Lie polynomials and a twistorial correspondence for amplitudes

We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of M 0 , n , the mo...

Full description

Saved in:
Bibliographic Details
Published inLetters in mathematical physics Vol. 111; no. 6; p. 147
Main Authors Frost, Hadleigh, Mason, Lionel
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.12.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space–time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain n - 3 -forms on K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral n - 3 -planes in K n introduced by ABHY.
AbstractList We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of $$\mathcal {M}_{0,n}$$ M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle $$T^*_D\mathcal {M}_{0,n}$$ T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and $$\mathcal {K}_n$$ K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space–time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain $$n-3$$ n - 3 -forms on $$\mathcal {K}_n$$ K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral $$n-3$$ n - 3 -planes in $$\mathcal {K}_n$$ K n introduced by ABHY.
We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of , the moduli space of points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle , the bundle of forms with logarithmic singularities on the divisor as the twistor space, and the space of momentum invariants of massless particles subject to momentum conservation as the analogue of space-time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain -forms on , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral -planes in introduced by ABHY.
We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space-time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain n - 3 -forms on K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral n - 3 -planes in K n introduced by ABHY.We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space-time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain n - 3 -forms on K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral n - 3 -planes in K n introduced by ABHY.
We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space–time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain n - 3 -forms on K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral n - 3 -planes in K n introduced by ABHY.
We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of M0,n, the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle TD∗M0,n, the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and Kn the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space–time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain n-3-forms on Kn, introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral n-3-planes in Kn introduced by ABHY.
We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories (and a network of other theories besides). We explain how Lie polynomials naturally arise in the geometry and cohomology of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {M}_{0,n}$$\end{document} M 0 , n , the moduli space of n points on the Riemann sphere up to Mobiüs transformation. We introduce a twistorial correspondence between the cotangent bundle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T^*_D\mathcal {M}_{0,n}$$\end{document} T D ∗ M 0 , n , the bundle of forms with logarithmic singularities on the divisor D as the twistor space, and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_n$$\end{document} K n the space of momentum invariants of n massless particles subject to momentum conservation as the analogue of space–time. This gives a natural framework for Cachazo He and Yuan (CHY) and ambitwistor-string formulae for scattering amplitudes of gauge and gravity theories as being the corresponding Penrose transform. In particular, we show that it gives a natural correspondence between CHY half-integrands and scattering forms, certain \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-3$$\end{document} n - 3 -forms on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_n$$\end{document} K n , introduced by Arkani-Hamed, Bai, He and Yan (ABHY). We also give a generalization and more invariant description of the associahedral \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n-3$$\end{document} n - 3 -planes in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_n$$\end{document} K n introduced by ABHY.
ArticleNumber 147
Author Mason, Lionel
Frost, Hadleigh
Author_xml – sequence: 1
  givenname: Hadleigh
  surname: Frost
  fullname: Frost, Hadleigh
  organization: The Mathematical Institute, University of Oxford, AWB, ROQ
– sequence: 2
  givenname: Lionel
  orcidid: 0000-0003-2464-6730
  surname: Mason
  fullname: Mason, Lionel
  email: lmason@maths.ox.ac.uk
  organization: The Mathematical Institute, University of Oxford, AWB, ROQ
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34924684$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS1URG8Lf4AFisSGTWD8jLOphCpe0pW6adeWrz0prhI72Amo_x5fbgu0i65GGn_n6IzPCTmKKSIhrym8pwDdh0LrkC0w2gIVmrf0GdlQ2fEWJIcjsgHedW0PtDsmJ6XcQBUxCS_IMRc9E0qLDTnbBmzmNN7GNAU7lsZG39hm-RXKknLdNC7ljGVO0WN02AwpN3aax7CsHstL8nyoKnx1N0_J1edPl-df2-3Fl2_nH7etE51YWrkDDqC8B9V7yRAYo97RgUkPXAk9aK-YZWB3mjsqKDKvne49CO9QIeWn5OzgO6-7CesyLtmOZs5hsvnWJBvMw5cYvpvr9NNoJaQUvBq8uzPI6ceKZTFTKA7H0UZMazFMUQaiV7qv6NtH6E1ac6znVaoeIGTH9one_J_ob5T7r62APgAup1IyDsaFxS4h7QOG0VAw-xbNoUVTWzR_WjR7b_ZIeu_-pIgfRKXC8Rrzv9hPqH4D1o2ufg
CitedBy_id crossref_primary_10_1140_epjc_s10052_022_11168_1
Cites_doi 10.1016/0550-3213(86)90362-7
10.1103/PhysRevLett.105.061602
10.1007/JHEP07(2014)033
10.1103/PhysRevD.78.085011
10.1016/0550-3213(89)90574-9
10.1007/JHEP07(2014)048
10.1016/0550-3213(69)90071-6
10.1007/JHEP05(2018)096
10.1016/0550-3213(69)90331-9
10.1007/JHEP03(2016)114
10.1007/JHEP11(2019)055
10.1007/JHEP03(2018)068
10.1007/JHEP07(2015)149
10.1016/0021-8693(79)90171-6
10.1007/JHEP09(2017)021
10.2307/1970243
10.24033/asens.2099
10.1007/JHEP11(2015)038
10.1016/0022-4049(95)00054-Z
10.1007/JHEP02(2019)005
10.1007/JHEP05(2014)010
10.1090/S0002-9904-1973-13394-4
10.1007/JHEP03(2014)110
10.1007/JHEP04(2017)033
10.1103/PhysRevLett.115.121603
10.1007/978-3-030-53010-5
10.1103/PhysRevD.90.065001
10.1007/JHEP07(2011)007
10.1016/j.nuclphysb.2018.03.003
10.1103/PhysRevLett.113.171601
10.7146/math.scand.a-10517
10.1103/PhysRevLett.120.141602
10.1103/PhysRevLett.122.211603
10.1103/PhysRevD.94.125029
10.1007/978-1-4757-3951-0
10.1002/9781118032527
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021.
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021.
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1007/s11005-021-01483-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1573-0530
ExternalDocumentID PMC8645543
34924684
10_1007_s11005_021_01483_1
Genre Journal Article
GrantInformation_xml – fundername: European Research Council
  grantid: 724638
  funderid: http://dx.doi.org/10.13039/501100000781
– fundername: ;
  grantid: 724638
GroupedDBID -54
-5F
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GPTSA
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDH
SDM
SGB
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
YQT
Z45
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
NPM
ABRTQ
7X8
5PM
ID FETCH-LOGICAL-c474t-5b03006dd069d52e0221dc1f25d03648f8d62a20ab83c141e2d8c89d04dce6e13
IEDL.DBID U2A
ISSN 0377-9017
1573-0530
IngestDate Thu Aug 21 18:23:10 EDT 2025
Fri Jul 11 09:51:10 EDT 2025
Fri Jul 25 11:00:57 EDT 2025
Thu Apr 03 07:02:07 EDT 2025
Thu Apr 24 23:12:50 EDT 2025
Tue Jul 01 03:39:20 EDT 2025
Fri Feb 21 02:46:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Twistor theory
81T13
Lie polynomials
Scattering amplitudes
Language English
License The Author(s) 2021.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-5b03006dd069d52e0221dc1f25d03648f8d62a20ab83c141e2d8c89d04dce6e13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2464-6730
OpenAccessLink https://link.springer.com/10.1007/s11005-021-01483-1
PMID 34924684
PQID 2606945721
PQPubID 2043605
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8645543
proquest_miscellaneous_2612049689
proquest_journals_2606945721
pubmed_primary_34924684
crossref_citationtrail_10_1007_s11005_021_01483_1
crossref_primary_10_1007_s11005_021_01483_1
springer_journals_10_1007_s11005_021_01483_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Germany
PublicationTitle Letters in mathematical physics
PublicationTitleAbbrev Lett Math Phys
PublicationTitleAlternate Lett Math Phys
PublicationYear 2021
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Radford (CR11) 1979; 58
CR39
CR38
CR37
CR36
CR35
Cachazo, He, Yuan (CR14) 2015; 07
CR4
CR5
Geyer, Mason, Monteiro, Tourkine (CR41) 2016; 03
Dolan, Goddard (CR33) 2014; 1405
Arkani-Hamed, Bai, He, Yan (CR6) 2018; 05
CR7
CR9
Cachazo, Early, Guevara, Mizera (CR48) 2019; 02
Chen, Johansson, Teng, Wang (CR49) 2019; 11
Ree (CR10) 1958; 68
CR46
CR45
CR44
CR42
Cresson (CR23) 2009; 18
Koba, Nielsen (CR24) 1969; 10
CR40
Casali, Geyer, Mason, Monteiro, Roehrig (CR32) 2015; 11
Bern, Carrasco, Johansson (CR2) 2010; 105
Brown (CR20) 2009; 42
CR18
CR17
CR16
CR15
He, Yan, Zhang, Zhang (CR34) 2018; 08
Geyer, Monteiro (CR43) 2018; 03
CR13
Kawai, Lewellen, Tye (CR3) 1986; 269
CR50
Koba, Nielsen (CR31) 1969; 12
Mason, Skinner (CR47) 2014; 1407
CR29
CR28
CR27
CR26
Fu, Du, Huang, Feng (CR19) 2017; 09
CR25
CR22
CR21
Cohen (CR30) 1995; 100
Bern, Carrasco, Johansson (CR1) 2008; 78
Kleiss, Kuijf (CR12) 1989; 312
Cachazo, He, Yuan (CR8) 2014; 1407
1483_CR15
1483_CR16
1483_CR17
1483_CR18
1483_CR13
Z Koba (1483_CR24) 1969; 10
R Kleiss (1483_CR12) 1989; 312
FCS Brown (1483_CR20) 2009; 42
Y Geyer (1483_CR43) 2018; 03
G Chen (1483_CR49) 2019; 11
1483_CR50
1483_CR7
1483_CR26
1483_CR27
1483_CR5
1483_CR28
1483_CR4
1483_CR29
1483_CR22
1483_CR25
F Cachazo (1483_CR8) 2014; 1407
1483_CR9
N Arkani-Hamed (1483_CR6) 2018; 05
S He (1483_CR34) 2018; 08
R Ree (1483_CR10) 1958; 68
Z Bern (1483_CR2) 2010; 105
1483_CR21
L Mason (1483_CR47) 2014; 1407
1483_CR37
1483_CR38
1483_CR39
H Kawai (1483_CR3) 1986; 269
1483_CR35
1483_CR36
J Cresson (1483_CR23) 2009; 18
Z Bern (1483_CR1) 2008; 78
E Casali (1483_CR32) 2015; 11
1483_CR44
1483_CR45
1483_CR46
DE Radford (1483_CR11) 1979; 58
F Cachazo (1483_CR14) 2015; 07
F Cachazo (1483_CR48) 2019; 02
FR Cohen (1483_CR30) 1995; 100
Z Koba (1483_CR31) 1969; 12
Y Geyer (1483_CR41) 2016; 03
L Dolan (1483_CR33) 2014; 1405
1483_CR40
C-H Fu (1483_CR19) 2017; 09
1483_CR42
References_xml – ident: CR45
– ident: CR22
– volume: 269
  start-page: 1
  year: 1986
  ident: CR3
  article-title: A relation between tree amplitudes of closed and open strings
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(86)90362-7
– volume: 105
  start-page: 061602
  year: 2010
  ident: CR2
  article-title: Perturbative quantum gravity as a double copy of gauge theory
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.061602
– ident: CR4
– ident: CR39
– volume: 1407
  start-page: 033
  year: 2014
  ident: CR8
  article-title: Scattering of massless particles: scalars, gluons and gravitons
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)033
– ident: CR16
– volume: 78
  start-page: 085011
  year: 2008
  ident: CR1
  article-title: New relations for gauge-theory amplitudes
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.085011
– volume: 312
  start-page: 616
  issue: 3
  year: 1989
  end-page: 644
  ident: CR12
  article-title: Multigluon cross sections and 5-jet production at hadron colliders
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(89)90574-9
– ident: CR35
– volume: 1407
  start-page: 048
  year: 2014
  ident: CR47
  article-title: Ambitwistor strings and the scattering equations
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)048
– ident: CR29
– volume: 12
  start-page: 517
  year: 1969
  end-page: 536
  ident: CR31
  article-title: Manifestly crossing invariant parametrization of n meson amplitude
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(69)90071-6
– ident: CR25
– ident: CR42
– ident: CR21
– ident: CR46
– ident: CR15
– ident: CR50
– volume: 05
  start-page: 096
  year: 2018
  ident: CR6
  article-title: Scattering forms and the positive geometry of kinematics, color and the worldsheet
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)096
– ident: CR9
– ident: CR36
– ident: CR5
– volume: 10
  start-page: 633
  year: 1969
  end-page: 655
  ident: CR24
  article-title: Reaction amplitude for n mesons: a generalization of the Veneziano–Bardakci–Ruegg–Virasora model
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(69)90331-9
– volume: 03
  start-page: 114
  year: 2016
  ident: CR41
  article-title: One-loop amplitudes on the Riemann sphere
  publication-title: JHEP
  doi: 10.1007/JHEP03(2016)114
– ident: CR26
– volume: 11
  start-page: 055
  year: 2019
  ident: CR49
  article-title: On the kinematic algebra for BCJ numerators beyond the MHV sector
  publication-title: JHEP
  doi: 10.1007/JHEP11(2019)055
– volume: 03
  start-page: 068
  year: 2018
  ident: CR43
  article-title: Gluons and gravitons at one loop from ambitwistor strings
  publication-title: JHEP
  doi: 10.1007/JHEP03(2018)068
– volume: 07
  start-page: 149
  year: 2015
  ident: CR14
  article-title: Scattering equations and matrices: from Einstein To Yang–Mills, DBI and NLSM
  publication-title: JHEP
  doi: 10.1007/JHEP07(2015)149
– ident: CR18
– volume: 08
  start-page: 040
  year: 2018
  ident: CR34
  article-title: Scattering forms, worldsheet forms and amplitudes from subspaces
  publication-title: JHEP
– ident: CR37
– ident: CR40
– ident: CR27
– volume: 58
  start-page: 432
  issue: 2
  year: 1979
  end-page: 454
  ident: CR11
  article-title: A natural ring basis for the shuffle algebra and an application to group schemes
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(79)90171-6
– ident: CR44
– volume: 09
  start-page: 021
  year: 2017
  ident: CR19
  article-title: Expansion of Einstein–Yang–Mills amplitude
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)021
– volume: 68
  start-page: 210
  issue: 2
  year: 1958
  end-page: 220
  ident: CR10
  article-title: Lie elements and an algebra associated with shuffles
  publication-title: Ann. Math.
  doi: 10.2307/1970243
– volume: 42
  start-page: 371
  year: 2009
  ident: CR20
  article-title: Multiple zeta values and periods of moduli spaces M 0, n ( R )
  publication-title: Annales Sci. Ecole Norm. Sup.
  doi: 10.24033/asens.2099
– ident: CR38
– volume: 18
  start-page: 307
  issue: 2
  year: 2009
  end-page: 395
  ident: CR23
  article-title: Calcul moulien Annales de la Faculté des sciences de Toulouse
  publication-title: Mathématiques
– ident: CR17
– volume: 11
  start-page: 038
  year: 2015
  ident: CR32
  article-title: New ambitwistor string theories
  publication-title: JHEP
  doi: 10.1007/JHEP11(2015)038
– ident: CR13
– volume: 100
  start-page: 19
  issue: 1–3
  year: 1995
  end-page: 42
  ident: CR30
  article-title: On configuration spaces, their homology, and Lie algebras
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/0022-4049(95)00054-Z
– ident: CR7
– volume: 02
  start-page: 005
  year: 2019
  ident: CR48
  article-title: -algebra and scattering amplitudes
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)005
– ident: CR28
– volume: 1405
  start-page: 010
  year: 2014
  ident: CR33
  article-title: Proof of the formula of Cachazo, He and Yuan for Yang–Mills tree amplitudes in arbitrary dimension
  publication-title: JHEP
  doi: 10.1007/JHEP05(2014)010
– volume: 68
  start-page: 210
  issue: 2
  year: 1958
  ident: 1483_CR10
  publication-title: Ann. Math.
  doi: 10.2307/1970243
– volume: 07
  start-page: 149
  year: 2015
  ident: 1483_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP07(2015)149
– ident: 1483_CR45
– ident: 1483_CR22
– volume: 1405
  start-page: 010
  year: 2014
  ident: 1483_CR33
  publication-title: JHEP
  doi: 10.1007/JHEP05(2014)010
– ident: 1483_CR27
  doi: 10.1090/S0002-9904-1973-13394-4
– ident: 1483_CR18
  doi: 10.1007/JHEP11(2019)055
– ident: 1483_CR17
  doi: 10.1007/JHEP03(2014)110
– ident: 1483_CR36
– ident: 1483_CR13
  doi: 10.1007/JHEP04(2017)033
– volume: 08
  start-page: 040
  year: 2018
  ident: 1483_CR34
  publication-title: JHEP
– ident: 1483_CR40
  doi: 10.1103/PhysRevLett.115.121603
– volume: 58
  start-page: 432
  issue: 2
  year: 1979
  ident: 1483_CR11
  publication-title: J. Algebra
  doi: 10.1016/0021-8693(79)90171-6
– volume: 12
  start-page: 517
  year: 1969
  ident: 1483_CR31
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(69)90071-6
– ident: 1483_CR46
  doi: 10.1007/978-3-030-53010-5
– ident: 1483_CR21
– volume: 11
  start-page: 055
  year: 2019
  ident: 1483_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP11(2019)055
– ident: 1483_CR25
– volume: 100
  start-page: 19
  issue: 1–3
  year: 1995
  ident: 1483_CR30
  publication-title: J. Pure Appl. Algebra
  doi: 10.1016/0022-4049(95)00054-Z
– volume: 03
  start-page: 068
  year: 2018
  ident: 1483_CR43
  publication-title: JHEP
  doi: 10.1007/JHEP03(2018)068
– volume: 02
  start-page: 005
  year: 2019
  ident: 1483_CR48
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)005
– ident: 1483_CR35
– ident: 1483_CR39
  doi: 10.1103/PhysRevD.90.065001
– volume: 105
  start-page: 061602
  year: 2010
  ident: 1483_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.061602
– volume: 09
  start-page: 021
  year: 2017
  ident: 1483_CR19
  publication-title: JHEP
  doi: 10.1007/JHEP09(2017)021
– ident: 1483_CR16
  doi: 10.1007/JHEP07(2011)007
– volume: 11
  start-page: 038
  year: 2015
  ident: 1483_CR32
  publication-title: JHEP
  doi: 10.1007/JHEP11(2015)038
– ident: 1483_CR44
  doi: 10.1016/j.nuclphysb.2018.03.003
– volume: 78
  start-page: 085011
  year: 2008
  ident: 1483_CR1
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.085011
– ident: 1483_CR7
  doi: 10.1103/PhysRevLett.113.171601
– ident: 1483_CR28
  doi: 10.7146/math.scand.a-10517
– ident: 1483_CR38
  doi: 10.1103/PhysRevLett.120.141602
– ident: 1483_CR15
– ident: 1483_CR4
– volume: 18
  start-page: 307
  issue: 2
  year: 2009
  ident: 1483_CR23
  publication-title: Mathématiques
– ident: 1483_CR37
  doi: 10.1103/PhysRevLett.122.211603
– volume: 1407
  start-page: 048
  year: 2014
  ident: 1483_CR47
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)048
– volume: 42
  start-page: 371
  year: 2009
  ident: 1483_CR20
  publication-title: Annales Sci. Ecole Norm. Sup.
  doi: 10.24033/asens.2099
– volume: 10
  start-page: 633
  year: 1969
  ident: 1483_CR24
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(69)90331-9
– volume: 312
  start-page: 616
  issue: 3
  year: 1989
  ident: 1483_CR12
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(89)90574-9
– ident: 1483_CR50
– volume: 03
  start-page: 114
  year: 2016
  ident: 1483_CR41
  publication-title: JHEP
  doi: 10.1007/JHEP03(2016)114
– volume: 269
  start-page: 1
  year: 1986
  ident: 1483_CR3
  publication-title: Nucl. Phys. B
  doi: 10.1016/0550-3213(86)90362-7
– volume: 1407
  start-page: 033
  year: 2014
  ident: 1483_CR8
  publication-title: JHEP
  doi: 10.1007/JHEP07(2014)033
– volume: 05
  start-page: 096
  year: 2018
  ident: 1483_CR6
  publication-title: JHEP
  doi: 10.1007/JHEP05(2018)096
– ident: 1483_CR9
– ident: 1483_CR42
  doi: 10.1103/PhysRevD.94.125029
– ident: 1483_CR5
– ident: 1483_CR26
  doi: 10.1007/978-1-4757-3951-0
– ident: 1483_CR29
  doi: 10.1002/9781118032527
SSID ssj0007250
Score 2.2824373
Snippet We review Lie polynomials as a mathematical framework that underpins the structure of the so-called double copy relationship between gauge and gravity theories...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 147
SubjectTerms Amplitudes
Complex Systems
Geometry
Group Theory and Generalizations
Homology
Invariants
Mathematical and Computational Physics
Momentum
Physics
Physics and Astronomy
Polynomials
Riemann manifold
Scattering
Theoretical
Title Lie polynomials and a twistorial correspondence for amplitudes
URI https://link.springer.com/article/10.1007/s11005-021-01483-1
https://www.ncbi.nlm.nih.gov/pubmed/34924684
https://www.proquest.com/docview/2606945721
https://www.proquest.com/docview/2612049689
https://pubmed.ncbi.nlm.nih.gov/PMC8645543
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLdgExI88DE-VhinIvEGlZqPpskL0u3YMQHjiZPGU5UmqZg09U7rTYj_HjvX9nQMkHiqqrppE9uJndg_A7x2wkhuS5OZ0Ajauskza2uWFT53tRdNCIKykc--qNOF_HhenPdJYd0Q7T4cScaZepvsxgg1k0IKaBdMZOjz7Bfku6MUL_h0nH9LHuuy5oIOJ1Hg-lSZP7exuxzdsDFvhkr-dl4al6H5Q7jf24_pdMPwR3ArtAfwoLcl015TuwO4dzbiseLdnRjo6brH8O7zRUhXy8uflI6Mopfa1qc2Xf_YwIVg0y7W61gt21htNEWjNrUUdk4gmN0TWMxPvs5Os76GQuZkKddZUaMW58r7XBlf8IBLNvOONRyZIZTUjfaKW57bWgvHJAvca6eNzyV2WQUmnsJeu2zDIaTMNw0u97YQrpalNabWXqC3g0ai1yFvEmDDUFauBxinOheX1RYamYa_wuGv4vBXLIE34zurDbzGP6mPBg5Vvap1FTpkysgCPdkEXo2PUUno5MO2YXlNNIyjK6S0SeDZhqHj5wieUSotEyh3WD0SEAD37pP24nsE4tZKojUmEng7CMX2t_7ei-f_R_4C7nIS2BhCcwR766vr8BINoXU9gf3p8fvjOV0_fPt0MoHbMzWbRG34BZUtAbI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9QwDLfQEAIe-BgMOgYEiTeoaD6aJi-T0InpgLs9bdLeqjRJxaSpd1pvQvz32Llep9sAiccqbtrYcWPX9s8A7720SrjK5ja2kn7dFLlzDc_LUPgmyDZGSdXI82M9PVXfzsqzASaHamFuxO8_9QRpRjXE5PQqI3P0dO4q9JQpfW-iJ-NXtxKpG2shKSSJ22wokPnzHNuH0C3L8naC5I0oaTp8jp7Ao8FqZJ_XYn4Kd2K3C48HC5IN-tnvwsP5iMKKV_dSeqfvn8Hh7Dyy5eLiFxUh44ZjrgvMsdXPNUgITu1Tl47loks9RhmassxRsjlBX_bP4fToy8lkmg-dE3KvKrXKywZ1t9AhFNqGUkQ8qHnwvBUoAqmVaU3QwonCNUZ6rngUwXhjQ6FwyTpyuQc73aKLL4Hx0LZ4yLtS-kZVztrGBIk-DpqGwcSizYBvWFn7AVacultc1NeAyMT-GtlfJ_bXPIMP4z3LNajGP6kPNhKqBwXra3TDtFUl-q8ZvBuHUTUo3uG6uLgiGi7QAdLGZvBiLdDxcQTKqLRRGVRboh4JCHZ7e6Q7_5Hgt41WaIPJDD5uNsX1a_19Ffv_R_4W7k9P5rN69vX4-yt4IGjzpiSaA9hZXV7F12gKrZo3SQd-A_IL_JI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6hIhAceJRXoICRuEHU-BHHviChhVWBtuJApd4ix3ZEpSq7YlMh_j0zTjbLUkDiGNl5eB7xjGfmG4CXXlolXGVzG1tJRzdF7lzD8zIUvgmyjVFSNfLRsT44UR9Py9NfqvhTtvs6JDnUNBBKU9fvL0O7vyl844SgSekFdCImc_R_rqKnkgK1Mz2b_sWVSD1aC0mBShS-sWzmz8_Y3pou2ZuX0yZ_i52mLWl-B26NtiR7OzD_LlyJ3S7cHu1KNmrtahduHk3YrHh1LSV9-tU9eHN4Ftlycf6DSpNRDJnrAnOs_z5Ah-CjferdsVx0qfMoQwOXOUpBJ0DM1X04mb__MjvIx34KuVeV6vOyQY0udAiFtqEUEbdvHjxvBTJGamVaE7RwonCNkZ4rHkUw3thQKFyyjlw-gJ1u0cVHwHhoW9z6XSl9oypnbWOCRM8HDcZgYtFmwNekrP0INk49L87rDUwykb9G8teJ_DXP4NV0z3KA2vjn7L01h-pR7VY1OmfaqhK92gxeTMOoMBQFcV1cXNAcLtAt0sZm8HBg6PQ6gmpU2qgMqi1WTxMIjHt7pDv7mkC5jVZomckMXq-FYvNZf1_F4_-b_hyuf343rw8_HH96AjcEyW7KrNmDnf7bRXyK9lHfPEsq8BNZ6QTo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lie+polynomials+and+a+twistorial+correspondence+for+amplitudes&rft.jtitle=Letters+in+mathematical+physics&rft.au=Frost%2C+Hadleigh&rft.au=Mason%2C+Lionel&rft.date=2021-12-01&rft.issn=0377-9017&rft.eissn=1573-0530&rft.volume=111&rft.issue=6&rft_id=info:doi/10.1007%2Fs11005-021-01483-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11005_021_01483_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-9017&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-9017&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-9017&client=summon