical trap with single-fluorophore sensitivity publication-title: Nat. Methods doi: 10.1038/nmeth.1574 – volume: 103 start-page: 9006 year: 2006 ident: key 2019031203560981600_B41 article-title: Differential detection of dual traps improves the spatial resolution of optical tweezers publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0603342103 – volume: 71 start-page: 1 year: 2005 ident: key 2019031203560981600_B45 article-title: Opening of nucleic-acid double strands by helicases: active versus passive opening publication-title: Phys. Rev. E - Stat. NonlinearSoft Matter Phys. – volume: 36 start-page: 654 year: 2009 ident: key 2019031203560981600_B14 article-title: Rep provides a second motor at the replisome to promote duplication of protein-bound DNA publication-title: Mol. Cell doi: 10.1016/j.molcel.2009.11.009 – volume: 102 start-page: 10076 year: 2005 ident: key 2019031203560981600_B20 article-title: Autoinhibition of Escherichia coli Rep monomer helicase activity by its 2B subdomain publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0502886102 – volume: 348 start-page: 344 year: 2015 ident: key 2019031203560981600_B25 article-title: Engineering of a superhelicase through conformational control publication-title: Science doi: 10.1126/science.aaa0445 – volume: 35 start-page: 5726 year: 1996 ident: key 2019031203560981600_B31 article-title: ATPase activity of Escherichia coli Rep helicase is dramatically dependent on DNA ligation and protein oligomeric states publication-title: Biochemistry doi: 10.1021/bi952959i – volume: 256 start-page: 350 year: 1992 ident: key 2019031203560981600_B30 article-title: Allosteric effects of nucleotide cofactors on Escherichia coli Rep helicase & DNA binding publication-title: Science doi: 10.1126/science.256.5055.350 – volume: 325 start-page: 913 year: 2003 ident: key 2019031203560981600_B35 article-title: A dimer of Escherichia coli UvrD is the active form of the helicase in vitro publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)01277-9 – volume: 36 start-page: 1 year: 2003 ident: key 2019031203560981600_B5 article-title: Helicase mechanisms and the coupling of helicases within macromolecular machines. Part II: Integration of helicases into cellular processes publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583502003864 – volume: 348 start-page: 352 year: 2015 ident: key 2019031203560981600_B23 article-title: Direct observation of structure-function relationship in a nucleic acid-processing enzyme publication-title: Science doi: 10.1126/science.aaa0130 – volume: 127 start-page: 1349 year: 2006 ident: key 2019031203560981600_B18 article-title: UvrD helicase unwinds DNA one base pair at a time by a two-part power stroke publication-title: Cell doi: 10.1016/j.cell.2006.10.049 – volume: 114 start-page: 12178 year: 2017 ident: key 2019031203560981600_B26 article-title: Large domain movements upon UvrD dimerization and helicase activation publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1712882114 – volume: 310 start-page: 327 year: 2001 ident: key 2019031203560981600_B32 article-title: E. coli Rep oligomers are required to initiate DNA unwinding in vitro publication-title: J. Mol. Biol. doi: 10.1006/jmbi.2001.4758 – volume: 6 start-page: 6364 year: 2012 ident: key 2019031203560981600_B43 article-title: Enzymatic oxygen scavenging for photostability without pH drop in single-molecule experiments publication-title: ACS Nano doi: 10.1021/nn301895c – volume: 35 start-page: 431 year: 2002 ident: key 2019031203560981600_B4 article-title: Helicase mechanisms and the coupling of helicases within macromolecular machines. Part I: Structures and properties of isolated helicases publication-title: Q. Rev. Biophys. doi: 10.1017/S0033583502003852 – volume: 26 start-page: 1391 year: 2017 ident: key 2019031203560981600_B10 article-title: Single-molecule imaging reveals the translocation and DNA looping dynamics of hepatitis C virus NS3 helicase publication-title: Protein Sci. doi: 10.1002/pro.3136 – volume: 97 start-page: 75 year: 1999 ident: key 2019031203560981600_B17 article-title: Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism publication-title: Cell doi: 10.1016/S0092-8674(00)80716-3 – volume: 282 start-page: 27076 year: 2007 ident: key 2019031203560981600_B22 article-title: Bacillus stearothermophilus PcrA monomer is a single-stranded DNA translocase but not a processive helicase in vitro publication-title: J. Biol. Chem. doi: 10.1074/jbc.M704399200 – volume: 419 start-page: 638 year: 2002 ident: key 2019031203560981600_B34 article-title: Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase publication-title: Nature doi: 10.1038/nature01083 – volume: 109 start-page: 220 year: 2015 ident: key 2019031203560981600_B46 article-title: Helicase processivity and not the unwinding velocity exhibits universal increase with force publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.05.020 – volume: 20 start-page: 313 year: 2010 ident: key 2019031203560981600_B12 article-title: SF1 and SF2 helicases: family matters publication-title: Curr. Opin. Struct. Biol. doi: 10.1016/j.sbi.2010.03.011 – volume: 9 start-page: 391 year: 2008 ident: key 2019031203560981600_B1 article-title: Non-hexameric DNA helicases and translocases: mechanisms and regulation publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2394 – volume: 24 start-page: 180 year: 2005 ident: key 2019031203560981600_B9 article-title: UvrD helicase, unlike Rep helicase, dismantles RecA nucleoprotein filaments in Escherichia coli publication-title: EMBO J. doi: 10.1038/sj.emboj.7600485 – volume: 280 start-page: 34143 year: 2005 ident: key 2019031203560981600_B13 article-title: Unwinding of the nascent lagging strand by Rep and PriA enables the direct restart of stalled replication forks publication-title: J. Biol. Chem. doi: 10.1074/jbc.M507224200 – volume: 221 start-page: 1165 year: 1991 ident: key 2019031203560981600_B28 article-title: DNA-induced dimerization of the Escherichia coli Rep helicase publication-title: J. Biol. Chem. – volume: 99 start-page: 16006 year: 2002 ident: key 2019031203560981600_B27 article-title: The 2B domain of the Escherichia coli Rep protein is not required for DNA helicase activity publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.242479399 – volume: 65 start-page: 169 year: 1996 ident: key 2019031203560981600_B2 article-title: Mechanisms of helicase-catalyzed DNA unwinding publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.65.070196.001125 – volume: 104 start-page: 924 year: 2013 ident: key 2019031203560981600_B33 article-title: Single-molecule imaging of the oligomer formation of the nonhexameric escherichia coli UvrD helicase publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.01.014 – volume: 9 start-page: 644 year: 2009 ident: key 2019031203560981600_B7 article-title: RecQ helicases: multifunctional genome caretakers publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2682 – volume: 344 start-page: 1287 year: 2004 ident: key 2019031203560981600_B21 article-title: Mechanism of ATP-dependent translocation of E. coli UvrD monomers along single-stranded DNA publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2004.10.005 – volume: 411 start-page: 633 year: 2011 ident: key 2019031203560981600_B24 article-title: Rotations of the 2B sub-domain of E. coli UvrD helicase/translocase coupled to nucleotide and DNA binding publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2011.06.019 – volume: 90 start-page: 635 year: 1997 ident: key 2019031203560981600_B16 article-title: Major domain swiveling revealed by the crystal structures of complexes of E. coli Rep helicase bound to single-stranded DNA and ADP publication-title: Cell doi: 10.1016/S0092-8674(00)80525-5 – volume: 74 start-page: 193 year: 1977 ident: key 2019031203560981600_B49 article-title: A mechanism of duplex DNA replication revealed by enzymatic studies of phage phi X174: catalytic strand separation in advance of replication publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.74.1.193 – volume: 430 start-page: 4260 year: 2018 ident: key 2019031203560981600_B37 article-title: Regulation of UvrD helicase activity by MutL publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2018.08.022 – volume: 1 start-page: 1 year: 2018 ident: key 2019031203560981600_B15 article-title: The 2B subdomain of Rep helicase links translocation along DNA with protein displacement publication-title: Nucleic Acids Res. – volume: 39 start-page: 413 year: 2011 ident: key 2019031203560981600_B19 article-title: Superfamily I helicases as modular components of DNA-processing machines publication-title: Biochem. Soc. Trans. doi: 10.1042/BST0390413 – volume: 194 start-page: 3977 year: 2012 ident: key 2019031203560981600_B48 article-title: Cellular characterization of the primosome and Rep helicase in processing and restoration of replication following arrest by UV-induced DNA damage in Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.00290-12 – volume: 76 start-page: 23 year: 2007 ident: key 2019031203560981600_B3 article-title: Structure and mechanism of helicases and nucleic acid translocases publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.76.052305.115300 – volume: 267 start-page: 7596 year: 1992 ident: key 2019031203560981600_B29 article-title: DNA-induced dimerization of the Escherichia coli Rep helicase. Allosteric effects of single-stranded and duplex DNA publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)42558-6 – volume: 103 start-page: 6190 year: 2006 ident: key 2019031203560981600_B44 article-title: Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.0511048103 |
SSID | ssj0014154 |
Score | 2.4086077 |
Snippet | Abstract
Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity.... Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli... Helicases are biomolecular motors that unwind nucleic acids, and their regulation is essential for proper maintenance of genomic integrity. Escherichia coli... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2523 |
SubjectTerms | Adenosine Triphosphatases - genetics DNA - chemistry DNA - genetics DNA Helicases - chemistry DNA Helicases - genetics DNA Replication - genetics DNA, Single-Stranded Escherichia coli - enzymology Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Kinetics Models, Molecular Mutation - genetics Nucleic Acid Conformation Nucleic Acid Enzymes Protein Domains - genetics |
Title | Regulation of Rep helicase unwinding by an auto-inhibitory subdomain |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30690484 https://www.proquest.com/docview/2179420444 https://pubmed.ncbi.nlm.nih.gov/PMC6412110 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS8MwEA66F30R3fwxf4yIIvhQ1qVJ1z6OuTEEFWSDvZWkSV1RU3ErMv96L-k2Vhn63GsodyXfd7nLdwhdU95mhMWx6Z5iDmWJ73AuAkdSpgAxpCdtof3h0R-M6P2YjRdNNNMNJfzQa2r-2Xx5_QZwgZ0W0Nco5A-fxqtaAUBQIRJlNTVpsBQhLb1agp3SVbY1Rvm7MXINafr7aG9BEXGniOkB2lK6imodDenx-xzfYNu0aU_Dq2inuxzYVkN3z8VcefA0zhIM1BpPlDmTmyqc66_U3l_BYo65xjyfZU6qJ6lITZUdT3Mhs3ee6kM06veG3YGzGJLgxLRNZw6TkklXcOZLN-DKVcqSspafSJ-pgAiSBECBVEiYhGTIDWOmBAeWIlhMEl95R6iiM61OEG6RFpecCQEL08TY0DCBjCzmIeB4QurodunDKF4oiJtBFm9RUcn2IvB3VPi7jq5Wth-FbsZGqwaE4k-Dy2WUIvCmKWZwrbJ8GhGzkxCjdldHx0XUVut4Rn6ZBvCkXYrnysBoapef6HRitbV9ajTv3NP_PuwM7QJ1Ck03Wis4R5XZZ64ugJ7MRANtt91ewyb3Dfun_gCoAOav |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulation+of+Rep+helicase+unwinding+by+an+auto-inhibitory+subdomain&rft.jtitle=Nucleic+acids+research&rft.au=Makurath%2C+Monika+A&rft.au=Whitley%2C+Kevin+D&rft.au=Nguyen%2C+Binh&rft.au=Lohman%2C+Timothy+M&rft.date=2019-03-18&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=47&rft.issue=5&rft.spage=2523&rft_id=info:doi/10.1093%2Fnar%2Fgkz023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |