R-JaunLab: Automatic Multi-Class Recognition of Jaundice on Photos of Subjects with Region Annotation Networks

Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special equipment is a common method that is used to identify the total serum bilirubin level in patients. Fully automated multi-class recognition of j...

Full description

Saved in:
Bibliographic Details
Published inJournal of digital imaging Vol. 34; no. 2; pp. 337 - 350
Main Authors Wang, Zheng, Xiao, Ying, Weng, Futian, Li, Xiaojun, Zhu, Danhua, Lu, Fanggen, Liu, Xiaowei, Hou, Muzhou, Meng, Yu
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special equipment is a common method that is used to identify the total serum bilirubin level in patients. Fully automated multi-class recognition of jaundice combines two key issues: (1) the critical difficulties in multi-class recognition of jaundice approaches contrasting with the binary class and (2) the subtle difficulties in multi-class recognition of jaundice represent extensive individuals variability of high-resolution photos of subjects, huge coherency between healthy controls and occult jaundice, as well as broadly inhomogeneous color distribution. We introduce a novel approach for multi-class recognition of jaundice to detect occult jaundice, obvious jaundice and healthy controls. First, region annotation network is developed and trained to propose eye candidates. Subsequently, an efficient jaundice recognizer is proposed to learn similarities, context, localization features and globalization characteristics on photos of subjects. Finally, both networks are unified by using shared convolutional layer. Evaluation of the structured model in a comparative study resulted in a significant performance boost (categorical accuracy for mean 91.38%) over the independent human observer. Our work was exceeded against the state-of-the-art convolutional neural network (96.85% and 90.06% for training and validation subset, respectively) and showed a remarkable categorical result for mean 95.33% on testing subset. The proposed network makes a performance better than physicians. This work demonstrates the strength of our proposal to help bringing an efficient tool for multi-class recognition of jaundice into clinical practice.
AbstractList Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special equipment is a common method that is used to identify the total serum bilirubin level in patients. Fully automated multi-class recognition of jaundice combines two key issues: (1) the critical difficulties in multi-class recognition of jaundice approaches contrasting with the binary class and (2) the subtle difficulties in multi-class recognition of jaundice represent extensive individuals variability of high-resolution photos of subjects, huge coherency between healthy controls and occult jaundice, as well as broadly inhomogeneous color distribution. We introduce a novel approach for multi-class recognition of jaundice to detect occult jaundice, obvious jaundice and healthy controls. First, region annotation network is developed and trained to propose eye candidates. Subsequently, an efficient jaundice recognizer is proposed to learn similarities, context, localization features and globalization characteristics on photos of subjects. Finally, both networks are unified by using shared convolutional layer. Evaluation of the structured model in a comparative study resulted in a significant performance boost (categorical accuracy for mean 91.38%) over the independent human observer. Our work was exceeded against the state-of-the-art convolutional neural network (96.85% and 90.06% for training and validation subset, respectively) and showed a remarkable categorical result for mean 95.33% on testing subset. The proposed network makes a performance better than physicians. This work demonstrates the strength of our proposal to help bringing an efficient tool for multi-class recognition of jaundice into clinical practice.Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special equipment is a common method that is used to identify the total serum bilirubin level in patients. Fully automated multi-class recognition of jaundice combines two key issues: (1) the critical difficulties in multi-class recognition of jaundice approaches contrasting with the binary class and (2) the subtle difficulties in multi-class recognition of jaundice represent extensive individuals variability of high-resolution photos of subjects, huge coherency between healthy controls and occult jaundice, as well as broadly inhomogeneous color distribution. We introduce a novel approach for multi-class recognition of jaundice to detect occult jaundice, obvious jaundice and healthy controls. First, region annotation network is developed and trained to propose eye candidates. Subsequently, an efficient jaundice recognizer is proposed to learn similarities, context, localization features and globalization characteristics on photos of subjects. Finally, both networks are unified by using shared convolutional layer. Evaluation of the structured model in a comparative study resulted in a significant performance boost (categorical accuracy for mean 91.38%) over the independent human observer. Our work was exceeded against the state-of-the-art convolutional neural network (96.85% and 90.06% for training and validation subset, respectively) and showed a remarkable categorical result for mean 95.33% on testing subset. The proposed network makes a performance better than physicians. This work demonstrates the strength of our proposal to help bringing an efficient tool for multi-class recognition of jaundice into clinical practice.
Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special equipment is a common method that is used to identify the total serum bilirubin level in patients. Fully automated multi-class recognition of jaundice combines two key issues: (1) the critical difficulties in multi-class recognition of jaundice approaches contrasting with the binary class and (2) the subtle difficulties in multi-class recognition of jaundice represent extensive individuals variability of high-resolution photos of subjects, huge coherency between healthy controls and occult jaundice, as well as broadly inhomogeneous color distribution. We introduce a novel approach for multi-class recognition of jaundice to detect occult jaundice, obvious jaundice and healthy controls. First, region annotation network is developed and trained to propose eye candidates. Subsequently, an efficient jaundice recognizer is proposed to learn similarities, context, localization features and globalization characteristics on photos of subjects. Finally, both networks are unified by using shared convolutional layer. Evaluation of the structured model in a comparative study resulted in a significant performance boost (categorical accuracy for mean 91.38%) over the independent human observer. Our work was exceeded against the state-of-the-art convolutional neural network (96.85% and 90.06% for training and validation subset, respectively) and showed a remarkable categorical result for mean 95.33% on testing subset. The proposed network makes a performance better than physicians. This work demonstrates the strength of our proposal to help bringing an efficient tool for multi-class recognition of jaundice into clinical practice.
Author Liu, Xiaowei
Xiao, Ying
Hou, Muzhou
Meng, Yu
Wang, Zheng
Lu, Fanggen
Weng, Futian
Li, Xiaojun
Zhu, Danhua
Author_xml – sequence: 1
  givenname: Zheng
  surname: Wang
  fullname: Wang, Zheng
  organization: School of Mathematics and Statistics, Central South University, Science and Engineering School, Hunan First Normal University
– sequence: 2
  givenname: Ying
  surname: Xiao
  fullname: Xiao, Ying
  organization: Gastroenterology Department of Xiangya Hospital, Central South University
– sequence: 3
  givenname: Futian
  surname: Weng
  fullname: Weng, Futian
  organization: School of Mathematics and Statistics, Central South University
– sequence: 4
  givenname: Xiaojun
  surname: Li
  fullname: Li, Xiaojun
  organization: Gastroenterology Department of Xiangya Hospital, Central South University
– sequence: 5
  givenname: Danhua
  surname: Zhu
  fullname: Zhu, Danhua
  organization: Department of Gastroenterology, Hunan Provincial People’s Hospital
– sequence: 6
  givenname: Fanggen
  surname: Lu
  fullname: Lu, Fanggen
  organization: The Second Xiangya Hospital, Central South University
– sequence: 7
  givenname: Xiaowei
  surname: Liu
  fullname: Liu, Xiaowei
  organization: Gastroenterology Department of Xiangya Hospital, Central South University
– sequence: 8
  givenname: Muzhou
  orcidid: 0000-0001-6658-2187
  surname: Hou
  fullname: Hou, Muzhou
  email: houmuzhou@sina.com
  organization: School of Mathematics and Statistics, Central South University
– sequence: 9
  givenname: Yu
  surname: Meng
  fullname: Meng, Yu
  email: mengyu1981@163.com
  organization: Department of Gastroenterology and Hepatology, Shenzhen University General Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33634415$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9vFCEchompsdvqF_BgJvHiBeXvAB5MNpu2arZqqibeCMMwu6yzUAemjd9edqe12kNPBHieX154j8BBiMEB8Byj1xgh8SZhRISEiGCIEKMEikdghmssoSDixwGYIakExFKqQ3CU0gYhLLhgT8AhpTVlDPMZCBfwoxnD0jRvq_mY49Zkb6vzsc8eLnqTUnXhbFwFn30MVeyqHd1666qy_bKOOabd6dex2TibU3Xt87ooqx09DyFmsxc_uXwdh5_pKXjcmT65ZzfrMfh-evJt8R4uP599WMyX0DLBMmRKKEmRIdIqYaWqZWsV45g4WnNOWEtaXjvOTNNYalGrOiK56AQxzDiGHD0G76a5l2Ozda11IQ-m15eD35rht47G6_9vgl_rVbzSkiiECCoDXt0MGOKv0aWstz5Z1_cmuDgmTZhiRAm8R1_eQzdxHEJ5niacU0yYJKRQL_5N9DfKbRUFkBNgh5jS4Dpt_fR7JaDvNUZ617qeWteldb1vXYuiknvq7fQHJTpJqcBh5Ya72A9YfwDYx78l
CitedBy_id crossref_primary_10_1016_j_asoc_2025_112878
crossref_primary_10_1007_s11042_024_18910_9
crossref_primary_10_1016_j_eswa_2022_116519
crossref_primary_10_1016_j_ijbiomac_2023_125140
crossref_primary_10_1109_JSEN_2023_3315452
Cites_doi 10.1109/TPAMI.2015.2389824
10.1016/S0197-0070(86)80039-0
10.1177/096228029900800204
10.1109/TPAMI.2016.2577031
10.1007/978-3-319-24574-4_28
10.1007/978-3-319-10590-1_53
10.1109/CVPR.2015.7298761
10.1002/mpr.169
10.1038/s41372-019-0452-4
10.1007/s10439-019-02349-3
10.1109/CVPR.2016.90
10.1109/ICCV.2015.169
10.1162/neco.1989.1.4.541
10.1109/CVPR.2015.7298594
10.1007/s00371-020-01814-8
10.1109/CVPR.2017.195
10.1007/s00521-018-3677-9
10.1016/j.pop.2011.05.004
10.1109/CVPR.2016.319
10.1109/TMI.2016.2553401
10.1109/DICTA.2016.7797091
10.1038/s41467-018-07262-2
10.1109/CVPR.2017.243
10.1109/TMI.2016.2535302
10.4103/0377-2063.123765
10.1109/JBHI.2019.2894374
10.1038/nature14539
10.1109/TMI.2016.2535865
10.1109/TKDE.2012.225
10.1038/s41598-018-25842-6
10.1046/j.1365-2893.2002.00385.x
10.1093/bja/aem214
10.14569/IJACSA.2012.030504
10.1016/j.neuroimage.2014.06.077
10.1146/annurev-bioeng-071516-044442
10.1145/2716282.2716289
10.1109/CVPR.2016.308
10.1007/s11831-020-09409-1
10.1097/RCT.0000000000000837
10.1001/archinte.1947.00220130009001
10.1109/CVPR.2009.5206848
10.1109/CVPRW.2014.131
10.1109/ICoBE.2015.7235896
10.1007/s10278-016-9914-9
10.1038/s41598-017-05300-5
10.1109/TBME.2015.2496253
10.1021/acs.analchem.7b00354
10.1109/MAMI.2015.7456588
10.1038/srep26286
10.1016/j.neucom.2013.01.038
10.1038/s41598-018-34817-6
10.1038/s41598-018-27569-w
10.1126/science.1127647
10.1245/ASO.2004.03.011
10.1109/CVPR.2014.81
10.1136/bmj.1.5852.530
10.1021/acssensors.9b00275
10.1038/s41598-017-04075-z
10.1109/TMI.2016.2528162
10.1007/s11263-015-0816-y
10.1111/j.1440-1746.2005.03884.x
10.1007/s10916-016-0523-4
10.1007/s11831-019-09344-w
10.1109/IJCNN.2016.7727519
10.1530/acta.0.062S163
10.1590/0100-3984.2018.0073
10.1074/mcp.M111.016006
ContentType Journal Article
Copyright Society for Imaging Informatics in Medicine 2021
2021. Society for Imaging Informatics in Medicine.
Society for Imaging Informatics in Medicine 2021.
Copyright_xml – notice: Society for Imaging Informatics in Medicine 2021
– notice: 2021. Society for Imaging Informatics in Medicine.
– notice: Society for Imaging Informatics in Medicine 2021.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QO
7RV
7SC
7TK
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K9.
KB0
L7M
LK8
L~C
L~D
M0S
M1P
M7P
NAPCQ
P5Z
P62
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1007/s10278-021-00432-7
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Biotechnology Research Abstracts
Nursing & Allied Health Database
Computer and Information Systems Abstracts
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Advanced Technologies Database with Aerospace
Biological Sciences
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Central Student


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1618-727X
EndPage 350
ExternalDocumentID PMC8290020
33634415
10_1007_s10278_021_00432_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Social Science Foundation of China
  grantid: 19BTJ011
– fundername: ;
  grantid: 19BTJ011
GroupedDBID ---
-5E
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
04C
06C
06D
0R~
0VY
1N0
2.D
203
29K
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
408
409
40D
40E
53G
5GY
5RE
5VS
67Z
6NX
6PF
78A
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAKDD
AAKPC
AANXM
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAWTL
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADJJI
ADKNI
ADKPE
ADMLS
ADOJX
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAWUL
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D-I
DDRTE
DIK
DL5
DNIVK
DPUIP
DU5
EBD
EBS
ECT
EDO
EIHBH
EIOEI
EJD
EMB
EMOBN
EN4
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GX1
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HYE
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
KDC
KOV
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
NAPCQ
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OK1
P2P
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
Q2X
QOK
QOR
QOS
R89
R9I
RNS
ROL
RPM
RPX
RRX
RSV
S16
S1Z
S27
S37
S3B
SAP
SDH
SHX
SISQX
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
TUS
U2A
U9L
UDS
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
WOW
YLTOR
Z45
Z7R
Z7W
Z7X
Z82
Z83
Z88
Z8R
Z8V
Z8W
Z92
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ACSTC
ADHKG
AGQPQ
AHPBZ
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QO
7SC
7TK
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
JQ2
K9.
L7M
L~C
L~D
P64
PKEHL
PQEST
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-4979830a28c97c8968dc94512e365524d2d56e54abbc3c0d9f2857f72a4ae40e3
IEDL.DBID U2A
ISSN 0897-1889
1618-727X
IngestDate Thu Aug 21 18:11:20 EDT 2025
Fri Jul 11 02:26:36 EDT 2025
Sat Aug 23 14:53:43 EDT 2025
Mon Jul 21 05:51:56 EDT 2025
Thu Apr 24 22:56:15 EDT 2025
Tue Jul 01 00:52:13 EDT 2025
Fri Feb 21 02:48:04 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 2
Keywords Convolutional Neural Network
)
Region Annotation Network
Occult Jaundice
Total Serum Bilirubin
Region Annotation Network (RAN)
Total Serum Bilirubin (TBil)
Convolutional Neural Network (CNN)
Language English
License 2021. Society for Imaging Informatics in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-4979830a28c97c8968dc94512e365524d2d56e54abbc3c0d9f2857f72a4ae40e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6658-2187
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8290020
PMID 33634415
PQID 2553124822
PQPubID 34218
PageCount 14
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8290020
proquest_miscellaneous_2494297120
proquest_journals_2553124822
pubmed_primary_33634415
crossref_citationtrail_10_1007_s10278_021_00432_7
crossref_primary_10_1007_s10278_021_00432_7
springer_journals_10_1007_s10278_021_00432_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: New York
PublicationTitle Journal of digital imaging
PublicationTitleAbbrev J Digit Imaging
PublicationTitleAlternate J Digit Imaging
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Deng J, Dong W, Socher R, Li LJ, Li FF: Imagenet: a large-scale hierarchical image database. In IEEE Conference on Computer Vision & Pattern Recognition, 2009
AnthimopoulosMChristodoulidisSEbnerLChristeAMougiakakouSLung pattern classification for interstitial lung diseases using a deep convolutional neural networkIEEE Trans Med Imaging20163551207121626955021
PayalCKumarGNMunishKContent-based image retrieval system using orb and sift featuresNeural Comput Applic20203227252733
HeKZhangXRenSSunJSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Trans Pattern Anal Mach Intell2014379190416
WangXZhangAHanYWangPSunHSongGDongTYuanYYuanXZhangMUrine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver diseaseMolecular & Cellular Proteomics Mcp2012118370
Krizhevsky A, Sutskever I, Hinton G: Imagenet classification with deep convolutional neural networks. In International Conference on Neural Information Processing Systems, 2012
Deniz CM, Hallyburton S, Welbeck A, Honig S, Cho K, Chang G: Segmentation of the proximal femur from mr images using deep convolutional neural networks. Sci Rep, 8(1), 2018
RenSHeKGirshickRSunJFaster r-cnn: Towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell20173961137114927295650
HintonGVinyalsODeanJDistilling the knowledge in a neural networkComputer Science20151473839
ThompsonBLWyckoffSLHaverstickDMLandersJPSimple, reagentless quantification of total bilirubin in blood via microfluidic phototreatment and image analysisAnal Chem2017895322832341:CAS:528:DC%2BC2sXisVGlsbg%3D28192917
Redfern V, Mortimore G: Right hypochondrial pain leading to diagnosis of cholestatic jaundice and cholecystitis: a review and case study. Gastrointestinal Nursing
HanZWeiBZhengYYinYLiKLiSBreast cancer multi-classification from histopathological images with structured deep learning modelScientific Reports2017714172286461555482871
XuXZhangXThe application of intravoxel incoherent motion diffusion-weighted imaging in the diagnosis of hilar obstructive jaundiceJ Comput Assist Tomogr201943211:CAS:528:DC%2BC1MXkvF2msLc%3D
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A: Going deeper with convolutions. In 2015 IEEE Conf Comput Vis Pattern Recognit (CVPR), pages 1–9, 2015
Sunwoo MH, Lee JW, Kim JH: Method and apparatus for jaundice diagnosis based on an image, Apr. 18 2019. US Patent App. 16/115,821
Saini N, Kumar A: Comparison of non-invasive bilirubin detection techniques for jaundice prediction, 2016.
He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. In 2016 IEEE Conf Comp Vis Pattern Recognit (CVPR), pages 770–778, 2016
Cordero C, Schieve LA, Croen LA, Engel SM, Maria ASR, Herring AH, Vladutiu CJ, Seashore CJ, Daniels JL: Neonatal jaundice in association with autism spectrum disorder and developmental disorder. Journal of perinatology: official journal of the California Perinatal Association, 2019
Dosovitskiy A, Springenberg JT, Riedmiller M, Brox T: Discriminative unsupervised feature learning with convolutional neural networks. 2014
Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation. 2015
Jr MA, Niswender GD, Rebar RW. Principles for the assessment of the reliability of radioimmunoassay methods (precision, accuracy, sensitivity, specificity). Acta Endocrinologica Supplementum, 142(1 Suppl):163, 1969
Wang D, Khosla A, Gargeya R, Irshad H, Beck AH: Deep learning for identifying metastatic breast cancer. 2016
TajbakhshNShinJYGuruduSRHurstRTKendallCBGotwayMBLiangJConvolutional neural networks for medical image analysis: Full training or fine tuning?IEEE Trans Med Imaging20163551299131226978662
Kessler RC, Abelson JM, Demler O, Escobar JI, Zheng H: Clinical calibration of dsm-iv diagnoses in the world mental health (wmh) version of the world health organization (who) composite international diagnostic interview (cidi). 13(2):122–139, 2004
Girshick R, Donahue J, Darrelland T, Malik J: Rich feature hierarchies for object detection and semantic segmentation. In IEEE Conference on Computer Vision & Pattern Recognition, 2014
Kumar M, Bansal M, Kumar M. 2d object recognition techniques: State-of-the-art work. Archives of Computational Methods in Engineering, 02 2020
JiJZhangALiuCQuanXLiuZSurvey: Functional module detection from protein-protein interaction networksIEEE Trans Knowl Data Eng2013262261277
Wang Z, Meng Y, Weng F, Chen Y, Lu F, Liu X, Hou M, Zhang J: An effective cnn method for fully automated segmenting subcutaneous and visceral adipose tissue on ct scans. Ann Biomed Eng, pages 1–17, 2019
Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A: Learning deep features for discriminative localization. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2921–2929, 2016
Maisels MJ: Managing the jaundiced newborn: a persistent challenge, CMAJ
Huang G, Liu Z, Van Der Maaten L, Weinberger KQ: Densely connected convolutional networks. In 2017 IEEE Conf Comput Visi Pattern Recognit (CVPR), pages 2261–2269, 2017
Wong SC, Gatt A, Stamatescu V, Mcdonnell MD: Understanding data augmentation for classification: When to warp? 2016
Hinton G, Tieleman T: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, (4):26–30, 2012
TakiyamaHOzawaTIshiharaSFujishiroMShichijoSNomuraSMiuraMTadaTAutomatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networksSci Rep2018874977497297603975951793
LaddiAKumarSSharmaSKumarANon-invasive jaundice detection using machine visionIETE J Res2013595591596
HawkinsWGDematteoRPJarnaginWRBen-PoratLFongYJaundice predicts advanced disease and early mortality in patients with gallbladder cancerAnn Surg Oncol200411331031514993027
Kumar M, Dargon S: A survey of deep learning and its applications: A new paradigm to machine learning. Arch Comput Meth Eng, 2019
RocheSPKobosRJaundice in the adult patientAm Fam Physician200469229930414765767
Halder A, Banerjee M, Singh S, Adhikari A, Sarkar PK, Bhattacharya AM, Chakrabarti P, Bhattacharyya D, Mallick AK, Pal SK: A novel whole spectrum-based non-invasive screening device for neonatal hyperbilirubinemia. IEEE J Biomed Health Inform, PP(99):1.
PS Myles, Cui JI: using the bland altman method to measure agreement with repeated measures. Br J Anaesth, 99(3):309–311, 2007
Kaleem, Rashid, Sreepathi, Pingali, Keshav. Stochastic gradient descent on gpus. 2015
LarryCOxford textbook of primary medical careJ R Soc Med2004976304
Goroshin R, Mathieu M, LeCun Y: Learning to Linearize Under Uncertainty. CoRR, abs/1506.03011, 2015
AnandACPuriPJaundice in malariaJ Gastroenterol Hepatol201020913221332
He K, Georgia G, Piotr D, Ross G: Mask r-cnn. IEEE Trans Pattern Anal Mach Intell, PP(99):1, 2017
Kumar M, Kumar R, Kaur P: A healthcare monitoring system using random forest and internet of things (iot). Multimed Tools Appl, 02 2019
Saha S, Saha S, Bhattacharyya PP: Classifier fusion for liver function test based indian jaundice classification. In International Conference on Man & Machine Interfacing, 2016.
WingerJMichelfelderADiagnostic approach to the patient with jaundicePrim Care201138346948221872092
LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput201414541551
ShinHCRothHRGaoMLuLXuZNoguesIYaoJMolluraDSummersRMDeep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learningIEEE Trans Med Imaging20163551285129826886976
KouvarisKCluneJKouniosLBredeMWatsonRAHow evolution learns to generalise: Principles of under-fitting, over-fitting and induction in the evolution of developmental organisationJournal of the Society of English & American Literature Kansei Gakuin University201552493107
PadidarPShakerMAmoozgarHKhorraminejad-ShiraziMHemmatiFNajibKSPourarianSDetection of neonatal jaundice by using an android os-based smartphone applicationIran J Pediatr2019292e84397
JungCSunTJiaoLEye detection under varying illumination using the retinex theoryNeurocomputing2013113596130137
RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMImagenet large scale visual recognition challengeInt J Comput Vis20151153211252
ShenDWuGSukHIDeep learning in medical image analysisAnnual Review of Biomedical Engineering20171912212481:CAS:528:DC%2BC2sXksVCqsLs%3D283017345479722
Knill-Jones RP, Stern RB, Girmes DH, Maxwell JD, Thompson RP, Williams R: Use of sequential bayesian model in diagnosis of jaundice by computer. Br Med J, 1(5852):530–533, 1973
Simonyan K, Zisserman A: Very deep convolutional networks for large-scale image recognition. Computer Science, 2014
HowardRWatsonCJAntecedent jaundice in cirrhosis of the liverArch Intern Med19478011101:STN:280:DyaH2s%2Fhtlaqug%3D%3D
Aydım M, Hardala FC, Ural B, Karap S: Neonatal jaundice detection system, J Med Syst. 40(7):166, 2016
Cho J, Lee K, Shin E, Choy G, Do S: How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? Computer Science, 2015
Hao C, Qi D, Xi W, Jing Q, Heng PA: Mitosis detection in breast cancer histology images via deep cascaded networks. In Thirtieth Aaai Conference on Artificial Intelligence, 2016
Dutta P, Saha S, Gulati S: Graph-based hub gene selection technique using protein interaction information: Application to sample classification. IEEE J Biomed Health Inform, PP(99):1, 2019
Razavian AS, Azizpour H, Sullivan J, Carlsson S: Cnn features off-the-shelf: An astounding baseline for recognition. pages 512–519, 2014
Girshick R: Fast r-cnn. In 2015 IEEE International Conference on Computer Vision (ICCV), pages 1440–1448, 2015
ChanLYTsangWCHuiYLeungWYChanKLSungJYThe role of lamivudine and predictors of mortality in severe flare-up of chronic hepatitis b with jaundiceJ Viral Hepat201096424428
LecunYBengioYHintonGDeep learni
C Jung (432_CR35) 2013; 113
432_CR39
432_CR38
S Ren (432_CR36) 2017; 39
432_CR40
KJ Labori (432_CR10) 2004; 93
432_CR81
432_CR80
M Anthimopoulos (432_CR50) 2016; 35
432_CR48
H Takiyama (432_CR83) 2018; 8
432_CR47
432_CR46
C Payal (432_CR26) 2020; 32
432_CR45
432_CR89
432_CR44
432_CR43
432_CR87
432_CR41
432_CR85
AC Anand (432_CR2) 2010; 20
432_CR51
432_CR93
G Hinton (432_CR79) 2015; 14
K Kouvaris (432_CR72) 2015; 52
O Russakovsky (432_CR49) 2015; 115
RS Tabatabaee (432_CR76) 2019; 4
432_CR59
432_CR14
432_CR58
432_CR13
432_CR57
432_CR12
A Laddi (432_CR22) 2013; 59
432_CR56
J Ji (432_CR67) 2013; 26
SP Roche (432_CR9) 2004; 69
432_CR1
432_CR18
BL Thompson (432_CR16) 2017; 89
432_CR17
Y Lecun (432_CR91) 2015; 521
JM Bland (432_CR42) 1999; 8
HI Suk (432_CR88) 2014; 101
D Shen (432_CR92) 2017; 19
432_CR8
N Tajbakhsh (432_CR55) 2016; 35
432_CR6
432_CR62
432_CR61
432_CR60
HC Shin (432_CR54) 2016; 35
X Xu (432_CR75) 2019; 43
432_CR69
432_CR24
H Greenspan (432_CR52) 2016; 35
432_CR68
432_CR23
432_CR66
432_CR21
432_CR65
432_CR20
432_CR64
JL Causey (432_CR84) 2018; 8
432_CR63
LY Chan (432_CR3) 2010; 9
P Padidar (432_CR15) 2019; 29
WG Hawkins (432_CR5) 2004; 11
432_CR29
432_CR28
432_CR27
R Howard (432_CR4) 1947; 80
Y LeCun (432_CR25) 2014; 1
M Ghafoorian (432_CR86) 2017; 7
Z Han (432_CR82) 2017; 7
432_CR73
J Winger (432_CR11) 2011; 38
432_CR71
A Rajkomar (432_CR53) 2017; 30
432_CR70
K He (432_CR34) 2014; 37
GE Hinton (432_CR90) 2006; 313
432_CR37
C Larry (432_CR7) 2004; 97
432_CR78
432_CR33
432_CR77
432_CR32
X Wang (432_CR19) 2012; 11
432_CR31
432_CR30
432_CR74
References_xml – reference: AnthimopoulosMChristodoulidisSEbnerLChristeAMougiakakouSLung pattern classification for interstitial lung diseases using a deep convolutional neural networkIEEE Trans Med Imaging20163551207121626955021
– reference: Soetedjo A: Eye detection based-on color and shape features. Int J Adv Comput Sci Appl, 3(5), 2012
– reference: Wang D, Khosla A, Gargeya R, Irshad H, Beck AH: Deep learning for identifying metastatic breast cancer. 2016
– reference: Saha S, Saha S, Bhattacharyya PP: Classifier fusion for liver function test based indian jaundice classification. In International Conference on Man & Machine Interfacing, 2016.
– reference: Zulkarnay Z, Jurimah AJ, Ibrahim B, Shazwani S, Nasir MAKA: An overview on jaundice measurement and application in biomedical: The potential of non-invasive method. In International Conference on Biomedical Engineering, 2015.
– reference: Brandabur JJ, Kozarek RA, Ball TJ, Hofer BO, Jr RJ, Traverso LW, Freeny PC, Lewis GP: Nonoperative versus operative treatment of obstructive jaundice in pancreatic cancer: cost and survival analysis. Am J Gastroenterol, 83(10):1132, 1988
– reference: Simonyan K, Zisserman A: Very deep convolutional networks for large-scale image recognition. Computer Science, 2014
– reference: JiJZhangALiuCQuanXLiuZSurvey: Functional module detection from protein-protein interaction networksIEEE Trans Knowl Data Eng2013262261277
– reference: Aydım M, Hardala FC, Ural B, Karap S: Neonatal jaundice detection system, J Med Syst. 40(7):166, 2016
– reference: Girshick R, Donahue J, Darrelland T, Malik J: Rich feature hierarchies for object detection and semantic segmentation. In IEEE Conference on Computer Vision & Pattern Recognition, 2014
– reference: AnandACPuriPJaundice in malariaJ Gastroenterol Hepatol201020913221332
– reference: Cordero C, Schieve LA, Croen LA, Engel SM, Maria ASR, Herring AH, Vladutiu CJ, Seashore CJ, Daniels JL: Neonatal jaundice in association with autism spectrum disorder and developmental disorder. Journal of perinatology: official journal of the California Perinatal Association, 2019
– reference: Kaleem, Rashid, Sreepathi, Pingali, Keshav. Stochastic gradient descent on gpus. 2015
– reference: CauseyJLZhangJMaSJiangBQuallsJAPolitteDGPriorFZhangSHuangXHighly accurate model for prediction of lung nodule malignancy with ct scansSci Rep2018819286299153346006355
– reference: Kumar M, Dargan S: A comprehensive survey on the biometric recognition systems based on physiological and behavioral modalities. Expert Systems with Applications, pages 1–27, 11 2019
– reference: HintonGVinyalsODeanJDistilling the knowledge in a neural networkComputer Science20151473839
– reference: Wang S, Kim M, Wu G, Shen D: Chapter11c scalable high performance image registration framework by unsupervised deep feature representations learning. IEEE Trans Biomed Eng, 63(7):1505–1516, 2016
– reference: Chollet F: Xception: Deep learning with depthwise separable convolutions. In 2017 IEEE Conf Comput Vis Pattern Recognit (CVPR), pages 1800–1807, 2017
– reference: WangXZhangAHanYWangPSunHSongGDongTYuanYYuanXZhangMUrine metabolomics analysis for biomarker discovery and detection of jaundice syndrome in patients with liver diseaseMolecular & Cellular Proteomics Mcp2012118370
– reference: HanZWeiBZhengYYinYLiKLiSBreast cancer multi-classification from histopathological images with structured deep learning modelScientific Reports2017714172286461555482871
– reference: Hao C, Qi D, Xi W, Jing Q, Heng PA: Mitosis detection in breast cancer histology images via deep cascaded networks. In Thirtieth Aaai Conference on Artificial Intelligence, 2016
– reference: TabatabaeeRSGolmohammadiHAhmadiSHEasy diagnosis of jaundice: A smartphone-based nanosensor bioplatform using photoluminescent bacterial nanopaper for point-of-care diagnosis of hyperbilirubinemiaACS sensors201944106310711:CAS:528:DC%2BC1MXls1altbk%3D30896150
– reference: Maisels MJ: Managing the jaundiced newborn: a persistent challenge, CMAJ
– reference: GreenspanHvan GinnekenBSummersRMGuest editorial deep learning in medical imaging: Overview and future promise of an exciting new techniqueIEEE Trans Med Imaging201635511531159
– reference: PayalCKumarGNMunishKContent-based image retrieval system using orb and sift featuresNeural Comput Applic20203227252733
– reference: Kumar M, Kumar R, Kaur P: A healthcare monitoring system using random forest and internet of things (iot). Multimed Tools Appl, 02 2019
– reference: Zeiler MD, Fergus R: Visualizing understanding convolutional networks. 2013
– reference: HeKZhangXRenSSunJSpatial pyramid pooling in deep convolutional networks for visual recognitionIEEE Trans Pattern Anal Mach Intell2014379190416
– reference: Zhou B, Khosla A, Lapedriza A, Oliva A, Torralba A: Learning deep features for discriminative localization. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2921–2929, 2016
– reference: Kumar M, Dargon S: A survey of deep learning and its applications: A new paradigm to machine learning. Arch Comput Meth Eng, 2019
– reference: RenSHeKGirshickRSunJFaster r-cnn: Towards real-time object detection with region proposal networksIEEE Trans Pattern Anal Mach Intell20173961137114927295650
– reference: Razavian AS, Azizpour H, Sullivan J, Carlsson S: Cnn features off-the-shelf: An astounding baseline for recognition. pages 512–519, 2014
– reference: Jr MA, Niswender GD, Rebar RW. Principles for the assessment of the reliability of radioimmunoassay methods (precision, accuracy, sensitivity, specificity). Acta Endocrinologica Supplementum, 142(1 Suppl):163, 1969
– reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A: Going deeper with convolutions. In 2015 IEEE Conf Comput Vis Pattern Recognit (CVPR), pages 1–9, 2015
– reference: Girshick R: Fast r-cnn. In 2015 IEEE International Conference on Computer Vision (ICCV), pages 1440–1448, 2015
– reference: Halder A, Banerjee M, Singh S, Adhikari A, Sarkar PK, Bhattacharya AM, Chakrabarti P, Bhattacharyya D, Mallick AK, Pal SK: A novel whole spectrum-based non-invasive screening device for neonatal hyperbilirubinemia. IEEE J Biomed Health Inform, PP(99):1.
– reference: Knill-Jones RP, Stern RB, Girmes DH, Maxwell JD, Thompson RP, Williams R: Use of sequential bayesian model in diagnosis of jaundice by computer. Br Med J, 1(5852):530–533, 1973
– reference: Dutta P, Saha S, Gulati S: Graph-based hub gene selection technique using protein interaction information: Application to sample classification. IEEE J Biomed Health Inform, PP(99):1, 2019
– reference: Saini N, Kumar A: Comparison of non-invasive bilirubin detection techniques for jaundice prediction, 2016.
– reference: Goroshin R, Mathieu M, LeCun Y: Learning to Linearize Under Uncertainty. CoRR, abs/1506.03011, 2015
– reference: ShinHCRothHRGaoMLuLXuZNoguesIYaoJMolluraDSummersRMDeep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learningIEEE Trans Med Imaging20163551285129826886976
– reference: Chambers CV, Irwin CE: Intense jaundice in an adolescent. an unusual presentation of infectious mononucleosis. J. Adolesc. Health Care, 7(3):195–197, 1986
– reference: GhafoorianMKarssemeijerNHeskesTUdenIWMSanchezCILitjensGLeeuwFEGinnekenBMarchioriEPlatelBLocation sensitive deep convolutional neural networks for segmentation of white matter hyperintensitiesSci Rep2017715110286985565505987
– reference: PadidarPShakerMAmoozgarHKhorraminejad-ShiraziMHemmatiFNajibKSPourarianSDetection of neonatal jaundice by using an android os-based smartphone applicationIran J Pediatr2019292e84397
– reference: Huang G, Liu Z, Van Der Maaten L, Weinberger KQ: Densely connected convolutional networks. In 2017 IEEE Conf Comput Visi Pattern Recognit (CVPR), pages 2261–2269, 2017
– reference: Redfern V, Mortimore G: Right hypochondrial pain leading to diagnosis of cholestatic jaundice and cholecystitis: a review and case study. Gastrointestinal Nursing
– reference: RajkomarALingamSTaylorAGBlumMMonganJHigh-throughput classification of radiographs using deep convolutional neural networksJ Dig Imaging201730195101
– reference: Deniz CM, Hallyburton S, Welbeck A, Honig S, Cho K, Chang G: Segmentation of the proximal femur from mr images using deep convolutional neural networks. Sci Rep, 8(1), 2018
– reference: XuXZhangXThe application of intravoxel incoherent motion diffusion-weighted imaging in the diagnosis of hilar obstructive jaundiceJ Comput Assist Tomogr201943211:CAS:528:DC%2BC1MXkvF2msLc%3D
– reference: Kumar M, Gupta S, Thakur K: 2d-human face recognition using sift and surf descriptors of face’s feature regions. Vis Comput, 01 2020
– reference: LeCunYBoserBDenkerJSHendersonDHowardREHubbardWJackelLDBackpropagation applied to handwritten zip code recognitionNeural Comput201414541551
– reference: LecunYBengioYHintonGDeep learningNature201552175534361:CAS:528:DC%2BC2MXht1WlurzP
– reference: RocheSPKobosRJaundice in the adult patientAm Fam Physician200469229930414765767
– reference: HowardRWatsonCJAntecedent jaundice in cirrhosis of the liverArch Intern Med19478011101:STN:280:DyaH2s%2Fhtlaqug%3D%3D
– reference: Spanhol FA, Oliveira LS, Petitjean C, Heutte L: Breast cancer histopathological image classification using convolutional neural networks. In International Joint Conference on Neural Networks, 2016
– reference: TakiyamaHOzawaTIshiharaSFujishiroMShichijoSNomuraSMiuraMTadaTAutomatic anatomical classification of esophagogastroduodenoscopy images using deep convolutional neural networksSci Rep2018874977497297603975951793
– reference: Ronneberger O, Fischer P, Brox T: U-net: Convolutional networks for biomedical image segmentation. 2015
– reference: ChanLYTsangWCHuiYLeungWYChanKLSungJYThe role of lamivudine and predictors of mortality in severe flare-up of chronic hepatitis b with jaundiceJ Viral Hepat201096424428
– reference: Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z: Rethinking the inception architecture for computer vision. 2015
– reference: WingerJMichelfelderADiagnostic approach to the patient with jaundicePrim Care201138346948221872092
– reference: PS Myles, Cui JI: using the bland altman method to measure agreement with repeated measures. Br J Anaesth, 99(3):309–311, 2007
– reference: Tibana TK, Grubert RM, Fornazari VAV, Barbosa FCP, Bacelar B, Oliveira AF, Marchiori E, Nunes TF: The role of percutaneous transhepatic biliary biopsy in the diagnosis of patients with obstructive jaundice: an initial experience. Radiologia Brasileira, (AHEAD), 2019
– reference: RussakovskyODengJSuHKrauseJSatheeshSMaSHuangZKarpathyAKhoslaABernsteinMImagenet large scale visual recognition challengeInt J Comput Vis20151153211252
– reference: Wong SC, Gatt A, Stamatescu V, Mcdonnell MD: Understanding data augmentation for classification: When to warp? 2016
– reference: LaddiAKumarSSharmaSKumarANon-invasive jaundice detection using machine visionIETE J Res2013595591596
– reference: Kessler RC, Abelson JM, Demler O, Escobar JI, Zheng H: Clinical calibration of dsm-iv diagnoses in the world mental health (wmh) version of the world health organization (who) composite international diagnostic interview (cidi). 13(2):122–139, 2004
– reference: KouvarisKCluneJKouniosLBredeMWatsonRAHow evolution learns to generalise: Principles of under-fitting, over-fitting and induction in the evolution of developmental organisationJournal of the Society of English & American Literature Kansei Gakuin University201552493107
– reference: Mannino RG, Myers DR, Tyburski EA, Caruso C, Boudreaux J, Leong T, Clifford GD, Lam WA: Smartphone app for non-invasive detection of anemia using only patient-sourced photos. Nat Commun, 9(1), 2018
– reference: HintonGESalakhutdinovRRReducing the dimensionality of data with neural networksScience200631357865045071:CAS:528:DC%2BD28Xnt1KntrY%3D
– reference: He K, Zhang X, Ren S, Sun J: Deep residual learning for image recognition. In 2016 IEEE Conf Comp Vis Pattern Recognit (CVPR), pages 770–778, 2016
– reference: Creswell A, Arulkumaran K, Bharath AA: On denoising autoencoders trained to minimise binary cross-entropy. 2017
– reference: ThompsonBLWyckoffSLHaverstickDMLandersJPSimple, reagentless quantification of total bilirubin in blood via microfluidic phototreatment and image analysisAnal Chem2017895322832341:CAS:528:DC%2BC2sXisVGlsbg%3D28192917
– reference: LarryCOxford textbook of primary medical careJ R Soc Med2004976304
– reference: Hinton G, Tieleman T: Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning, (4):26–30, 2012
– reference: Kumar M, Bansal M, Kumar M. 2d object recognition techniques: State-of-the-art work. Archives of Computational Methods in Engineering, 02 2020
– reference: Cho J, Lee K, Shin E, Choy G, Do S: How much data is needed to train a medical image deep learning system to achieve necessary high accuracy? Computer Science, 2015
– reference: Nair V, Hinton GE: Rectified Linear Units Improve Restricted Boltzmann Machines. In International Conference on International Conference on Machine Learning, 2010
– reference: HawkinsWGDematteoRPJarnaginWRBen-PoratLFongYJaundice predicts advanced disease and early mortality in patients with gallbladder cancerAnn Surg Oncol200411331031514993027
– reference: Bengio Y: Speeding up stochastic gradient descent. 2007
– reference: Dosovitskiy A, Springenberg JT, Riedmiller M, Brox T: Discriminative unsupervised feature learning with convolutional neural networks. 2014
– reference: Deng J, Dong W, Socher R, Li LJ, Li FF: Imagenet: a large-scale hierarchical image database. In IEEE Conference on Computer Vision & Pattern Recognition, 2009
– reference: KA: Cs231n course notes: Transfer learning [online]. Accessed: 19-May-2016 http://cs231n.github.io/transfer-learning.
– reference: LaboriKJRaederMGDiagnostic approach to the patient with jaundice following traumaScandinavian Journal of Surgery Sjs Official Organ for the Finnish Surgical Society & the Scandinavian Surgical Society20049331761:STN:280:DC%2BD2crntFGgsQ%3D%3D
– reference: Krizhevsky A, Sutskever I, Hinton G: Imagenet classification with deep convolutional neural networks. In International Conference on Neural Information Processing Systems, 2012
– reference: He K, Georgia G, Piotr D, Ross G: Mask r-cnn. IEEE Trans Pattern Anal Mach Intell, PP(99):1, 2017
– reference: JungCSunTJiaoLEye detection under varying illumination using the retinex theoryNeurocomputing2013113596130137
– reference: TajbakhshNShinJYGuruduSRHurstRTKendallCBGotwayMBLiangJConvolutional neural networks for medical image analysis: Full training or fine tuning?IEEE Trans Med Imaging20163551299131226978662
– reference: Sunwoo MH, Lee JW, Kim JH: Method and apparatus for jaundice diagnosis based on an image, Apr. 18 2019. US Patent App. 16/115,821
– reference: Litjens G, Sanchez CI, Timofeeva N, Hermsen M, Nagtegaal I, Kovacs I, Hulsbergenvan DKC, Bult P, Van GB, Van DLJ: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci Rep, 6(1):26286, 2016
– reference: Wang Z, Meng Y, Weng F, Chen Y, Lu F, Liu X, Hou M, Zhang J: An effective cnn method for fully automated segmenting subcutaneous and visceral adipose tissue on ct scans. Ann Biomed Eng, pages 1–17, 2019
– reference: ShenDWuGSukHIDeep learning in medical image analysisAnnual Review of Biomedical Engineering20171912212481:CAS:528:DC%2BC2sXksVCqsLs%3D283017345479722
– reference: SukHILeeSWShenDHierarchical feature representation and multimodal fusion with deep learning for ad/mci diagnosisNeuroimage201410156958225042445
– reference: BlandJMAltmanDMeasuring agreement in method comparison studiesStat Methods Med Res19998135601:STN:280:DyaK1MvivFOmug%3D%3D10501650
– volume: 37
  start-page: 1904
  issue: 9
  year: 2014
  ident: 432_CR34
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2389824
– ident: 432_CR1
  doi: 10.1016/S0197-0070(86)80039-0
– volume: 8
  start-page: 135
  year: 1999
  ident: 432_CR42
  publication-title: Stat Methods Med Res
  doi: 10.1177/096228029900800204
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 432_CR36
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2577031
– ident: 432_CR44
  doi: 10.1007/978-3-319-24574-4_28
– ident: 432_CR60
  doi: 10.1007/978-3-319-10590-1_53
– ident: 432_CR61
  doi: 10.1109/CVPR.2015.7298761
– ident: 432_CR69
  doi: 10.1002/mpr.169
– ident: 432_CR73
  doi: 10.1038/s41372-019-0452-4
– ident: 432_CR56
  doi: 10.1007/s10439-019-02349-3
– ident: 432_CR27
  doi: 10.1109/CVPR.2016.90
– ident: 432_CR31
  doi: 10.1109/ICCV.2015.169
– volume: 1
  start-page: 541
  issue: 4
  year: 2014
  ident: 432_CR25
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.4.541
– volume: 93
  start-page: 176
  issue: 3
  year: 2004
  ident: 432_CR10
  publication-title: Scandinavian Journal of Surgery Sjs Official Organ for the Finnish Surgical Society & the Scandinavian Surgical Society
– ident: 432_CR93
  doi: 10.1109/CVPR.2015.7298594
– ident: 432_CR57
– ident: 432_CR40
  doi: 10.1007/s00371-020-01814-8
– volume: 14
  start-page: 38
  issue: 7
  year: 2015
  ident: 432_CR79
  publication-title: Computer Science
– ident: 432_CR71
  doi: 10.1109/CVPR.2017.195
– volume: 32
  start-page: 2725
  year: 2020
  ident: 432_CR26
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-018-3677-9
– volume: 38
  start-page: 469
  issue: 3
  year: 2011
  ident: 432_CR11
  publication-title: Prim Care
  doi: 10.1016/j.pop.2011.05.004
– ident: 432_CR8
– ident: 432_CR59
  doi: 10.1109/CVPR.2016.319
– ident: 432_CR63
– volume: 35
  start-page: 1153
  issue: 5
  year: 2016
  ident: 432_CR52
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2553401
– ident: 432_CR62
  doi: 10.1109/DICTA.2016.7797091
– ident: 432_CR14
  doi: 10.1038/s41467-018-07262-2
– ident: 432_CR28
  doi: 10.1109/CVPR.2017.243
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: 432_CR55
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535302
– ident: 432_CR29
– volume: 59
  start-page: 591
  issue: 5
  year: 2013
  ident: 432_CR22
  publication-title: IETE J Res
  doi: 10.4103/0377-2063.123765
– ident: 432_CR66
  doi: 10.1109/JBHI.2019.2894374
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 432_CR91
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 432_CR45
– volume: 35
  start-page: 1207
  issue: 5
  year: 2016
  ident: 432_CR50
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535865
– volume: 26
  start-page: 261
  issue: 2
  year: 2013
  ident: 432_CR67
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.225
– volume: 8
  start-page: 7497
  issue: 7497
  year: 2018
  ident: 432_CR83
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-25842-6
– volume: 9
  start-page: 424
  issue: 6
  year: 2010
  ident: 432_CR3
  publication-title: J Viral Hepat
  doi: 10.1046/j.1365-2893.2002.00385.x
– ident: 432_CR43
  doi: 10.1093/bja/aem214
– ident: 432_CR18
– ident: 432_CR37
  doi: 10.14569/IJACSA.2012.030504
– ident: 432_CR41
– ident: 432_CR51
– ident: 432_CR39
– volume: 101
  start-page: 569
  year: 2014
  ident: 432_CR88
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.06.077
– volume: 19
  start-page: 221
  issue: 1
  year: 2017
  ident: 432_CR92
  publication-title: Annual Review of Biomedical Engineering
  doi: 10.1146/annurev-bioeng-071516-044442
– ident: 432_CR65
  doi: 10.1145/2716282.2716289
– ident: 432_CR30
  doi: 10.1109/CVPR.2016.308
– volume: 69
  start-page: 299
  issue: 2
  year: 2004
  ident: 432_CR9
  publication-title: Am Fam Physician
– ident: 432_CR38
  doi: 10.1007/s11831-020-09409-1
– volume: 43
  start-page: 1
  issue: 2
  year: 2019
  ident: 432_CR75
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0000000000000837
– volume: 80
  start-page: 1
  issue: 1
  year: 1947
  ident: 432_CR4
  publication-title: Arch Intern Med
  doi: 10.1001/archinte.1947.00220130009001
– ident: 432_CR87
– ident: 432_CR48
  doi: 10.1109/CVPR.2009.5206848
– ident: 432_CR58
  doi: 10.1109/CVPRW.2014.131
– ident: 432_CR20
  doi: 10.1109/ICoBE.2015.7235896
– volume: 52
  start-page: 93
  issue: 4
  year: 2015
  ident: 432_CR72
  publication-title: Journal of the Society of English & American Literature Kansei Gakuin University
– volume: 30
  start-page: 95
  issue: 1
  year: 2017
  ident: 432_CR53
  publication-title: J Dig Imaging
  doi: 10.1007/s10278-016-9914-9
– volume: 7
  start-page: 5110
  issue: 1
  year: 2017
  ident: 432_CR86
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-05300-5
– ident: 432_CR89
  doi: 10.1109/TBME.2015.2496253
– ident: 432_CR46
– volume: 89
  start-page: 3228
  issue: 5
  year: 2017
  ident: 432_CR16
  publication-title: Anal Chem
  doi: 10.1021/acs.analchem.7b00354
– ident: 432_CR23
– ident: 432_CR17
  doi: 10.1109/MAMI.2015.7456588
– ident: 432_CR80
  doi: 10.1038/srep26286
– volume: 113
  start-page: 130
  issue: 596
  year: 2013
  ident: 432_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.038
– ident: 432_CR85
  doi: 10.1038/s41598-018-34817-6
– volume: 8
  start-page: 9286
  issue: 1
  year: 2018
  ident: 432_CR84
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-27569-w
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 432_CR90
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 11
  start-page: 310
  issue: 3
  year: 2004
  ident: 432_CR5
  publication-title: Ann Surg Oncol
  doi: 10.1245/ASO.2004.03.011
– ident: 432_CR6
– ident: 432_CR13
– ident: 432_CR32
  doi: 10.1109/CVPR.2014.81
– ident: 432_CR21
  doi: 10.1136/bmj.1.5852.530
– volume: 4
  start-page: 1063
  issue: 4
  year: 2019
  ident: 432_CR76
  publication-title: ACS sensors
  doi: 10.1021/acssensors.9b00275
– volume: 7
  start-page: 4172
  issue: 1
  year: 2017
  ident: 432_CR82
  publication-title: Scientific Reports
  doi: 10.1038/s41598-017-04075-z
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 432_CR54
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 432_CR49
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-015-0816-y
– ident: 432_CR78
– volume: 20
  start-page: 1322
  issue: 9
  year: 2010
  ident: 432_CR2
  publication-title: J Gastroenterol Hepatol
  doi: 10.1111/j.1440-1746.2005.03884.x
– ident: 432_CR74
– ident: 432_CR12
  doi: 10.1007/s10916-016-0523-4
– ident: 432_CR33
– ident: 432_CR81
– volume: 29
  start-page: e84397
  issue: 2
  year: 2019
  ident: 432_CR15
  publication-title: Iran J Pediatr
– ident: 432_CR24
  doi: 10.1007/s11831-019-09344-w
– ident: 432_CR70
  doi: 10.1109/IJCNN.2016.7727519
– ident: 432_CR64
– ident: 432_CR68
  doi: 10.1530/acta.0.062S163
– ident: 432_CR77
  doi: 10.1590/0100-3984.2018.0073
– volume: 11
  start-page: 370
  issue: 8
  year: 2012
  ident: 432_CR19
  publication-title: Molecular & Cellular Proteomics Mcp
  doi: 10.1074/mcp.M111.016006
– ident: 432_CR47
– volume: 97
  start-page: 304
  issue: 6
  year: 2004
  ident: 432_CR7
  publication-title: J R Soc Med
SSID ssj0017574
Score 1.9247009
Snippet Jaundice occurs as a symptom of various diseases, such as hepatitis, the liver cancer, gallbladder or pancreas. Therefore, clinical measurement with special...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 337
SubjectTerms Algorithms
Annotations
Artificial intelligence
Artificial neural networks
Bilirubin
Clinical medicine
Comparative studies
Digital imaging
Gallbladder
Gastroenterology
Globalization
Hepatitis
Hepatology
Hospitals
Humans
Imaging
Jaundice
Liver cancer
Localization
Medicine
Medicine & Public Health
Neural networks
Neural Networks, Computer
Original Paper
Pancreas
Pancreatic cancer
Physicians
Radiology
Recognition
Smartphones
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96gvgifls9JYJvGuym-fRFFvE4Du-Qw4N9K2macgeSnrb7_zuTpl3Ww3tsO2mTziQzk5n8hpD3BrT-yvOG-SZIcFBKx4DSsAbUT9tK7zuFh5NPz9TxhTjZyE3ecBtyWuW8JqaFuu097pF_AtO3Al0E-uzL9W-GVaMwuppLaNwl9xC6DKVabxaHCzTjhMJsrGYrY2w-NJOPznHEluXgTCMqHdP7iumGtXkzafKfyGlSSEePyMNsSdL1xPrH5E6IT8j90xwrf0riOTtx2_jdNZ_pejv2CZuVpgO3LJXCpOdz8lAfad9RpIbGgcLlj8t-7Ae8CysLbtUMFHdsoQnmL9N1jP0Uw6dnUx758IxcHH37-fWY5eoKzAstRiwtZ01VOm681d5YZVpvBej_UCkpuWh5K1WQwjWNr3zZ2o4bqTvNnXBBlKF6Tg5iH8NLQpUS3gtpBW-scIpbsMm4bUXnS9-1xhdkNf_a2mfocayA8avegSYjO2pgR53YUeuCfFjaXE_AG7dSH84cq_MkHOqdyBTk3fIYpg_GRFwM_RZoBPTa6hUvC_JiYvDyuapSFbqbBdF7rF8IEJp7_0m8ukwQ3RieLvGdH2ch2XXr_6N4dfsoXpMHPAks5g0dkoPxzza8AZNobN4muf8L_rMG7w
  priority: 102
  providerName: ProQuest
Title R-JaunLab: Automatic Multi-Class Recognition of Jaundice on Photos of Subjects with Region Annotation Networks
URI https://link.springer.com/article/10.1007/s10278-021-00432-7
https://www.ncbi.nlm.nih.gov/pubmed/33634415
https://www.proquest.com/docview/2553124822
https://www.proquest.com/docview/2494297120
https://pubmed.ncbi.nlm.nih.gov/PMC8290020
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB-8OxBfDr-tnksE3zTQTfPpW5XdO05vORYX1qfSpil3IKnY7v9_k36d66ngS0ubSZp2msxMZuYXgLcapf7csoLawgk0UOKcIqWmBYqfshTWVjIkJ1-s5NmGn2_FdkgKa8Zo99El2c3UvyS7sYAGy9D8DThyVB3AkUDbPQRybVg6-Q6U6LGXtVF0rrUZUmX-3Ma-OLqjY94NlfzNX9qJoeVDOB70R5L2DH8E95x_DPcvBg_5E_Brep7v_Je8-EDSXVt3iKykS7Ol3QaYZD2GDNWe1BUJ1FjZEby8vKrbugl3cT4JCzQNCeu0WCVELZPU-7r33JNVHz3ePIXNcvH10xkd9lSglivehg3ljE7inGlrlNVG6tIajlLfJVIIxktWCukEz4vCJjYuTcW0UJViOc8dj13yDA597d0LIFJya7kwnBWG55IZ1MSYKXllY1uV2kYwHz9tZgfA8bDvxffsFio5sCNDdmQdOzIVwbupzo8ebuOf1Ccjx7Jh6DUZ2kgJKi2o-ETwZirGQRM8Ibl39Q5pOPbaqDmLI3jeM3h6XJLIJBiZEag91k8EAZB7v8RfX3XA3MEpHYc2348_yW23_v4WL_-P_BU8YN0PHKKHTuCw_blzr1ExaosZHKitwqNens7gKD399nmB54-L1eV61o2RG2EvCNE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGkIAXxDeFAUGCJ4jopWmTICF0Ao7bdndC0ybtrbRpqiFN6UZ7QvxT_I3Y_bjTMbG3PbZ10jZ2Yie2fwZ4pVHrj6zIuc1djBuUMONIqXmO6qcoYmvLhJKT54tkeiT3juPjLfgz5MJQWOWwJrYLdVFZOiN_h6ZvhLoI9dnHs3NOVaPIuzqU0OjEYt_9_oVbtvrD7mfk72shJl8OP015X1WAW6lkQyXVjI7CTGhrlNUm0YU1EvWei5I4FrIQRZy4WGZ5biMbFqYUOlalEpnMnAxdhP1eg-syQk1OmemTryuvhYo71GdtFB9pbfoknT5VTxCWrcDNO6HgcbWpCC9YtxeDNP_x1LYKcHIHbveWKxt3onYXtpy_BzfmvW_-PvgDvpct_SzL37PxsqlaLFjWJvjytvQmOxiClSrPqpIRNTZ2DC-_nVRNVdNdXMnoaKhmdEKMTShemo29r7qYAbbo4tbrB3B0JeP-ELZ95d1jYEkirZWxkSI3MkuEQRtQmEKWNrRloW0Ao2FoU9tDnVPFjdN0DdJM7EiRHWnLjlQF8GbV5qwD-riUemfgWNpP-jpdi2gAL1ePcbqSDybzrloijcSvNmokwgAedQxevS6Kkoi2twGoDdavCAgKfPOJ_3HSQoKTOzykPt8OQrL-rP__xZPL_-IF3JwezmfpbHex_xRuiVZ4KWZpB7abn0v3DM2xJn_ezgEG36960v0F8_VCsQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGTZp4QXzTMSBI8ATVemnSJEgIHWynfZ5OJybtrbRpqiFN7aA9If41_jrsfp2Oib3tsa3TLzuxHds_A7zRqPXHlqe-TZ1EByVIfKTUforqJ8uktXlExcmns-jgTBydy_MN-NPXwlBaZb8mNgt1VlraI99F0zdEXYT6bDfv0iLme9NPVz986iBFkda-nUYrIsfu9y9036qPh3vI67ecT_e_fjnwuw4DvhVK1NRezegwSLi2RlltIp1ZI1AHujCSkouMZzJyUiRpakMbZCbnWqpc8UQkTgQuxPvegU1FXtEINj_vz-aLIYahZIsBrY3yx1qbrmSnK9zjhGzL0ZUnTDxfravFa7bu9ZTNf-K2jTqc3od7nR3LJq3gPYANVzyErdMuUv8IioV_lCyLkyT9wCbLumyQYVlT7us3jTjZok9dKgtW5oyocbBjeDi_KOuyorO4rtFGUcVovxiHUPY0mxRF2WYQsFmbxV49hrNb-fNPYFSUhXsGLIqEtUIawVMjkogbtAi5yURuA5tn2now7n9tbDvgc-q_cRmvIJuJHTGyI27YESsP3g1jrlrYjxupd3qOxd0SUMUrgfXg9XAZJy9FZJLClUukEfjWRo154MHTlsHD48IwCsnZ9UCtsX4gIGDw9SvF94sGIJyC4wHd830vJKvX-v9XbN_8Fa9gCydcfHI4O34Od3kju5TAtAOj-ufSvUDbrE5fdpOAwbfbnnd_AabASEM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=R-JaunLab%3A+Automatic+Multi-Class+Recognition+of+Jaundice+on+Photos+of+Subjects+with+Region+Annotation+Networks&rft.jtitle=Journal+of+digital+imaging&rft.au=Wang%2C+Zheng&rft.au=Xiao%2C+Ying&rft.au=Weng%2C+Futian&rft.au=Li%2C+Xiaojun&rft.date=2021-04-01&rft.pub=Springer+International+Publishing&rft.issn=0897-1889&rft.eissn=1618-727X&rft.volume=34&rft.issue=2&rft.spage=337&rft.epage=350&rft_id=info:doi/10.1007%2Fs10278-021-00432-7&rft_id=info%3Apmid%2F33634415&rft.externalDocID=PMC8290020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0897-1889&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0897-1889&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0897-1889&client=summon