Omics technologies in poultry health and productivity - part 1: current use in poultry research
In biology, molecular terms with the suffix "-omics" refer to disciplines aiming at the collective characterization of pools of molecules derived from different layers (DNA, RNA, proteins, metabolites) of living organisms using high-throughput technologies. Such omics analyses have been wi...
Saved in:
Published in | Avian pathology Vol. 51; no. 5; pp. 407 - 417 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Taylor & Francis
03.09.2022
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0307-9457 1465-3338 1465-3338 |
DOI | 10.1080/03079457.2022.2086447 |
Cover
Abstract | In biology, molecular terms with the suffix "-omics" refer to disciplines aiming at the collective characterization of pools of molecules derived from different layers (DNA, RNA, proteins, metabolites) of living organisms using high-throughput technologies. Such omics analyses have been widely implemented in poultry research in recent years. This first part of a bipartite review on omics technologies in poultry health and productivity examines the use of multiple omics and multi-omics techniques in poultry research. More specific present and future applications of omics technologies, not only for the identification of specific diagnostic biomarkers, but also for potential future integration in the daily monitoring of poultry production, are discussed in part 2. Approaches based on omics technologies are particularly used in poultry research in the hunt for genetic markers of economically important phenotypical traits in the host, and in the identification of key bacterial species or functions in the intestinal microbiome. Integrative multi-omics analyses, however, are still scarce. Host physiology is investigated via genomics together with transcriptomics, proteomics and metabolomics techniques, to understand more accurately complex production traits such as disease resistance and fertility. The gut microbiota, as a key player in chicken productivity and health, is also a main subject of such studies, investigating the association between its composition (16S rRNA gene sequencing) or function (metagenomics, metatranscriptomics, metaproteomics, metabolomics) and host phenotypes. Applications of these technologies in the study of other host-associated microbiota and other host characteristics are still in their infancy. |
---|---|
AbstractList | In biology, molecular terms with the suffix "-omics" refer to disciplines aiming at the collective characterization of pools of molecules derived from different layers (DNA, RNA, proteins, metabolites) of living organisms using high-throughput technologies. Such omics analyses have been widely implemented in poultry research in recent years. This first part of a bipartite review on omics technologies in poultry health and productivity, examines the use of multiple omics and multi-omics techniques in poultry research. More specific present and future applications of omics technologies, not only for the identification of specific diagnostic biomarkers, but also for potential future integration in the daily monitoring of poultry production, are discussed in part 2. Approaches based on omics technologies are particularly used in poultry research in the hunt for genetic markers of economically important phenotypical traits in the host and in the identification of key bacterial species or functions in the intestinal microbiome. Integrative multi-omics analyses, however, are still scarce. Host physiology is investigated via genomics together with transcriptomics, proteomics and metabolomics techniques, to understand more accurately complex production traits such as disease resistance and fertility. The gut microbiota, as key player in chicken productivity and health, is also a main subject of such studies, investigating the association between its composition (16S rRNA gene sequencing) or function (metagenomics, metatranscriptomics, metaproteomics, metabolomics) and host phenotypes. Applications of these technologies in the study of other host-associated microbiota and other host characteristics are still in their infancy. In biology, molecular terms with the suffix "-omics" refer to disciplines aiming at the collective characterization of pools of molecules derived from different layers (DNA, RNA, proteins, metabolites) of living organisms using high-throughput technologies. Such omics analyses have been widely implemented in poultry research in recent years. This first part of a bipartite review on omics technologies in poultry health and productivity examines the use of multiple omics and multi-omics techniques in poultry research. More specific present and future applications of omics technologies, not only for the identification of specific diagnostic biomarkers, but also for potential future integration in the daily monitoring of poultry production, are discussed in part 2. Approaches based on omics technologies are particularly used in poultry research in the hunt for genetic markers of economically important phenotypical traits in the host, and in the identification of key bacterial species or functions in the intestinal microbiome. Integrative multi-omics analyses, however, are still scarce. Host physiology is investigated via genomics together with transcriptomics, proteomics and metabolomics techniques, to understand more accurately complex production traits such as disease resistance and fertility. The gut microbiota, as a key player in chicken productivity and health, is also a main subject of such studies, investigating the association between its composition (16S rRNA gene sequencing) or function (metagenomics, metatranscriptomics, metaproteomics, metabolomics) and host phenotypes. Applications of these technologies in the study of other host-associated microbiota and other host characteristics are still in their infancy.In biology, molecular terms with the suffix "-omics" refer to disciplines aiming at the collective characterization of pools of molecules derived from different layers (DNA, RNA, proteins, metabolites) of living organisms using high-throughput technologies. Such omics analyses have been widely implemented in poultry research in recent years. This first part of a bipartite review on omics technologies in poultry health and productivity examines the use of multiple omics and multi-omics techniques in poultry research. More specific present and future applications of omics technologies, not only for the identification of specific diagnostic biomarkers, but also for potential future integration in the daily monitoring of poultry production, are discussed in part 2. Approaches based on omics technologies are particularly used in poultry research in the hunt for genetic markers of economically important phenotypical traits in the host, and in the identification of key bacterial species or functions in the intestinal microbiome. Integrative multi-omics analyses, however, are still scarce. Host physiology is investigated via genomics together with transcriptomics, proteomics and metabolomics techniques, to understand more accurately complex production traits such as disease resistance and fertility. The gut microbiota, as a key player in chicken productivity and health, is also a main subject of such studies, investigating the association between its composition (16S rRNA gene sequencing) or function (metagenomics, metatranscriptomics, metaproteomics, metabolomics) and host phenotypes. Applications of these technologies in the study of other host-associated microbiota and other host characteristics are still in their infancy. In biology, molecular terms with the suffix "-omics" refer to disciplines aiming at the collective characterization of pools of molecules derived from different layers (DNA, RNA, proteins, metabolites) of living organisms using high-throughput technologies. Such omics analyses have been widely implemented in poultry research in recent years. This first part of a bipartite review on omics technologies in poultry health and productivity examines the use of multiple omics and multi-omics techniques in poultry research. More specific present and future applications of omics technologies, not only for the identification of specific diagnostic biomarkers, but also for potential future integration in the daily monitoring of poultry production, are discussed in part 2. Approaches based on omics technologies are particularly used in poultry research in the hunt for genetic markers of economically important phenotypical traits in the host, and in the identification of key bacterial species or functions in the intestinal microbiome. Integrative multi-omics analyses, however, are still scarce. Host physiology is investigated via genomics together with transcriptomics, proteomics and metabolomics techniques, to understand more accurately complex production traits such as disease resistance and fertility. The gut microbiota, as a key player in chicken productivity and health, is also a main subject of such studies, investigating the association between its composition (16S rRNA gene sequencing) or function (metagenomics, metatranscriptomics, metaproteomics, metabolomics) and host phenotypes. Applications of these technologies in the study of other host-associated microbiota and other host characteristics are still in their infancy. |
Author | Ducatelle, Richard Van Immerseel, Filip Dehau, Tessa Goossens, Evy |
Author_xml | – sequence: 1 givenname: Tessa surname: Dehau fullname: Dehau, Tessa organization: Ghent University – sequence: 2 givenname: Richard surname: Ducatelle fullname: Ducatelle, Richard organization: Ghent University – sequence: 3 givenname: Filip orcidid: 0000-0003-0455-3350 surname: Van Immerseel fullname: Van Immerseel, Filip organization: Ghent University – sequence: 4 givenname: Evy orcidid: 0000-0001-6476-5932 surname: Goossens fullname: Goossens, Evy email: evy.goossens@ugent.be organization: Ghent University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35675291$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1u1DAURi1URKctjwCyxIZNWv87gQ2oKlCpUjd0bTnODeMqsQfbKZq3r0czRagLuvFd-JxPvv5O0FGIARB6R8k5JS25IJzoTkh9zghj9WiVEPoVWlGhZMM5b4_Qasc0O-gYneR8TwhRUrI36JhLpSXr6AqZ29m7jAu4dYhT_OUhYx_wJi5TSVu8BjuVNbZhwJsUh8UV_-DLFjd4Y1PB9BN2S0oQCl4y_CsmyGCTW5-h16OdMrw9zFN09-3q5-WP5ub2-_Xl15vGCS1KI9xge9lLwnjXUga654MCMdi2bleJbhQKOmm7gY9Ut_W2F06IgQDhre6An6KP-9z6zN8L5GJmnx1Mkw0Ql2yYZpwSJep4EVVacCGVaCv64Rl6H5cU6iI1kFLFu47qSr0_UEs_w2A2yc82bc3TL1dA7gGXYs4Jxr8IJWbXpnlq0-zaNIc2q_f5med8scXHUJL104v2l73twxjTbP_ENA2m2O0U05hscD4b_v-IR5V6tic |
CitedBy_id | crossref_primary_10_1016_j_aninu_2023_03_005 crossref_primary_10_1016_j_jprot_2024_105281 crossref_primary_10_1016_j_psj_2025_105089 crossref_primary_10_3389_fvets_2024_1366128 crossref_primary_10_3389_fvets_2023_1224630 crossref_primary_10_1016_j_psj_2024_104643 crossref_primary_10_1016_j_egg_2023_100201 crossref_primary_10_1016_j_theriogenology_2023_12_026 crossref_primary_10_1016_j_psj_2024_103752 crossref_primary_10_1016_j_psj_2024_104213 crossref_primary_10_3389_fphys_2025_1537099 crossref_primary_10_3390_microorganisms12081639 crossref_primary_10_1186_s12864_024_10496_8 crossref_primary_10_1016_j_jprot_2024_105158 crossref_primary_10_3390_v15091960 |
Cites_doi | 10.3389/fvets.2016.00011 10.3389/fvets.2015.00028 10.1016/j.jprot.2021.104220 10.3390/microorganisms7120597 10.1093/bioinformatics/btv287 10.3389/fgene.2020.567812 10.3389/fgene.2018.00340 10.1038/s42003-021-02827-2 10.1017/S0954422410000247 10.1007/s00251-001-0387-7 10.1128/AEM.00362-18 10.3390/ijms20051041 10.1128/AEM.03473-15 10.1016/j.envint.2020.105971 10.1007/978-3-030-05011-5_10 10.1007/s00253-011-3847-5 10.3389/fmicb.2020.00576 10.1016/j.psj.2021.101588 10.1186/s13059-020-1947-1 10.1038/nmicrobiol.2016.49 10.3390/ani10010103 10.3389/fgene.2021.646297 10.1073/pnas.0634629100 10.1016/j.csbj.2018.03.002 10.1016/j.psj.2020.11.026 10.1016/j.vetimm.2018.10.004 10.1016/j.isci.2020.101414 10.3390/metabo3030741 10.3390/v11111070 10.1186/s40104-018-0278-5 10.1038/27376 10.1016/j.tem.2019.07.007 10.3389/fphys.2020.00020 10.1038/nbt.2676 10.1128/AEM.02472-13 10.7717/peerj.10941 10.1186/1297-9686-37-6-539 10.1074/mcp.RA117.000459 10.1016/j.isci.2020.101193 10.1128/IAI.00688-16 10.3389/fmicb.2016.00187 10.1038/s41587-020-0548-6 10.1007/s00253-014-5646-2 10.3382/ps.2012-02822 10.3390/genes9120579 10.3389/fmicb.2016.01416 10.1038/s41598-020-60892-9 10.3389/fvets.2018.00254 10.1186/s40793-020-00358-7 10.1007/s00253-018-9281-1 10.1371/journal.pone.0091941 10.1016/j.jprot.2021.104242 10.1016/j.cell.2012.04.037 10.1016/j.vetmic.2013.01.030 10.1016/j.anireprosci.2020.106354 10.3389/fvets.2020.482637 10.3390/ani11010181 10.1007/s13205-019-1834-1 10.3382/ps/pez279 10.1007/s11033-012-1947-7 10.1186/s13567-019-0663-x 10.1016/j.envint.2020.105649 10.1371/journal.pone.0181900 10.1016/j.jbiosc.2013.01.004 10.2147/IJGM.S249970 10.1093/icb/icv033 10.1016/j.micinf.2005.11.016 10.3389/fmicb.2016.02033 10.1186/s12864-018-4675-0 10.3389/fvets.2021.791371 10.1186/s40168-021-01040-x 10.1016/j.animal.2021.100275 10.1016/j.aca.2020.10.038 10.1038/s41598-016-0028-x 10.1371/journal.pone.0027949 10.3389/fmicb.2021.726923 10.1093/femsle/fnv122 10.1017/S1466252319000124 10.1038/s41598-019-56847-4 10.1038/srep25882 10.1371/journal.pone.0212446 10.1186/s12864-018-4776-9 10.1111/1574-6968.12608 10.1371/journal.pone.0124403 10.1186/s40168-018-0590-5 10.3390/ijms20194781 10.1146/annurev-animal-031412-103701 |
ContentType | Journal Article |
Copyright | 2022 Houghton Trust Ltd 2022 2022 Houghton Trust Ltd |
Copyright_xml | – notice: 2022 Houghton Trust Ltd 2022 – notice: 2022 Houghton Trust Ltd |
DBID | AAYXX CITATION NPM 7QL 7T5 7TM 7U7 7U9 C1K F1W H94 H95 K9. L.G M7N 7X8 7S9 L.6 |
DOI | 10.1080/03079457.2022.2086447 |
DatabaseName | CrossRef PubMed Bacteriology Abstracts (Microbiology B) Immunology Abstracts Nucleic Acids Abstracts Toxicology Abstracts Virology and AIDS Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources ProQuest Health & Medical Complete (Alumni) Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Virology and AIDS Abstracts Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Nucleic Acids Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environmental Sciences and Pollution Management MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Veterinary Medicine Biology |
EISSN | 1465-3338 |
EndPage | 417 |
ExternalDocumentID | 35675291 10_1080_03079457_2022_2086447 2086447 |
Genre | Review Journal Article |
GrantInformation_xml | – fundername: UGent GOA project grantid: BOFGOA2019000203 |
GroupedDBID | --- .7F .QJ 0BK 0R~ 23N 2DF 30N 36B 4.4 53G 5GY 5VS 6J9 AAENE AAHBH AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABDBF ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFO ACGFS ACPRK ACTIO ACUHS ADCVX ADGTB ADXPE AEGXH AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRAH AGDLA AGMYJ AHDZW AIAGR AIJEM AJWEG AKBVH AKOOK ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU APEBS AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO DU5 EAP EAS EBD EBS EDH EMB EMK EMOBN EPL ESX EYRJQ E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NX0 O9- OK1 P2P RIG RNANH ROSJB RTWRZ S-T SNACF SV3 TBQAZ TDBHL TEI TFL TFT TFW TQWBC TTHFI TUROJ TWF UT5 UU3 ZGOLN ~KM ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION NPM 7QL 7T5 7TM 7U7 7U9 C1K F1W H94 H95 K9. L.G M7N TASJS 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c474t-4cdab5b50239812e7b3d6e4da80224749f46e95a9d3f178b3db4c44d0e03879e3 |
ISSN | 0307-9457 1465-3338 |
IngestDate | Fri Sep 05 17:21:26 EDT 2025 Thu Sep 04 15:53:46 EDT 2025 Wed Aug 13 09:38:08 EDT 2025 Wed Feb 19 02:25:11 EST 2025 Thu Apr 24 23:02:02 EDT 2025 Tue Jul 01 01:17:26 EDT 2025 Wed Dec 25 09:05:18 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | microbiota proteomics metabolomics Genomics integrated multi-omics metagenomics host transcriptomics multiple omics |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c474t-4cdab5b50239812e7b3d6e4da80224749f46e95a9d3f178b3db4c44d0e03879e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0455-3350 0000-0001-6476-5932 |
OpenAccessLink | https://biblio.ugent.be/publication/8759043/file/8759044.pdf |
PMID | 35675291 |
PQID | 2711639917 |
PQPubID | 32881 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2711639917 crossref_primary_10_1080_03079457_2022_2086447 informaworld_taylorfrancis_310_1080_03079457_2022_2086447 pubmed_primary_35675291 proquest_miscellaneous_2674345648 crossref_citationtrail_10_1080_03079457_2022_2086447 proquest_miscellaneous_2723106472 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-03 |
PublicationDateYYYYMMDD | 2022-09-03 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-03 day: 03 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Houghton |
PublicationTitle | Avian pathology |
PublicationTitleAlternate | Avian Pathol |
PublicationYear | 2022 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0072 CIT0071 CIT0030 CIT0074 CIT0073 CIT0032 CIT0076 CIT0031 CIT0075 CIT0034 CIT0078 CIT0033 CIT0077 CIT0070 CIT0036 Yan W. (CIT0081) 2017; 7 CIT0035 CIT0079 CIT0038 CIT0037 CIT0039 CIT0083 CIT0082 CIT0041 CIT0085 CIT0040 CIT0084 CIT0087 CIT0042 CIT0086 CIT0001 CIT0045 CIT0044 CIT0088 CIT0080 CIT0003 CIT0047 CIT0002 CIT0046 CIT0005 CIT0049 CIT0004 CIT0048 CIT0006 CIT0009 CIT0008 CIT0050 CIT0052 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0065 CIT0020 CIT0064 CIT0023 CIT0067 CIT0022 CIT0066 Michael M.E. (CIT0043) 2020; 64 Chen Y. (CIT0007) 2020; 10 CIT0025 CIT0069 CIT0024 CIT0068 CIT0027 CIT0026 CIT0029 CIT0028 |
References_xml | – ident: CIT0047 doi: 10.3389/fvets.2016.00011 – ident: CIT0055 doi: 10.3389/fvets.2015.00028 – ident: CIT0001 doi: 10.1016/j.jprot.2021.104220 – ident: CIT0033 doi: 10.3390/microorganisms7120597 – ident: CIT0002 doi: 10.1093/bioinformatics/btv287 – ident: CIT0006 doi: 10.3389/fgene.2020.567812 – ident: CIT0084 doi: 10.3389/fgene.2018.00340 – ident: CIT0016 doi: 10.1038/s42003-021-02827-2 – ident: CIT0023 doi: 10.1017/S0954422410000247 – ident: CIT0042 doi: 10.1007/s00251-001-0387-7 – ident: CIT0029 doi: 10.1128/AEM.00362-18 – ident: CIT0019 doi: 10.3390/ijms20051041 – ident: CIT0050 doi: 10.1128/AEM.03473-15 – ident: CIT0038 doi: 10.1016/j.envint.2020.105971 – ident: CIT0071 doi: 10.1007/978-3-030-05011-5_10 – ident: CIT0064 doi: 10.1007/s00253-011-3847-5 – ident: CIT0036 doi: 10.3389/fmicb.2020.00576 – ident: CIT0035 doi: 10.1016/j.psj.2021.101588 – ident: CIT0022 doi: 10.1186/s13059-020-1947-1 – ident: CIT0025 doi: 10.1038/nmicrobiol.2016.49 – ident: CIT0056 doi: 10.3390/ani10010103 – ident: CIT0020 doi: 10.3389/fgene.2021.646297 – ident: CIT0074 doi: 10.1073/pnas.0634629100 – ident: CIT0003 doi: 10.1016/j.csbj.2018.03.002 – ident: CIT0087 doi: 10.1016/j.psj.2020.11.026 – ident: CIT0039 doi: 10.1016/j.vetimm.2018.10.004 – ident: CIT0046 doi: 10.1016/j.isci.2020.101414 – ident: CIT0063 doi: 10.3390/metabo3030741 – ident: CIT0080 doi: 10.3390/v11111070 – ident: CIT0082 doi: 10.1186/s40104-018-0278-5 – ident: CIT0017 doi: 10.1038/27376 – ident: CIT0018 doi: 10.1016/j.tem.2019.07.007 – ident: CIT0054 doi: 10.3389/fphys.2020.00020 – ident: CIT0034 doi: 10.1038/nbt.2676 – ident: CIT0068 doi: 10.1128/AEM.02472-13 – ident: CIT0021 doi: 10.7717/peerj.10941 – ident: CIT0069 doi: 10.1186/1297-9686-37-6-539 – ident: CIT0010 doi: 10.1074/mcp.RA117.000459 – ident: CIT0086 doi: 10.1016/j.isci.2020.101193 – ident: CIT0027 doi: 10.1128/IAI.00688-16 – ident: CIT0067 doi: 10.3389/fmicb.2016.00187 – ident: CIT0014 doi: 10.1038/s41587-020-0548-6 – ident: CIT0066 doi: 10.1007/s00253-014-5646-2 – ident: CIT0075 doi: 10.3382/ps.2012-02822 – ident: CIT0057 doi: 10.3390/genes9120579 – ident: CIT0015 doi: 10.3389/fmicb.2016.01416 – ident: CIT0044 doi: 10.1038/s41598-020-60892-9 – ident: CIT0060 doi: 10.3389/fvets.2018.00254 – ident: CIT0076 doi: 10.1186/s40793-020-00358-7 – ident: CIT0078 doi: 10.1007/s00253-018-9281-1 – ident: CIT0059 doi: 10.1371/journal.pone.0091941 – ident: CIT0072 doi: 10.1016/j.jprot.2021.104242 – ident: CIT0009 doi: 10.1016/j.cell.2012.04.037 – ident: CIT0065 doi: 10.1016/j.vetmic.2013.01.030 – ident: CIT0037 doi: 10.1016/j.anireprosci.2020.106354 – ident: CIT0041 doi: 10.3389/fvets.2020.482637 – ident: CIT0061 doi: 10.3390/ani11010181 – ident: CIT0053 doi: 10.1007/s13205-019-1834-1 – ident: CIT0088 doi: 10.3382/ps/pez279 – ident: CIT0062 doi: 10.1007/s11033-012-1947-7 – ident: CIT0012 doi: 10.1186/s13567-019-0663-x – ident: CIT0073 doi: 10.1016/j.envint.2020.105649 – ident: CIT0026 doi: 10.1371/journal.pone.0181900 – ident: CIT0052 doi: 10.1016/j.jbiosc.2013.01.004 – ident: CIT0031 doi: 10.2147/IJGM.S249970 – ident: CIT0030 doi: 10.1093/icb/icv033 – ident: CIT0070 doi: 10.1016/j.micinf.2005.11.016 – ident: CIT0004 doi: 10.3389/fmicb.2016.02033 – ident: CIT0005 doi: 10.1186/s12864-018-4675-0 – ident: CIT0085 doi: 10.3389/fvets.2021.791371 – ident: CIT0077 doi: 10.1186/s40168-021-01040-x – ident: CIT0083 doi: 10.1016/j.animal.2021.100275 – ident: CIT0079 doi: 10.1016/j.aca.2020.10.038 – volume: 7 start-page: 1 year: 2017 ident: CIT0081 publication-title: Scientific Reports doi: 10.1038/s41598-016-0028-x – ident: CIT0011 doi: 10.1371/journal.pone.0027949 – ident: CIT0058 doi: 10.3389/fmicb.2021.726923 – volume: 64 start-page: 277 year: 2020 ident: CIT0043 publication-title: Avian Diseases – ident: CIT0051 doi: 10.1093/femsle/fnv122 – ident: CIT0013 doi: 10.1017/S1466252319000124 – volume: 10 start-page: 1 year: 2020 ident: CIT0007 publication-title: Scientific Reports doi: 10.1038/s41598-019-56847-4 – ident: CIT0040 doi: 10.1038/srep25882 – ident: CIT0032 doi: 10.1371/journal.pone.0212446 – ident: CIT0045 doi: 10.1186/s12864-018-4776-9 – ident: CIT0048 doi: 10.1111/1574-6968.12608 – ident: CIT0028 doi: 10.1371/journal.pone.0124403 – ident: CIT0024 doi: 10.1186/s40168-018-0590-5 – ident: CIT0049 doi: 10.3390/ijms20194781 – ident: CIT0008 doi: 10.1146/annurev-animal-031412-103701 |
SSID | ssj0006552 |
Score | 2.4387472 |
SecondaryResourceType | review_article |
Snippet | In biology, molecular terms with the suffix "-omics" refer to disciplines aiming at the collective characterization of pools of molecules derived from... In biology, molecular terms with the suffix “-omics” refer to disciplines aiming at the collective characterization of pools of molecules derived from... |
SourceID | proquest pubmed crossref informaworld |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 407 |
SubjectTerms | 16s rRNA gene sequencing, metagenomics Biology Biomarkers chickens Disease resistance DNA Economic importance Fertility Gene sequencing genes Genetic markers Genomics Identification integrated multiomics Intestinal flora Intestinal microflora intestinal microorganisms Metabolites Metabolomics Metagenomics Microbiomes Microbiota multiomics multiple omics Phenotypes physiology Poultry poultry health Poultry production Productivity Proteomics RNA rRNA 16S Transcriptomics |
Title | Omics technologies in poultry health and productivity - part 1: current use in poultry research |
URI | https://www.tandfonline.com/doi/abs/10.1080/03079457.2022.2086447 https://www.ncbi.nlm.nih.gov/pubmed/35675291 https://www.proquest.com/docview/2711639917 https://www.proquest.com/docview/2674345648 https://www.proquest.com/docview/2723106472 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBZtCiWX0qavbdOiQm_BZmW91r2FPEgLTS9JyanGlmQSSLxh4w2kv74zkuz1hk3S9mKWleRl_X0ej8Yz3xDyORvnmVHaJqXAaJWyWVLpvE7qsamV5VYz49U-D9XBsfh2Ik8W7Y58dUlbpeb3yrqS_0EVvgNcsUr2H5DtTwpfwGfAF46AMBz_CuMfF6ix3HbR8TMXksKxVfTsJpY4RiUAr-vqG0Wk4DXO2i2GsQAT1ZnmV264MioAnQ491-1rNAXYwHgpEL_rTsu5Bx17qSzcYky0Og-pyoPa_TS09tr66sPlLmQI7GNIp88DmsJT2wXnfu_6ZhiUgP0svmIJhsoFQyqUTDgPyi3ROLKVJjvmOIKtyYXUKZ4NDhPw0_RwPlyUywuPI5ewyclCj69bWtnd0GPyJNPav7bn48P-yaykzLoqLtRXX_Wb6-Rpd5YlV2VJyPbu7Yh3S46ek2dxP0G3AzlekEeu2SAbPzHJyVda0-8xeeIl-eXpQod0oWcNjaDTQBcKdKFLdKFIF8q-0EgWCmQZruvI8ooc7-8d7Rwksb1GYoQWbSKMLStZSSxvBjfP6Ypb5YQtsfoaZuS1UC6XZW55zfQERithhLBjhykPueOvyVozbdxbQsFphQeD4OBPlwIGK11zzizc68rUuZIjIrorWZioPY8tUM4L1knURiwKxKKIWIxI2i-7DOIrDy3IhzAVrY961aFFTcEfWLvZYVrEe_yqyDRj6MMzGP7UD4MFxtdqZeOmc5iDdTyoyjS5Z47GfRS2ahiRN4Ev_T_q6PbuzpH3ZH1xk22StXY2dx_AF26rj57gfwAYIays |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOcClQHktFDAS1yzr-LXmhhDVAu1yaVFvVuKHqIB01c1e-PXMxEm0RSo99Dwzke2M7c_2zDcAb8uZLb02oagk3VbpUBa1salIM590EMFw37F9LvXiRH45VadbuTAUVkln6JSJIrq1miY3XUYPIXHvyDGtVAaPdyUlU81xUze34Y5C7E5eLmbLcTXWSo1kiGQzZPFc9ZlL-9Ml9tKrMWi3Fx3cBz_0Ioeg_Jxu2nrq__xD8Hizbj6A3R6qsg_Ztx7Crdjswd53ip_pknjZUf8u_wjct99nfs3a4Z4ej9_srGErKlqNijnZkmFL2CozzHYlK1jBVui5jL9nPtNEsc06bhv2VEQ_HsPJwafjj4uiL91QeGlkW0gfqlrVilJnEUJEU4ugowwVZfaihk1SR6sqG0TiZo7SWnopwyzSc7qN4gnsNOdNfAYMAREuOlIgVqskCmuThOAB_Uj7ZLWagBx-mPM9rzmV1_jl-EB_2o-jo3F0_ThOYDqarTKxx3UGdtsbXNvdqKRc_sSJa2z3B9dx_RqxdqXhnPAhR_GbUYyzm55sqiaeb1CHckSI8Wf-Hx1DGJ3KAEzgaXbLsUdC4YGwtPz5DRr_Gu4ujo8O3eHn5dcXcI9EXZCd2Ied9mITXyIqa-tX3bT7C86dJkg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagSIgLj_LoQgEjcc2yjl9rbghYldfCgSJuVvwSFTSN2OyFX89M7EQtUumh55mJbGdsf7ZnviHkeb0wtVc6VI3A2yoV6sppk6q08EkFHjTzA9vnWh0civff5RhNuClhlXiGTpkoYlircXJ3IY0RcS_QL42QGk53NeZSLWFP11fJNQXwBKP6-GI9LcZKyokLEW3GJJ7zPnNmezpDXno-BB22otUt4sZO5AiUn_Nt7-b-zz_8jpfq5W1yswBV-ip71h1yJba7ZPcbRs8MKbz0U3mVv0vs5-Mjv6H9eEsPh2961NIOS1aDYk61pNAQ2mV-2aFgBa1oB35L2UvqM0kU3W7iacNCRPTjHjlcvf36-qAqhRsqL7ToK-FD46STmDgLACJqx4OKIjSY1wsaJgkVjWxM4InpJUid8EKERcTHdBP5fbLTnrRxj1CAQ7DkCA5IrREgdDpxzgJ4kfLJKDkjYvxf1hdWcyyu8cuykfy0jKPFcbRlHGdkPpl1mdbjIgNz2hlsP9ynpFz8xPILbPdHz7FlhdjYWjOG6JCB-NkkhrmNDzZNG0-2oIMZIsj3s_yPjkaEjkUAZuRB9sqpR1zCcbA27OElGv-UXP_yZmU_vlt_eERuoGSIsOP7ZKf_vY2PAZL17skw6f4C_yQk7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Omics+technologies+in+poultry+health+and+productivity.+Part+1%3A+current+use+in+poultry+research&rft.jtitle=Avian+pathology&rft.au=Dehau%2C+Tessa&rft.au=Ducatelle%2C+Richard&rft.au=Van+Immerseel%2C+Filip&rft.au=Goossens%2C+Evy&rft.date=2022-09-03&rft.eissn=1465-3338&rft.spage=1&rft_id=info:doi/10.1080%2F03079457.2022.2086447&rft_id=info%3Apmid%2F35675291&rft.externalDocID=35675291 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-9457&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-9457&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-9457&client=summon |