Methyl β-D-galactopyranoside esters as potential inhibitors for SARS-CoV-2 protease enzyme: synthesis, antimicrobial, PASS, molecular docking, molecular dynamics simulations and quantum computations

Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study, methyl β-D-galactopyranoside (MGP) was treated with various acyl halides to produce 6- O -acyl MGP esters by direct acylation method with an exce...

Full description

Saved in:
Bibliographic Details
Published inGlycoconjugate journal Vol. 39; no. 2; pp. 261 - 290
Main Authors Amin, Md R., Yasmin, Farhana, Dey, Sujan, Mahmud, Shafi, Saleh, Md A., Emran, Talha B., Hasan, Imtiaj, Rajia, Sultana, Ogawa, Yukiko, Fujii, Yuki, Yamada, Masao, Ozeki, Yasuhiro, Kawsar, Sarkar M. A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0282-0080
1573-4986
1573-4986
DOI10.1007/s10719-021-10039-3

Cover

Loading…
Abstract Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study, methyl β-D-galactopyranoside (MGP) was treated with various acyl halides to produce 6- O -acyl MGP esters by direct acylation method with an excellent yield. To obtain newer products for antimicrobial assessment studies, the 6- O -MGP esters were further modified into 2,3,4-tri- O -acyl MGP esters containing a wide variety of functionalities in a single molecular framework. The chemical structures of the newly synthesized compounds were elucidated by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) revealed that these MGP estes have promising antifungal functionality compared to their antibacterial activities. The antimicrobial tests demonstrated that the compounds 3 and 10 were the most potent against Bacillus subtilis and Escherichia coli strains, with the minimum inhibitory concentration (MIC) values ranging from 0.352 ± 0.02 to 0.703 ± 0.01 mg/ml and minimum bactericidal concentration (MBC) values ranging from 0.704 ± 0.02 to 1.408 ± 0.04 mg/ml. Density functional theory (DFT) at the B3LYP/3-21G level of theory was employed to enumerate, frontier orbital energy, enthalpy, free energy, electronic energy, MEP, dipole moment which evaluated the effect of certain groups (aliphatic and aromatic) on drug properties. They discovered that all esters were more thermodynamically stable than the parent molecule. Molecular docking is performed using AutoDock Vina to determine the binding affinities and interactions between the MGP esters and the SARS-CoV-2 main protease. The modified esters strongly interact with the prime Cys145, His41, MET165, GLY143, THR26, and ASN142 residues. The MGP esters’ shape and ability to form multiple electrostatic and hydrogen bonds with the active site match other minor-groove binders’ binding modes. The molecular dynamics simulation validates the molecular docking results. The pharmacokinetic characterization of the optimized inhibitor demonstrates that these MGP esters appear to be safer inhibitors and a combination of in silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and drug-likeness had promising results due to their improved kinetic properties. Structure activity relationships (SAR) study including in vitro and silico results revealed that the acyl chain, palmitoyl (C16) and 4-chlorobenzoyl (4.ClC 6 H 4 CO-) in combination with sugar were found the most potential activates against human and fungal pathogens. After all, our comprehensive computational and statistical analysis shows that these selected MGP esters can be used as potential inhibitors against the SARS-CoV-2.
AbstractList Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study, methyl β-D-galactopyranoside (MGP) was treated with various acyl halides to produce 6-O-acyl MGP esters by direct acylation method with an excellent yield. To obtain newer products for antimicrobial assessment studies, the 6-O-MGP esters were further modified into 2,3,4-tri-O-acyl MGP esters containing a wide variety of functionalities in a single molecular framework. The chemical structures of the newly synthesized compounds were elucidated by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) revealed that these MGP estes have promising antifungal functionality compared to their antibacterial activities. The antimicrobial tests demonstrated that the compounds 3 and 10 were the most potent against Bacillus subtilis and Escherichia coli strains, with the minimum inhibitory concentration (MIC) values ranging from 0.352 ± 0.02 to 0.703 ± 0.01 mg/ml and minimum bactericidal concentration (MBC) values ranging from 0.704 ± 0.02 to 1.408 ± 0.04 mg/ml. Density functional theory (DFT) at the B3LYP/3-21G level of theory was employed to enumerate, frontier orbital energy, enthalpy, free energy, electronic energy, MEP, dipole moment which evaluated the effect of certain groups (aliphatic and aromatic) on drug properties. They discovered that all esters were more thermodynamically stable than the parent molecule. Molecular docking is performed using AutoDock Vina to determine the binding affinities and interactions between the MGP esters and the SARS-CoV-2 main protease. The modified esters strongly interact with the prime Cys145, His41, MET165, GLY143, THR26, and ASN142 residues. The MGP esters' shape and ability to form multiple electrostatic and hydrogen bonds with the active site match other minor-groove binders' binding modes. The molecular dynamics simulation validates the molecular docking results. The pharmacokinetic characterization of the optimized inhibitor demonstrates that these MGP esters appear to be safer inhibitors and a combination of in silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and drug-likeness had promising results due to their improved kinetic properties. Structure activity relationships (SAR) study including in vitro and silico results revealed that the acyl chain, palmitoyl (C16) and 4-chlorobenzoyl (4.ClC6H4CO-) in combination with sugar were found the most potential activates against human and fungal pathogens. After all, our comprehensive computational and statistical analysis shows that these selected MGP esters can be used as potential inhibitors against the SARS-CoV-2.Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study, methyl β-D-galactopyranoside (MGP) was treated with various acyl halides to produce 6-O-acyl MGP esters by direct acylation method with an excellent yield. To obtain newer products for antimicrobial assessment studies, the 6-O-MGP esters were further modified into 2,3,4-tri-O-acyl MGP esters containing a wide variety of functionalities in a single molecular framework. The chemical structures of the newly synthesized compounds were elucidated by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) revealed that these MGP estes have promising antifungal functionality compared to their antibacterial activities. The antimicrobial tests demonstrated that the compounds 3 and 10 were the most potent against Bacillus subtilis and Escherichia coli strains, with the minimum inhibitory concentration (MIC) values ranging from 0.352 ± 0.02 to 0.703 ± 0.01 mg/ml and minimum bactericidal concentration (MBC) values ranging from 0.704 ± 0.02 to 1.408 ± 0.04 mg/ml. Density functional theory (DFT) at the B3LYP/3-21G level of theory was employed to enumerate, frontier orbital energy, enthalpy, free energy, electronic energy, MEP, dipole moment which evaluated the effect of certain groups (aliphatic and aromatic) on drug properties. They discovered that all esters were more thermodynamically stable than the parent molecule. Molecular docking is performed using AutoDock Vina to determine the binding affinities and interactions between the MGP esters and the SARS-CoV-2 main protease. The modified esters strongly interact with the prime Cys145, His41, MET165, GLY143, THR26, and ASN142 residues. The MGP esters' shape and ability to form multiple electrostatic and hydrogen bonds with the active site match other minor-groove binders' binding modes. The molecular dynamics simulation validates the molecular docking results. The pharmacokinetic characterization of the optimized inhibitor demonstrates that these MGP esters appear to be safer inhibitors and a combination of in silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and drug-likeness had promising results due to their improved kinetic properties. Structure activity relationships (SAR) study including in vitro and silico results revealed that the acyl chain, palmitoyl (C16) and 4-chlorobenzoyl (4.ClC6H4CO-) in combination with sugar were found the most potential activates against human and fungal pathogens. After all, our comprehensive computational and statistical analysis shows that these selected MGP esters can be used as potential inhibitors against the SARS-CoV-2.
Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study, methyl β-D-galactopyranoside (MGP) was treated with various acyl halides to produce 6-O-acyl MGP esters by direct acylation method with an excellent yield. To obtain newer products for antimicrobial assessment studies, the 6-O-MGP esters were further modified into 2,3,4-tri-O-acyl MGP esters containing a wide variety of functionalities in a single molecular framework. The chemical structures of the newly synthesized compounds were elucidated by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) revealed that these MGP estes have promising antifungal functionality compared to their antibacterial activities. The antimicrobial tests demonstrated that the compounds 3 and 10 were the most potent against Bacillus subtilis and Escherichia coli strains, with the minimum inhibitory concentration (MIC) values ranging from 0.352 ± 0.02 to 0.703 ± 0.01 mg/ml and minimum bactericidal concentration (MBC) values ranging from 0.704 ± 0.02 to 1.408 ± 0.04 mg/ml. Density functional theory (DFT) at the B3LYP/3-21G level of theory was employed to enumerate, frontier orbital energy, enthalpy, free energy, electronic energy, MEP, dipole moment which evaluated the effect of certain groups (aliphatic and aromatic) on drug properties. They discovered that all esters were more thermodynamically stable than the parent molecule. Molecular docking is performed using AutoDock Vina to determine the binding affinities and interactions between the MGP esters and the SARS-CoV-2 main protease. The modified esters strongly interact with the prime Cys145, His41, MET165, GLY143, THR26, and ASN142 residues. The MGP esters' shape and ability to form multiple electrostatic and hydrogen bonds with the active site match other minor-groove binders' binding modes. The molecular dynamics simulation validates the molecular docking results. The pharmacokinetic characterization of the optimized inhibitor demonstrates that these MGP esters appear to be safer inhibitors and a combination of in silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and drug-likeness had promising results due to their improved kinetic properties. Structure activity relationships (SAR) study including in vitro and silico results revealed that the acyl chain, palmitoyl (C16) and 4-chlorobenzoyl (4.ClC H CO-) in combination with sugar were found the most potential activates against human and fungal pathogens. After all, our comprehensive computational and statistical analysis shows that these selected MGP esters can be used as potential inhibitors against the SARS-CoV-2.
Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study, methyl β-D-galactopyranoside (MGP) was treated with various acyl halides to produce 6- O -acyl MGP esters by direct acylation method with an excellent yield. To obtain newer products for antimicrobial assessment studies, the 6- O -MGP esters were further modified into 2,3,4-tri- O -acyl MGP esters containing a wide variety of functionalities in a single molecular framework. The chemical structures of the newly synthesized compounds were elucidated by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) revealed that these MGP estes have promising antifungal functionality compared to their antibacterial activities. The antimicrobial tests demonstrated that the compounds 3 and 10 were the most potent against Bacillus subtilis and Escherichia coli strains, with the minimum inhibitory concentration (MIC) values ranging from 0.352 ± 0.02 to 0.703 ± 0.01 mg/ml and minimum bactericidal concentration (MBC) values ranging from 0.704 ± 0.02 to 1.408 ± 0.04 mg/ml. Density functional theory (DFT) at the B3LYP/3-21G level of theory was employed to enumerate, frontier orbital energy, enthalpy, free energy, electronic energy, MEP, dipole moment which evaluated the effect of certain groups (aliphatic and aromatic) on drug properties. They discovered that all esters were more thermodynamically stable than the parent molecule. Molecular docking is performed using AutoDock Vina to determine the binding affinities and interactions between the MGP esters and the SARS-CoV-2 main protease. The modified esters strongly interact with the prime Cys145, His41, MET165, GLY143, THR26, and ASN142 residues. The MGP esters’ shape and ability to form multiple electrostatic and hydrogen bonds with the active site match other minor-groove binders’ binding modes. The molecular dynamics simulation validates the molecular docking results. The pharmacokinetic characterization of the optimized inhibitor demonstrates that these MGP esters appear to be safer inhibitors and a combination of in silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and drug-likeness had promising results due to their improved kinetic properties. Structure activity relationships (SAR) study including in vitro and silico results revealed that the acyl chain, palmitoyl (C16) and 4-chlorobenzoyl (4.ClC 6 H 4 CO-) in combination with sugar were found the most potential activates against human and fungal pathogens. After all, our comprehensive computational and statistical analysis shows that these selected MGP esters can be used as potential inhibitors against the SARS-CoV-2.
Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study, methyl β-D-galactopyranoside (MGP) was treated with various acyl halides to produce 6-O-acyl MGP esters by direct acylation method with an excellent yield. To obtain newer products for antimicrobial assessment studies, the 6-O-MGP esters were further modified into 2,3,4-tri-O-acyl MGP esters containing a wide variety of functionalities in a single molecular framework. The chemical structures of the newly synthesized compounds were elucidated by analyzing their physicochemical, elemental, and spectroscopic data. In vitro antimicrobial testing against five bacteria and two fungi and the prediction of activity spectra for substances (PASS) revealed that these MGP estes have promising antifungal functionality compared to their antibacterial activities. The antimicrobial tests demonstrated that the compounds 3 and 10 were the most potent against Bacillus subtilis and Escherichia coli strains, with the minimum inhibitory concentration (MIC) values ranging from 0.352 ± 0.02 to 0.703 ± 0.01 mg/ml and minimum bactericidal concentration (MBC) values ranging from 0.704 ± 0.02 to 1.408 ± 0.04 mg/ml. Density functional theory (DFT) at the B3LYP/3-21G level of theory was employed to enumerate, frontier orbital energy, enthalpy, free energy, electronic energy, MEP, dipole moment which evaluated the effect of certain groups (aliphatic and aromatic) on drug properties. They discovered that all esters were more thermodynamically stable than the parent molecule. Molecular docking is performed using AutoDock Vina to determine the binding affinities and interactions between the MGP esters and the SARS-CoV-2 main protease. The modified esters strongly interact with the prime Cys145, His41, MET165, GLY143, THR26, and ASN142 residues. The MGP esters’ shape and ability to form multiple electrostatic and hydrogen bonds with the active site match other minor-groove binders’ binding modes. The molecular dynamics simulation validates the molecular docking results. The pharmacokinetic characterization of the optimized inhibitor demonstrates that these MGP esters appear to be safer inhibitors and a combination of in silico ADMET (absorption, distribution, metabolism, excretion, and toxicity) prediction and drug-likeness had promising results due to their improved kinetic properties. Structure activity relationships (SAR) study including in vitro and silico results revealed that the acyl chain, palmitoyl (C16) and 4-chlorobenzoyl (4.ClC6H4CO-) in combination with sugar were found the most potential activates against human and fungal pathogens. After all, our comprehensive computational and statistical analysis shows that these selected MGP esters can be used as potential inhibitors against the SARS-CoV-2.
Author Amin, Md R.
Mahmud, Shafi
Emran, Talha B.
Dey, Sujan
Ozeki, Yasuhiro
Yasmin, Farhana
Saleh, Md A.
Fujii, Yuki
Yamada, Masao
Hasan, Imtiaj
Ogawa, Yukiko
Kawsar, Sarkar M. A.
Rajia, Sultana
Author_xml – sequence: 1
  givenname: Md R.
  surname: Amin
  fullname: Amin, Md R.
  organization: Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong
– sequence: 2
  givenname: Farhana
  surname: Yasmin
  fullname: Yasmin, Farhana
  organization: Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong
– sequence: 3
  givenname: Sujan
  surname: Dey
  fullname: Dey, Sujan
  organization: Department of Microbiology, Faculty of Biological Science, University of Chittagong
– sequence: 4
  givenname: Shafi
  surname: Mahmud
  fullname: Mahmud, Shafi
  organization: Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi
– sequence: 5
  givenname: Md A.
  surname: Saleh
  fullname: Saleh, Md A.
  organization: Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi
– sequence: 6
  givenname: Talha B.
  surname: Emran
  fullname: Emran, Talha B.
  organization: Department of Pharmacy, BGC Trust University Bangladesh
– sequence: 7
  givenname: Imtiaj
  surname: Hasan
  fullname: Hasan, Imtiaj
  organization: Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi
– sequence: 8
  givenname: Sultana
  surname: Rajia
  fullname: Rajia, Sultana
  organization: Center for Interdisciplinary Research, Varendra University
– sequence: 9
  givenname: Yukiko
  surname: Ogawa
  fullname: Ogawa, Yukiko
  organization: School of Pharmaceutical Sciences, Nagasaki International University
– sequence: 10
  givenname: Yuki
  surname: Fujii
  fullname: Fujii, Yuki
  organization: School of Pharmaceutical Sciences, Nagasaki International University
– sequence: 11
  givenname: Masao
  surname: Yamada
  fullname: Yamada, Masao
  organization: School of Science, Yokohama City University
– sequence: 12
  givenname: Yasuhiro
  orcidid: 0000-0002-2782-6158
  surname: Ozeki
  fullname: Ozeki, Yasuhiro
  email: ozeki@yokohama-cu.ac.jp
  organization: School of Science, Yokohama City University
– sequence: 13
  givenname: Sarkar M. A.
  surname: Kawsar
  fullname: Kawsar, Sarkar M. A.
  email: akawsarabe@yahoo.com
  organization: Laboratory of Carbohydrate and Nucleoside Chemistry, Department of Chemistry, Faculty of Science, University of Chittagong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35037163$$D View this record in MEDLINE/PubMed
BookMark eNp9ks9u1DAQxi1URNuFF-CALHHhsAY7cWKHQ6XV8lcqArHA1XIc765LYqd2ghQei5fgxjMxJaXQHnqyPPP9Ps-M5xgd-OAtQg8ZfcooFc8So4JVhGaMwD2vSH4HHbFC5IRXsjxARzSTGaFU0kN0nNIZBYhn8h46zAuaC1bmR-jnOzvspxb_-kFekJ1utRlCP0XtQ3KNxTYNNiasE-7DYP3gdIud37vaDQHi2xDxZvVxQ9bhC8lwH0GkE2D--9TZ5zhNftjb5NISa4A7Z2KowWOJP6w2myXuQmvN2OqIm2C-Or-7Fpq8BiLh5DoIDC54qMQ3-HwEs7HDJnT9OMyJ--juVrfJPrg8F-jzq5ef1m_I6fvXb9erU2K44APhwlBmBDXbvORZXdusrE2jaSUkFU3FmqIoNC8LXjNaMl7ZqqaFNI2ttjk1QuQLdDL79mPd2cbATKJuVR9dp-Okgnbqesa7vdqFb0qKkklRgMGTS4MYzkeYr-pcMrZttbdhTCorMypkIeF3FujxDelZGKOH9kDFRVUUXFagevR_RVel_P1jEGSzAIafUrTbKwmj6mKR1LxIChZJ_VkkdQHJG5Bx86ihK9fejuYzmuAdv7PxX9m3UL8BTGfiKQ
CitedBy_id crossref_primary_10_1016_j_jep_2024_118301
crossref_primary_10_1039_D2NJ05703D
crossref_primary_10_3389_fmicb_2023_1206816
crossref_primary_10_1002_slct_202304774
crossref_primary_10_1016_j_jsps_2024_102093
crossref_primary_10_1371_journal_pone_0314422
crossref_primary_10_1007_s11030_024_10888_8
crossref_primary_10_1016_j_chphi_2024_100700
crossref_primary_10_3389_fonc_2023_1228865
crossref_primary_10_1080_00498254_2024_2361457
crossref_primary_10_1080_07391102_2023_2198606
crossref_primary_10_1080_15257770_2023_2215839
crossref_primary_10_1016_j_molstruc_2023_135999
crossref_primary_10_1515_psr_2022_0282
crossref_primary_10_1007_s10562_023_04337_8
crossref_primary_10_1080_16583655_2024_2327101
crossref_primary_10_1080_07391102_2022_2121761
crossref_primary_10_1016_j_ijbiomac_2024_134870
crossref_primary_10_1016_j_arabjc_2024_105798
crossref_primary_10_1016_j_chphi_2024_100615
crossref_primary_10_1124_pharmrev_123_000863
crossref_primary_10_1080_15257770_2024_2333495
crossref_primary_10_1016_j_molstruc_2024_137930
crossref_primary_10_1016_j_molstruc_2024_141206
crossref_primary_10_1080_10286020_2024_2343821
crossref_primary_10_1080_17425255_2024_2330666
crossref_primary_10_1080_15257770_2022_2096898
crossref_primary_10_3390_molecules28062613
Cites_doi 10.1016/j.jgg.2020.02.001
10.3389/fmolb.2021.628585
10.5582/bst.2020.01020
10.4137/DTI.S12519
10.1021/ct900275y
10.1103/PhysRevB.37.785
10.1016/S0076-6879(06)16024-3
10.1080/17512433.2021.1959318
10.1063/1.470117
10.1007/978-1-4684-7529-6_9
10.4236/ijoc.2015.54023
10.1016/s0169-409x(00)00129-0
10.1002/jcc.23899
10.4067/S0717-97072021000205206
10.1093/glycob/3.2.97
10.1103/PhysRevA.38.3098
10.1002/jcc.20035
10.1002/elps.1150181505
10.5267/j.ccl.2015.12.001
10.3797/scipharm.1308-03
10.1038/nature05819
10.1007/978-1-4939-7366-8_4
10.1021/ci300367a
10.1021/acs.jmedchem.5b00104
10.1016/j.jmgm.2006.02.009
10.1093/ajcp/45.4_ts.493
10.3390/biology10070589
10.3390/molecules25225433
10.1038/s41598-019-43828-w
10.1126/science.1059820
10.1021/cr00023a005
10.1002/jps.2600710611
10.1021/ja0047368
10.1063/1.4872239
10.1016/j.saa.2013.10.042
10.15671/hjbc.622038
10.1007/s40203-021-00102-0
10.23893/1307-2080.APS.05704
10.35812/CelluloseChemTechnol.2021.55.44
10.23893/1307-2080.APS.05622
10.29356/jmcs.v65i1.1464
10.33435/tcandtc.718807
10.1007/978-1-4939-2269-7
10.12692/ijb/12.6.211-219
10.22036/pcr.2021.264541.1869
10.22034/ijnc.2020.131337.1124
10.1093/nar/28.1.235
10.1002/9780470125793.ch7
10.17516/1998-2836-0226
10.3897/pharmacia.68.e56543
10.17516/1998-2836-0199
10.25177/JCCMM.4.4.RA.10663
10.2478/auoc-2021-0002
10.9734/bpi/cacb/v6/8670D
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
88A
88E
88I
8AO
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s10719-021-10039-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central Database Suite (ProQuest)
Natural Science Collection
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (ProQuest)
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE


ProQuest Central Student
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1573-4986
EndPage 290
ExternalDocumentID PMC8761875
35037163
10_1007_s10719_021_10039_3
Genre Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29I
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3O-
3SX
3V.
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6NX
7X7
88A
88E
88I
8AO
8CJ
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
LAK
LK8
LLZTM
M0L
M1P
M2P
M4Y
M7P
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WJK
WK6
WK8
Y6R
YLTOR
Z45
Z7U
Z7V
Z7W
Z87
Z8O
Z8P
Z8Q
Z91
Z92
ZMTXR
ZOVNA
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7XB
8FK
ABRTQ
H94
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-47c01c70cf3642bbe26bcda097807d91d555a4654b106149e9b058cde9f30c773
IEDL.DBID U2A
ISSN 0282-0080
1573-4986
IngestDate Thu Aug 21 14:07:04 EDT 2025
Fri Jul 11 03:28:48 EDT 2025
Fri Jul 25 18:53:00 EDT 2025
Wed Feb 19 02:25:32 EST 2025
Tue Jul 01 00:45:44 EDT 2025
Thu Apr 24 23:06:42 EDT 2025
Fri Feb 21 02:47:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Antimicrobial
Molecular dynamics
SARS-CoV-2 protease
Methyl β-D-galactopyranoside
Molecular docking
Pharmacokinetic
Language English
License 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-47c01c70cf3642bbe26bcda097807d91d555a4654b106149e9b058cde9f30c773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2782-6158
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8761875
PMID 35037163
PQID 2647955489
PQPubID 55359
PageCount 30
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8761875
proquest_miscellaneous_2620785816
proquest_journals_2647955489
pubmed_primary_35037163
crossref_primary_10_1007_s10719_021_10039_3
crossref_citationtrail_10_1007_s10719_021_10039_3
springer_journals_10_1007_s10719_021_10039_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationSubtitle Official Journal of the International Glycoconjugate Organization
PublicationTitle Glycoconjugate journal
PublicationTitleAbbrev Glycoconj J
PublicationTitleAlternate Glycoconj J
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Varki (CR3) 1993; 3
Cheng, Li, Zhou, Shen, Wu, Liu (CR53) 2012; 52
Harvey, De Fabritiis (CR47) 2009; 5
Politzer, Murray (CR60) 1991; 2
CR39
CR38
CR37
Bauer, Kirby, Sherris, Truck (CR32) 1966; 45
CR33
CR30
Kawsar, Kumar (CR17) 2021; 66
Lipinski, Lombardo, Dominy, Feeney (CR54) 2021; 46
Guex, Peitsch (CR40) 1997; 18
Chen, Fukuda (CR2) 2006; 416
Essmann, Perera, Berkowitz, Darden, Lee, Pedersen (CR46) 1995; 103
Mahmud, Biswas, Paul, Mita, Promi, Afrose, Hasan, Zaman, Uddin, Dhama (CR50) 2021; 10
Kawsar, Kabir, Manik, Hossain, Anwar (CR28) 2012; 2
Seeberger, Werz (CR4) 2007; 446
CR5
CR8
Krieger, Vriend (CR49) 2015; 36
CR9
Harrach, Drossel (CR45) 2014; 140
Pearson (CR36) 1986; 83
CR42
CR41
Grzywacz, Liberek, Myszka (CR21) 2020; 25
Shagir, Bhuiyan, Ozeki, Kawsar (CR7) 2016; 5
Perlstein (CR62) 2001; 123
Pires, Blundell, Ascher (CR64) 2015; 58
Kawsar, Faruk, Rahman, Fujii, Ozeki (CR19) 2014; 82
Lu (CR22) 2020; 14
(CR34) 1998; 38
CR18
Agamennone, Le, Straalen, Brouwer, Roelofs (CR20) 2019; 9
Land, Humble (CR43) 2018; 1685
Mahmud, Mita, Biswas, Paul, Promi, Afrose, Hasan, Shimu, Zaman, Uddin, Tallei, Emran, Saleh (CR51) 2021; 00
CR16
Bertozzi, Kiessling (CR1) 2001; 291
CR15
Hunt (CR55) 1975; 56
CR14
CR58
CR13
CR12
CR11
CR10
Lee, Yang, Parr (CR35) 1988; 37
Mahmud, Paul, Biswas, Afrose, Mita, Hasan, Shimu, Hossain, Promi, Ema, Chidambaram, Chandrasekaran, Alqahtani, Emran, Saleh (CR52) 2021; 8
Amin (CR59) 2013; 7
Kabir, Matin, Kawsar (CR29) 1998; 22
Grover, Moore (CR31) 1962; 52
Krieger, Nielsen, Spronk, Vriend (CR48) 2006; 25
Lien, Guo, Li, Su (CR57) 1982; 71
CR27
CR26
CR25
CR24
Cohen, Benson (CR56) 1993; 93
Kawsar, Hamida, Sheikh, Hossain, Shagir, Sanaullah, Manchur, Imtiaj, Ogawa, Fujii, Koide, Ozeki (CR6) 2015; 5
CR23
CR61
Wang, Wolf, Caldwell, Kollman, Case (CR44) 2004; 25
Liu, Wang (CR63) 2020; 7
10039_CR23
10039_CR24
CA Lipinski (10039_CR54) 2021; 46
10039_CR25
S Mahmud (10039_CR50) 2021; 10
10039_CR26
WA Hunt (10039_CR55) 1975; 56
J Perlstein (10039_CR62) 2001; 123
10039_CR27
10039_CR61
SMA Kawsar (10039_CR17) 2021; 66
H Lu (10039_CR22) 2020; 14
N Guex (10039_CR40) 1997; 18
P Politzer (10039_CR60) 1991; 2
H Land (10039_CR43) 2018; 1685
PH Seeberger (10039_CR4) 2007; 446
N Cohen (10039_CR56) 1993; 93
DEV Pires (10039_CR64) 2015; 58
A Varki (10039_CR3) 1993; 3
10039_CR37
10039_CR38
10039_CR39
RK Grover (10039_CR31) 1962; 52
SMA Kawsar (10039_CR19) 2014; 82
10039_CR30
X Liu (10039_CR63) 2020; 7
10039_CR5
V Agamennone (10039_CR20) 2019; 9
AKMS Kabir (10039_CR29) 1998; 22
10039_CR33
S Chen (10039_CR2) 2006; 416
S Mahmud (10039_CR52) 2021; 8
CR Bertozzi (10039_CR1) 2001; 291
SMA Kawsar (10039_CR28) 2012; 2
MJ Harvey (10039_CR47) 2009; 5
EJ Lien (10039_CR57) 1982; 71
C Lee (10039_CR35) 1988; 37
S Mahmud (10039_CR51) 2021; 00
E Krieger (10039_CR49) 2015; 36
SMA Kawsar (10039_CR6) 2015; 5
10039_CR41
10039_CR42
MF Harrach (10039_CR45) 2014; 140
10039_CR9
10039_CR8
AC Shagir (10039_CR7) 2016; 5
E Krieger (10039_CR48) 2006; 25
10039_CR12
10039_CR13
U Essmann (10039_CR46) 1995; 103
10039_CR14
F Cheng (10039_CR53) 2012; 52
10039_CR58
10039_CR15
10039_CR16
10039_CR18
D Grzywacz (10039_CR21) 2020; 25
J Wang (10039_CR44) 2004; 25
Density-functional exchange-energy approximation with correct asymptotic behaviour (10039_CR34) 1998; 38
10039_CR10
10039_CR11
RG Pearson (10039_CR36) 1986; 83
ML Amin (10039_CR59) 2013; 7
AW Bauer (10039_CR32) 1966; 45
References_xml – volume: 7
  start-page: 119
  year: 2020
  end-page: 121
  ident: CR63
  article-title: Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines
  publication-title: J. Genet. Genom.
  doi: 10.1016/j.jgg.2020.02.001
– volume: 8
  year: 2021
  ident: CR52
  article-title: Prospective role of peptide-based antiviral therapy against the main protease of SARS-CoV-2
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2021.628585
– ident: CR39
– ident: CR16
– ident: CR12
– volume: 14
  start-page: 69
  year: 2020
  end-page: 71
  ident: CR22
  article-title: Drug treatment options for the 2019-new coronavirus (2019-nCoV)
  publication-title: Biosci. Trends.
  doi: 10.5582/bst.2020.01020
– volume: 7
  start-page: 27
  year: 2013
  end-page: 34
  ident: CR59
  article-title: P-glycoprotein inhibition for optimal drug delivery
  publication-title: Drug Target Insight.
  doi: 10.4137/DTI.S12519
– ident: CR61
– volume: 5
  start-page: 2371
  year: 2009
  end-page: 2377
  ident: CR47
  article-title: An implementation of the smooth particle mesh Ewald method on GPU hardware
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900275y
– ident: CR8
– ident: CR58
– volume: 37
  start-page: 785
  year: 1988
  end-page: 789
  ident: CR35
  article-title: Development of the colle-Salvetti correlation-energy formula into a functional of the electron density
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.37.785
– volume: 416
  start-page: 371
  year: 2006
  end-page: 380
  ident: CR2
  article-title: Cell type-specific roles of carbohydrates in tumor metastasis
  publication-title: Meth. Enzymol.
  doi: 10.1016/S0076-6879(06)16024-3
– ident: CR25
– ident: CR42
– volume: 00
  start-page: 1
  year: 2021
  end-page: 11
  ident: CR51
  article-title: Molecular docking and dynamics study to explore phytochemical ligand molecules against the main protease of SARS-CoV-2 from extensive phytochemical datasets
  publication-title: Expert Rev. Clin. Pharmacol.
  doi: 10.1080/17512433.2021.1959318
– volume: 103
  start-page: 8577
  year: 1995
  end-page: 8593
  ident: CR46
  article-title: A smooth particle mesh Ewald method
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– volume: 56
  start-page: 195
  year: 1975
  end-page: 210
  ident: CR55
  article-title: The effects of aliphatic alcohols on the biophysical and biochemical correlates of membrane function
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4684-7529-6_9
– volume: 5
  start-page: 232
  year: 2015
  end-page: 245
  ident: CR6
  article-title: Chemically modified uridine molecules incorporating acyl residues to enhance antibacterial and cytotoxic activities
  publication-title: Int. J. Org. Chem.
  doi: 10.4236/ijoc.2015.54023
– ident: CR15
– volume: 2
  start-page: 66
  year: 2012
  end-page: 73
  ident: CR28
  article-title: Antibacterial and mycelial growth inhibition of some acylated derivatives of D-glucopyranoside
  publication-title: Int. J. Biosci.
– volume: 46
  start-page: 3
  year: 2021
  end-page: 25
  ident: CR54
  article-title: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/s0169-409x(00)00129-0
– ident: CR11
– ident: CR9
– volume: 36
  start-page: 996
  year: 2015
  end-page: 1007
  ident: CR49
  article-title: New ways to boost molecular dynamics simulations
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23899
– volume: 66
  start-page: 5206
  year: 2021
  end-page: 5214
  ident: CR17
  article-title: Computational investigation of methyl α-D-glucopyranoside derivatives as inhibitor against bacteria, fungi and COVID-19 (SARS-2)
  publication-title: J. Chil. Chem. Soci.
  doi: 10.4067/S0717-97072021000205206
– ident: CR5
– volume: 3
  start-page: 97
  year: 1993
  end-page: 112
  ident: CR3
  publication-title: Glycobiology
  doi: 10.1093/glycob/3.2.97
– volume: 2
  start-page: 273
  year: 1991
  end-page: 312
  ident: CR60
  article-title: Molecular electrostatic potentials and chemical reactivity
  publication-title: Rev. Comput. Chem.
– ident: CR26
– volume: 38
  start-page: 3098
  year: 1998
  end-page: 3100
  ident: CR34
  article-title: Becke, A.D
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.38.3098
– volume: 25
  start-page: 1157
  year: 2004
  end-page: 1174
  ident: CR44
  article-title: Development and testing of a general Amber force field
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
– ident: CR18
– volume: 52
  start-page: 876
  year: 1962
  end-page: 879
  ident: CR31
  article-title: In-vitro efficacy of certain essential oils and plant extracts against three major pathogens of Jatropha curcas L
  publication-title: Phytopathology
– ident: CR14
– ident: CR37
– volume: 18
  start-page: 2714
  year: 1997
  end-page: 2723
  ident: CR40
  article-title: SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150181505
– volume: 5
  start-page: 83
  year: 2016
  end-page: 92
  ident: CR7
  article-title: Simple and rapid synthesis of some nucleoside derivatives: structural and spectral characterization
  publication-title: Curr. Chem. Lett.
  doi: 10.5267/j.ccl.2015.12.001
– volume: 82
  start-page: 1
  year: 2014
  end-page: 20
  ident: CR19
  article-title: Regioselective synthesis, characterization and antimicrobial activities of some new monosaccharide derivatives
  publication-title: Sci. Pharm.
  doi: 10.3797/scipharm.1308-03
– ident: CR30
– volume: 22
  start-page: 13
  year: 1998
  end-page: 18
  ident: CR29
  article-title: Synthesis and antibacterial activities of some uridine derivatives
  publication-title: Chittagong Univ. J. Sci.
– ident: CR10
– ident: CR33
– volume: 446
  start-page: 1046
  year: 2007
  end-page: 1051
  ident: CR4
  article-title: Synthesis and medical applications of oligosaccharides
  publication-title: Nature
  doi: 10.1038/nature05819
– volume: 1685
  start-page: 43
  year: 2018
  end-page: 67
  ident: CR43
  article-title: YASARA: A tool to obtain structural guidance in biocatalytic investigations
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7366-8_4
– volume: 52
  start-page: 3099
  year: 2012
  end-page: 3105
  ident: CR53
  article-title: admetSAR: A comprehensive source and free tool for assessment of chemical ADMET properties
  publication-title: J. Chem. Inf. Mod.
  doi: 10.1021/ci300367a
– volume: 58
  start-page: 4066
  year: 2015
  end-page: 4072
  ident: CR64
  article-title: pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b00104
– ident: CR27
– ident: CR23
– volume: 83
  start-page: 8440
  year: 1986
  end-page: 8441
  ident: CR36
  article-title: Absolute electronegativity and hardness correlated with molecular orbital theory
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1103/PhysRevB.37.785
– volume: 25
  start-page: 481
  year: 2006
  end-page: 486
  ident: CR48
  article-title: Fast empirical pKa prediction by Ewald summation
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/j.jmgm.2006.02.009
– volume: 45
  start-page: 493
  year: 1966
  end-page: 496
  ident: CR32
  article-title: Antibiotic susceptibility testing by a standardized single disk method
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1093/ajcp/45.4_ts.493
– volume: 10
  start-page: 589
  year: 2021
  ident: CR50
  article-title: Plant-based phytochemical screening by targeting main protease of SARS-CoV-2 to design effective potent inhibitors
  publication-title: Biology.
  doi: 10.3390/biology10070589
– ident: CR38
– ident: CR13
– volume: 25
  start-page: 5433
  year: 2020
  ident: CR21
  article-title: Synthesis, modification and biological activity of diosgenyl β-d-glycosaminosides: An overview
  publication-title: Molecules
  doi: 10.3390/molecules25225433
– volume: 9
  start-page: 7308
  year: 2019
  ident: CR20
  article-title: Antimicrobial activity and carbohydrate metabolism in the bacterial metagenome of the soil-living invertebrate Folsomia candida
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43828-w
– volume: 291
  start-page: 2357
  year: 2001
  end-page: 2364
  ident: CR1
  article-title: Chemical glycobiology
  publication-title: Science
  doi: 10.1126/science.1059820
– volume: 93
  start-page: 2419
  year: 1993
  end-page: 2438
  ident: CR56
  article-title: Estimation of heats of formation of organic compounds by additivity methods
  publication-title: Chem. Rev.
  doi: 10.1021/cr00023a005
– volume: 71
  start-page: 641
  year: 1982
  end-page: 655
  ident: CR57
  article-title: Use of dipole moment as a parameter in drug-receptor interaction and quantitative structure-activity relationship studies
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600710611
– volume: 123
  start-page: 191
  year: 2001
  end-page: 192
  ident: CR62
  article-title: The weak hydrogen bond in structural chemistry and biology
  publication-title: J. American Chem. Soc.
  doi: 10.1021/ja0047368
– ident: CR41
– ident: CR24
– volume: 140
  year: 2014
  ident: CR45
  article-title: Structure and dynamics of TIP3P, TIP4P, and TIP5P water near smooth and atomistic walls of different hydroaffinity
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4872239
– volume: 18
  start-page: 2714
  year: 1997
  ident: 10039_CR40
  publication-title: Electrophoresis
  doi: 10.1002/elps.1150181505
– volume: 25
  start-page: 481
  year: 2006
  ident: 10039_CR48
  publication-title: J. Mol. Graph. Model.
  doi: 10.1016/j.jmgm.2006.02.009
– volume: 71
  start-page: 641
  year: 1982
  ident: 10039_CR57
  publication-title: J. Pharm. Sci.
  doi: 10.1002/jps.2600710611
– volume: 10
  start-page: 589
  year: 2021
  ident: 10039_CR50
  publication-title: Biology.
  doi: 10.3390/biology10070589
– ident: 10039_CR58
  doi: 10.1016/j.saa.2013.10.042
– volume: 66
  start-page: 5206
  year: 2021
  ident: 10039_CR17
  publication-title: J. Chil. Chem. Soci.
  doi: 10.4067/S0717-97072021000205206
– volume: 5
  start-page: 83
  year: 2016
  ident: 10039_CR7
  publication-title: Curr. Chem. Lett.
  doi: 10.5267/j.ccl.2015.12.001
– volume: 36
  start-page: 996
  year: 2015
  ident: 10039_CR49
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.23899
– volume: 5
  start-page: 232
  year: 2015
  ident: 10039_CR6
  publication-title: Int. J. Org. Chem.
  doi: 10.4236/ijoc.2015.54023
– ident: 10039_CR18
  doi: 10.15671/hjbc.622038
– volume: 22
  start-page: 13
  year: 1998
  ident: 10039_CR29
  publication-title: Chittagong Univ. J. Sci.
– ident: 10039_CR13
  doi: 10.1007/s40203-021-00102-0
– ident: 10039_CR15
  doi: 10.23893/1307-2080.APS.05704
– volume: 38
  start-page: 3098
  year: 1998
  ident: 10039_CR34
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.38.3098
– ident: 10039_CR25
  doi: 10.35812/CelluloseChemTechnol.2021.55.44
– ident: 10039_CR10
  doi: 10.23893/1307-2080.APS.05622
– ident: 10039_CR30
– volume: 93
  start-page: 2419
  year: 1993
  ident: 10039_CR56
  publication-title: Chem. Rev.
  doi: 10.1021/cr00023a005
– volume: 123
  start-page: 191
  year: 2001
  ident: 10039_CR62
  publication-title: J. American Chem. Soc.
  doi: 10.1021/ja0047368
– volume: 140
  year: 2014
  ident: 10039_CR45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4872239
– volume: 3
  start-page: 97
  year: 1993
  ident: 10039_CR3
  publication-title: Glycobiology
  doi: 10.1093/glycob/3.2.97
– volume: 5
  start-page: 2371
  year: 2009
  ident: 10039_CR47
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct900275y
– ident: 10039_CR12
  doi: 10.29356/jmcs.v65i1.1464
– ident: 10039_CR27
  doi: 10.33435/tcandtc.718807
– ident: 10039_CR39
– volume: 82
  start-page: 1
  year: 2014
  ident: 10039_CR19
  publication-title: Sci. Pharm.
  doi: 10.3797/scipharm.1308-03
– ident: 10039_CR41
  doi: 10.1007/978-1-4939-2269-7
– volume: 83
  start-page: 8440
  year: 1986
  ident: 10039_CR36
  publication-title: Proc. Nat. Acad. Sci.
  doi: 10.1103/PhysRevB.37.785
– volume: 25
  start-page: 1157
  year: 2004
  ident: 10039_CR44
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20035
– volume: 46
  start-page: 3
  year: 2021
  ident: 10039_CR54
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/s0169-409x(00)00129-0
– ident: 10039_CR5
  doi: 10.12692/ijb/12.6.211-219
– ident: 10039_CR24
  doi: 10.22036/pcr.2021.264541.1869
– ident: 10039_CR42
– volume: 7
  start-page: 27
  year: 2013
  ident: 10039_CR59
  publication-title: Drug Target Insight.
  doi: 10.4137/DTI.S12519
– volume: 291
  start-page: 2357
  year: 2001
  ident: 10039_CR1
  publication-title: Science
  doi: 10.1126/science.1059820
– volume: 9
  start-page: 7308
  year: 2019
  ident: 10039_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-43828-w
– volume: 00
  start-page: 1
  year: 2021
  ident: 10039_CR51
  publication-title: Expert Rev. Clin. Pharmacol.
  doi: 10.1080/17512433.2021.1959318
– volume: 52
  start-page: 3099
  year: 2012
  ident: 10039_CR53
  publication-title: J. Chem. Inf. Mod.
  doi: 10.1021/ci300367a
– ident: 10039_CR61
– volume: 7
  start-page: 119
  year: 2020
  ident: 10039_CR63
  publication-title: J. Genet. Genom.
  doi: 10.1016/j.jgg.2020.02.001
– volume: 45
  start-page: 493
  year: 1966
  ident: 10039_CR32
  publication-title: Am. J. Clin. Pathol.
  doi: 10.1093/ajcp/45.4_ts.493
– volume: 1685
  start-page: 43
  year: 2018
  ident: 10039_CR43
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-7366-8_4
– volume: 58
  start-page: 4066
  year: 2015
  ident: 10039_CR64
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b00104
– volume: 14
  start-page: 69
  year: 2020
  ident: 10039_CR22
  publication-title: Biosci. Trends.
  doi: 10.5582/bst.2020.01020
– ident: 10039_CR26
  doi: 10.22034/ijnc.2020.131337.1124
– volume: 56
  start-page: 195
  year: 1975
  ident: 10039_CR55
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-1-4684-7529-6_9
– ident: 10039_CR38
  doi: 10.1093/nar/28.1.235
– volume: 2
  start-page: 273
  year: 1991
  ident: 10039_CR60
  publication-title: Rev. Comput. Chem.
  doi: 10.1002/9780470125793.ch7
– ident: 10039_CR14
  doi: 10.17516/1998-2836-0226
– volume: 2
  start-page: 66
  year: 2012
  ident: 10039_CR28
  publication-title: Int. J. Biosci.
– ident: 10039_CR9
  doi: 10.3897/pharmacia.68.e56543
– ident: 10039_CR8
  doi: 10.17516/1998-2836-0199
– volume: 446
  start-page: 1046
  year: 2007
  ident: 10039_CR4
  publication-title: Nature
  doi: 10.1038/nature05819
– volume: 25
  start-page: 5433
  year: 2020
  ident: 10039_CR21
  publication-title: Molecules
  doi: 10.3390/molecules25225433
– volume: 103
  start-page: 8577
  year: 1995
  ident: 10039_CR46
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470117
– ident: 10039_CR33
– ident: 10039_CR37
– volume: 416
  start-page: 371
  year: 2006
  ident: 10039_CR2
  publication-title: Meth. Enzymol.
  doi: 10.1016/S0076-6879(06)16024-3
– ident: 10039_CR23
  doi: 10.25177/JCCMM.4.4.RA.10663
– volume: 52
  start-page: 876
  year: 1962
  ident: 10039_CR31
  publication-title: Phytopathology
– volume: 8
  year: 2021
  ident: 10039_CR52
  publication-title: Front. Mol. Biosci.
  doi: 10.3389/fmolb.2021.628585
– ident: 10039_CR11
  doi: 10.2478/auoc-2021-0002
– volume: 37
  start-page: 785
  year: 1988
  ident: 10039_CR35
  publication-title: Phys. Rev. B.
  doi: 10.1103/PhysRevB.37.785
– ident: 10039_CR16
  doi: 10.9734/bpi/cacb/v6/8670D
SSID ssj0007428
Score 2.496614
Snippet Carbohydrate esters are significant in medicinal chemistry because of their efficacy for the synthesis of biologically active drugs. In the present study,...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 261
SubjectTerms Acylation
Anti-Bacterial Agents - pharmacology
Anti-Infective Agents - pharmacology
Antibacterial activity
Antifungal agents
Antimicrobial agents
Antiviral Agents - chemistry
Antiviral Agents - pharmacology
Biochemistry
Biological activity
Biomedical and Life Sciences
Computer applications
COVID-19
Esters
Esters - pharmacology
Free energy
Galactose
Humans
Hydrogen bonding
Life Sciences
Minimum inhibitory concentration
Molecular Docking Simulation
Molecular dynamics
Molecular Dynamics Simulation
Original
Original Article
Pathology
Peptide Hydrolases
Pharmacokinetics
Proteinase
Proteinase inhibitors
SARS-CoV-2
Severe acute respiratory syndrome coronavirus 2
Statistical analysis
Toxicity
Tribute to Professor Sen-itiroh Hakomori
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagCMGlghZKoCAjIS6sRf4cJ1zQslBVSEWIpWhvUfwTNdLG2ZLdQ_pYvAQ3nokZb7KrpaK3KHYSJzPxzNgz30fIq0jCvG84ZwXXBYtLX7LUmJIFUoM7XiZaRljvfPYlOT2PP8_4rF9wa_u0ymFOdBO1bhSukb8Fwy0ysH1p9n5xyZA1CndXewqN2-QOQpdh8CVmm4ALwz43E0NYwdA16otm-tI5geU7ISZ04W5otGuYrnmb15Mm_9k5dQbp5AHZ7z1JOl6L_iG5ZewBORxbiKLrjr6mLrfTLZofkLsfhqN7k4Hh7ZD8PjMgpjn984t9ZGApkHpn0YHxapDDkzoMhZYWLV00S0wqgqdV9qKSFTL0UPB26XT8bcomzQ8WUgf4ACaRGnvV1eYdbTsLzmVbtSMK0qvqykE-FfMR_TqeTke0Hoh5KXx8XLDfOdXZAq5oaVvVPcEYjMRqermCm61qqhwbxbrhETk_-fR9csp6YgemYhEvWSyUHyjhqzKC8EdKEyZS6QJLSnyhs0BzzgsEepMuYM1MJn2eKm2yMvKVENFjsmcba54QqsM4iQpfqEzxOBAqlYUIuZIZuHKZ0KFHgkGquepRz5F8Y55v8ZpRE3LQhNxpQh555M3mmsUa8-PG3seDsuT9_9_mW231yMtNM4gXt2MKa5oV9gnBP-NpkHjkaK1bm8dFHKEUE7i52NG6TQdEBd9tsdWFQwcH8xZAEOqR0aCf22H9_y2e3vwWz8j9EOs-XMrSMdlb_lyZ5-CNLeUL98v9BQjGNUY
  priority: 102
  providerName: ProQuest
Title Methyl β-D-galactopyranoside esters as potential inhibitors for SARS-CoV-2 protease enzyme: synthesis, antimicrobial, PASS, molecular docking, molecular dynamics simulations and quantum computations
URI https://link.springer.com/article/10.1007/s10719-021-10039-3
https://www.ncbi.nlm.nih.gov/pubmed/35037163
https://www.proquest.com/docview/2647955489
https://www.proquest.com/docview/2620785816
https://pubmed.ncbi.nlm.nih.gov/PMC8761875
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF7RVgguCFoohhItEuJCVvLfem1ubkipQK2qhqBwsrw_Vi3F64CTg3ksXoIbz8Tsxk4JBSROjrzrta0Zz3yTnfkGoRcBB7uvKCU5lTkJC5eTWKmCeFwCHC8iyQNT73x2Hp1Ow3czOuuKwpo-273fkrSW-pdiN2YKbnyTgmX2L4MdtEchdjd6PfXTjf2FYM_aXwgmiAFEXanMn9fYdkc3MObNVMnf9kutGzq5j-51-BGna4E_QLeU3kcHqYbYuWrxS2wzOu1f5fvo9nH_686o7-t2gL6fKRDOHP_4Rt4Q8A-m4c6iBZdVm86d2DInNDhv8KJemlQiuFupr0pemr48GDAunqSXEzKqPxIfW5oHcIRY6a9tpV7jptUAKZuyGWKQWVmVlugpnw_xRTqZDHHVt-PFEiwxvOLWqVbncEWDm7Lq2orBk2iJP69gsVWFhe1BsR54iKYn4w-jU9K1cyAiZOGShEy4nmCuKAIIejhXfsSFzE0hictk4klKaW7o3bgNUxOVcJfGQqqkCFzBWPAI7epaq8cISz-MgtxlIhE09JiIec58KngCAC5h0neQ10s1Ex3XuWm5Mc-uWZqNJmSgCZnVhCxw0KvNNYs108c_Zx_1ypJ1X32TAbhkCeCzOHHQ880wiNdswuRa1SszxwdURmMvctDhWrc2twuoIVCMYHG2pXWbCYYLfHtEl1eWExycmgehp4OGvX5eP9bf3-LJ_01_iu76pvrDJi4dod3ll5V6BphsyQdoh83YAO2lbz-9H8PxeHx-cTmwH-ZPOGs2EA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIlQuCFoegQKLBFzICr_WGyMhFFKqlDYVIi3KzXgfUS3FdooTIfOjOPAnuPGbmNnYiUJFb71F2fXa1ny7M-N5fIQ89yWc-4ZzlnCdsGDsSNYxZsxcqcEcH4da-ljvPDgO-6fBxxEfbZCfTS0MplU2Z6I9qHWh8Bv5a1DcIgLd14neTc8ZskZhdLWh0FjA4tBU38FlK98e7IF8X3je_oeTXp_VrAJMBSKYsUAox1XCUWMfbG8pjRdKpROsZ3CEjlzNOU-wy5i03lJkIunwjtImGvuOEsKHda-R66B4HUwhFKOlg4dupj35wY1haIrVRTp1qZ7AciEPE8gw-uqvK8IL1u3FJM1_IrVWAe7fJrdqy5V2F1C7QzZMvk12ujl47VlFX1KbS2o_0m-TG--bX1u9hlFuh_weGIDFhP75xfYYaCak-plWoCwL5AyltmdDSZOSTosZJjHB3dL8LJUpMgJRsK7psPt5yHrFF-ZR22ACVDA1-Y8qM29oWeVgzJZp2aaAljRLbYupZNKmn7rDYZtmDREwBWFjgGDtrypP4IqSlmlWE5rBk-Sans9hsXlGlWW_WAzcJadXIvJ7ZDMvcvOAUO0FoZ84QkWKB65QHZkIjysZgekYCe21iNtINVZ1l3Uk-5jEq_7QiIQYkBBbJMR-i7xaXjNd9Bi5dPZuA5a4Pm_KeLU7WuTZchjEi-GfJDfFHOd4YA_yjhu2yP0Ftpa38zm2bgxhcbGGuuUE7EK-PpKnZ7YbOahTF5zeFmk3-Fw91v_f4uHlb_GUbPVPBkfx0cHx4SNy08OaE5sutUs2Z9_m5jFYgjP5xG4_Sr5e9X7_C6hAcSc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIh4XBC0PQ4FFAi5kVb_WGyMhFBKiltKqIhTlZrzrtWoptlOcCJmfxZE_wI3fxMzGThQqeustyq7XtubbnRnP4yPkuSfh3Necs5gnMfNTW7Ku1ilzZALmeBok0sN658OjYO_E_zDm4w3yq62FwbTK9kw0B3VSKvxGvguKW4Sg-7rhbtqkRRwPhm-nZwwZpDDS2tJpLCByoOvv4L5Vb_YHIOsXrjt8_7m_xxqGAaZ84c-YL5TtKGGr1AM7XErtBlIlMdY22CIJnYRzHmPHMWk8p1CH0uZdlegw9WwlhAfrXiFXhQdqE_aSGC-dPXQ5jRYAl4ahWdYU7DRlewJLh1xMJsNIrLeuFM9ZuucTNv-J2hplOLxNbjVWLO0tYHeHbOhii2z3CvDg85q-pCav1Hyw3yLX3rW_bvRbdrlt8vtQA0Qm9M9PNmCgpZD2Z1qD4iyRP5Sa_g0VjSs6LWeY0AR3y4rTTGbIDkTB0qaj3qcR65dfmEtNswlQx1QXP-pcv6ZVXYBhW2VVhwJysjwz7abiSYce90ajDs1bUmAKgsdgwdpfdRHDFRWtsrwhN4MnKRJ6NofF5jlVhgljMXCXnFyKyO-RzaIs9ANCE9cPvNgWKlTcd4Tqyli4XMkQzMhQJK5FnFaqkWo6riPxxyRa9YpGJESAhMggIfIs8mp5zXTRb-TC2TstWKLm7Kmi1U6xyLPlMIgXQ0Fxocs5znHBNuRdJ7DI_QW2lrfzOLZxDGBxsYa65QTsSL4-UmSnpjM5qFYHHGCLdFp8rh7r_2_x8OK3eEquw06PPu4fHTwiN10sPzGZUztkc_Ztrh-DUTiTT8zuo-TrZW_3v-6ddV0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methyl+%CE%B2-D-galactopyranoside+esters+as+potential+inhibitors+for+SARS-CoV-2+protease+enzyme%3A+synthesis%2C+antimicrobial%2C+PASS%2C+molecular+docking%2C+molecular+dynamics+simulations+and+quantum+computations&rft.jtitle=Glycoconjugate+journal&rft.au=Amin%2C+Md+R&rft.au=Yasmin%2C+Farhana&rft.au=Dey%2C+Sujan&rft.au=Mahmud%2C+Shafi&rft.date=2022-04-01&rft.issn=1573-4986&rft.eissn=1573-4986&rft.volume=39&rft.issue=2&rft.spage=261&rft_id=info:doi/10.1007%2Fs10719-021-10039-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0282-0080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0282-0080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0282-0080&client=summon