Lie polynomials and a twistorial correspondence for amplitudes
We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of M 0 , n , the mo...
Saved in:
Published in | Letters in mathematical physics Vol. 111; no. 6; p. 147 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.12.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of
M
0
,
n
, the moduli space of
n
points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle
T
D
∗
M
0
,
n
, the bundle of forms with logarithmic singularities on the divisor
D
as the twistor space, and
K
n
the space of momentum invariants of
n
massless particles subject to momentum conservation as the analogue of space–time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain
n
-
3
-forms on
K
n
, introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral
n
-
3
-planes in
K
n
introduced by ABHY. |
---|---|
AbstractList | We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of
$$\mathcal {M}_{0,n}$$
M
0
,
n
, the moduli space of
n
points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle
$$T^*_D\mathcal {M}_{0,n}$$
T
D
∗
M
0
,
n
, the bundle of forms with logarithmic singularities on the divisor
D
as the twistor space, and
$$\mathcal {K}_n$$
K
n
the space of momentum invariants of
n
massless particles subject to momentum conservation as the analogue of space–time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain
$$n-3$$
n
-
3
-forms on
$$\mathcal {K}_n$$
K
n
, introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral
$$n-3$$
n
-
3
-planes in
$$\mathcal {K}_n$$
K
n
introduced by ABHY. We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of , the moduli space of points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle , the bundle of forms with logarithmic singularities on the divisor as the twistor space, and the space of momentum invariants of massless particles subject to momentum conservation as the analogue of space-time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain -forms on , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral -planes in introduced by ABHY. We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space-time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain n - 3 -forms on K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral n - 3 -planes in K n introduced by ABHY.We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space-time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain n - 3 -forms on K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral n - 3 -planes in K n introduced by ABHY. We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space–time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain n - 3 -forms on K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral n - 3 -planes in K n introduced by ABHY. We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of M0,n, the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle TD∗M0,n, the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and Kn the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space–time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain n-3-forms on Kn, introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral n-3-planes in Kn introduced by ABHY. We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_{0,n}$$\end{document} M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*_D\mathcal {M}_{0,n}$$\end{document} T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_n$$\end{document} K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space–time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-3$$\end{document} n - 3 -forms on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_n$$\end{document} K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-3$$\end{document} n - 3 -planes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_n$$\end{document} K n introduced by ABHY. |
ArticleNumber | 147 |
Author | Mason, Lionel Frost, Hadleigh |
Author_xml | – sequence: 1 givenname: Hadleigh surname: Frost fullname: Frost, Hadleigh organization: The Mathematical Institute, University of Oxford, AWB, ROQ – sequence: 2 givenname: Lionel orcidid: 0000-0003-2464-6730 surname: Mason fullname: Mason, Lionel email: lmason@maths.ox.ac.uk organization: The Mathematical Institute, University of Oxford, AWB, ROQ |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34924684$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAQhS1URG8Lf4AFisSGTWD8jLOphCpe0pW6adeWrz0prhI72Amo_x5fbgu0i65GGn_n6IzPCTmKKSIhrym8pwDdh0LrkC0w2gIVmrf0GdlQ2fEWJIcjsgHedW0PtDsmJ6XcQBUxCS_IMRc9E0qLDTnbBmzmNN7GNAU7lsZG39hm-RXKknLdNC7ljGVO0WN02AwpN3aax7CsHstL8nyoKnx1N0_J1edPl-df2-3Fl2_nH7etE51YWrkDDqC8B9V7yRAYo97RgUkPXAk9aK-YZWB3mjsqKDKvne49CO9QIeWn5OzgO6-7CesyLtmOZs5hsvnWJBvMw5cYvpvr9NNoJaQUvBq8uzPI6ceKZTFTKA7H0UZMazFMUQaiV7qv6NtH6E1ac6znVaoeIGTH9one_J_ob5T7r62APgAup1IyDsaFxS4h7QOG0VAw-xbNoUVTWzR_WjR7b_ZIeu_-pIgfRKXC8Rrzv9hPqH4D1o2ufg |
CitedBy_id | crossref_primary_10_1140_epjc_s10052_022_11168_1 |
Cites_doi | 10.1016/0550-3213(86)90362-7 10.1103/PhysRevLett.105.061602 10.1007/JHEP07(2014)033 10.1103/PhysRevD.78.085011 10.1016/0550-3213(89)90574-9 10.1007/JHEP07(2014)048 10.1016/0550-3213(69)90071-6 10.1007/JHEP05(2018)096 10.1016/0550-3213(69)90331-9 10.1007/JHEP03(2016)114 10.1007/JHEP11(2019)055 10.1007/JHEP03(2018)068 10.1007/JHEP07(2015)149 10.1016/0021-8693(79)90171-6 10.1007/JHEP09(2017)021 10.2307/1970243 10.24033/asens.2099 10.1007/JHEP11(2015)038 10.1016/0022-4049(95)00054-Z 10.1007/JHEP02(2019)005 10.1007/JHEP05(2014)010 10.1090/S0002-9904-1973-13394-4 10.1007/JHEP03(2014)110 10.1007/JHEP04(2017)033 10.1103/PhysRevLett.115.121603 10.1007/978-3-030-53010-5 10.1103/PhysRevD.90.065001 10.1007/JHEP07(2011)007 10.1016/j.nuclphysb.2018.03.003 10.1103/PhysRevLett.113.171601 10.7146/math.scand.a-10517 10.1103/PhysRevLett.120.141602 10.1103/PhysRevLett.122.211603 10.1103/PhysRevD.94.125029 10.1007/978-1-4757-3951-0 10.1002/9781118032527 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1007/s11005-021-01483-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics Physics |
EISSN | 1573-0530 |
ExternalDocumentID | PMC8645543 34924684 10_1007_s11005_021_01483_1 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Research Council grantid: 724638 funderid: http://dx.doi.org/10.13039/501100000781 – fundername: ; grantid: 724638 |
GroupedDBID | -54 -5F -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK8 YLTOR YQT Z45 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION NPM ABRTQ 7X8 5PM |
ID | FETCH-LOGICAL-c474t-5b03006dd069d52e0221dc1f25d03648f8d62a20ab83c141e2d8c89d04dce6e13 |
IEDL.DBID | U2A |
ISSN | 0377-9017 1573-0530 |
IngestDate | Thu Aug 21 18:23:10 EDT 2025 Fri Jul 11 09:51:10 EDT 2025 Fri Jul 25 11:00:57 EDT 2025 Thu Apr 03 07:02:07 EDT 2025 Thu Apr 24 23:12:50 EDT 2025 Tue Jul 01 03:39:20 EDT 2025 Fri Feb 21 02:46:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Twistor theory 81T13 Lie polynomials Scattering amplitudes |
Language | English |
License | The Author(s) 2021. Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-5b03006dd069d52e0221dc1f25d03648f8d62a20ab83c141e2d8c89d04dce6e13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2464-6730 |
OpenAccessLink | https://link.springer.com/10.1007/s11005-021-01483-1 |
PMID | 34924684 |
PQID | 2606945721 |
PQPubID | 2043605 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8645543 proquest_miscellaneous_2612049689 proquest_journals_2606945721 pubmed_primary_34924684 crossref_citationtrail_10_1007_s11005_021_01483_1 crossref_primary_10_1007_s11005_021_01483_1 springer_journals_10_1007_s11005_021_01483_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Germany |
PublicationTitle | Letters in mathematical physics |
PublicationTitleAbbrev | Lett Math Phys |
PublicationTitleAlternate | Lett Math Phys |
PublicationYear | 2021 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Radford (CR11) 1979; 58 CR39 CR38 CR37 CR36 CR35 Cachazo, He, Yuan (CR14) 2015; 07 CR4 CR5 Geyer, Mason, Monteiro, Tourkine (CR41) 2016; 03 Dolan, Goddard (CR33) 2014; 1405 Arkani-Hamed, Bai, He, Yan (CR6) 2018; 05 CR7 CR9 Cachazo, Early, Guevara, Mizera (CR48) 2019; 02 Chen, Johansson, Teng, Wang (CR49) 2019; 11 Ree (CR10) 1958; 68 CR46 CR45 CR44 CR42 Cresson (CR23) 2009; 18 Koba, Nielsen (CR24) 1969; 10 CR40 Casali, Geyer, Mason, Monteiro, Roehrig (CR32) 2015; 11 Bern, Carrasco, Johansson (CR2) 2010; 105 Brown (CR20) 2009; 42 CR18 CR17 CR16 CR15 He, Yan, Zhang, Zhang (CR34) 2018; 08 Geyer, Monteiro (CR43) 2018; 03 CR13 Kawai, Lewellen, Tye (CR3) 1986; 269 CR50 Koba, Nielsen (CR31) 1969; 12 Mason, Skinner (CR47) 2014; 1407 CR29 CR28 CR27 CR26 Fu, Du, Huang, Feng (CR19) 2017; 09 CR25 CR22 CR21 Cohen (CR30) 1995; 100 Bern, Carrasco, Johansson (CR1) 2008; 78 Kleiss, Kuijf (CR12) 1989; 312 Cachazo, He, Yuan (CR8) 2014; 1407 1483_CR15 1483_CR16 1483_CR17 1483_CR18 1483_CR13 Z Koba (1483_CR24) 1969; 10 R Kleiss (1483_CR12) 1989; 312 FCS Brown (1483_CR20) 2009; 42 Y Geyer (1483_CR43) 2018; 03 G Chen (1483_CR49) 2019; 11 1483_CR50 1483_CR7 1483_CR26 1483_CR27 1483_CR5 1483_CR28 1483_CR4 1483_CR29 1483_CR22 1483_CR25 F Cachazo (1483_CR8) 2014; 1407 1483_CR9 N Arkani-Hamed (1483_CR6) 2018; 05 S He (1483_CR34) 2018; 08 R Ree (1483_CR10) 1958; 68 Z Bern (1483_CR2) 2010; 105 1483_CR21 L Mason (1483_CR47) 2014; 1407 1483_CR37 1483_CR38 1483_CR39 H Kawai (1483_CR3) 1986; 269 1483_CR35 1483_CR36 J Cresson (1483_CR23) 2009; 18 Z Bern (1483_CR1) 2008; 78 E Casali (1483_CR32) 2015; 11 1483_CR44 1483_CR45 1483_CR46 DE Radford (1483_CR11) 1979; 58 F Cachazo (1483_CR14) 2015; 07 F Cachazo (1483_CR48) 2019; 02 FR Cohen (1483_CR30) 1995; 100 Z Koba (1483_CR31) 1969; 12 Y Geyer (1483_CR41) 2016; 03 L Dolan (1483_CR33) 2014; 1405 1483_CR40 C-H Fu (1483_CR19) 2017; 09 1483_CR42 |
References_xml | – ident: CR45 – ident: CR22 – volume: 269 start-page: 1 year: 1986 ident: CR3 article-title: A relation between tree amplitudes of closed and open strings publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(86)90362-7 – volume: 105 start-page: 061602 year: 2010 ident: CR2 article-title: Perturbative quantum gravity as a double copy of gauge theory publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.061602 – ident: CR4 – ident: CR39 – volume: 1407 start-page: 033 year: 2014 ident: CR8 article-title: Scattering of massless particles: scalars, gluons and gravitons publication-title: JHEP doi: 10.1007/JHEP07(2014)033 – ident: CR16 – volume: 78 start-page: 085011 year: 2008 ident: CR1 article-title: New relations for gauge-theory amplitudes publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.085011 – volume: 312 start-page: 616 issue: 3 year: 1989 end-page: 644 ident: CR12 article-title: Multigluon cross sections and 5-jet production at hadron colliders publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(89)90574-9 – ident: CR35 – volume: 1407 start-page: 048 year: 2014 ident: CR47 article-title: Ambitwistor strings and the scattering equations publication-title: JHEP doi: 10.1007/JHEP07(2014)048 – ident: CR29 – volume: 12 start-page: 517 year: 1969 end-page: 536 ident: CR31 article-title: Manifestly crossing invariant parametrization of n meson amplitude publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(69)90071-6 – ident: CR25 – ident: CR42 – ident: CR21 – ident: CR46 – ident: CR15 – ident: CR50 – volume: 05 start-page: 096 year: 2018 ident: CR6 article-title: Scattering forms and the positive geometry of kinematics, color and the worldsheet publication-title: JHEP doi: 10.1007/JHEP05(2018)096 – ident: CR9 – ident: CR36 – ident: CR5 – volume: 10 start-page: 633 year: 1969 end-page: 655 ident: CR24 article-title: Reaction amplitude for n mesons: a generalization of the Veneziano–Bardakci–Ruegg–Virasora model publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(69)90331-9 – volume: 03 start-page: 114 year: 2016 ident: CR41 article-title: One-loop amplitudes on the Riemann sphere publication-title: JHEP doi: 10.1007/JHEP03(2016)114 – ident: CR26 – volume: 11 start-page: 055 year: 2019 ident: CR49 article-title: On the kinematic algebra for BCJ numerators beyond the MHV sector publication-title: JHEP doi: 10.1007/JHEP11(2019)055 – volume: 03 start-page: 068 year: 2018 ident: CR43 article-title: Gluons and gravitons at one loop from ambitwistor strings publication-title: JHEP doi: 10.1007/JHEP03(2018)068 – volume: 07 start-page: 149 year: 2015 ident: CR14 article-title: Scattering equations and matrices: from Einstein To Yang–Mills, DBI and NLSM publication-title: JHEP doi: 10.1007/JHEP07(2015)149 – ident: CR18 – volume: 08 start-page: 040 year: 2018 ident: CR34 article-title: Scattering forms, worldsheet forms and amplitudes from subspaces publication-title: JHEP – ident: CR37 – ident: CR40 – ident: CR27 – volume: 58 start-page: 432 issue: 2 year: 1979 end-page: 454 ident: CR11 article-title: A natural ring basis for the shuffle algebra and an application to group schemes publication-title: J. Algebra doi: 10.1016/0021-8693(79)90171-6 – ident: CR44 – volume: 09 start-page: 021 year: 2017 ident: CR19 article-title: Expansion of Einstein–Yang–Mills amplitude publication-title: JHEP doi: 10.1007/JHEP09(2017)021 – volume: 68 start-page: 210 issue: 2 year: 1958 end-page: 220 ident: CR10 article-title: Lie elements and an algebra associated with shuffles publication-title: Ann. Math. doi: 10.2307/1970243 – volume: 42 start-page: 371 year: 2009 ident: CR20 article-title: Multiple zeta values and periods of moduli spaces M 0, n ( R ) publication-title: Annales Sci. Ecole Norm. Sup. doi: 10.24033/asens.2099 – ident: CR38 – volume: 18 start-page: 307 issue: 2 year: 2009 end-page: 395 ident: CR23 article-title: Calcul moulien Annales de la Faculté des sciences de Toulouse publication-title: Mathématiques – ident: CR17 – volume: 11 start-page: 038 year: 2015 ident: CR32 article-title: New ambitwistor string theories publication-title: JHEP doi: 10.1007/JHEP11(2015)038 – ident: CR13 – volume: 100 start-page: 19 issue: 1–3 year: 1995 end-page: 42 ident: CR30 article-title: On configuration spaces, their homology, and Lie algebras publication-title: J. Pure Appl. Algebra doi: 10.1016/0022-4049(95)00054-Z – ident: CR7 – volume: 02 start-page: 005 year: 2019 ident: CR48 article-title: -algebra and scattering amplitudes publication-title: JHEP doi: 10.1007/JHEP02(2019)005 – ident: CR28 – volume: 1405 start-page: 010 year: 2014 ident: CR33 article-title: Proof of the formula of Cachazo, He and Yuan for Yang–Mills tree amplitudes in arbitrary dimension publication-title: JHEP doi: 10.1007/JHEP05(2014)010 – volume: 68 start-page: 210 issue: 2 year: 1958 ident: 1483_CR10 publication-title: Ann. Math. doi: 10.2307/1970243 – volume: 07 start-page: 149 year: 2015 ident: 1483_CR14 publication-title: JHEP doi: 10.1007/JHEP07(2015)149 – ident: 1483_CR45 – ident: 1483_CR22 – volume: 1405 start-page: 010 year: 2014 ident: 1483_CR33 publication-title: JHEP doi: 10.1007/JHEP05(2014)010 – ident: 1483_CR27 doi: 10.1090/S0002-9904-1973-13394-4 – ident: 1483_CR18 doi: 10.1007/JHEP11(2019)055 – ident: 1483_CR17 doi: 10.1007/JHEP03(2014)110 – ident: 1483_CR36 – ident: 1483_CR13 doi: 10.1007/JHEP04(2017)033 – volume: 08 start-page: 040 year: 2018 ident: 1483_CR34 publication-title: JHEP – ident: 1483_CR40 doi: 10.1103/PhysRevLett.115.121603 – volume: 58 start-page: 432 issue: 2 year: 1979 ident: 1483_CR11 publication-title: J. Algebra doi: 10.1016/0021-8693(79)90171-6 – volume: 12 start-page: 517 year: 1969 ident: 1483_CR31 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(69)90071-6 – ident: 1483_CR46 doi: 10.1007/978-3-030-53010-5 – ident: 1483_CR21 – volume: 11 start-page: 055 year: 2019 ident: 1483_CR49 publication-title: JHEP doi: 10.1007/JHEP11(2019)055 – ident: 1483_CR25 – volume: 100 start-page: 19 issue: 1–3 year: 1995 ident: 1483_CR30 publication-title: J. Pure Appl. Algebra doi: 10.1016/0022-4049(95)00054-Z – volume: 03 start-page: 068 year: 2018 ident: 1483_CR43 publication-title: JHEP doi: 10.1007/JHEP03(2018)068 – volume: 02 start-page: 005 year: 2019 ident: 1483_CR48 publication-title: JHEP doi: 10.1007/JHEP02(2019)005 – ident: 1483_CR35 – ident: 1483_CR39 doi: 10.1103/PhysRevD.90.065001 – volume: 105 start-page: 061602 year: 2010 ident: 1483_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.061602 – volume: 09 start-page: 021 year: 2017 ident: 1483_CR19 publication-title: JHEP doi: 10.1007/JHEP09(2017)021 – ident: 1483_CR16 doi: 10.1007/JHEP07(2011)007 – volume: 11 start-page: 038 year: 2015 ident: 1483_CR32 publication-title: JHEP doi: 10.1007/JHEP11(2015)038 – ident: 1483_CR44 doi: 10.1016/j.nuclphysb.2018.03.003 – volume: 78 start-page: 085011 year: 2008 ident: 1483_CR1 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.085011 – ident: 1483_CR7 doi: 10.1103/PhysRevLett.113.171601 – ident: 1483_CR28 doi: 10.7146/math.scand.a-10517 – ident: 1483_CR38 doi: 10.1103/PhysRevLett.120.141602 – ident: 1483_CR15 – ident: 1483_CR4 – volume: 18 start-page: 307 issue: 2 year: 2009 ident: 1483_CR23 publication-title: Mathématiques – ident: 1483_CR37 doi: 10.1103/PhysRevLett.122.211603 – volume: 1407 start-page: 048 year: 2014 ident: 1483_CR47 publication-title: JHEP doi: 10.1007/JHEP07(2014)048 – volume: 42 start-page: 371 year: 2009 ident: 1483_CR20 publication-title: Annales Sci. Ecole Norm. Sup. doi: 10.24033/asens.2099 – volume: 10 start-page: 633 year: 1969 ident: 1483_CR24 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(69)90331-9 – volume: 312 start-page: 616 issue: 3 year: 1989 ident: 1483_CR12 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(89)90574-9 – ident: 1483_CR50 – volume: 03 start-page: 114 year: 2016 ident: 1483_CR41 publication-title: JHEP doi: 10.1007/JHEP03(2016)114 – volume: 269 start-page: 1 year: 1986 ident: 1483_CR3 publication-title: Nucl. Phys. B doi: 10.1016/0550-3213(86)90362-7 – volume: 1407 start-page: 033 year: 2014 ident: 1483_CR8 publication-title: JHEP doi: 10.1007/JHEP07(2014)033 – volume: 05 start-page: 096 year: 2018 ident: 1483_CR6 publication-title: JHEP doi: 10.1007/JHEP05(2018)096 – ident: 1483_CR9 – ident: 1483_CR42 doi: 10.1103/PhysRevD.94.125029 – ident: 1483_CR5 – ident: 1483_CR26 doi: 10.1007/978-1-4757-3951-0 – ident: 1483_CR29 doi: 10.1002/9781118032527 |
SSID | ssj0007250 |
Score | 2.2824373 |
Snippet | We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 147 |
SubjectTerms | Amplitudes Complex Systems Geometry Group Theory and Generalizations Homology Invariants Mathematical and Computational Physics Momentum Physics Physics and Astronomy Polynomials Riemann manifold Scattering Theoretical |
Title | Lie polynomials and a twistorial correspondence for amplitudes |
URI | https://link.springer.com/article/10.1007/s11005-021-01483-1 https://www.ncbi.nlm.nih.gov/pubmed/34924684 https://www.proquest.com/docview/2606945721 https://www.proquest.com/docview/2612049689 https://pubmed.ncbi.nlm.nih.gov/PMC8645543 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLdgExI88DE-VhinIvEGlZqPpskL0u3YMQHjiZPGU5UmqZg09U7rTYj_HjvX9nQMkHiqqrppE9uJndg_A7x2wkhuS5OZ0Ajauskza2uWFT53tRdNCIKykc--qNOF_HhenPdJYd0Q7T4cScaZepvsxgg1k0IKaBdMZOjz7Bfku6MUL_h0nH9LHuuy5oIOJ1Hg-lSZP7exuxzdsDFvhkr-dl4al6H5Q7jf24_pdMPwR3ArtAfwoLcl015TuwO4dzbiseLdnRjo6brH8O7zRUhXy8uflI6Mopfa1qc2Xf_YwIVg0y7W61gt21htNEWjNrUUdk4gmN0TWMxPvs5Os76GQuZkKddZUaMW58r7XBlf8IBLNvOONRyZIZTUjfaKW57bWgvHJAvca6eNzyV2WQUmnsJeu2zDIaTMNw0u97YQrpalNabWXqC3g0ai1yFvEmDDUFauBxinOheX1RYamYa_wuGv4vBXLIE34zurDbzGP6mPBg5Vvap1FTpkysgCPdkEXo2PUUno5MO2YXlNNIyjK6S0SeDZhqHj5wieUSotEyh3WD0SEAD37pP24nsE4tZKojUmEng7CMX2t_7ei-f_R_4C7nIS2BhCcwR766vr8BINoXU9gf3p8fvjOV0_fPt0MoHbMzWbRG34BZUtAbI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfQEAIe-BgMOgYEiTeoaD6aJi-T0InpgLs9bdLeqjRJxaSpd1pvQvz32Llep9sAiccqbtrYcWPX9s8A7720SrjK5ja2kn7dFLlzDc_LUPgmyDZGSdXI82M9PVXfzsqzASaHamFuxO8_9QRpRjXE5PQqI3P0dO4q9JQpfW-iJ-NXtxKpG2shKSSJ22wokPnzHNuH0C3L8naC5I0oaTp8jp7Ao8FqZJ_XYn4Kd2K3C48HC5IN-tnvwsP5iMKKV_dSeqfvn8Hh7Dyy5eLiFxUh44ZjrgvMsdXPNUgITu1Tl47loks9RhmassxRsjlBX_bP4fToy8lkmg-dE3KvKrXKywZ1t9AhFNqGUkQ8qHnwvBUoAqmVaU3QwonCNUZ6rngUwXhjQ6FwyTpyuQc73aKLL4Hx0LZ4yLtS-kZVztrGBIk-DpqGwcSizYBvWFn7AVacultc1NeAyMT-GtlfJ_bXPIMP4z3LNajGP6kPNhKqBwXra3TDtFUl-q8ZvBuHUTUo3uG6uLgiGi7QAdLGZvBiLdDxcQTKqLRRGVRboh4JCHZ7e6Q7_5Hgt41WaIPJDD5uNsX1a_19Ffv_R_4W7k9P5rN69vX4-yt4IGjzpiSaA9hZXV7F12gKrZo3SQd-A_IL_JI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hIhAceJRXoICRuEHU-BHHviChhVWBtuJApd4ix3ZEpSq7YlMh_j0zTjbLUkDiGNl5eB7xjGfmG4CXXlolXGVzG1tJRzdF7lzD8zIUvgmyjVFSNfLRsT44UR9Py9NfqvhTtvs6JDnUNBBKU9fvL0O7vyl844SgSekFdCImc_R_rqKnkgK1Mz2b_sWVSD1aC0mBShS-sWzmz8_Y3pou2ZuX0yZ_i52mLWl-B26NtiR7OzD_LlyJ3S7cHu1KNmrtahduHk3YrHh1LSV9-tU9eHN4Ftlycf6DSpNRDJnrAnOs_z5Ah-CjferdsVx0qfMoQwOXOUpBJ0DM1X04mb__MjvIx34KuVeV6vOyQY0udAiFtqEUEbdvHjxvBTJGamVaE7RwonCNkZ4rHkUw3thQKFyyjlw-gJ1u0cVHwHhoW9z6XSl9oypnbWOCRM8HDcZgYtFmwNekrP0INk49L87rDUwykb9G8teJ_DXP4NV0z3KA2vjn7L01h-pR7VY1OmfaqhK92gxeTMOoMBQFcV1cXNAcLtAt0sZm8HBg6PQ6gmpU2qgMqi1WTxMIjHt7pDv7mkC5jVZomckMXq-FYvNZf1_F4_-b_hyuf343rw8_HH96AjcEyW7KrNmDnf7bRXyK9lHfPEsq8BNZ6QTo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lie+polynomials+and+a+twistorial+correspondence+for+amplitudes&rft.jtitle=Letters+in+mathematical+physics&rft.au=Frost%2C+Hadleigh&rft.au=Mason%2C+Lionel&rft.date=2021-12-01&rft.issn=0377-9017&rft.eissn=1573-0530&rft.volume=111&rft.issue=6&rft_id=info:doi/10.1007%2Fs11005-021-01483-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11005_021_01483_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-9017&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-9017&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-9017&client=summon |