Explaining sentiment analysis results on social media texts through visualization
Today, Artificial Intelligence is achieving prodigious real-time performance, thanks to growing computational data and power capacities. However, there is little knowledge about what system results convey; thus, they are at risk of being susceptible to bias, and with the roots of Artificial Intellig...
Saved in:
Published in | Multimedia tools and applications Vol. 82; no. 15; pp. 22613 - 22629 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1380-7501 1573-7721 |
DOI | 10.1007/s11042-023-14432-y |
Cover
Loading…
Abstract | Today, Artificial Intelligence is achieving prodigious real-time performance, thanks to growing computational data and power capacities. However, there is little knowledge about what system results convey; thus, they are at risk of being susceptible to bias, and with the roots of Artificial Intelligence (“AI”) in almost every territory, even a minuscule bias can result in excessive damage. Efforts towards making AI interpretable have been made to address fairness, accountability, and transparency concerns. This paper proposes two unique methods to understand the system’s decisions aided by visualizing the results. For this study, interpretability has been implemented on Natural Language Processing-based sentiment analysis using data from various social media sites like Twitter, Facebook, and Reddit. With Valence Aware Dictionary for Sentiment Reasoning (“VADER”), heatmaps are generated, which account for visual justification of the result, increasing comprehensibility. Furthermore, Locally Interpretable Model-Agnostic Explanations (“LIME”) have been used to provide in-depth insight into the predictions. It has been found experimentally that the proposed system can surpass several contemporary systems designed to attempt interpretability. |
---|---|
AbstractList | Today, Artificial Intelligence is achieving prodigious real-time performance, thanks to growing computational data and power capacities. However, there is little knowledge about what system results convey; thus, they are at risk of being susceptible to bias, and with the roots of Artificial Intelligence (“AI”) in almost every territory, even a minuscule bias can result in excessive damage. Efforts towards making AI interpretable have been made to address fairness, accountability, and transparency concerns. This paper proposes two unique methods to understand the system’s decisions aided by visualizing the results. For this study, interpretability has been implemented on Natural Language Processing-based sentiment analysis using data from various social media sites like Twitter, Facebook, and Reddit. With Valence Aware Dictionary for Sentiment Reasoning (“VADER”), heatmaps are generated, which account for visual justification of the result, increasing comprehensibility. Furthermore, Locally Interpretable Model-Agnostic Explanations (“LIME”) have been used to provide in-depth insight into the predictions. It has been found experimentally that the proposed system can surpass several contemporary systems designed to attempt interpretability. Today, Artificial Intelligence is achieving prodigious real-time performance, thanks to growing computational data and power capacities. However, there is little knowledge about what system results convey; thus, they are at risk of being susceptible to bias, and with the roots of Artificial Intelligence ("AI") in almost every territory, even a minuscule bias can result in excessive damage. Efforts towards making AI interpretable have been made to address fairness, accountability, and transparency concerns. This paper proposes two unique methods to understand the system's decisions aided by visualizing the results. For this study, interpretability has been implemented on Natural Language Processing-based sentiment analysis using data from various social media sites like Twitter, Facebook, and Reddit. With Valence Aware Dictionary for Sentiment Reasoning ("VADER"), heatmaps are generated, which account for visual justification of the result, increasing comprehensibility. Furthermore, Locally Interpretable Model-Agnostic Explanations ("LIME") have been used to provide in-depth insight into the predictions. It has been found experimentally that the proposed system can surpass several contemporary systems designed to attempt interpretability.Today, Artificial Intelligence is achieving prodigious real-time performance, thanks to growing computational data and power capacities. However, there is little knowledge about what system results convey; thus, they are at risk of being susceptible to bias, and with the roots of Artificial Intelligence ("AI") in almost every territory, even a minuscule bias can result in excessive damage. Efforts towards making AI interpretable have been made to address fairness, accountability, and transparency concerns. This paper proposes two unique methods to understand the system's decisions aided by visualizing the results. For this study, interpretability has been implemented on Natural Language Processing-based sentiment analysis using data from various social media sites like Twitter, Facebook, and Reddit. With Valence Aware Dictionary for Sentiment Reasoning ("VADER"), heatmaps are generated, which account for visual justification of the result, increasing comprehensibility. Furthermore, Locally Interpretable Model-Agnostic Explanations ("LIME") have been used to provide in-depth insight into the predictions. It has been found experimentally that the proposed system can surpass several contemporary systems designed to attempt interpretability. |
Author | Jain, Rachna Nayyar, Anand Dewan, Kritika Ganguly, Sahil Garg, Rishika Raman, Shatakshi Kumar, Ashish |
Author_xml | – sequence: 1 givenname: Rachna surname: Jain fullname: Jain, Rachna organization: Bhagwan Parshuram Institute of Technology, School of Computer Science Engineering and Technology, Bennett University – sequence: 2 givenname: Ashish surname: Kumar fullname: Kumar, Ashish organization: Bharati Vidyapeeth’s College of Engineering – sequence: 3 givenname: Anand surname: Nayyar fullname: Nayyar, Anand email: anandnayyar@duytan.edu.vn organization: Graduate School, Faculty of Information Technology, Duy Tan University – sequence: 4 givenname: Kritika surname: Dewan fullname: Dewan, Kritika organization: Bharati Vidyapeeth’s College of Engineering – sequence: 5 givenname: Rishika surname: Garg fullname: Garg, Rishika organization: Bharati Vidyapeeth’s College of Engineering – sequence: 6 givenname: Shatakshi surname: Raman fullname: Raman, Shatakshi organization: Bharati Vidyapeeth’s College of Engineering – sequence: 7 givenname: Sahil surname: Ganguly fullname: Ganguly, Sahil organization: Bharati Vidyapeeth’s College of Engineering |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36747895$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UVtLHDEYDUWpuvoH-lAGfOnLtLnNJPMiiNgLCEXQ55DNZHYj2WTNNyOuv75fXS-tD74kIefC4ZwDspNy8oR8YvQro1R9A8ao5DXlomZSCl5vPpB91ihRK8XZDr6FprVqKNsjBwA3lLK24fIj2ROtkkp3zT65PL9fRxtSSIsKfBrDCo_KJhs3EKAqHqY4QpVTBdkFG6uV74OtRn-Pv-Oy5GmxrO4CTDaGBzuGnA7J7mAj-KOne0auv59fnf2sL37_-HV2elE7qeRYS9l6qXvWtvO577vGedHothMN1cOgteKOCi5tpwbLe4Z43wmhEfGsHzR1YkZOtr7raY6hHOYuNpp1CStbNibbYP5HUliaRb4zne5422o0-PJkUPLt5GE0qwDOx2iTzxMYrpTkigqsdkaO31Bv8lSwJGRpTjXmEw2yPv-b6CXKc9tI0FuCKxmg-MG4MD6WhgFDNIyav8Oa7bAGhzWPw5oNSvkb6bP7uyKxFQGS08KX19jvqP4A8Za3mw |
CitedBy_id | crossref_primary_10_1016_j_patrec_2024_01_001 crossref_primary_10_3389_fpubh_2024_1445864 crossref_primary_10_1007_s11042_023_16029_x crossref_primary_10_1007_s11042_024_19192_x crossref_primary_10_1142_S2196888823500100 crossref_primary_10_1007_s00371_023_03235_9 crossref_primary_10_1080_01969722_2023_2296251 crossref_primary_10_1109_TCSS_2024_3404236 crossref_primary_10_2196_54543 crossref_primary_10_37394_23205_2024_23_8 crossref_primary_10_1007_s11042_024_19965_4 crossref_primary_10_1007_s11423_024_10425_2 crossref_primary_10_1177_20531680241271758 crossref_primary_10_32604_iasc_2023_039763 crossref_primary_10_1007_s11042_024_19349_8 crossref_primary_10_1021_acs_iecr_3c00808 crossref_primary_10_1007_s42979_025_03808_6 crossref_primary_10_1109_ACCESS_2023_3322103 crossref_primary_10_3390_app142310782 crossref_primary_10_1016_j_knosys_2024_112248 crossref_primary_10_1007_s13278_023_01188_4 |
Cites_doi | 10.1201/9780429027192-11 10.5220/0010215303190328 10.1002/hast.973 10.1145/2939672.2939778 10.1016/j.eswa.2020.113746 10.3390/electronics8080832 10.1145/3313831.3376219 10.1016/j.chb.2015.07.061 10.1038/538020a 10.1145/604050.604056 10.1007/s13278-012-0079-3 10.1007/978-3-319-93846-2_45 10.1145/3236386.3241340 10.1016/j.bushor.2015.01.006 10.1109/TNNLS.2020.3027314 10.1109/DSAA.2018.00018 10.5220/0010382104020409 10.3390/bdcc2010006 10.1038/s41387-022-00226-y 10.1145/3236009 10.1016/j.ijdrr.2021.102101 10.18653/v1/S17-2089 10.1109/ACCESS.2018.2870052 10.1145/3313831.3376590 10.1007/978-3-030-50334-5_28 10.1613/jair.1.12228 10.18653/v1/P19-1560 10.1016/j.inffus.2019.12.012 10.1007/s11831-020-09464-8 10.1016/j.neunet.2011.07.003 10.1016/j.dsp.2017.10.011 10.1109/IWCMC.2019.8766571 10.24963/ijcai.2018/590 10.1007/978-3-540-30116-5_58 10.1109/TETCI.2021.3100641 10.1109/BigData.2018.8621970 10.1109/INFRKM.2018.8464775 10.1007/978-3-030-38724-2_15 10.1016/j.eswa.2020.113711 10.18653/v1/2020.emnlp-main.347 10.2316/P.2015.829-026 10.5824/ajite.2022.02.001.x 10.1109/CIG.2018.8490433 10.1016/j.ijpe.2014.12.037 10.1007/978-981-15-8610-1_7 10.18653/v1/2021.eacl-main.13 10.1109/TRPMS.2021.3066428 10.1609/icwsm.v8i1.14550 10.1145/3387166 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2023 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2023 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1007/s11042-023-14432-y |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central (New) Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | ABI/INFORM Global (Corporate) MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 22629 |
ExternalDocumentID | PMC9892668 36747895 10_1007_s11042_023_14432_y |
Genre | Journal Article |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADHKG ADIMF ADKFA ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~EX AAYXX ABFSG ACMFV ACSTC AEZWR AFHIU AFOHR AHWEU AIXLP ATHPR CITATION PHGZM ABRTQ NPM PQGLB 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D M0N MBDVC PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c474t-446e48d166bbed95ce358693508ff8872c0324a97fa2d195cd9338f88e1df80c3 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Thu Aug 21 18:38:15 EDT 2025 Sun Aug 24 03:49:57 EDT 2025 Fri Jul 25 20:56:06 EDT 2025 Mon Jul 21 06:00:55 EDT 2025 Tue Jul 01 05:15:25 EDT 2025 Thu Apr 24 22:58:35 EDT 2025 Thu Apr 10 07:12:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | Visualization VADER Interpretability Explainability LIME |
Language | English |
License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-446e48d166bbed95ce358693508ff8872c0324a97fa2d195cd9338f88e1df80c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9892668 |
PMID | 36747895 |
PQID | 2820819535 |
PQPubID | 54626 |
PageCount | 17 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892668 proquest_miscellaneous_2774270344 proquest_journals_2820819535 pubmed_primary_36747895 crossref_citationtrail_10_1007_s11042_023_14432_y crossref_primary_10_1007_s11042_023_14432_y springer_journals_10_1007_s11042_023_14432_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-01 |
PublicationDateYYYYMMDD | 2023-06-01 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationTitleAlternate | Multimed Tools Appl |
PublicationYear | 2023 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | 14432_CR20 14432_CR21 S Behl (14432_CR5) 2021; 55 14432_CR22 14432_CR23 14432_CR61 S Razavi (14432_CR48) 2021; 1 D Monner (14432_CR42) 2012; 25 A London (14432_CR37) 2019; 49 14432_CR17 14432_CR18 14432_CR19 D Castelvecchi (14432_CR13) 2016; 538 14432_CR14 14432_CR58 14432_CR59 14432_CR16 14432_CR53 14432_CR54 14432_CR55 14432_CR56 F Fan (14432_CR24) 2021; 5 HS Manaman (14432_CR40) 2016; 54 14432_CR50 14432_CR51 J Graham (14432_CR28) 1997; 68 R Guidotti (14432_CR29) 2019; 51 G Bologna (14432_CR8) 2018; 2 Y Zhu (14432_CR60) 2015; 58 GS Budhi (14432_CR10) 2021; 28 14432_CR46 14432_CR47 14432_CR49 14432_CR44 14432_CR45 B Chae (14432_CR15) 2015; 165 ZC Lipton (14432_CR35) 2018; 16 14432_CR41 G Montavon (14432_CR43) 2018; 73 M Venkataramaiah (14432_CR57) 2020; 13 14432_CR39 14432_CR36 14432_CR38 14432_CR31 S Stieglitz (14432_CR52) 2012; 3 DV Carvalho (14432_CR12) 2019; 8 14432_CR32 14432_CR33 14432_CR34 A Adadi (14432_CR1) 2018; 6 14432_CR30 A Borg (14432_CR9) 2020; 162 14432_CR6 14432_CR7 14432_CR4 14432_CR2 14432_CR3 14432_CR25 N Burkart (14432_CR11) 2021; 70 14432_CR26 14432_CR27 |
References_xml | – ident: 14432_CR3 – ident: 14432_CR7 doi: 10.1201/9780429027192-11 – ident: 14432_CR18 doi: 10.5220/0010215303190328 – volume: 49 start-page: 15 issue: 1 year: 2019 ident: 14432_CR37 publication-title: Hast Cent Rep doi: 10.1002/hast.973 – ident: 14432_CR50 doi: 10.1145/2939672.2939778 – volume: 162 start-page: 113746 year: 2020 ident: 14432_CR9 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113746 – volume: 8 start-page: 832 year: 2019 ident: 14432_CR12 publication-title: Electronics doi: 10.3390/electronics8080832 – ident: 14432_CR32 doi: 10.1145/3313831.3376219 – ident: 14432_CR38 – volume: 54 start-page: 94 issue: C year: 2016 ident: 14432_CR40 publication-title: Comput Hum Behav doi: 10.1016/j.chb.2015.07.061 – volume: 538 start-page: 20 year: 2016 ident: 14432_CR13 publication-title: Nature doi: 10.1038/538020a – ident: 14432_CR23 doi: 10.1145/604050.604056 – volume: 3 start-page: 1277 year: 2012 ident: 14432_CR52 publication-title: Soc Netw Anal Min doi: 10.1007/s13278-012-0079-3 – ident: 14432_CR45 doi: 10.1007/978-3-319-93846-2_45 – volume: 16 start-page: 31 year: 2018 ident: 14432_CR35 publication-title: Queue doi: 10.1145/3236386.3241340 – volume: 58 start-page: 335 year: 2015 ident: 14432_CR60 publication-title: Bus Horiz doi: 10.1016/j.bushor.2015.01.006 – ident: 14432_CR54 doi: 10.1109/TNNLS.2020.3027314 – ident: 14432_CR26 doi: 10.1109/DSAA.2018.00018 – ident: 14432_CR58 doi: 10.5220/0010382104020409 – volume: 2 start-page: 6 year: 2018 ident: 14432_CR8 publication-title: Big Data Cogn Comput doi: 10.3390/bdcc2010006 – ident: 14432_CR30 – ident: 14432_CR55 doi: 10.1038/s41387-022-00226-y – volume: 51 start-page: 1 year: 2019 ident: 14432_CR29 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/3236009 – volume: 55 start-page: 102101 year: 2021 ident: 14432_CR5 publication-title: Int J Disaster Risk Reduction doi: 10.1016/j.ijdrr.2021.102101 – ident: 14432_CR19 doi: 10.18653/v1/S17-2089 – ident: 14432_CR49 – volume: 6 start-page: 52138 year: 2018 ident: 14432_CR1 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – ident: 14432_CR34 doi: 10.1145/3313831.3376590 – ident: 14432_CR51 doi: 10.1007/978-3-030-50334-5_28 – volume: 70 start-page: 245 year: 2021 ident: 14432_CR11 publication-title: J Artif Intell Res doi: 10.1613/jair.1.12228 – ident: 14432_CR36 doi: 10.18653/v1/P19-1560 – ident: 14432_CR4 doi: 10.1016/j.inffus.2019.12.012 – volume: 13 start-page: 97 year: 2020 ident: 14432_CR57 publication-title: Int J Intell Eng Syst – volume: 28 start-page: 1 year: 2021 ident: 14432_CR10 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-020-09464-8 – volume: 25 start-page: 70 issue: 1 year: 2012 ident: 14432_CR42 publication-title: Neural Netw doi: 10.1016/j.neunet.2011.07.003 – volume: 73 start-page: 1 year: 2018 ident: 14432_CR43 publication-title: Digit Signal Process doi: 10.1016/j.dsp.2017.10.011 – ident: 14432_CR46 doi: 10.1109/IWCMC.2019.8766571 – volume: 1 start-page: 1 year: 2021 ident: 14432_CR48 publication-title: Earth Space Sci Open Arch – ident: 14432_CR39 doi: 10.24963/ijcai.2018/590 – ident: 14432_CR21 doi: 10.1007/978-3-540-30116-5_58 – ident: 14432_CR56 – ident: 14432_CR59 doi: 10.1109/TETCI.2021.3100641 – ident: 14432_CR14 doi: 10.1109/BigData.2018.8621970 – ident: 14432_CR2 doi: 10.1109/INFRKM.2018.8464775 – ident: 14432_CR25 doi: 10.1007/978-3-030-38724-2_15 – ident: 14432_CR33 doi: 10.1016/j.eswa.2020.113711 – ident: 14432_CR16 doi: 10.18653/v1/2020.emnlp-main.347 – ident: 14432_CR27 – ident: 14432_CR20 doi: 10.2316/P.2015.829-026 – volume: 68 start-page: 41 issue: 6 year: 1997 ident: 14432_CR28 publication-title: J AHIMA – ident: 14432_CR17 doi: 10.5824/ajite.2022.02.001.x – ident: 14432_CR47 – ident: 14432_CR61 doi: 10.1109/CIG.2018.8490433 – volume: 165 start-page: 247 year: 2015 ident: 14432_CR15 publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2014.12.037 – ident: 14432_CR53 – ident: 14432_CR6 doi: 10.1007/978-981-15-8610-1_7 – ident: 14432_CR44 doi: 10.18653/v1/2021.eacl-main.13 – volume: 5 start-page: 741 year: 2021 ident: 14432_CR24 publication-title: IEEE Trans Radiat Plasma Med Sci doi: 10.1109/TRPMS.2021.3066428 – ident: 14432_CR31 doi: 10.1609/icwsm.v8i1.14550 – ident: 14432_CR41 doi: 10.1145/3387166 – ident: 14432_CR22 |
SSID | ssj0016524 |
Score | 2.5078564 |
Snippet | Today, Artificial Intelligence is achieving prodigious real-time performance, thanks to growing computational data and power capacities. However, there is... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22613 |
SubjectTerms | Artificial intelligence Bias Computer Communication Networks Computer Science Data mining Data Structures and Information Theory Digital media Multimedia Information Systems Natural language processing Sentiment analysis Social networks Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90vuiD3x_VKRF802C7NmnzJCLOISgICnsrXZqiMDq1m-B_712bds7hnpPQj7vk7nJ3vx_AWRb6aBX8Dk9CHfIgVYajlyG4L6USqUEPxNB9x8Oj7L0E933RtxduhS2rrM_E8qBOR5ruyC8xNHDLnI-4ev_gxBpF2VVLobEMKx5aGtLwqHvXZBGksKS2kcvRMnq2aaZqnfOoMQUtFseQAt_1e9YwzXmb80WTfzKnpUHqbsK69STZdSX6LVgy-TZs1CwNzG7abVj7BTm4A09UdFexQjDqOyrB_VlioUkYBt-T4bhgo5xVt-msbC1hVB9SMEvqw77eCurFrDo4d-Gle_t80-OWVoHrIAzGHANAE0SpJ-VgYFIltPFFJJWPrlqW4ZnT0S56WYkKs6ST4h_XqcI4FkeMl2aRq_09aOWj3BwAS4JQuujxeAPhB8ZLIo3r3QTVIlNCSe2AV__TWFvMcaK-GMZTtGSSQ4xyiEs5xN8OnDdr3ivEjYWz27WoYrv7iniqKw6cNsO4bygZkuRmNME56Pd2QgI8dGC_kmzzOF8Sq4DC1eGMzJsJhMk9O5K_vZbY3CpSqIiRAxe1dkxf6_-vOFz8FUewSiz3VYVaG1rjz4k5Rl9oPDgpFf4HFkIF2w priority: 102 providerName: ProQuest |
Title | Explaining sentiment analysis results on social media texts through visualization |
URI | https://link.springer.com/article/10.1007/s11042-023-14432-y https://www.ncbi.nlm.nih.gov/pubmed/36747895 https://www.proquest.com/docview/2820819535 https://www.proquest.com/docview/2774270344 https://pubmed.ncbi.nlm.nih.gov/PMC9892668 |
Volume | 82 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB6sfdEH7yMeZQXfdCHXbrKPVdqKoqhY0KeQY4MFScWkgv_e2WSTWquCT3nYI8fsZr7ZmfkG4Dj1HNQKjk1DL_aomwhJEWUw6nAuWCIRgUh13nF9wy-G7uUje9RJYXkd7V67JMs_9TTZzVKpJKhjKBoBOPtHC9oMbXe1rod2t_EdcKZL2fomRX1o6VSZn-eYVUdzGHM-VPKbv7RUQ_01WNH4kXQrga_Dgsw2YLWuzUD0Vt2A5S9Eg5twp0LtqloQRGUblZT-JNSEJARN7slLkZNxRqozdFImlBAVFZITXcqHvI9ylYFZ5W1uwbDfezi_oLqYAo1dzy0omn3S9ROL8yiSiWCxdJjPhYMALU3xT2PHJmKrUHhpaCcWticCrVdskVaS-mbsbMNiNs7kLpDQ9biJOMeKmONKK_RjHG-GuBhSwQSPDbDqbxrEmmlcFbx4CaYcyUoOAcohKOUQfBhw0ox5rXg2_ux9UIsq0HsuD9B4NEuvIDPgqGnG3aJcIGEmxxPsg2jX9hTNoQE7lWSb2zlc1RIQONqbkXnTQTFxz7Zko-eSkVv4AoGOb8BpvTqmj_X7W-z9r_s-LKla91Wc2gEsFm8TeYiIqIg60PL7gw60u4Onqx5ez3o3t_edclt8Ah-6B0Y |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeeJRHAwWMBCewSOLYsQ8IIWDZ0oeE1Eq9pVnHEZWqbCG7oP1T_EZmHCfLUtFbz7bz8IztbzyPD-BFnQs8FUTKy9zmPKuM44gyJBdKGVk5RCCO7jv2D9T4KPtyLI_X4HefC0Nhlf2e6DfqamrpjvwNmgax9_nId-ffObFGkXe1p9Do1GLXLX6hyda-3fmI8n2ZpqNPhx_GPLAKcJvl2Yyj_eMyXSVKTSauMtI6IbUyApFKXeOSS22MIKM0eV2mFb7QVmjza2xxSVXr2Ap87jW4nglhKIRQjz4PXgslA4mujjmexElI0ulS9RJKhMETkqMJg3OzWD0IL6Dbi0Ga_3hq_QE4ugO3AnJl7ztVuwtrrtmE2z0rBAubxCZs_FXi8B58pSC_joWCUZ6TJxNgZSiFwtDYn5_NWjZtWHd7z3wqC6N4lJYFEiH287Sl3M8uY_Q-HF3JhD-A9WbauC1gZZarGBFWMpEic0mpLY6PS1TD2kijbARJP6eFDTXOiWrjrFhWZyY5FCiHwsuhWETwahhz3lX4uLT3di-qIqz2tljqZgTPh2Zcp-R8KRs3nWMfxNlpTgUWI3jYSXZ4nVDEYmBwdL4i86ED1QBfbWlOv_la4EYbhFg6gte9diw_6_9_8ejyv3gGN8aH-3vF3s7B7mO4mZLW-ounbVif_Zi7J4jDZpOnXvkZnFz1avsDPxlCIQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE48Civ0AJGghNYTeLYsQ-oqihLS6ECiUq9pVnHEZWqbCG7oP1r_LrOOE6WpaK3nm3n4Zmxv_F45gN4WecCdwWR8jK3Oc8q4ziiDMmFUkZWDhGIo_OOzwdq9zD7eCSPVuBPnwtD1yr7NdEv1NXE0hn5JroGsY_5yM06XIv4sjPaOvvBiUGKIq09nUanIvtu_hvdt_bt3g7K-lWajt5_e7fLA8MAt1meTTn6Qi7TVaLUeOwqI60TUisjELXUNZpfamMEHKXJ6zKt8OW2Qv9fY4tLqlrHVuBzr8H1XOiY2BP06MMQwVAyEOrqmOOunISEnS5tL6GkGNwtObozOE_z5U3xAtK9eGHzn6it3wxHd-F2QLFsu1O7e7DimjW40zNEsLBgrMGtv8od3oevdOGvY6RglPPkiQVYGcqiMHT8Z6fTlk0a1p3kM5_WwkgILQuEQuzXSUt5oF326AM4vJIJfwirzaRxj4GVWa5iRFvJWIrMJaW2OD4uUSVrI42yEST9nBY21Dsn2o3TYlGpmeRQoBwKL4diHsHrYcxZV-3j0t4bvaiKYPltsdDTCF4MzWizFIgpGzeZYR_E3GlOxRYjeNRJdnidUMRoYHB0viTzoQPVA19uaU6--7rgRhuEWzqCN712LD7r_3_x5PK_eA430M6KT3sH--twMyWl9WdQG7A6_TlzTxGSTcfPvO4zOL5qYzsHMqJGTg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explaining+sentiment+analysis+results+on+social+media+texts+through+visualization&rft.jtitle=Multimedia+tools+and+applications&rft.au=Jain%2C+Rachna&rft.au=Kumar%2C+Ashish&rft.au=Nayyar%2C+Anand&rft.au=Dewan%2C+Kritika&rft.date=2023-06-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=15&rft.spage=22613&rft.epage=22629&rft_id=info:doi/10.1007%2Fs11042-023-14432-y&rft.externalDocID=10_1007_s11042_023_14432_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |