R-JaunLab: Automatic Multi-Class Recognition of Jaundice on Photos of Subjects with Region Annotation Networks
Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special equipment is a common method that is used to identify the total serum bilirubin level in patients. Fully automated multi-class recognition of j...
Saved in:
Published in | Journal of digital imaging Vol. 34; no. 2; pp. 337 - 350 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.04.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special equipment is a common method that is used to identify the total serum bilirubin level in patients. Fully automated multi-class recognition of jaundice combines two key issues: (1) the critical difficulties in multi-class recognition of jaundice approaches contrasting with the binary class and (2) the subtle difficulties in multi-class recognition of jaundice represent extensive individuals variability of high-resolution photos of subjects, huge coherency between healthy controls and occult jaundice, as well as broadly inhomogeneous color distribution. We introduce a novel approach for multi-class recognition of jaundice to detect occult jaundice, obvious jaundice and healthy controls. First, region annotation network is developed and trained to propose eye candidates. Subsequently, an efficient jaundice recognizer is proposed to learn similarities, context, localization features and globalization characteristics on photos of subjects. Finally, both networks are unified by using shared convolutional layer. Evaluation of the structured model in a comparative study resulted in a significant performance boost (categorical accuracy for mean 91.38%) over the independent human observer. Our work was exceeded against the state-of-the-art convolutional neural network (96.85% and 90.06% for training and validation subset, respectively) and showed a remarkable categorical result for mean 95.33% on testing subset. The proposed network makes a performance better than physicians. This work demonstrates the strength of our proposal to help bringing an efficient tool for multi-class recognition of jaundice into clinical practice. |
---|---|
AbstractList | Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special equipment is a common method that is used to identify the total serum bilirubin level in patients. Fully automated multi-class recognition of jaundice combines two key issues: (1) the critical difficulties in multi-class recognition of jaundice approaches contrasting with the binary class and (2) the subtle difficulties in multi-class recognition of jaundice represent extensive individuals variability of high-resolution photos of subjects, huge coherency between healthy controls and occult jaundice, as well as broadly inhomogeneous color distribution. We introduce a novel approach for multi-class recognition of jaundice to detect occult jaundice, obvious jaundice and healthy controls. First, region annotation network is developed and trained to propose eye candidates. Subsequently, an efficient jaundice recognizer is proposed to learn similarities, context, localization features and globalization characteristics on photos of subjects. Finally, both networks are unified by using shared convolutional layer. Evaluation of the structured model in a comparative study resulted in a significant performance boost (categorical accuracy for mean 91.38%) over the independent human observer. Our work was exceeded against the state-of-the-art convolutional neural network (96.85% and 90.06% for training and validation subset, respectively) and showed a remarkable categorical result for mean 95.33% on testing subset. The proposed network makes a performance better than physicians. This work demonstrates the strength of our proposal to help bringing an efficient tool for multi-class recognition of jaundice into clinical practice.Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special equipment is a common method that is used to identify the total serum bilirubin level in patients. Fully automated multi-class recognition of jaundice combines two key issues: (1) the critical difficulties in multi-class recognition of jaundice approaches contrasting with the binary class and (2) the subtle difficulties in multi-class recognition of jaundice represent extensive individuals variability of high-resolution photos of subjects, huge coherency between healthy controls and occult jaundice, as well as broadly inhomogeneous color distribution. We introduce a novel approach for multi-class recognition of jaundice to detect occult jaundice, obvious jaundice and healthy controls. First, region annotation network is developed and trained to propose eye candidates. Subsequently, an efficient jaundice recognizer is proposed to learn similarities, context, localization features and globalization characteristics on photos of subjects. Finally, both networks are unified by using shared convolutional layer. Evaluation of the structured model in a comparative study resulted in a significant performance boost (categorical accuracy for mean 91.38%) over the independent human observer. Our work was exceeded against the state-of-the-art convolutional neural network (96.85% and 90.06% for training and validation subset, respectively) and showed a remarkable categorical result for mean 95.33% on testing subset. The proposed network makes a performance better than physicians. This work demonstrates the strength of our proposal to help bringing an efficient tool for multi-class recognition of jaundice into clinical practice. Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special equipment is a common method that is used to identify the total serum bilirubin level in patients. Fully automated multi-class recognition of jaundice combines two key issues: (1) the critical difficulties in multi-class recognition of jaundice approaches contrasting with the binary class and (2) the subtle difficulties in multi-class recognition of jaundice represent extensive individuals variability of high-resolution photos of subjects, huge coherency between healthy controls and occult jaundice, as well as broadly inhomogeneous color distribution. We introduce a novel approach for multi-class recognition of jaundice to detect occult jaundice, obvious jaundice and healthy controls. First, region annotation network is developed and trained to propose eye candidates. Subsequently, an efficient jaundice recognizer is proposed to learn similarities, context, localization features and globalization characteristics on photos of subjects. Finally, both networks are unified by using shared convolutional layer. Evaluation of the structured model in a comparative study resulted in a significant performance boost (categorical accuracy for mean 91.38%) over the independent human observer. Our work was exceeded against the state-of-the-art convolutional neural network (96.85% and 90.06% for training and validation subset, respectively) and showed a remarkable categorical result for mean 95.33% on testing subset. The proposed network makes a performance better than physicians. This work demonstrates the strength of our proposal to help bringing an efficient tool for multi-class recognition of jaundice into clinical practice. |
Author | Liu, Xiaowei Xiao, Ying Hou, Muzhou Meng, Yu Wang, Zheng Lu, Fanggen Weng, Futian Li, Xiaojun Zhu, Danhua |
Author_xml | – sequence: 1 givenname: Zheng surname: Wang fullname: Wang, Zheng organization: School of Mathematics and Statistics, Central South University, Science and Engineering School, Hunan First Normal University – sequence: 2 givenname: Ying surname: Xiao fullname: Xiao, Ying organization: Gastroenterology Department of Xiangya Hospital, Central South University – sequence: 3 givenname: Futian surname: Weng fullname: Weng, Futian organization: School of Mathematics and Statistics, Central South University – sequence: 4 givenname: Xiaojun surname: Li fullname: Li, Xiaojun organization: Gastroenterology Department of Xiangya Hospital, Central South University – sequence: 5 givenname: Danhua surname: Zhu fullname: Zhu, Danhua organization: Department of Gastroenterology, Hunan Provincial People’s Hospital – sequence: 6 givenname: Fanggen surname: Lu fullname: Lu, Fanggen organization: The Second Xiangya Hospital, Central South University – sequence: 7 givenname: Xiaowei surname: Liu fullname: Liu, Xiaowei organization: Gastroenterology Department of Xiangya Hospital, Central South University – sequence: 8 givenname: Muzhou orcidid: 0000-0001-6658-2187 surname: Hou fullname: Hou, Muzhou email: houmuzhou@sina.com organization: School of Mathematics and Statistics, Central South University – sequence: 9 givenname: Yu surname: Meng fullname: Meng, Yu email: mengyu1981@163.com organization: Department of Gastroenterology and Hepatology, Shenzhen University General Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33634415$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9vFCEchompsdvqF_BgJvHiBeXvAB5MNpu2arZqqibeCMMwu6yzUAemjd9edqe12kNPBHieX154j8BBiMEB8Byj1xgh8SZhRISEiGCIEKMEikdghmssoSDixwGYIakExFKqQ3CU0gYhLLhgT8AhpTVlDPMZCBfwoxnD0jRvq_mY49Zkb6vzsc8eLnqTUnXhbFwFn30MVeyqHd1666qy_bKOOabd6dex2TibU3Xt87ooqx09DyFmsxc_uXwdh5_pKXjcmT65ZzfrMfh-evJt8R4uP599WMyX0DLBMmRKKEmRIdIqYaWqZWsV45g4WnNOWEtaXjvOTNNYalGrOiK56AQxzDiGHD0G76a5l2Ozda11IQ-m15eD35rht47G6_9vgl_rVbzSkiiECCoDXt0MGOKv0aWstz5Z1_cmuDgmTZhiRAm8R1_eQzdxHEJ5niacU0yYJKRQL_5N9DfKbRUFkBNgh5jS4Dpt_fR7JaDvNUZ617qeWteldb1vXYuiknvq7fQHJTpJqcBh5Ya72A9YfwDYx78l |
CitedBy_id | crossref_primary_10_1016_j_asoc_2025_112878 crossref_primary_10_1007_s11042_024_18910_9 crossref_primary_10_1016_j_eswa_2022_116519 crossref_primary_10_1016_j_ijbiomac_2023_125140 crossref_primary_10_1109_JSEN_2023_3315452 |
Cites_doi | 10.1109/TPAMI.2015.2389824 10.1016/S0197-0070(86)80039-0 10.1177/096228029900800204 10.1109/TPAMI.2016.2577031 10.1007/978-3-319-24574-4_28 10.1007/978-3-319-10590-1_53 10.1109/CVPR.2015.7298761 10.1002/mpr.169 10.1038/s41372-019-0452-4 10.1007/s10439-019-02349-3 10.1109/CVPR.2016.90 10.1109/ICCV.2015.169 10.1162/neco.1989.1.4.541 10.1109/CVPR.2015.7298594 10.1007/s00371-020-01814-8 10.1109/CVPR.2017.195 10.1007/s00521-018-3677-9 10.1016/j.pop.2011.05.004 10.1109/CVPR.2016.319 10.1109/TMI.2016.2553401 10.1109/DICTA.2016.7797091 10.1038/s41467-018-07262-2 10.1109/CVPR.2017.243 10.1109/TMI.2016.2535302 10.4103/0377-2063.123765 10.1109/JBHI.2019.2894374 10.1038/nature14539 10.1109/TMI.2016.2535865 10.1109/TKDE.2012.225 10.1038/s41598-018-25842-6 10.1046/j.1365-2893.2002.00385.x 10.1093/bja/aem214 10.14569/IJACSA.2012.030504 10.1016/j.neuroimage.2014.06.077 10.1146/annurev-bioeng-071516-044442 10.1145/2716282.2716289 10.1109/CVPR.2016.308 10.1007/s11831-020-09409-1 10.1097/RCT.0000000000000837 10.1001/archinte.1947.00220130009001 10.1109/CVPR.2009.5206848 10.1109/CVPRW.2014.131 10.1109/ICoBE.2015.7235896 10.1007/s10278-016-9914-9 10.1038/s41598-017-05300-5 10.1109/TBME.2015.2496253 10.1021/acs.analchem.7b00354 10.1109/MAMI.2015.7456588 10.1038/srep26286 10.1016/j.neucom.2013.01.038 10.1038/s41598-018-34817-6 10.1038/s41598-018-27569-w 10.1126/science.1127647 10.1245/ASO.2004.03.011 10.1109/CVPR.2014.81 10.1136/bmj.1.5852.530 10.1021/acssensors.9b00275 10.1038/s41598-017-04075-z 10.1109/TMI.2016.2528162 10.1007/s11263-015-0816-y 10.1111/j.1440-1746.2005.03884.x 10.1007/s10916-016-0523-4 10.1007/s11831-019-09344-w 10.1109/IJCNN.2016.7727519 10.1530/acta.0.062S163 10.1590/0100-3984.2018.0073 10.1074/mcp.M111.016006 |
ContentType | Journal Article |
Copyright | Society for Imaging Informatics in Medicine 2021 2021. Society for Imaging Informatics in Medicine. Society for Imaging Informatics in Medicine 2021. |
Copyright_xml | – notice: Society for Imaging Informatics in Medicine 2021 – notice: 2021. Society for Imaging Informatics in Medicine. – notice: Society for Imaging Informatics in Medicine 2021. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QO 7RV 7SC 7TK 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ JQ2 K9. KB0 L7M LK8 L~C L~D M0S M1P M7P NAPCQ P5Z P62 P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1007/s10278-021-00432-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Biotechnology Research Abstracts Nursing & Allied Health Database Computer and Information Systems Abstracts Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Advanced Technologies Database with Aerospace Biological Sciences Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace ProQuest Nursing & Allied Health Source ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Central Student MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1618-727X |
EndPage | 350 |
ExternalDocumentID | PMC8290020 33634415 10_1007_s10278_021_00432_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Social Science Foundation of China grantid: 19BTJ011 – fundername: ; grantid: 19BTJ011 |
GroupedDBID | --- -5E -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 04C 06C 06D 0R~ 0VY 1N0 2.D 203 29K 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 408 409 40D 40E 53G 5GY 5RE 5VS 67Z 6NX 6PF 78A 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAKDD AAKPC AANXM AANZL AARHV AARTL AATVU AAUYE AAWCG AAWTL AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADMLS ADOJX ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAWUL BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP D-I DDRTE DIK DL5 DNIVK DPUIP DU5 EBD EBS ECT EDO EIHBH EIOEI EJD EMB EMOBN EN4 ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GX1 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HYE HZ~ I-F I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX KDC KOV KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q NAPCQ NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OK1 P2P P62 P9S PF0 PQQKQ PROAC PSQYO Q2X QOK QOR QOS R89 R9I RNS ROL RPM RPX RRX RSV S16 S1Z S27 S37 S3B SAP SDH SHX SISQX SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC TUS U2A U9L UDS UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 WOW YLTOR Z45 Z7R Z7W Z7X Z82 Z83 Z88 Z8R Z8V Z8W Z92 ZMTXR ZOVNA ~A9 AAPKM AAYXX ACSTC ADHKG AGQPQ AHPBZ AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QO 7SC 7TK 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ JQ2 K9. L7M L~C L~D P64 PKEHL PQEST PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c474t-4979830a28c97c8968dc94512e365524d2d56e54abbc3c0d9f2857f72a4ae40e3 |
IEDL.DBID | U2A |
ISSN | 0897-1889 1618-727X |
IngestDate | Thu Aug 21 18:11:20 EDT 2025 Fri Jul 11 02:26:36 EDT 2025 Sat Aug 23 14:53:43 EDT 2025 Mon Jul 21 05:51:56 EDT 2025 Thu Apr 24 22:56:15 EDT 2025 Tue Jul 01 00:52:13 EDT 2025 Fri Feb 21 02:48:04 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 2 |
Keywords | Convolutional Neural Network ) Region Annotation Network Occult Jaundice Total Serum Bilirubin Region Annotation Network (RAN) Total Serum Bilirubin (TBil) Convolutional Neural Network (CNN) |
Language | English |
License | 2021. Society for Imaging Informatics in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-4979830a28c97c8968dc94512e365524d2d56e54abbc3c0d9f2857f72a4ae40e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6658-2187 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8290020 |
PMID | 33634415 |
PQID | 2553124822 |
PQPubID | 34218 |
PageCount | 14 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8290020 proquest_miscellaneous_2494297120 proquest_journals_2553124822 pubmed_primary_33634415 crossref_citationtrail_10_1007_s10278_021_00432_7 crossref_primary_10_1007_s10278_021_00432_7 springer_journals_10_1007_s10278_021_00432_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: United States – name: New York |
PublicationTitle | Journal of digital imaging |
PublicationTitleAbbrev | J Digit Imaging |
PublicationTitleAlternate | J Digit Imaging |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Deng J, Dong W, Socher R, Li LJ, Li FF: Imagenet: a large-scale hierarchical image database. In IEEE Conference on Computer Vision & Pattern Recognition, 2009 AnthimopoulosMChristodoulidisSEbnerLChristeAMougiakakouSLung pattern classification for interstitial lung diseases using a deep convolutional neural networkIEEE Trans Med Imaging20163551207121626955021 PayalCKumarGNMunishKContent-based image retrieval system using orb and sift featuresNeural Comput Applic20203227252733 HeKZhangXRenSSunJSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Trans Pattern Anal Mach Intell2014379190416 WangXZhangAHanYWangPSunHSongGDongTYuanYYuanXZhangMUrine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver diseaseMolecular & Cellular Proteomics Mcp2012118370 Krizhevsky A, Sutskever I, Hinton G: Imagenet classification with deep convolutional neural networks. In International Conference on Neural Information Processing Systems, 2012 Deniz CM, Hallyburton S, Welbeck A, Honig S, Cho K, Chang G: Segmentation of the proximal femur from mr images using deep convolutional neural networks. Sci Rep, 8(1), 2018 RenSHeKGirshickRSunJFaster r-cnn: Towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell20173961137114927295650 HintonGVinyalsODeanJDistilling the knowledge in a neural networkComputer Science20151473839 ThompsonBLWyckoffSLHaverstickDMLandersJPSimple, reagentless quantification of total bilirubin in blood via microfluidic phototreatment and image analysisAnal Chem2017895322832341:CAS:528:DC%2BC2sXisVGlsbg%3D28192917 Redfern V, Mortimore G: Right hypochondrial pain leading to diagnosis of cholestatic jaundice and cholecystitis: a review and case study. Gastrointestinal Nursing HanZWeiBZhengYYinYLiKLiSBreast cancer multi-classification from histopathological images with structured deep learning modelScientific Reports2017714172286461555482871 XuXZhangXThe application of intravoxel incoherent motion diffusion-weighted imaging in the diagnosis of hilar obstructive jaundiceJ Comput Assist Tomogr201943211:CAS:528:DC%2BC1MXkvF2msLc%3D Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A: Going deeper with convolutions. In 2015 IEEE Conf Comput Vis Pattern Recognit (CVPR), pages 1–9, 2015 Sunwoo MH, Lee JW, Kim JH: Method and apparatus for jaundice diagnosis based on an image, Apr. 18 2019. US Patent App. 16/115,821 Saini N, Kumar A: Comparison of non-invasive bilirubin detection techniques for jaundice prediction, 2016. He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. In 2016 IEEE Conf Comp Vis Pattern Recognit (CVPR), pages 770–778, 2016 Cordero C, Schieve LA, Croen LA, Engel SM, Maria ASR, Herring AH, Vladutiu CJ, Seashore CJ, Daniels JL: Neonatal jaundice in association with autism spectrum disorder and developmental disorder. Journal of perinatology: official journal of the California Perinatal Association, 2019 Dosovitskiy A, Springenberg JT, Riedmiller M, Brox T: Discriminative unsupervised feature learning with convolutional neural networks. 2014 Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation. 2015 Jr MA, Niswender GD, Rebar RW. Principles for the assessment of the reliability of radioimmunoassay methods (precision, accuracy, sensitivity, specificity). Acta Endocrinologica Supplementum, 142(1 Suppl):163, 1969 Wang D, Khosla A, Gargeya R, Irshad H, Beck AH: Deep learning for identifying metastatic breast cancer. 2016 TajbakhshNShinJYGuruduSRHurstRTKendallCBGotwayMBLiangJConvolutional neural networks for medical image analysis: Full training or fine tuning?IEEE Trans Med Imaging20163551299131226978662 Kessler RC, Abelson JM, Demler O, Escobar JI, Zheng H: Clinical calibration of dsm-iv diagnoses in the world mental health (wmh) version of the world health organization (who) composite international diagnostic interview (cidi). 13(2):122–139, 2004 Girshick R, Donahue J, Darrelland T, Malik J: Rich feature hierarchies for object detection and semantic segmentation. In IEEE Conference on Computer Vision & Pattern Recognition, 2014 Kumar M, Bansal M, Kumar M. 2d object recognition techniques: State-of-the-art work. Archives of Computational Methods in Engineering, 02 2020 JiJZhangALiuCQuanXLiuZSurvey: Functional module detection from protein-protein interaction networksIEEE Trans Knowl Data Eng2013262261277 Wang Z, Meng Y, Weng F, Chen Y, Lu F, Liu X, Hou M, Zhang J: An effective cnn method for fully automated segmenting subcutaneous and visceral adipose tissue on ct scans. Ann Biomed Eng, pages 1–17, 2019 Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A: Learning deep features for discriminative localization. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2921–2929, 2016 Maisels MJ: Managing the jaundiced newborn: a persistent challenge, CMAJ Huang G, Liu Z, Van Der Maaten L, Weinberger KQ: Densely connected convolutional networks. In 2017 IEEE Conf Comput Visi Pattern Recognit (CVPR), pages 2261–2269, 2017 Wong SC, Gatt A, Stamatescu V, Mcdonnell MD: Understanding data augmentation for classification: When to warp? 2016 Hinton G, Tieleman T: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, (4):26–30, 2012 TakiyamaHOzawaTIshiharaSFujishiroMShichijoSNomuraSMiuraMTadaTAutomatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networksSci Rep2018874977497297603975951793 LaddiAKumarSSharmaSKumarANon-invasive jaundice detection using machine visionIETE J Res2013595591596 HawkinsWGDematteoRPJarnaginWRBen-PoratLFongYJaundice predicts advanced disease and early mortality in patients with gallbladder cancerAnn Surg Oncol200411331031514993027 Kumar M, Dargon S: A survey of deep learning and its applications: A new paradigm to machine learning. Arch Comput Meth Eng, 2019 RocheSPKobosRJaundice in the adult patientAm Fam Physician200469229930414765767 Halder A, Banerjee M, Singh S, Adhikari A, Sarkar PK, Bhattacharya AM, Chakrabarti P, Bhattacharyya D, Mallick AK, Pal SK: A novel whole spectrum-based non-invasive screening device for neonatal hyperbilirubinemia. IEEE J Biomed Health Inform, PP(99):1. PS Myles, Cui JI: using the bland altman method to measure agreement with repeated measures. Br J Anaesth, 99(3):309–311, 2007 Kaleem, Rashid, Sreepathi, Pingali, Keshav. Stochastic gradient descent on gpus. 2015 LarryCOxford textbook of primary medical careJ R Soc Med2004976304 Goroshin R, Mathieu M, LeCun Y: Learning to Linearize Under Uncertainty. CoRR, abs/1506.03011, 2015 AnandACPuriPJaundice in malariaJ Gastroenterol Hepatol201020913221332 He K, Georgia G, Piotr D, Ross G: Mask r-cnn. IEEE Trans Pattern Anal Mach Intell, PP(99):1, 2017 Kumar M, Kumar R, Kaur P: A healthcare monitoring system using random forest and internet of things (iot). Multimed Tools Appl, 02 2019 Saha S, Saha S, Bhattacharyya PP: Classifier fusion for liver function test based indian jaundice classification. In International Conference on Man & Machine Interfacing, 2016. WingerJMichelfelderADiagnostic approach to the patient with jaundicePrim Care201138346948221872092 LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput201414541551 ShinHCRothHRGaoMLuLXuZNoguesIYaoJMolluraDSummersRMDeep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learningIEEE Trans Med Imaging20163551285129826886976 KouvarisKCluneJKouniosLBredeMWatsonRAHow evolution learns to generalise: Principles of under-fitting, over-fitting and induction in the evolution of developmental organisationJournal of the Society of English & American Literature Kansei Gakuin University201552493107 PadidarPShakerMAmoozgarHKhorraminejad-ShiraziMHemmatiFNajibKSPourarianSDetection of neonatal jaundice by using an android os-based smartphone applicationIran J Pediatr2019292e84397 JungCSunTJiaoLEye detection under varying illumination using the retinex theoryNeurocomputing2013113596130137 RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMImagenet large scale visual recognition challengeInt J Comput Vis20151153211252 ShenDWuGSukHIDeep learning in medical image analysisAnnual Review of Biomedical Engineering20171912212481:CAS:528:DC%2BC2sXksVCqsLs%3D283017345479722 Knill-Jones RP, Stern RB, Girmes DH, Maxwell JD, Thompson RP, Williams R: Use of sequential bayesian model in diagnosis of jaundice by computer. Br Med J, 1(5852):530–533, 1973 Simonyan K, Zisserman A: Very deep convolutional networks for large-scale image recognition. Computer Science, 2014 HowardRWatsonCJAntecedent jaundice in cirrhosis of the liverArch Intern Med19478011101:STN:280:DyaH2s%2Fhtlaqug%3D%3D Aydım M, Hardala FC, Ural B, Karap S: Neonatal jaundice detection system, J Med Syst. 40(7):166, 2016 Cho J, Lee K, Shin E, Choy G, Do S: How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? Computer Science, 2015 Hao C, Qi D, Xi W, Jing Q, Heng PA: Mitosis detection in breast cancer histology images via deep cascaded networks. In Thirtieth Aaai Conference on Artificial Intelligence, 2016 Dutta P, Saha S, Gulati S: Graph-based hub gene selection technique using protein interaction information: Application to sample classification. IEEE J Biomed Health Inform, PP(99):1, 2019 Razavian AS, Azizpour H, Sullivan J, Carlsson S: Cnn features off-the-shelf: An astounding baseline for recognition. pages 512–519, 2014 Girshick R: Fast r-cnn. In 2015 IEEE International Conference on Computer Vision (ICCV), pages 1440–1448, 2015 ChanLYTsangWCHuiYLeungWYChanKLSungJYThe role of lamivudine and predictors of mortality in severe flare-up of chronic hepatitis b with jaundiceJ Viral Hepat201096424428 LecunYBengioYHintonGDeep learni C Jung (432_CR35) 2013; 113 432_CR39 432_CR38 S Ren (432_CR36) 2017; 39 432_CR40 KJ Labori (432_CR10) 2004; 93 432_CR81 432_CR80 M Anthimopoulos (432_CR50) 2016; 35 432_CR48 H Takiyama (432_CR83) 2018; 8 432_CR47 432_CR46 C Payal (432_CR26) 2020; 32 432_CR45 432_CR89 432_CR44 432_CR43 432_CR87 432_CR41 432_CR85 AC Anand (432_CR2) 2010; 20 432_CR51 432_CR93 G Hinton (432_CR79) 2015; 14 K Kouvaris (432_CR72) 2015; 52 O Russakovsky (432_CR49) 2015; 115 RS Tabatabaee (432_CR76) 2019; 4 432_CR59 432_CR14 432_CR58 432_CR13 432_CR57 432_CR12 A Laddi (432_CR22) 2013; 59 432_CR56 J Ji (432_CR67) 2013; 26 SP Roche (432_CR9) 2004; 69 432_CR1 432_CR18 BL Thompson (432_CR16) 2017; 89 432_CR17 Y Lecun (432_CR91) 2015; 521 JM Bland (432_CR42) 1999; 8 HI Suk (432_CR88) 2014; 101 D Shen (432_CR92) 2017; 19 432_CR8 N Tajbakhsh (432_CR55) 2016; 35 432_CR6 432_CR62 432_CR61 432_CR60 HC Shin (432_CR54) 2016; 35 X Xu (432_CR75) 2019; 43 432_CR69 432_CR24 H Greenspan (432_CR52) 2016; 35 432_CR68 432_CR23 432_CR66 432_CR21 432_CR65 432_CR20 432_CR64 JL Causey (432_CR84) 2018; 8 432_CR63 LY Chan (432_CR3) 2010; 9 P Padidar (432_CR15) 2019; 29 WG Hawkins (432_CR5) 2004; 11 432_CR29 432_CR28 432_CR27 R Howard (432_CR4) 1947; 80 Y LeCun (432_CR25) 2014; 1 M Ghafoorian (432_CR86) 2017; 7 Z Han (432_CR82) 2017; 7 432_CR73 J Winger (432_CR11) 2011; 38 432_CR71 A Rajkomar (432_CR53) 2017; 30 432_CR70 K He (432_CR34) 2014; 37 GE Hinton (432_CR90) 2006; 313 432_CR37 C Larry (432_CR7) 2004; 97 432_CR78 432_CR33 432_CR77 432_CR32 X Wang (432_CR19) 2012; 11 432_CR31 432_CR30 432_CR74 |
References_xml | – reference: AnthimopoulosMChristodoulidisSEbnerLChristeAMougiakakouSLung pattern classification for interstitial lung diseases using a deep convolutional neural networkIEEE Trans Med Imaging20163551207121626955021 – reference: Soetedjo A: Eye detection based-on color and shape features. Int J Adv Comput Sci Appl, 3(5), 2012 – reference: Wang D, Khosla A, Gargeya R, Irshad H, Beck AH: Deep learning for identifying metastatic breast cancer. 2016 – reference: Saha S, Saha S, Bhattacharyya PP: Classifier fusion for liver function test based indian jaundice classification. In International Conference on Man & Machine Interfacing, 2016. – reference: Zulkarnay Z, Jurimah AJ, Ibrahim B, Shazwani S, Nasir MAKA: An overview on jaundice measurement and application in biomedical: The potential of non-invasive method. In International Conference on Biomedical Engineering, 2015. – reference: Brandabur JJ, Kozarek RA, Ball TJ, Hofer BO, Jr RJ, Traverso LW, Freeny PC, Lewis GP: Nonoperative versus operative treatment of obstructive jaundice in pancreatic cancer: cost and survival analysis. Am J Gastroenterol, 83(10):1132, 1988 – reference: Simonyan K, Zisserman A: Very deep convolutional networks for large-scale image recognition. Computer Science, 2014 – reference: JiJZhangALiuCQuanXLiuZSurvey: Functional module detection from protein-protein interaction networksIEEE Trans Knowl Data Eng2013262261277 – reference: Aydım M, Hardala FC, Ural B, Karap S: Neonatal jaundice detection system, J Med Syst. 40(7):166, 2016 – reference: Girshick R, Donahue J, Darrelland T, Malik J: Rich feature hierarchies for object detection and semantic segmentation. In IEEE Conference on Computer Vision & Pattern Recognition, 2014 – reference: AnandACPuriPJaundice in malariaJ Gastroenterol Hepatol201020913221332 – reference: Cordero C, Schieve LA, Croen LA, Engel SM, Maria ASR, Herring AH, Vladutiu CJ, Seashore CJ, Daniels JL: Neonatal jaundice in association with autism spectrum disorder and developmental disorder. Journal of perinatology: official journal of the California Perinatal Association, 2019 – reference: Kaleem, Rashid, Sreepathi, Pingali, Keshav. Stochastic gradient descent on gpus. 2015 – reference: CauseyJLZhangJMaSJiangBQuallsJAPolitteDGPriorFZhangSHuangXHighly accurate model for prediction of lung nodule malignancy with ct scansSci Rep2018819286299153346006355 – reference: Kumar M, Dargan S: A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities. Expert Systems with Applications, pages 1–27, 11 2019 – reference: HintonGVinyalsODeanJDistilling the knowledge in a neural networkComputer Science20151473839 – reference: Wang S, Kim M, Wu G, Shen D: Chapter11c scalable high performance image registration framework by unsupervised deep feature representations learning. IEEE Trans Biomed Eng, 63(7):1505–1516, 2016 – reference: Chollet F: Xception: Deep learning with depthwise separable convolutions. In 2017 IEEE Conf Comput Vis Pattern Recognit (CVPR), pages 1800–1807, 2017 – reference: WangXZhangAHanYWangPSunHSongGDongTYuanYYuanXZhangMUrine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver diseaseMolecular & Cellular Proteomics Mcp2012118370 – reference: HanZWeiBZhengYYinYLiKLiSBreast cancer multi-classification from histopathological images with structured deep learning modelScientific Reports2017714172286461555482871 – reference: Hao C, Qi D, Xi W, Jing Q, Heng PA: Mitosis detection in breast cancer histology images via deep cascaded networks. In Thirtieth Aaai Conference on Artificial Intelligence, 2016 – reference: TabatabaeeRSGolmohammadiHAhmadiSHEasy diagnosis of jaundice: A smartphone-based nanosensor bioplatform using photoluminescent bacterial nanopaper for point-of-care diagnosis of hyperbilirubinemiaACS sensors201944106310711:CAS:528:DC%2BC1MXls1altbk%3D30896150 – reference: Maisels MJ: Managing the jaundiced newborn: a persistent challenge, CMAJ – reference: GreenspanHvan GinnekenBSummersRMGuest editorial deep learning in medical imaging: Overview and future promise of an exciting new techniqueIEEE Trans Med Imaging201635511531159 – reference: PayalCKumarGNMunishKContent-based image retrieval system using orb and sift featuresNeural Comput Applic20203227252733 – reference: Kumar M, Kumar R, Kaur P: A healthcare monitoring system using random forest and internet of things (iot). Multimed Tools Appl, 02 2019 – reference: Zeiler MD, Fergus R: Visualizing understanding convolutional networks. 2013 – reference: HeKZhangXRenSSunJSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Trans Pattern Anal Mach Intell2014379190416 – reference: Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A: Learning deep features for discriminative localization. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2921–2929, 2016 – reference: Kumar M, Dargon S: A survey of deep learning and its applications: A new paradigm to machine learning. Arch Comput Meth Eng, 2019 – reference: RenSHeKGirshickRSunJFaster r-cnn: Towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell20173961137114927295650 – reference: Razavian AS, Azizpour H, Sullivan J, Carlsson S: Cnn features off-the-shelf: An astounding baseline for recognition. pages 512–519, 2014 – reference: Jr MA, Niswender GD, Rebar RW. Principles for the assessment of the reliability of radioimmunoassay methods (precision, accuracy, sensitivity, specificity). Acta Endocrinologica Supplementum, 142(1 Suppl):163, 1969 – reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A: Going deeper with convolutions. In 2015 IEEE Conf Comput Vis Pattern Recognit (CVPR), pages 1–9, 2015 – reference: Girshick R: Fast r-cnn. In 2015 IEEE International Conference on Computer Vision (ICCV), pages 1440–1448, 2015 – reference: Halder A, Banerjee M, Singh S, Adhikari A, Sarkar PK, Bhattacharya AM, Chakrabarti P, Bhattacharyya D, Mallick AK, Pal SK: A novel whole spectrum-based non-invasive screening device for neonatal hyperbilirubinemia. IEEE J Biomed Health Inform, PP(99):1. – reference: Knill-Jones RP, Stern RB, Girmes DH, Maxwell JD, Thompson RP, Williams R: Use of sequential bayesian model in diagnosis of jaundice by computer. Br Med J, 1(5852):530–533, 1973 – reference: Dutta P, Saha S, Gulati S: Graph-based hub gene selection technique using protein interaction information: Application to sample classification. IEEE J Biomed Health Inform, PP(99):1, 2019 – reference: Saini N, Kumar A: Comparison of non-invasive bilirubin detection techniques for jaundice prediction, 2016. – reference: Goroshin R, Mathieu M, LeCun Y: Learning to Linearize Under Uncertainty. CoRR, abs/1506.03011, 2015 – reference: ShinHCRothHRGaoMLuLXuZNoguesIYaoJMolluraDSummersRMDeep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learningIEEE Trans Med Imaging20163551285129826886976 – reference: Chambers CV, Irwin CE: Intense jaundice in an adolescent. an unusual presentation of infectious mononucleosis. J. Adolesc. Health Care, 7(3):195–197, 1986 – reference: GhafoorianMKarssemeijerNHeskesTUdenIWMSanchezCILitjensGLeeuwFEGinnekenBMarchioriEPlatelBLocation sensitive deep convolutional neural networks for segmentation of white matter hyperintensitiesSci Rep2017715110286985565505987 – reference: PadidarPShakerMAmoozgarHKhorraminejad-ShiraziMHemmatiFNajibKSPourarianSDetection of neonatal jaundice by using an android os-based smartphone applicationIran J Pediatr2019292e84397 – reference: Huang G, Liu Z, Van Der Maaten L, Weinberger KQ: Densely connected convolutional networks. In 2017 IEEE Conf Comput Visi Pattern Recognit (CVPR), pages 2261–2269, 2017 – reference: Redfern V, Mortimore G: Right hypochondrial pain leading to diagnosis of cholestatic jaundice and cholecystitis: a review and case study. Gastrointestinal Nursing – reference: RajkomarALingamSTaylorAGBlumMMonganJHigh-throughput classification of radiographs using deep convolutional neural networksJ Dig Imaging201730195101 – reference: Deniz CM, Hallyburton S, Welbeck A, Honig S, Cho K, Chang G: Segmentation of the proximal femur from mr images using deep convolutional neural networks. Sci Rep, 8(1), 2018 – reference: XuXZhangXThe application of intravoxel incoherent motion diffusion-weighted imaging in the diagnosis of hilar obstructive jaundiceJ Comput Assist Tomogr201943211:CAS:528:DC%2BC1MXkvF2msLc%3D – reference: Kumar M, Gupta S, Thakur K: 2d-human face recognition using sift and surf descriptors of face’s feature regions. Vis Comput, 01 2020 – reference: LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput201414541551 – reference: LecunYBengioYHintonGDeep learningNature201552175534361:CAS:528:DC%2BC2MXht1WlurzP – reference: RocheSPKobosRJaundice in the adult patientAm Fam Physician200469229930414765767 – reference: HowardRWatsonCJAntecedent jaundice in cirrhosis of the liverArch Intern Med19478011101:STN:280:DyaH2s%2Fhtlaqug%3D%3D – reference: Spanhol FA, Oliveira LS, Petitjean C, Heutte L: Breast cancer histopathological image classification using convolutional neural networks. In International Joint Conference on Neural Networks, 2016 – reference: TakiyamaHOzawaTIshiharaSFujishiroMShichijoSNomuraSMiuraMTadaTAutomatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networksSci Rep2018874977497297603975951793 – reference: Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation. 2015 – reference: ChanLYTsangWCHuiYLeungWYChanKLSungJYThe role of lamivudine and predictors of mortality in severe flare-up of chronic hepatitis b with jaundiceJ Viral Hepat201096424428 – reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z: Rethinking the inception architecture for computer vision. 2015 – reference: WingerJMichelfelderADiagnostic approach to the patient with jaundicePrim Care201138346948221872092 – reference: PS Myles, Cui JI: using the bland altman method to measure agreement with repeated measures. Br J Anaesth, 99(3):309–311, 2007 – reference: Tibana TK, Grubert RM, Fornazari VAV, Barbosa FCP, Bacelar B, Oliveira AF, Marchiori E, Nunes TF: The role of percutaneous transhepatic biliary biopsy in the diagnosis of patients with obstructive jaundice: an initial experience. Radiologia Brasileira, (AHEAD), 2019 – reference: RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMImagenet large scale visual recognition challengeInt J Comput Vis20151153211252 – reference: Wong SC, Gatt A, Stamatescu V, Mcdonnell MD: Understanding data augmentation for classification: When to warp? 2016 – reference: LaddiAKumarSSharmaSKumarANon-invasive jaundice detection using machine visionIETE J Res2013595591596 – reference: Kessler RC, Abelson JM, Demler O, Escobar JI, Zheng H: Clinical calibration of dsm-iv diagnoses in the world mental health (wmh) version of the world health organization (who) composite international diagnostic interview (cidi). 13(2):122–139, 2004 – reference: KouvarisKCluneJKouniosLBredeMWatsonRAHow evolution learns to generalise: Principles of under-fitting, over-fitting and induction in the evolution of developmental organisationJournal of the Society of English & American Literature Kansei Gakuin University201552493107 – reference: Mannino RG, Myers DR, Tyburski EA, Caruso C, Boudreaux J, Leong T, Clifford GD, Lam WA: Smartphone app for non-invasive detection of anemia using only patient-sourced photos. Nat Commun, 9(1), 2018 – reference: HintonGESalakhutdinovRRReducing the dimensionality of data with neural networksScience200631357865045071:CAS:528:DC%2BD28Xnt1KntrY%3D – reference: He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. In 2016 IEEE Conf Comp Vis Pattern Recognit (CVPR), pages 770–778, 2016 – reference: Creswell A, Arulkumaran K, Bharath AA: On denoising autoencoders trained to minimise binary cross-entropy. 2017 – reference: ThompsonBLWyckoffSLHaverstickDMLandersJPSimple, reagentless quantification of total bilirubin in blood via microfluidic phototreatment and image analysisAnal Chem2017895322832341:CAS:528:DC%2BC2sXisVGlsbg%3D28192917 – reference: LarryCOxford textbook of primary medical careJ R Soc Med2004976304 – reference: Hinton G, Tieleman T: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, (4):26–30, 2012 – reference: Kumar M, Bansal M, Kumar M. 2d object recognition techniques: State-of-the-art work. Archives of Computational Methods in Engineering, 02 2020 – reference: Cho J, Lee K, Shin E, Choy G, Do S: How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? Computer Science, 2015 – reference: Nair V, Hinton GE: Rectified Linear Units Improve Restricted Boltzmann Machines. In International Conference on International Conference on Machine Learning, 2010 – reference: HawkinsWGDematteoRPJarnaginWRBen-PoratLFongYJaundice predicts advanced disease and early mortality in patients with gallbladder cancerAnn Surg Oncol200411331031514993027 – reference: Bengio Y: Speeding up stochastic gradient descent. 2007 – reference: Dosovitskiy A, Springenberg JT, Riedmiller M, Brox T: Discriminative unsupervised feature learning with convolutional neural networks. 2014 – reference: Deng J, Dong W, Socher R, Li LJ, Li FF: Imagenet: a large-scale hierarchical image database. In IEEE Conference on Computer Vision & Pattern Recognition, 2009 – reference: KA: Cs231n course notes: Transfer learning [online]. Accessed: 19-May-2016 http://cs231n.github.io/transfer-learning. – reference: LaboriKJRaederMGDiagnostic approach to the patient with jaundice following traumaScandinavian Journal of Surgery Sjs Official Organ for the Finnish Surgical Society & the Scandinavian Surgical Society20049331761:STN:280:DC%2BD2crntFGgsQ%3D%3D – reference: Krizhevsky A, Sutskever I, Hinton G: Imagenet classification with deep convolutional neural networks. In International Conference on Neural Information Processing Systems, 2012 – reference: He K, Georgia G, Piotr D, Ross G: Mask r-cnn. IEEE Trans Pattern Anal Mach Intell, PP(99):1, 2017 – reference: JungCSunTJiaoLEye detection under varying illumination using the retinex theoryNeurocomputing2013113596130137 – reference: TajbakhshNShinJYGuruduSRHurstRTKendallCBGotwayMBLiangJConvolutional neural networks for medical image analysis: Full training or fine tuning?IEEE Trans Med Imaging20163551299131226978662 – reference: Sunwoo MH, Lee JW, Kim JH: Method and apparatus for jaundice diagnosis based on an image, Apr. 18 2019. US Patent App. 16/115,821 – reference: Litjens G, Sanchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, Hulsbergenvan DKC, Bult P, Van GB, Van DLJ: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep, 6(1):26286, 2016 – reference: Wang Z, Meng Y, Weng F, Chen Y, Lu F, Liu X, Hou M, Zhang J: An effective cnn method for fully automated segmenting subcutaneous and visceral adipose tissue on ct scans. Ann Biomed Eng, pages 1–17, 2019 – reference: ShenDWuGSukHIDeep learning in medical image analysisAnnual Review of Biomedical Engineering20171912212481:CAS:528:DC%2BC2sXksVCqsLs%3D283017345479722 – reference: SukHILeeSWShenDHierarchical feature representation and multimodal fusion with deep learning for ad/mci diagnosisNeuroimage201410156958225042445 – reference: BlandJMAltmanDMeasuring agreement in method comparison studiesStat Methods Med Res19998135601:STN:280:DyaK1MvivFOmug%3D%3D10501650 – volume: 37 start-page: 1904 issue: 9 year: 2014 ident: 432_CR34 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2389824 – ident: 432_CR1 doi: 10.1016/S0197-0070(86)80039-0 – volume: 8 start-page: 135 year: 1999 ident: 432_CR42 publication-title: Stat Methods Med Res doi: 10.1177/096228029900800204 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 432_CR36 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2016.2577031 – ident: 432_CR44 doi: 10.1007/978-3-319-24574-4_28 – ident: 432_CR60 doi: 10.1007/978-3-319-10590-1_53 – ident: 432_CR61 doi: 10.1109/CVPR.2015.7298761 – ident: 432_CR69 doi: 10.1002/mpr.169 – ident: 432_CR73 doi: 10.1038/s41372-019-0452-4 – ident: 432_CR56 doi: 10.1007/s10439-019-02349-3 – ident: 432_CR27 doi: 10.1109/CVPR.2016.90 – ident: 432_CR31 doi: 10.1109/ICCV.2015.169 – volume: 1 start-page: 541 issue: 4 year: 2014 ident: 432_CR25 publication-title: Neural Comput doi: 10.1162/neco.1989.1.4.541 – volume: 93 start-page: 176 issue: 3 year: 2004 ident: 432_CR10 publication-title: Scandinavian Journal of Surgery Sjs Official Organ for the Finnish Surgical Society & the Scandinavian Surgical Society – ident: 432_CR93 doi: 10.1109/CVPR.2015.7298594 – ident: 432_CR57 – ident: 432_CR40 doi: 10.1007/s00371-020-01814-8 – volume: 14 start-page: 38 issue: 7 year: 2015 ident: 432_CR79 publication-title: Computer Science – ident: 432_CR71 doi: 10.1109/CVPR.2017.195 – volume: 32 start-page: 2725 year: 2020 ident: 432_CR26 publication-title: Neural Comput Applic doi: 10.1007/s00521-018-3677-9 – volume: 38 start-page: 469 issue: 3 year: 2011 ident: 432_CR11 publication-title: Prim Care doi: 10.1016/j.pop.2011.05.004 – ident: 432_CR8 – ident: 432_CR59 doi: 10.1109/CVPR.2016.319 – ident: 432_CR63 – volume: 35 start-page: 1153 issue: 5 year: 2016 ident: 432_CR52 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2553401 – ident: 432_CR62 doi: 10.1109/DICTA.2016.7797091 – ident: 432_CR14 doi: 10.1038/s41467-018-07262-2 – ident: 432_CR28 doi: 10.1109/CVPR.2017.243 – volume: 35 start-page: 1299 issue: 5 year: 2016 ident: 432_CR55 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535302 – ident: 432_CR29 – volume: 59 start-page: 591 issue: 5 year: 2013 ident: 432_CR22 publication-title: IETE J Res doi: 10.4103/0377-2063.123765 – ident: 432_CR66 doi: 10.1109/JBHI.2019.2894374 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 432_CR91 publication-title: Nature doi: 10.1038/nature14539 – ident: 432_CR45 – volume: 35 start-page: 1207 issue: 5 year: 2016 ident: 432_CR50 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535865 – volume: 26 start-page: 261 issue: 2 year: 2013 ident: 432_CR67 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.225 – volume: 8 start-page: 7497 issue: 7497 year: 2018 ident: 432_CR83 publication-title: Sci Rep doi: 10.1038/s41598-018-25842-6 – volume: 9 start-page: 424 issue: 6 year: 2010 ident: 432_CR3 publication-title: J Viral Hepat doi: 10.1046/j.1365-2893.2002.00385.x – ident: 432_CR43 doi: 10.1093/bja/aem214 – ident: 432_CR18 – ident: 432_CR37 doi: 10.14569/IJACSA.2012.030504 – ident: 432_CR41 – ident: 432_CR51 – ident: 432_CR39 – volume: 101 start-page: 569 year: 2014 ident: 432_CR88 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.06.077 – volume: 19 start-page: 221 issue: 1 year: 2017 ident: 432_CR92 publication-title: Annual Review of Biomedical Engineering doi: 10.1146/annurev-bioeng-071516-044442 – ident: 432_CR65 doi: 10.1145/2716282.2716289 – ident: 432_CR30 doi: 10.1109/CVPR.2016.308 – volume: 69 start-page: 299 issue: 2 year: 2004 ident: 432_CR9 publication-title: Am Fam Physician – ident: 432_CR38 doi: 10.1007/s11831-020-09409-1 – volume: 43 start-page: 1 issue: 2 year: 2019 ident: 432_CR75 publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0000000000000837 – volume: 80 start-page: 1 issue: 1 year: 1947 ident: 432_CR4 publication-title: Arch Intern Med doi: 10.1001/archinte.1947.00220130009001 – ident: 432_CR87 – ident: 432_CR48 doi: 10.1109/CVPR.2009.5206848 – ident: 432_CR58 doi: 10.1109/CVPRW.2014.131 – ident: 432_CR20 doi: 10.1109/ICoBE.2015.7235896 – volume: 52 start-page: 93 issue: 4 year: 2015 ident: 432_CR72 publication-title: Journal of the Society of English & American Literature Kansei Gakuin University – volume: 30 start-page: 95 issue: 1 year: 2017 ident: 432_CR53 publication-title: J Dig Imaging doi: 10.1007/s10278-016-9914-9 – volume: 7 start-page: 5110 issue: 1 year: 2017 ident: 432_CR86 publication-title: Sci Rep doi: 10.1038/s41598-017-05300-5 – ident: 432_CR89 doi: 10.1109/TBME.2015.2496253 – ident: 432_CR46 – volume: 89 start-page: 3228 issue: 5 year: 2017 ident: 432_CR16 publication-title: Anal Chem doi: 10.1021/acs.analchem.7b00354 – ident: 432_CR23 – ident: 432_CR17 doi: 10.1109/MAMI.2015.7456588 – ident: 432_CR80 doi: 10.1038/srep26286 – volume: 113 start-page: 130 issue: 596 year: 2013 ident: 432_CR35 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.038 – ident: 432_CR85 doi: 10.1038/s41598-018-34817-6 – volume: 8 start-page: 9286 issue: 1 year: 2018 ident: 432_CR84 publication-title: Sci Rep doi: 10.1038/s41598-018-27569-w – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 432_CR90 publication-title: Science doi: 10.1126/science.1127647 – volume: 11 start-page: 310 issue: 3 year: 2004 ident: 432_CR5 publication-title: Ann Surg Oncol doi: 10.1245/ASO.2004.03.011 – ident: 432_CR6 – ident: 432_CR13 – ident: 432_CR32 doi: 10.1109/CVPR.2014.81 – ident: 432_CR21 doi: 10.1136/bmj.1.5852.530 – volume: 4 start-page: 1063 issue: 4 year: 2019 ident: 432_CR76 publication-title: ACS sensors doi: 10.1021/acssensors.9b00275 – volume: 7 start-page: 4172 issue: 1 year: 2017 ident: 432_CR82 publication-title: Scientific Reports doi: 10.1038/s41598-017-04075-z – volume: 35 start-page: 1285 issue: 5 year: 2016 ident: 432_CR54 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2528162 – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 432_CR49 publication-title: Int J Comput Vis doi: 10.1007/s11263-015-0816-y – ident: 432_CR78 – volume: 20 start-page: 1322 issue: 9 year: 2010 ident: 432_CR2 publication-title: J Gastroenterol Hepatol doi: 10.1111/j.1440-1746.2005.03884.x – ident: 432_CR74 – ident: 432_CR12 doi: 10.1007/s10916-016-0523-4 – ident: 432_CR33 – ident: 432_CR81 – volume: 29 start-page: e84397 issue: 2 year: 2019 ident: 432_CR15 publication-title: Iran J Pediatr – ident: 432_CR24 doi: 10.1007/s11831-019-09344-w – ident: 432_CR70 doi: 10.1109/IJCNN.2016.7727519 – ident: 432_CR64 – ident: 432_CR68 doi: 10.1530/acta.0.062S163 – ident: 432_CR77 doi: 10.1590/0100-3984.2018.0073 – volume: 11 start-page: 370 issue: 8 year: 2012 ident: 432_CR19 publication-title: Molecular & Cellular Proteomics Mcp doi: 10.1074/mcp.M111.016006 – ident: 432_CR47 – volume: 97 start-page: 304 issue: 6 year: 2004 ident: 432_CR7 publication-title: J R Soc Med |
SSID | ssj0017574 |
Score | 1.9247009 |
Snippet | Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 337 |
SubjectTerms | Algorithms Annotations Artificial intelligence Artificial neural networks Bilirubin Clinical medicine Comparative studies Digital imaging Gallbladder Gastroenterology Globalization Hepatitis Hepatology Hospitals Humans Imaging Jaundice Liver cancer Localization Medicine Medicine & Public Health Neural networks Neural Networks, Computer Original Paper Pancreas Pancreatic cancer Physicians Radiology Recognition Smartphones |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96gvgifls9JYJvGuym-fRFFvE4Du-Qw4N9K2macgeSnrb7_zuTpl3Ww3tsO2mTziQzk5n8hpD3BrT-yvOG-SZIcFBKx4DSsAbUT9tK7zuFh5NPz9TxhTjZyE3ecBtyWuW8JqaFuu097pF_AtO3Al0E-uzL9W-GVaMwuppLaNwl9xC6DKVabxaHCzTjhMJsrGYrY2w-NJOPznHEluXgTCMqHdP7iumGtXkzafKfyGlSSEePyMNsSdL1xPrH5E6IT8j90xwrf0riOTtx2_jdNZ_pejv2CZuVpgO3LJXCpOdz8lAfad9RpIbGgcLlj8t-7Ae8CysLbtUMFHdsoQnmL9N1jP0Uw6dnUx758IxcHH37-fWY5eoKzAstRiwtZ01VOm681d5YZVpvBej_UCkpuWh5K1WQwjWNr3zZ2o4bqTvNnXBBlKF6Tg5iH8NLQpUS3gtpBW-scIpbsMm4bUXnS9-1xhdkNf_a2mfocayA8avegSYjO2pgR53YUeuCfFjaXE_AG7dSH84cq_MkHOqdyBTk3fIYpg_GRFwM_RZoBPTa6hUvC_JiYvDyuapSFbqbBdF7rF8IEJp7_0m8ukwQ3RieLvGdH2ch2XXr_6N4dfsoXpMHPAks5g0dkoPxzza8AZNobN4muf8L_rMG7w priority: 102 providerName: ProQuest |
Title | R-JaunLab: Automatic Multi-Class Recognition of Jaundice on Photos of Subjects with Region Annotation Networks |
URI | https://link.springer.com/article/10.1007/s10278-021-00432-7 https://www.ncbi.nlm.nih.gov/pubmed/33634415 https://www.proquest.com/docview/2553124822 https://www.proquest.com/docview/2494297120 https://pubmed.ncbi.nlm.nih.gov/PMC8290020 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-8OxBfDr-tnksE3zTQTfPpW5XdO05vORYX1qfSpil3IKnY7v9_k36d66ngS0ubSZp2msxMZuYXgLcapf7csoLawgk0UOKcIqWmBYqfshTWVjIkJ1-s5NmGn2_FdkgKa8Zo99El2c3UvyS7sYAGy9D8DThyVB3AkUDbPQRybVg6-Q6U6LGXtVF0rrUZUmX-3Ma-OLqjY94NlfzNX9qJoeVDOB70R5L2DH8E95x_DPcvBg_5E_Brep7v_Je8-EDSXVt3iKykS7Ol3QaYZD2GDNWe1BUJ1FjZEby8vKrbugl3cT4JCzQNCeu0WCVELZPU-7r33JNVHz3ePIXNcvH10xkd9lSglivehg3ljE7inGlrlNVG6tIajlLfJVIIxktWCukEz4vCJjYuTcW0UJViOc8dj13yDA597d0LIFJya7kwnBWG55IZ1MSYKXllY1uV2kYwHz9tZgfA8bDvxffsFio5sCNDdmQdOzIVwbupzo8ebuOf1Ccjx7Jh6DUZ2kgJKi2o-ETwZirGQRM8Ibl39Q5pOPbaqDmLI3jeM3h6XJLIJBiZEag91k8EAZB7v8RfX3XA3MEpHYc2348_yW23_v4WL_-P_BU8YN0PHKKHTuCw_blzr1ExaosZHKitwqNens7gKD399nmB54-L1eV61o2RG2EvCNE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGkIAXxDeFAUGCJ4jopWmTICF0Ao7bdndC0ybtrbRpqiFN6UZ7QvxT_I3Y_bjTMbG3PbZ10jZ2Yie2fwZ4pVHrj6zIuc1djBuUMONIqXmO6qcoYmvLhJKT54tkeiT3juPjLfgz5MJQWOWwJrYLdVFZOiN_h6ZvhLoI9dnHs3NOVaPIuzqU0OjEYt_9_oVbtvrD7mfk72shJl8OP015X1WAW6lkQyXVjI7CTGhrlNUm0YU1EvWei5I4FrIQRZy4WGZ5biMbFqYUOlalEpnMnAxdhP1eg-syQk1OmemTryuvhYo71GdtFB9pbfoknT5VTxCWrcDNO6HgcbWpCC9YtxeDNP_x1LYKcHIHbveWKxt3onYXtpy_BzfmvW_-PvgDvpct_SzL37PxsqlaLFjWJvjytvQmOxiClSrPqpIRNTZ2DC-_nVRNVdNdXMnoaKhmdEKMTShemo29r7qYAbbo4tbrB3B0JeP-ELZ95d1jYEkirZWxkSI3MkuEQRtQmEKWNrRloW0Ao2FoU9tDnVPFjdN0DdJM7EiRHWnLjlQF8GbV5qwD-riUemfgWNpP-jpdi2gAL1ePcbqSDybzrloijcSvNmokwgAedQxevS6Kkoi2twGoDdavCAgKfPOJ_3HSQoKTOzykPt8OQrL-rP__xZPL_-IF3JwezmfpbHex_xRuiVZ4KWZpB7abn0v3DM2xJn_ezgEG36960v0F8_VCsQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTZp4QXzTMSBI8ATVemnSJEgIHWynfZ5OJybtrbRpqiFN7aA9If41_jrsfp2Oib3tsa3TLzuxHds_A7zRqPXHlqe-TZ1EByVIfKTUforqJ8uktXlExcmns-jgTBydy_MN-NPXwlBaZb8mNgt1VlraI99F0zdEXYT6bDfv0iLme9NPVz986iBFkda-nUYrIsfu9y9036qPh3vI67ecT_e_fjnwuw4DvhVK1NRezegwSLi2RlltIp1ZI1AHujCSkouMZzJyUiRpakMbZCbnWqpc8UQkTgQuxPvegU1FXtEINj_vz-aLIYahZIsBrY3yx1qbrmSnK9zjhGzL0ZUnTDxfravFa7bu9ZTNf-K2jTqc3od7nR3LJq3gPYANVzyErdMuUv8IioV_lCyLkyT9wCbLumyQYVlT7us3jTjZok9dKgtW5oyocbBjeDi_KOuyorO4rtFGUcVovxiHUPY0mxRF2WYQsFmbxV49hrNb-fNPYFSUhXsGLIqEtUIawVMjkogbtAi5yURuA5tn2now7n9tbDvgc-q_cRmvIJuJHTGyI27YESsP3g1jrlrYjxupd3qOxd0SUMUrgfXg9XAZJy9FZJLClUukEfjWRo154MHTlsHD48IwCsnZ9UCtsX4gIGDw9SvF94sGIJyC4wHd830vJKvX-v9XbN_8Fa9gCydcfHI4O34Od3kju5TAtAOj-ufSvUDbrE5fdpOAwbfbnnd_AabASEM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=R-JaunLab%3A+Automatic+Multi-Class+Recognition+of+Jaundice+on+Photos+of+Subjects+with+Region+Annotation+Networks&rft.jtitle=Journal+of+digital+imaging&rft.au=Wang%2C+Zheng&rft.au=Xiao%2C+Ying&rft.au=Weng%2C+Futian&rft.au=Li%2C+Xiaojun&rft.date=2021-04-01&rft.pub=Springer+International+Publishing&rft.issn=0897-1889&rft.eissn=1618-727X&rft.volume=34&rft.issue=2&rft.spage=337&rft.epage=350&rft_id=info:doi/10.1007%2Fs10278-021-00432-7&rft_id=info%3Apmid%2F33634415&rft.externalDocID=PMC8290020 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-1889&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-1889&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-1889&client=summon |