Eleven healthy live births: a result of simultaneous preimplantation genetic testing of α- and β-double thalassemia and aneuploidy screening
Purpose To evaluate the efficacy of preimplantation genetic testing (PGT) for α- and β-double thalassemia combined with aneuploidy screening using next-generation sequencing (NGS). Methods An NGS-based PGT protocol was performed between 2017 and 2018 for twelve couples, each of which carried both α-...
Saved in:
Published in | Journal of assisted reproduction and genetics Vol. 37; no. 3; pp. 549 - 557 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose
To evaluate the efficacy of preimplantation genetic testing (PGT) for α- and β-double thalassemia combined with aneuploidy screening using next-generation sequencing (NGS).
Methods
An NGS-based PGT protocol was performed between 2017 and 2018 for twelve couples, each of which carried both α- and β-thalassemia mutations. Trophectoderm biopsy samples underwent whole-genome amplification using multiple displacement amplification (MDA), followed by NGS for thalassemia detection and aneuploidy screening. A selection of several informative single nucleotide polymorphisms (SNPs) established haplotypes. Aneuploidy screening was performed only on unaffected noncarriers and carriers. Unaffected and euploid embryos were transferred into the uterus through frozen-thawed embryo transfer (FET).
Results
A total of 280 oocytes were retrieved following 18 ovum pick-up (OPU) cycles, with 182 normally fertilized and 112 cultured to become blastocysts. One hundred and seven (95.5%, 107/112) blastocysts received conclusive PGT results, showing 56 (52.3%, 56/107) were unaffected. Thirty-seven (66.1%, 37/56) of the unaffected were also identified as euploid. One family had no transferable embryos. Unaffected and euploid embryos were then transferred into the uterus of the other 11 couples resulting in 11 healthy live births. The clinical pregnancy rate was 61.1% (11/18) per OPU and 68.8% (11/16) per FET, with no miscarriage reported. Seven families accepted the prenatal diagnosis and received consistent results with the NGS-based PGT.
Conclusion
This study indicated that NGS could realize the simultaneous PGT of double thalassemia and aneuploidy screening in a reliable and accurate manner. Moreover, it eliminated the need for multiple biopsies, alleviating the potential damages to the pre-implanted blastocysts. |
---|---|
AbstractList | Purpose
To evaluate the efficacy of preimplantation genetic testing (PGT) for α- and β-double thalassemia combined with aneuploidy screening using next-generation sequencing (NGS).
Methods
An NGS-based PGT protocol was performed between 2017 and 2018 for twelve couples, each of which carried both α- and β-thalassemia mutations. Trophectoderm biopsy samples underwent whole-genome amplification using multiple displacement amplification (MDA), followed by NGS for thalassemia detection and aneuploidy screening. A selection of several informative single nucleotide polymorphisms (SNPs) established haplotypes. Aneuploidy screening was performed only on unaffected noncarriers and carriers. Unaffected and euploid embryos were transferred into the uterus through frozen-thawed embryo transfer (FET).
Results
A total of 280 oocytes were retrieved following 18 ovum pick-up (OPU) cycles, with 182 normally fertilized and 112 cultured to become blastocysts. One hundred and seven (95.5%, 107/112) blastocysts received conclusive PGT results, showing 56 (52.3%, 56/107) were unaffected. Thirty-seven (66.1%, 37/56) of the unaffected were also identified as euploid. One family had no transferable embryos. Unaffected and euploid embryos were then transferred into the uterus of the other 11 couples resulting in 11 healthy live births. The clinical pregnancy rate was 61.1% (11/18) per OPU and 68.8% (11/16) per FET, with no miscarriage reported. Seven families accepted the prenatal diagnosis and received consistent results with the NGS-based PGT.
Conclusion
This study indicated that NGS could realize the simultaneous PGT of double thalassemia and aneuploidy screening in a reliable and accurate manner. Moreover, it eliminated the need for multiple biopsies, alleviating the potential damages to the pre-implanted blastocysts. To evaluate the efficacy of preimplantation genetic testing (PGT) for α- and β-double thalassemia combined with aneuploidy screening using next-generation sequencing (NGS). An NGS-based PGT protocol was performed between 2017 and 2018 for twelve couples, each of which carried both α- and β-thalassemia mutations. Trophectoderm biopsy samples underwent whole-genome amplification using multiple displacement amplification (MDA), followed by NGS for thalassemia detection and aneuploidy screening. A selection of several informative single nucleotide polymorphisms (SNPs) established haplotypes. Aneuploidy screening was performed only on unaffected noncarriers and carriers. Unaffected and euploid embryos were transferred into the uterus through frozen-thawed embryo transfer (FET). A total of 280 oocytes were retrieved following 18 ovum pick-up (OPU) cycles, with 182 normally fertilized and 112 cultured to become blastocysts. One hundred and seven (95.5%, 107/112) blastocysts received conclusive PGT results, showing 56 (52.3%, 56/107) were unaffected. Thirty-seven (66.1%, 37/56) of the unaffected were also identified as euploid. One family had no transferable embryos. Unaffected and euploid embryos were then transferred into the uterus of the other 11 couples resulting in 11 healthy live births. The clinical pregnancy rate was 61.1% (11/18) per OPU and 68.8% (11/16) per FET, with no miscarriage reported. Seven families accepted the prenatal diagnosis and received consistent results with the NGS-based PGT. This study indicated that NGS could realize the simultaneous PGT of double thalassemia and aneuploidy screening in a reliable and accurate manner. Moreover, it eliminated the need for multiple biopsies, alleviating the potential damages to the pre-implanted blastocysts. To evaluate the efficacy of preimplantation genetic testing (PGT) for α- and β-double thalassemia combined with aneuploidy screening using next-generation sequencing (NGS).PURPOSETo evaluate the efficacy of preimplantation genetic testing (PGT) for α- and β-double thalassemia combined with aneuploidy screening using next-generation sequencing (NGS).An NGS-based PGT protocol was performed between 2017 and 2018 for twelve couples, each of which carried both α- and β-thalassemia mutations. Trophectoderm biopsy samples underwent whole-genome amplification using multiple displacement amplification (MDA), followed by NGS for thalassemia detection and aneuploidy screening. A selection of several informative single nucleotide polymorphisms (SNPs) established haplotypes. Aneuploidy screening was performed only on unaffected noncarriers and carriers. Unaffected and euploid embryos were transferred into the uterus through frozen-thawed embryo transfer (FET).METHODSAn NGS-based PGT protocol was performed between 2017 and 2018 for twelve couples, each of which carried both α- and β-thalassemia mutations. Trophectoderm biopsy samples underwent whole-genome amplification using multiple displacement amplification (MDA), followed by NGS for thalassemia detection and aneuploidy screening. A selection of several informative single nucleotide polymorphisms (SNPs) established haplotypes. Aneuploidy screening was performed only on unaffected noncarriers and carriers. Unaffected and euploid embryos were transferred into the uterus through frozen-thawed embryo transfer (FET).A total of 280 oocytes were retrieved following 18 ovum pick-up (OPU) cycles, with 182 normally fertilized and 112 cultured to become blastocysts. One hundred and seven (95.5%, 107/112) blastocysts received conclusive PGT results, showing 56 (52.3%, 56/107) were unaffected. Thirty-seven (66.1%, 37/56) of the unaffected were also identified as euploid. One family had no transferable embryos. Unaffected and euploid embryos were then transferred into the uterus of the other 11 couples resulting in 11 healthy live births. The clinical pregnancy rate was 61.1% (11/18) per OPU and 68.8% (11/16) per FET, with no miscarriage reported. Seven families accepted the prenatal diagnosis and received consistent results with the NGS-based PGT.RESULTSA total of 280 oocytes were retrieved following 18 ovum pick-up (OPU) cycles, with 182 normally fertilized and 112 cultured to become blastocysts. One hundred and seven (95.5%, 107/112) blastocysts received conclusive PGT results, showing 56 (52.3%, 56/107) were unaffected. Thirty-seven (66.1%, 37/56) of the unaffected were also identified as euploid. One family had no transferable embryos. Unaffected and euploid embryos were then transferred into the uterus of the other 11 couples resulting in 11 healthy live births. The clinical pregnancy rate was 61.1% (11/18) per OPU and 68.8% (11/16) per FET, with no miscarriage reported. Seven families accepted the prenatal diagnosis and received consistent results with the NGS-based PGT.This study indicated that NGS could realize the simultaneous PGT of double thalassemia and aneuploidy screening in a reliable and accurate manner. Moreover, it eliminated the need for multiple biopsies, alleviating the potential damages to the pre-implanted blastocysts.CONCLUSIONThis study indicated that NGS could realize the simultaneous PGT of double thalassemia and aneuploidy screening in a reliable and accurate manner. Moreover, it eliminated the need for multiple biopsies, alleviating the potential damages to the pre-implanted blastocysts. PurposeTo evaluate the efficacy of preimplantation genetic testing (PGT) for α- and β-double thalassemia combined with aneuploidy screening using next-generation sequencing (NGS).MethodsAn NGS-based PGT protocol was performed between 2017 and 2018 for twelve couples, each of which carried both α- and β-thalassemia mutations. Trophectoderm biopsy samples underwent whole-genome amplification using multiple displacement amplification (MDA), followed by NGS for thalassemia detection and aneuploidy screening. A selection of several informative single nucleotide polymorphisms (SNPs) established haplotypes. Aneuploidy screening was performed only on unaffected noncarriers and carriers. Unaffected and euploid embryos were transferred into the uterus through frozen-thawed embryo transfer (FET).ResultsA total of 280 oocytes were retrieved following 18 ovum pick-up (OPU) cycles, with 182 normally fertilized and 112 cultured to become blastocysts. One hundred and seven (95.5%, 107/112) blastocysts received conclusive PGT results, showing 56 (52.3%, 56/107) were unaffected. Thirty-seven (66.1%, 37/56) of the unaffected were also identified as euploid. One family had no transferable embryos. Unaffected and euploid embryos were then transferred into the uterus of the other 11 couples resulting in 11 healthy live births. The clinical pregnancy rate was 61.1% (11/18) per OPU and 68.8% (11/16) per FET, with no miscarriage reported. Seven families accepted the prenatal diagnosis and received consistent results with the NGS-based PGT.ConclusionThis study indicated that NGS could realize the simultaneous PGT of double thalassemia and aneuploidy screening in a reliable and accurate manner. Moreover, it eliminated the need for multiple biopsies, alleviating the potential damages to the pre-implanted blastocysts. |
Author | Zhou, Canquan Xu, Yanwen Xu, Yan Shen, Xiaoting Zhang, Guirong Chen, Dongjia Wu, Changsheng Ding, Chenhui |
Author_xml | – sequence: 1 givenname: Dongjia orcidid: 0000-0002-2419-2575 surname: Chen fullname: Chen, Dongjia organization: Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine – sequence: 2 givenname: Xiaoting surname: Shen fullname: Shen, Xiaoting organization: Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine – sequence: 3 givenname: Changsheng surname: Wu fullname: Wu, Changsheng organization: Peking Medriv Academy of Genetics and Reproduction – sequence: 4 givenname: Yan surname: Xu fullname: Xu, Yan organization: Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine – sequence: 5 givenname: Chenhui surname: Ding fullname: Ding, Chenhui organization: Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine – sequence: 6 givenname: Guirong surname: Zhang fullname: Zhang, Guirong email: guirong_zhang@126.com organization: Peking Medriv Academy of Genetics and Reproduction – sequence: 7 givenname: Yanwen surname: Xu fullname: Xu, Yanwen email: xuyanwen@live.cn organization: Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine – sequence: 8 givenname: Canquan surname: Zhou fullname: Zhou, Canquan email: zhoucanquan@mail.sysu.edu.cn organization: Reproductive Medicine Center, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Reproductive Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32152910$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstu1TAQhiNURC_wAiyQJTZsAr7GPiyQUFUuUiU2sLacZHLiyrGD7RzpvATvAg_SZ8Knabl00ZVHmu__NTP-T6sjHzxU1XOCXxOM5ZtEsCKixhTXmEhGa_moOiFCsloyho9KjYWqMW_UcXWa0hXGeKMoe1IdM0oE3RB8Uv24cLADj0YwLo975OwOUGtjHtNbZFCEtLiMwoCSnUplPIQloTmCnWZnfDbZBo-24CHbDmVI2frtgb_-WSPje3T9q-7D0jpAeTTOpASTNTed4rXMLth-j1IXAXxRPq0eD8YleHb7nlXfPlx8Pf9UX375-Pn8_WXdcclzzUXXD6YfuGkFAcoMblrFRVlKCoCW4KHZKCVIJyQVPeNSYtXyxjTDxgyGc3ZWvVt956WdoO_A52icnqOdTNzrYKz-v-PtqLdhpyWhgipSDF7dGsTwfSlr68mmDpxbL6Qpk2JDGG1YQV_eQ6_CEn1Zr1BKKNVIfqBe_DvRn1HuvqoAagW6GFKKMOjOrucvA1qnCdaHVOg1FbqkQt-kQssipfekd-4PitgqSgX2W4h_x35A9RsU1s3X |
CitedBy_id | crossref_primary_10_1016_j_ajog_2024_09_114 crossref_primary_10_1186_s12920_022_01187_y crossref_primary_10_1007_s10815_022_02447_7 crossref_primary_10_1186_s12864_022_08294_1 crossref_primary_10_3389_fgene_2023_1248358 crossref_primary_10_1371_journal_pone_0278539 crossref_primary_10_1007_s10815_022_02415_1 crossref_primary_10_1186_s12958_022_00948_9 crossref_primary_10_1016_j_tjog_2023_09_024 crossref_primary_10_1007_s10815_024_03240_4 crossref_primary_10_3390_diagnostics12081921 crossref_primary_10_3389_fgene_2023_1221853 crossref_primary_10_1186_s13023_023_02736_z crossref_primary_10_3389_fendo_2023_1176063 crossref_primary_10_1007_s10815_023_02775_2 crossref_primary_10_3390_genes16040360 crossref_primary_10_1007_s13206_021_00006_3 crossref_primary_10_3389_fped_2022_1015769 |
Cites_doi | 10.1016/j.tjog.2019.01.013 10.1016/j.bcmd.2011.12.001 10.1038/gim.2014.45 10.1080/19396368.2017.1296501 10.1007/s10815-014-0298-9 10.1016/S1472-6483(10)60414-2 10.1080/19396368.2018.1472315 10.1093/humrep/dex215 10.3109/19396368.2015.1100692 10.1016/j.fertnstert.2017.03.011 10.4103/0366-6999.167352 10.1016/S0009-9120(01)00250-8 10.1038/s41598-017-00967-2 10.1016/j.fertnstert.2013.04.035 10.1016/j.fertnstert.2019.01.025 10.1016/j.fertnstert.2019.01.017 10.1038/srep25488 10.1016/S0140-6736(17)31822-6 10.1007/s10815-009-9336-4 10.1007/s10815-011-9598-5 10.1016/j.hoc.2017.11.003 10.1016/j.fertnstert.2013.02.056 10.1007/s10815-012-9871-2 10.1093/humrep/des235 10.1038/s41436-018-0351-7 10.1080/19396368.2019.1590479 10.1056/NEJMoa067744 10.1093/humrep/den217 10.1016/j.jgg.2016.03.011 10.1371/journal.pone.0139613 10.1038/gim.2016.173 10.1016/j.fertnstert.2014.11.007 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2020 Springer Science+Business Media, LLC, part of Springer Nature 2020. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 7X8 5PM |
DOI | 10.1007/s10815-020-01732-7 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Public Health ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1573-7330 |
EndPage | 557 |
ExternalDocumentID | PMC7125281 32152910 10_1007_s10815_020_01732_7 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Guangzhou Science and Technology Project: Development and Application of The Reagents for Preimplantation Diagnosis and Screening by Next Generation Sequencing grantid: 201704020217 – fundername: Guangdong Provincial Key Laboratory of Reproductive Medicine grantid: 2012A061400003 funderid: http://dx.doi.org/10.13039/501100011516 – fundername: Guangdong Provincial Key Laboratory of Reproductive Medicine grantid: 2012A061400003 – fundername: ; grantid: 201704020217 – fundername: ; grantid: 2012A061400003 |
GroupedDBID | --- -53 -5E -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29J 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 3O- 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5RE 5VS 67N 67Z 6NX 78A 7X7 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACUDM ACZOJ ADBBV ADHHG ADHIR ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG AOIJS ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAWUL BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DIK DL5 DNIVK DPUIP DU5 E3Z EBD EBLON EBS EIOEI EJD EMOBN EN4 EPAXT ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GRRUI GX1 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HYE HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAK LK8 LLZTM M1P M4Y M7P MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 OVD P19 P2P P6G PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R89 R9I RHV RNI ROL RPM RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SCLPG SDE SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 XJT YLTOR Z45 Z7U Z82 Z87 Z8O Z8V Z91 ZGI ZMTXR ZOVNA ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI RC3 7X8 5PM |
ID | FETCH-LOGICAL-c474t-45cdfadf4ab51e23a06b84515275eeb10f698851c5725d347708b46a6f9afa443 |
IEDL.DBID | 7X7 |
ISSN | 1058-0468 1573-7330 |
IngestDate | Thu Aug 21 18:06:04 EDT 2025 Tue Aug 05 10:09:23 EDT 2025 Fri Jul 25 19:25:49 EDT 2025 Mon Jul 21 06:01:23 EDT 2025 Thu Apr 24 23:07:26 EDT 2025 Tue Jul 01 02:01:36 EDT 2025 Fri Feb 21 02:36:57 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Preimplantation genetic testing for aneuploidy (PGT-A) Preimplantation genetic testing for monogenic diseases (PGT-M) β-Thalassemia α-Thalassemia Next-generation sequencing (NGS) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-45cdfadf4ab51e23a06b84515275eeb10f698851c5725d347708b46a6f9afa443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2419-2575 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7125281 |
PMID | 32152910 |
PQID | 2385886743 |
PQPubID | 37828 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7125281 proquest_miscellaneous_2375913263 proquest_journals_2385886743 pubmed_primary_32152910 crossref_citationtrail_10_1007_s10815_020_01732_7 crossref_primary_10_1007_s10815_020_01732_7 springer_journals_10_1007_s10815_020_01732_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200300 2020-03-00 2020-Mar 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200300 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Netherlands |
PublicationSubtitle | An Official Journal of the American Society for Reproductive Medicine |
PublicationTitle | Journal of assisted reproduction and genetics |
PublicationTitleAbbrev | J Assist Reprod Genet |
PublicationTitleAlternate | J Assist Reprod Genet |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | BlockeelCSchutyserVDe VosAVerpoestWDe VosMStaessenCProspectively randomized controlled trial of PGS in IVF/ICSI patients with poor implantationReprod BioMed Online200817684885410.1016/S1472-6483(10)60414-2 TaherATWeatherallDJCappelliniMDThalassaemiaLancet20183911011615516710.1016/S0140-6736(17)31822-6 RubioCBellverJRodrigoLCastillonGGuillenAVidalCIn vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled studyFertil Steril201710751122112910.1016/j.fertnstert.2017.03.011 ChenLDiaoZXuZZhouJYanGSunHThe clinical application of NGS-based SNP haplotyping for PGD of Hb H diseaseSyst Biol Reprod Med201763321221710.1080/19396368.2017.1296501 MinasiMGFiorentinoFRubertiABiricikACursioECotroneoEGenetic diseases and aneuploidies can be detected with a single blastocyst biopsy: a successful clinical approachHum Reprod2017328177017771:CAS:528:DC%2BC1cXitFGrt77F10.1093/humrep/dex215 Backenroth D, Zahdeh F, Kling Y, Peretz A, Rosen T, Kort D, et al. Haploseek: a 24-hour all-in-one method for preimplantation genetic diagnosis (PGD) of monogenic disease and aneuploidy. Genet Med. 2018. Haapaniemi KouruKMalmgrenHNordenskjoldMFridstromMCsemiczkyGBlennowEOne-cell biopsy significantly improves the outcome of preimplantation genetic diagnosis (PGD) treatment: retrospective analysis of 569 PGD cycles at the Stockholm PGD centreHum Reprod2012279284328491:STN:280:DC%2BC38jltFagtg%3D%3D10.1093/humrep/des235 ChenLDiaoZXuZZhouJYanGSunHThe clinical application of single-sperm-based SNP haplotyping for PGD of osteogenesis imperfectaSyst Biol Reprod Med201965175801:CAS:528:DC%2BC1cXpsFOktrg%3D10.1080/19396368.2018.1472315 LeeCIWuCHPaiYPChangYJChenCILeeTHLeeMSPerformance of preimplantation genetic testing for aneuploidy in IVF cycles for patients with advanced maternal age, repeat implantation failure, and idiopathic recurrent miscarriageTaiwan J Obstet Gynecol201958223924310.1016/j.tjog.2019.01.013 LaiKHuangGSuLHeYThe prevalence of thalassemia in mainland China: evidence from epidemiological surveysSci Rep20177192010.1038/s41598-017-00967-2 HuXWangJLiYWangYDingCZengYClinical considerations of preimplantation genetic diagnosis for monogenic diseasesPLoS One2015109e013961310.1371/journal.pone.0139613 ScottRTJrUphamKMFormanEJHongKHScottKLTaylorDBlastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trialFertil Steril2013100369770310.1016/j.fertnstert.2013.04.035 SomiglianaEBusnelliAPaffoniAViganoPRiccaboniARubioCCost-effectiveness of preimplantation genetic testing for aneuploidiesFertil Steril201911161169117610.1016/j.fertnstert.2019.01.025 GleicherNBaradDHA review of, and commentary on, the ongoing second clinical introduction of preimplantation genetic screening (PGS) to routine IVF practiceJ Assist Reprod Genet201229111159116610.1007/s10815-012-9871-2 NatesanSABladonAJCoskunSQubbajWPratesRMunneSCoonenEDreesenJCStevensSJPaulussenADStock-MyerSEWiltonLJJaroudiSWellsDBrownAPHandysideAHGenome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitroGenet Med.201416118388451:CAS:528:DC%2BC2cXhvFCiu77I10.1038/gim.2014.45 HardarsonTHansonCLundinKHillensjoTNilssonLStevicJPreimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate: a randomized controlled trialHum Reprod20082312280628121:STN:280:DC%2BD1cjksFagtw%3D%3D10.1093/humrep/den217 HouWXuYLiRSongJWangJZengYPanJZhouCXuYRole of aneuploidy screening in preimplantation genetic testing for monogenic diseases in young womenFertil Steril2019111592893510.1016/j.fertnstert.2019.01.017 JiaCWWangLLanYLSongRZhouLYYuLAneuploidy in early miscarriage and its related factorsChin Med J2015128202772277610.4103/0366-6999.167352 JiXZhangZShiJHeBClinical application of NGS-based SNP haplotyping for the preimplantation genetic diagnosis of primary open angle glaucomaSyst Biol Reprod Med20196532582631:CAS:528:DC%2BC1MXnt1ClsL4%3D10.1080/19396368.2019.1590479 LinMZhuJJWangQXieLXLuMWangJLDevelopment and evaluation of a reverse dot blot assay for the simultaneous detection of common alpha and beta thalassemia in ChineseBlood Cells Mol Dis201248286901:CAS:528:DC%2BC38XhsFGltLw%3D10.1016/j.bcmd.2011.12.001 Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858. Bang-CeYHongqiongLZhuanfongZZhengsongLJianlingGSimultaneous detection of alpha-thalassemia and beta-thalassemia by oligonucleotide microarrayHaematologica.20048981010101215339687 GueyeNAJalasCTaoXTaylorDScottRTJrTreffNRImproved sensitivity to detect recombination using qPCR for Dyskeratosis Congenita PGDJ Assist Reprod Genet20143191227123010.1007/s10815-014-0298-9 ShenXXuYZhongYZhouCZengYZhuangGPreimplantation genetic diagnosis for alpha-and beta-double thalassemiaJ Assist Reprod Genet2011281095796410.1007/s10815-011-9598-5 RenYZhiXZhuXHuangJLianYLiRClinical applications of MARSALA for preimplantation genetic diagnosis of spinal muscular atrophyJ Genet Genomics201643954154710.1016/j.jgg.2016.03.011 OrigaRbeta-ThalassemiaGenet Med20171966096191:CAS:528:DC%2BC2sXpt1Wrsrs%3D10.1038/gim.2016.173 RechitskySPakhalchukTSan RamosGGoodmanAZlatopolskyZKulievAFirst systematic experience of preimplantation genetic diagnosis for single-gene disorders, and/or preimplantation human leukocyte antigen typing, combined with 24-chromosome aneuploidy testingFertil Steril2015103250351210.1016/j.fertnstert.2014.11.007 KakourouGVrettouCKattamisADestouniAPoulouMMoutafiMKokkaliGPantosKDaviesSKitsiou-TzeliSKanavakisETraeger-SynodinosJComplex preimplantation genetic diagnosis for beta-thalassaemia, sideroblastic anaemia, and human leukocyte antigen (HLA)-typingSyst Biol Reprod Med201662169761:CAS:528:DC%2BC2MXitVSqsbbI10.3109/19396368.2015.1100692 MettanandaSHiggsDRMolecular basis and genetic modifiers of thalassemiaHematol Oncol Clin North Am201832217719110.1016/j.hoc.2017.11.003 ChenSCXuXLZhangJYDingGLJinLLiuBIdentification of PKD2 mutations in human preimplantation embryos in vitro using a combination of targeted next-generation sequencing and targeted haplotypingSci Rep20166254881:CAS:528:DC%2BC28XnsV2jtb0%3D10.1038/srep25488 SiriratmanawongNFucharoenGSanchaisuriyaKRatanasiriTFucharoenSSimultaneous PCR detection of beta-thalassemia and alpha-thalassemia 1 (SEA type) in prenatal diagnosis of complex thalassemia syndromeClin Biochem20013453773801:CAS:528:DC%2BD3MXnsFSrs7g%3D10.1016/S0009-9120(01)00250-8 XuYWZengYHDengJLiuYGaoLZhouCQZhuangGLPreimplantation genetic diagnosis for alpha-thalassaemia in ChinaJ Assist Reprod Genet200926739940310.1007/s10815-009-9336-4 FormanEJHongKHFerryKMTaoXTaylorDLevyBIn vitro fertilization with single euploid blastocyst transfer: a randomized controlled trialFertil Steril20131001100107.e10110.1016/j.fertnstert.2013.02.056 ShenXTXuYWZhongYPZengYHWangJDingCHCombination of multiple displacement amplification with short tandem repeat polymorphismin preimplantation genetic diagnosisBeijing Da Xue Xue Bao Yi Xue Ban20134568528581:CAS:528:DC%2BC2cXks1CgtL8%3D24343061 MastenbroekSTwiskMvan Echten-ArendsJSikkema-RaddatzBKorevaarJCVerhoeveHRVogelNEArtsEGde VriesJWBossuytPMBuysCHHeinemanMJReppingSvan der VeenFIn vitro fertilization with preimplantation genetic screeningN Engl J Med200735719171:CAS:528:DC%2BD2sXnsVygu70%3D10.1056/NEJMoa067744 SA Natesan (1732_CR8) 2014; 16 RT Scott Jr (1732_CR16) 2013; 100 N Siriratmanawong (1732_CR32) 2001; 34 K Haapaniemi Kouru (1732_CR33) 2012; 27 X Shen (1732_CR7) 2011; 28 SC Chen (1732_CR26) 2016; 6 K Lai (1732_CR2) 2017; 7 S Mastenbroek (1732_CR13) 2007; 357 L Chen (1732_CR28) 2019; 65 MG Minasi (1732_CR34) 2017; 32 S Mettananda (1732_CR3) 2018; 32 AT Taher (1732_CR4) 2018; 391 E Somigliana (1732_CR23) 2019; 111 CI Lee (1732_CR19) 2019; 58 CW Jia (1732_CR27) 2015; 128 L Chen (1732_CR24) 2017; 63 Y Bang-Ce (1732_CR31) 2004; 89 W Hou (1732_CR21) 2019; 111 M Lin (1732_CR30) 2012; 48 N Gleicher (1732_CR18) 2012; 29 X Hu (1732_CR35) 2015; 10 YW Xu (1732_CR10) 2009; 26 C Blockeel (1732_CR15) 2008; 17 X Ji (1732_CR25) 2019; 65 S Rechitsky (1732_CR20) 2015; 103 1732_CR1 XT Shen (1732_CR6) 2013; 45 T Hardarson (1732_CR14) 2008; 23 1732_CR9 Y Ren (1732_CR29) 2016; 43 G Kakourou (1732_CR11) 2016; 62 NA Gueye (1732_CR12) 2014; 31 C Rubio (1732_CR22) 2017; 107 R Origa (1732_CR5) 2017; 19 EJ Forman (1732_CR17) 2013; 100 |
References_xml | – reference: MastenbroekSTwiskMvan Echten-ArendsJSikkema-RaddatzBKorevaarJCVerhoeveHRVogelNEArtsEGde VriesJWBossuytPMBuysCHHeinemanMJReppingSvan der VeenFIn vitro fertilization with preimplantation genetic screeningN Engl J Med200735719171:CAS:528:DC%2BD2sXnsVygu70%3D10.1056/NEJMoa067744 – reference: SomiglianaEBusnelliAPaffoniAViganoPRiccaboniARubioCCost-effectiveness of preimplantation genetic testing for aneuploidiesFertil Steril201911161169117610.1016/j.fertnstert.2019.01.025 – reference: NatesanSABladonAJCoskunSQubbajWPratesRMunneSCoonenEDreesenJCStevensSJPaulussenADStock-MyerSEWiltonLJJaroudiSWellsDBrownAPHandysideAHGenome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitroGenet Med.201416118388451:CAS:528:DC%2BC2cXhvFCiu77I10.1038/gim.2014.45 – reference: ChenSCXuXLZhangJYDingGLJinLLiuBIdentification of PKD2 mutations in human preimplantation embryos in vitro using a combination of targeted next-generation sequencing and targeted haplotypingSci Rep20166254881:CAS:528:DC%2BC28XnsV2jtb0%3D10.1038/srep25488 – reference: HuXWangJLiYWangYDingCZengYClinical considerations of preimplantation genetic diagnosis for monogenic diseasesPLoS One2015109e013961310.1371/journal.pone.0139613 – reference: Bang-CeYHongqiongLZhuanfongZZhengsongLJianlingGSimultaneous detection of alpha-thalassemia and beta-thalassemia by oligonucleotide microarrayHaematologica.20048981010101215339687 – reference: ShenXXuYZhongYZhouCZengYZhuangGPreimplantation genetic diagnosis for alpha-and beta-double thalassemiaJ Assist Reprod Genet2011281095796410.1007/s10815-011-9598-5 – reference: GueyeNAJalasCTaoXTaylorDScottRTJrTreffNRImproved sensitivity to detect recombination using qPCR for Dyskeratosis Congenita PGDJ Assist Reprod Genet20143191227123010.1007/s10815-014-0298-9 – reference: LaiKHuangGSuLHeYThe prevalence of thalassemia in mainland China: evidence from epidemiological surveysSci Rep20177192010.1038/s41598-017-00967-2 – reference: MinasiMGFiorentinoFRubertiABiricikACursioECotroneoEGenetic diseases and aneuploidies can be detected with a single blastocyst biopsy: a successful clinical approachHum Reprod2017328177017771:CAS:528:DC%2BC1cXitFGrt77F10.1093/humrep/dex215 – reference: TaherATWeatherallDJCappelliniMDThalassaemiaLancet20183911011615516710.1016/S0140-6736(17)31822-6 – reference: KakourouGVrettouCKattamisADestouniAPoulouMMoutafiMKokkaliGPantosKDaviesSKitsiou-TzeliSKanavakisETraeger-SynodinosJComplex preimplantation genetic diagnosis for beta-thalassaemia, sideroblastic anaemia, and human leukocyte antigen (HLA)-typingSyst Biol Reprod Med201662169761:CAS:528:DC%2BC2MXitVSqsbbI10.3109/19396368.2015.1100692 – reference: Backenroth D, Zahdeh F, Kling Y, Peretz A, Rosen T, Kort D, et al. Haploseek: a 24-hour all-in-one method for preimplantation genetic diagnosis (PGD) of monogenic disease and aneuploidy. Genet Med. 2018. – reference: SiriratmanawongNFucharoenGSanchaisuriyaKRatanasiriTFucharoenSSimultaneous PCR detection of beta-thalassemia and alpha-thalassemia 1 (SEA type) in prenatal diagnosis of complex thalassemia syndromeClin Biochem20013453773801:CAS:528:DC%2BD3MXnsFSrs7g%3D10.1016/S0009-9120(01)00250-8 – reference: LinMZhuJJWangQXieLXLuMWangJLDevelopment and evaluation of a reverse dot blot assay for the simultaneous detection of common alpha and beta thalassemia in ChineseBlood Cells Mol Dis201248286901:CAS:528:DC%2BC38XhsFGltLw%3D10.1016/j.bcmd.2011.12.001 – reference: MettanandaSHiggsDRMolecular basis and genetic modifiers of thalassemiaHematol Oncol Clin North Am201832217719110.1016/j.hoc.2017.11.003 – reference: RechitskySPakhalchukTSan RamosGGoodmanAZlatopolskyZKulievAFirst systematic experience of preimplantation genetic diagnosis for single-gene disorders, and/or preimplantation human leukocyte antigen typing, combined with 24-chromosome aneuploidy testingFertil Steril2015103250351210.1016/j.fertnstert.2014.11.007 – reference: Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018;392(10159):1789–858. – reference: RubioCBellverJRodrigoLCastillonGGuillenAVidalCIn vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled studyFertil Steril201710751122112910.1016/j.fertnstert.2017.03.011 – reference: JiaCWWangLLanYLSongRZhouLYYuLAneuploidy in early miscarriage and its related factorsChin Med J2015128202772277610.4103/0366-6999.167352 – reference: Haapaniemi KouruKMalmgrenHNordenskjoldMFridstromMCsemiczkyGBlennowEOne-cell biopsy significantly improves the outcome of preimplantation genetic diagnosis (PGD) treatment: retrospective analysis of 569 PGD cycles at the Stockholm PGD centreHum Reprod2012279284328491:STN:280:DC%2BC38jltFagtg%3D%3D10.1093/humrep/des235 – reference: ShenXTXuYWZhongYPZengYHWangJDingCHCombination of multiple displacement amplification with short tandem repeat polymorphismin preimplantation genetic diagnosisBeijing Da Xue Xue Bao Yi Xue Ban20134568528581:CAS:528:DC%2BC2cXks1CgtL8%3D24343061 – reference: ChenLDiaoZXuZZhouJYanGSunHThe clinical application of NGS-based SNP haplotyping for PGD of Hb H diseaseSyst Biol Reprod Med201763321221710.1080/19396368.2017.1296501 – reference: RenYZhiXZhuXHuangJLianYLiRClinical applications of MARSALA for preimplantation genetic diagnosis of spinal muscular atrophyJ Genet Genomics201643954154710.1016/j.jgg.2016.03.011 – reference: HouWXuYLiRSongJWangJZengYPanJZhouCXuYRole of aneuploidy screening in preimplantation genetic testing for monogenic diseases in young womenFertil Steril2019111592893510.1016/j.fertnstert.2019.01.017 – reference: GleicherNBaradDHA review of, and commentary on, the ongoing second clinical introduction of preimplantation genetic screening (PGS) to routine IVF practiceJ Assist Reprod Genet201229111159116610.1007/s10815-012-9871-2 – reference: HardarsonTHansonCLundinKHillensjoTNilssonLStevicJPreimplantation genetic screening in women of advanced maternal age caused a decrease in clinical pregnancy rate: a randomized controlled trialHum Reprod20082312280628121:STN:280:DC%2BD1cjksFagtw%3D%3D10.1093/humrep/den217 – reference: XuYWZengYHDengJLiuYGaoLZhouCQZhuangGLPreimplantation genetic diagnosis for alpha-thalassaemia in ChinaJ Assist Reprod Genet200926739940310.1007/s10815-009-9336-4 – reference: ChenLDiaoZXuZZhouJYanGSunHThe clinical application of single-sperm-based SNP haplotyping for PGD of osteogenesis imperfectaSyst Biol Reprod Med201965175801:CAS:528:DC%2BC1cXpsFOktrg%3D10.1080/19396368.2018.1472315 – reference: BlockeelCSchutyserVDe VosAVerpoestWDe VosMStaessenCProspectively randomized controlled trial of PGS in IVF/ICSI patients with poor implantationReprod BioMed Online200817684885410.1016/S1472-6483(10)60414-2 – reference: JiXZhangZShiJHeBClinical application of NGS-based SNP haplotyping for the preimplantation genetic diagnosis of primary open angle glaucomaSyst Biol Reprod Med20196532582631:CAS:528:DC%2BC1MXnt1ClsL4%3D10.1080/19396368.2019.1590479 – reference: FormanEJHongKHFerryKMTaoXTaylorDLevyBIn vitro fertilization with single euploid blastocyst transfer: a randomized controlled trialFertil Steril20131001100107.e10110.1016/j.fertnstert.2013.02.056 – reference: ScottRTJrUphamKMFormanEJHongKHScottKLTaylorDBlastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trialFertil Steril2013100369770310.1016/j.fertnstert.2013.04.035 – reference: OrigaRbeta-ThalassemiaGenet Med20171966096191:CAS:528:DC%2BC2sXpt1Wrsrs%3D10.1038/gim.2016.173 – reference: LeeCIWuCHPaiYPChangYJChenCILeeTHLeeMSPerformance of preimplantation genetic testing for aneuploidy in IVF cycles for patients with advanced maternal age, repeat implantation failure, and idiopathic recurrent miscarriageTaiwan J Obstet Gynecol201958223924310.1016/j.tjog.2019.01.013 – volume: 58 start-page: 239 issue: 2 year: 2019 ident: 1732_CR19 publication-title: Taiwan J Obstet Gynecol doi: 10.1016/j.tjog.2019.01.013 – volume: 48 start-page: 86 issue: 2 year: 2012 ident: 1732_CR30 publication-title: Blood Cells Mol Dis doi: 10.1016/j.bcmd.2011.12.001 – volume: 16 start-page: 838 issue: 11 year: 2014 ident: 1732_CR8 publication-title: Genet Med. doi: 10.1038/gim.2014.45 – volume: 63 start-page: 212 issue: 3 year: 2017 ident: 1732_CR24 publication-title: Syst Biol Reprod Med doi: 10.1080/19396368.2017.1296501 – volume: 31 start-page: 1227 issue: 9 year: 2014 ident: 1732_CR12 publication-title: J Assist Reprod Genet doi: 10.1007/s10815-014-0298-9 – volume: 17 start-page: 848 issue: 6 year: 2008 ident: 1732_CR15 publication-title: Reprod BioMed Online doi: 10.1016/S1472-6483(10)60414-2 – volume: 89 start-page: 1010 issue: 8 year: 2004 ident: 1732_CR31 publication-title: Haematologica. – volume: 65 start-page: 75 issue: 1 year: 2019 ident: 1732_CR28 publication-title: Syst Biol Reprod Med doi: 10.1080/19396368.2018.1472315 – volume: 32 start-page: 1770 issue: 8 year: 2017 ident: 1732_CR34 publication-title: Hum Reprod doi: 10.1093/humrep/dex215 – volume: 62 start-page: 69 issue: 1 year: 2016 ident: 1732_CR11 publication-title: Syst Biol Reprod Med doi: 10.3109/19396368.2015.1100692 – volume: 107 start-page: 1122 issue: 5 year: 2017 ident: 1732_CR22 publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2017.03.011 – volume: 128 start-page: 2772 issue: 20 year: 2015 ident: 1732_CR27 publication-title: Chin Med J doi: 10.4103/0366-6999.167352 – volume: 34 start-page: 377 issue: 5 year: 2001 ident: 1732_CR32 publication-title: Clin Biochem doi: 10.1016/S0009-9120(01)00250-8 – volume: 7 start-page: 920 issue: 1 year: 2017 ident: 1732_CR2 publication-title: Sci Rep doi: 10.1038/s41598-017-00967-2 – ident: 1732_CR1 – volume: 100 start-page: 697 issue: 3 year: 2013 ident: 1732_CR16 publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2013.04.035 – volume: 111 start-page: 1169 issue: 6 year: 2019 ident: 1732_CR23 publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2019.01.025 – volume: 111 start-page: 928 issue: 5 year: 2019 ident: 1732_CR21 publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2019.01.017 – volume: 6 start-page: 25488 year: 2016 ident: 1732_CR26 publication-title: Sci Rep doi: 10.1038/srep25488 – volume: 391 start-page: 155 issue: 10116 year: 2018 ident: 1732_CR4 publication-title: Lancet doi: 10.1016/S0140-6736(17)31822-6 – volume: 26 start-page: 399 issue: 7 year: 2009 ident: 1732_CR10 publication-title: J Assist Reprod Genet doi: 10.1007/s10815-009-9336-4 – volume: 28 start-page: 957 issue: 10 year: 2011 ident: 1732_CR7 publication-title: J Assist Reprod Genet doi: 10.1007/s10815-011-9598-5 – volume: 32 start-page: 177 issue: 2 year: 2018 ident: 1732_CR3 publication-title: Hematol Oncol Clin North Am doi: 10.1016/j.hoc.2017.11.003 – volume: 100 start-page: 100 issue: 1 year: 2013 ident: 1732_CR17 publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2013.02.056 – volume: 29 start-page: 1159 issue: 11 year: 2012 ident: 1732_CR18 publication-title: J Assist Reprod Genet doi: 10.1007/s10815-012-9871-2 – volume: 27 start-page: 2843 issue: 9 year: 2012 ident: 1732_CR33 publication-title: Hum Reprod doi: 10.1093/humrep/des235 – ident: 1732_CR9 doi: 10.1038/s41436-018-0351-7 – volume: 65 start-page: 258 issue: 3 year: 2019 ident: 1732_CR25 publication-title: Syst Biol Reprod Med doi: 10.1080/19396368.2019.1590479 – volume: 357 start-page: 9 issue: 1 year: 2007 ident: 1732_CR13 publication-title: N Engl J Med doi: 10.1056/NEJMoa067744 – volume: 23 start-page: 2806 issue: 12 year: 2008 ident: 1732_CR14 publication-title: Hum Reprod doi: 10.1093/humrep/den217 – volume: 43 start-page: 541 issue: 9 year: 2016 ident: 1732_CR29 publication-title: J Genet Genomics doi: 10.1016/j.jgg.2016.03.011 – volume: 10 start-page: e0139613 issue: 9 year: 2015 ident: 1732_CR35 publication-title: PLoS One doi: 10.1371/journal.pone.0139613 – volume: 45 start-page: 852 issue: 6 year: 2013 ident: 1732_CR6 publication-title: Beijing Da Xue Xue Bao Yi Xue Ban – volume: 19 start-page: 609 issue: 6 year: 2017 ident: 1732_CR5 publication-title: Genet Med doi: 10.1038/gim.2016.173 – volume: 103 start-page: 503 issue: 2 year: 2015 ident: 1732_CR20 publication-title: Fertil Steril doi: 10.1016/j.fertnstert.2014.11.007 |
SSID | ssj0009823 |
Score | 2.3574228 |
Snippet | Purpose
To evaluate the efficacy of preimplantation genetic testing (PGT) for α- and β-double thalassemia combined with aneuploidy screening using... To evaluate the efficacy of preimplantation genetic testing (PGT) for α- and β-double thalassemia combined with aneuploidy screening using next-generation... PurposeTo evaluate the efficacy of preimplantation genetic testing (PGT) for α- and β-double thalassemia combined with aneuploidy screening using... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 549 |
SubjectTerms | Abortion, Spontaneous - genetics Abortion, Spontaneous - pathology Adult alpha-Thalassemia - diagnosis alpha-Thalassemia - genetics alpha-Thalassemia - pathology Aneuploidy beta-Thalassemia - diagnosis beta-Thalassemia - genetics beta-Thalassemia - pathology Biopsy Blastocyst - metabolism Blastocyst - pathology Blastocysts Embryo transfer Embryo Transfer - methods Embryos Female Genetic screening Genetic Testing - methods Genetics Genomes Gynecology Haplotypes Human Genetics Humans Live Birth Medicine Medicine & Public Health Next-generation sequencing Oocytes Oocytes - growth & development Pregnancy Pregnancy Rate Preimplantation Diagnosis Prenatal diagnosis Reproductive Medicine Single-nucleotide polymorphism Thalassemia Trophectoderm Uterus |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSIhLxZuUgozEDSLl4WdvFWpVIZUTK_UW2bHNRkqzq0320D_Bf2l_SH9TZ_LYZSkgcfbESTxj-xvNfDOEfGQ-NVolJtbMi5g5w2ObcRMDuEiEFtryBPnO59_E2Yx9veAXIymsnbLdp5Bkf1L_QnZTKbKJMZFK5oALH5JHHHx3TOSaZcfbUrsqG9LqucLERTVSZf48x-51dA9j3k-V_C1e2l9Dp0_J_ogf6fGg8GfkgW-ek8fnY4T8Bfl5UmNNJjrwG69oDacZtdWqm7dH1FBwrtd1RxeBthXmEprGg-tPlytfXS5rM_CQGgpWheRG2mENjuYHyt9ex9Q0jt7exG6xtrWn3Rw5mK2_rEw_AnOtl_WiclcUziLwj-HJl2R2evL9y1k89lyISyZZFzNeumBcYMby1Ge5SYRVjGPzW-7hXE-C0ApQWsllxl3OpEyUZcKIoE0wjOWvyF6zaPwbQiUPOmXeCVuWLHeZVgGwRCg13JqOexuRdFr6ohwLkmNfjLrYllJGdRWgrqJXVyEj8mnzzHIox_FP6cNJo8W4Ndsiw1CoQu5FRD5shmFTYaRkWHWQkVyDny5A5vVgAJvX5dgJGEBWROSOaWwEsGD37khTzfvC3RLQZKbSiHyejGj7WX__i4P_E39LnmS9gWOe3CHZ61Zr_w6AU2ff9_vkDkzfEgo priority: 102 providerName: Springer Nature |
Title | Eleven healthy live births: a result of simultaneous preimplantation genetic testing of α- and β-double thalassemia and aneuploidy screening |
URI | https://link.springer.com/article/10.1007/s10815-020-01732-7 https://www.ncbi.nlm.nih.gov/pubmed/32152910 https://www.proquest.com/docview/2385886743 https://www.proquest.com/docview/2375913263 https://pubmed.ncbi.nlm.nih.gov/PMC7125281 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELZoKyEuqPyHlspI3CAiP3bscEFLtW0FaoUQKy2nyI6dbqQ0CZvk0JfgXeBB-kzMJNldLRW97ErxZLPJjMefMzPfEPKGWV_F0lNuzGzkMqO4qwOuXAAXXhRHseYe1jufX0RnM_Z5zufjC7dmTKtc-cTeUZsqxXfk7wOMYElMmf9Y_3SxaxRGV8cWGjtkD6nL0KrFXGxId2UwJNhziSmMciyaGUvnpI-1yZiWJUJAmdsL0y20eTtp8p_Iab8gneyThyOSpJNB9Y_IPVs-JvfPx1j5E_JrWiA7Ex0qHa9pAX6N6nzZLpoPVFHYZndFS6uMNjlmFarSVl1D66XNr-pCDRVJJQX7wjJH2iIbR3mJ8je_XapKQ2_-uKbqdGFpu8BqzMZe5aofgd_q6qLKzTUFrwQ7ZTjzKZmdTL8fn7lj9wU3ZYK1LuOpyZTJmNLct0GovEhLxrENLrfg4b0siiXgtZSLgJuQCeFJzSIVZbHKFGPhM7JbVqV9QajgWewzayKdpiw0QSwzQBVZGsP6abjVDvFXjz5JR2py7JBRJBtSZVRXAupKenUlwiFv1-fUAzHHndKHK40m4yRtko1JOeT1ehimF8ZMhqcOMoLHsGOPQOb5YADry4XYExjglkPElmmsBZC6e3ukzBc9hbcAXBlI3yHvVka0-Vv_v4uXd9_FAXkQ9AaNGXKHZLdddvYVQKZWH_XzAj7lsX9E9ianP75M4fvT9OLrNzh6OoejO7Ng8hcMShsg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELVKkaAviDuBAkaCJ4jIxU5sJIRQabWl3T61Ut-CEztspDRJN4nQ_gSfggQf0m9iJpddLRV967MnN894fJyZM0PIa2ZcJYWjbMlMYDOtuB17XNkALpxABjLmDvKdp0fB5IR9PeWnG-TXyIXBtMrRJ3aOWpcJ_iN_72EES2DK_Kfq3MauURhdHVto9GZxYBY_4MhWf9z_Avp943l7u8c7E3voKmAnLGSNzXiiU6VTpmLuGs9XThALxrG9KzfguZw0kAJwSMJDj2ufhaEjYhaoIJUqVYz5cN8b5CbzYWkiM31nlVIihdcn9HOBKZNiIOkMVD3hIhca08BCH1Dt-kZ4Cd1eTtL8J1LbbYB7d8mdAbnSz72p3SMbprhPbk2H2PwD8nM3x2pQtGdWLmgOfpTG2byZ1R-oonCsb_OGlimtM8xiVIUp25pWc5OdVbnqGVAFBXtGWiVtsPpH8R3lL37bVBWaXvyxddnGuaHNDNmftTnLVDcC92qrvMz0goIXhJM5XPmQnFyLXh6RzaIszBNCQ55KlxkdxEnCfO1JkQKKSRMJ-7XmJraIO059lAyl0LEjRx6tijijuiJQV9SpKwot8nZ5TdUXArlSenvUaDQ4hTpambBFXi2HYTljjKafdZAJuXQBU4PM494Alo_zsQcxwDuLhGumsRTAUuHrI0U260qGh4BjPeFa5N1oRKvX-v9XPL36K16S25Pj6WF0uH908IxseZ1xY3beNtls5q15DnCtiV90a4SSb9e9KP8Ced9RaA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELagSBUXxD-BAkbiBlHzY8c2twq6Kj-tOLBSb5EdO91IaRJtkkNfgneBB-kzMZNkd7sUkDh74iSesf1ZM99nQl4zF2olA-0r5hKfWc19E3HtA7gIEpUowwPkOx-fJEdz9umUn15h8Q_V7quU5MhpQJWmqttvbL5_hfgmQ2QWY1GViAEj3iS3GLKBIaLn0cFGdldGY4k9l1jEKCfazJ_72N6aruHN62WTv-VOhy1pdpfcmbAkPRidf4_ccNV9sns8ZcsfkO-HJeoz0ZHreEFLWNmoKZbdon1HNYWDdl92tM5pW2Bdoa5c3be0WbrivCn1yEmqKEQYEh1ph3oc1RnaX_7wqa4svfzp27o3paPdAvmYrTsv9NACffVNWRf2gsK6BGdlePIhmc8Ov70_8qf7F_yMCdb5jGc21zZn2vDQRbEOEiMZx4twuYM1PsgTJQGxZVxE3MZMiEAalugkVzrXjMWPyE5VV-4JoYLnKmTOJibLWGwjJXPAFXmmYAe13BmPhKuhT7NJnBzvyCjTjawyuisFd6WDu1LhkTfrZ5pRmuOf1nsrj6bTNG3TCNOiEnkYHnm1boYJhlmTcdTBRnAFoZWAzeMxANavi_FWYABcHhFbobE2QPHu7ZaqWAwi3gKQZSRDj7xdBdHms_7-F0__z_wl2f36YZZ--Xjy-Rm5HQ2xjuVze2SnW_buOeCpzrwYpswvwbQZMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eleven+healthy+live+births%3A+a+result+of+simultaneous+preimplantation+genetic+testing+of+%CE%B1-+and+%CE%B2-double+thalassemia+and+aneuploidy+screening&rft.jtitle=Journal+of+assisted+reproduction+and+genetics&rft.au=Chen%2C+Dongjia&rft.au=Shen%2C+Xiaoting&rft.au=Wu%2C+Changsheng&rft.au=Xu%2C+Yan&rft.date=2020-03-01&rft.pub=Springer+US&rft.issn=1058-0468&rft.eissn=1573-7330&rft.volume=37&rft.issue=3&rft.spage=549&rft.epage=557&rft_id=info:doi/10.1007%2Fs10815-020-01732-7&rft_id=info%3Apmid%2F32152910&rft.externalDocID=PMC7125281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1058-0468&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1058-0468&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1058-0468&client=summon |