Explaining sentiment analysis results on social media texts through visualization

Today, Artificial Intelligence is achieving prodigious real-time performance, thanks to growing computational data and power capacities. However, there is little knowledge about what system results convey; thus, they are at risk of being susceptible to bias, and with the roots of Artificial Intellig...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 15; pp. 22613 - 22629
Main Authors Jain, Rachna, Kumar, Ashish, Nayyar, Anand, Dewan, Kritika, Garg, Rishika, Raman, Shatakshi, Ganguly, Sahil
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
DOI10.1007/s11042-023-14432-y

Cover

Loading…
Abstract Today, Artificial Intelligence is achieving prodigious real-time performance, thanks to growing computational data and power capacities. However, there is little knowledge about what system results convey; thus, they are at risk of being susceptible to bias, and with the roots of Artificial Intelligence (“AI”) in almost every territory, even a minuscule bias can result in excessive damage. Efforts towards making AI interpretable have been made to address fairness, accountability, and transparency concerns. This paper proposes two unique methods to understand the system’s decisions aided by visualizing the results. For this study, interpretability has been implemented on Natural Language Processing-based sentiment analysis using data from various social media sites like Twitter, Facebook, and Reddit. With Valence Aware Dictionary for Sentiment Reasoning (“VADER”), heatmaps are generated, which account for visual justification of the result, increasing comprehensibility. Furthermore, Locally Interpretable Model-Agnostic Explanations (“LIME”) have been used to provide in-depth insight into the predictions. It has been found experimentally that the proposed system can surpass several contemporary systems designed to attempt interpretability.
AbstractList Today, Artificial Intelligence is achieving prodigious real-time performance, thanks to growing computational data and power capacities. However, there is little knowledge about what system results convey; thus, they are at risk of being susceptible to bias, and with the roots of Artificial Intelligence (“AI”) in almost every territory, even a minuscule bias can result in excessive damage. Efforts towards making AI interpretable have been made to address fairness, accountability, and transparency concerns. This paper proposes two unique methods to understand the system’s decisions aided by visualizing the results. For this study, interpretability has been implemented on Natural Language Processing-based sentiment analysis using data from various social media sites like Twitter, Facebook, and Reddit. With Valence Aware Dictionary for Sentiment Reasoning (“VADER”), heatmaps are generated, which account for visual justification of the result, increasing comprehensibility. Furthermore, Locally Interpretable Model-Agnostic Explanations (“LIME”) have been used to provide in-depth insight into the predictions. It has been found experimentally that the proposed system can surpass several contemporary systems designed to attempt interpretability.
Today, Artificial Intelligence is achieving prodigious real-time performance, thanks to growing computational data and power capacities. However, there is little knowledge about what system results convey; thus, they are at risk of being susceptible to bias, and with the roots of Artificial Intelligence ("AI") in almost every territory, even a minuscule bias can result in excessive damage. Efforts towards making AI interpretable have been made to address fairness, accountability, and transparency concerns. This paper proposes two unique methods to understand the system's decisions aided by visualizing the results. For this study, interpretability has been implemented on Natural Language Processing-based sentiment analysis using data from various social media sites like Twitter, Facebook, and Reddit. With Valence Aware Dictionary for Sentiment Reasoning ("VADER"), heatmaps are generated, which account for visual justification of the result, increasing comprehensibility. Furthermore, Locally Interpretable Model-Agnostic Explanations ("LIME") have been used to provide in-depth insight into the predictions. It has been found experimentally that the proposed system can surpass several contemporary systems designed to attempt interpretability.Today, Artificial Intelligence is achieving prodigious real-time performance, thanks to growing computational data and power capacities. However, there is little knowledge about what system results convey; thus, they are at risk of being susceptible to bias, and with the roots of Artificial Intelligence ("AI") in almost every territory, even a minuscule bias can result in excessive damage. Efforts towards making AI interpretable have been made to address fairness, accountability, and transparency concerns. This paper proposes two unique methods to understand the system's decisions aided by visualizing the results. For this study, interpretability has been implemented on Natural Language Processing-based sentiment analysis using data from various social media sites like Twitter, Facebook, and Reddit. With Valence Aware Dictionary for Sentiment Reasoning ("VADER"), heatmaps are generated, which account for visual justification of the result, increasing comprehensibility. Furthermore, Locally Interpretable Model-Agnostic Explanations ("LIME") have been used to provide in-depth insight into the predictions. It has been found experimentally that the proposed system can surpass several contemporary systems designed to attempt interpretability.
Author Jain, Rachna
Nayyar, Anand
Dewan, Kritika
Ganguly, Sahil
Garg, Rishika
Raman, Shatakshi
Kumar, Ashish
Author_xml – sequence: 1
  givenname: Rachna
  surname: Jain
  fullname: Jain, Rachna
  organization: Bhagwan Parshuram Institute of Technology, School of Computer Science Engineering and Technology, Bennett University
– sequence: 2
  givenname: Ashish
  surname: Kumar
  fullname: Kumar, Ashish
  organization: Bharati Vidyapeeth’s College of Engineering
– sequence: 3
  givenname: Anand
  surname: Nayyar
  fullname: Nayyar, Anand
  email: anandnayyar@duytan.edu.vn
  organization: Graduate School, Faculty of Information Technology, Duy Tan University
– sequence: 4
  givenname: Kritika
  surname: Dewan
  fullname: Dewan, Kritika
  organization: Bharati Vidyapeeth’s College of Engineering
– sequence: 5
  givenname: Rishika
  surname: Garg
  fullname: Garg, Rishika
  organization: Bharati Vidyapeeth’s College of Engineering
– sequence: 6
  givenname: Shatakshi
  surname: Raman
  fullname: Raman, Shatakshi
  organization: Bharati Vidyapeeth’s College of Engineering
– sequence: 7
  givenname: Sahil
  surname: Ganguly
  fullname: Ganguly, Sahil
  organization: Bharati Vidyapeeth’s College of Engineering
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36747895$$D View this record in MEDLINE/PubMed
BookMark eNp9UVtLHDEYDUWpuvoH-lAGfOnLtLnNJPMiiNgLCEXQ55DNZHYj2WTNNyOuv75fXS-tD74kIefC4ZwDspNy8oR8YvQro1R9A8ao5DXlomZSCl5vPpB91ihRK8XZDr6FprVqKNsjBwA3lLK24fIj2ROtkkp3zT65PL9fRxtSSIsKfBrDCo_KJhs3EKAqHqY4QpVTBdkFG6uV74OtRn-Pv-Oy5GmxrO4CTDaGBzuGnA7J7mAj-KOne0auv59fnf2sL37_-HV2elE7qeRYS9l6qXvWtvO577vGedHothMN1cOgteKOCi5tpwbLe4Z43wmhEfGsHzR1YkZOtr7raY6hHOYuNpp1CStbNibbYP5HUliaRb4zne5422o0-PJkUPLt5GE0qwDOx2iTzxMYrpTkigqsdkaO31Bv8lSwJGRpTjXmEw2yPv-b6CXKc9tI0FuCKxmg-MG4MD6WhgFDNIyav8Oa7bAGhzWPw5oNSvkb6bP7uyKxFQGS08KX19jvqP4A8Za3mw
CitedBy_id crossref_primary_10_1016_j_patrec_2024_01_001
crossref_primary_10_3389_fpubh_2024_1445864
crossref_primary_10_1007_s11042_023_16029_x
crossref_primary_10_1007_s11042_024_19192_x
crossref_primary_10_1142_S2196888823500100
crossref_primary_10_1007_s00371_023_03235_9
crossref_primary_10_1080_01969722_2023_2296251
crossref_primary_10_1109_TCSS_2024_3404236
crossref_primary_10_2196_54543
crossref_primary_10_37394_23205_2024_23_8
crossref_primary_10_1007_s11042_024_19965_4
crossref_primary_10_1007_s11423_024_10425_2
crossref_primary_10_1177_20531680241271758
crossref_primary_10_32604_iasc_2023_039763
crossref_primary_10_1007_s11042_024_19349_8
crossref_primary_10_1021_acs_iecr_3c00808
crossref_primary_10_1007_s42979_025_03808_6
crossref_primary_10_1109_ACCESS_2023_3322103
crossref_primary_10_3390_app142310782
crossref_primary_10_1016_j_knosys_2024_112248
crossref_primary_10_1007_s13278_023_01188_4
Cites_doi 10.1201/9780429027192-11
10.5220/0010215303190328
10.1002/hast.973
10.1145/2939672.2939778
10.1016/j.eswa.2020.113746
10.3390/electronics8080832
10.1145/3313831.3376219
10.1016/j.chb.2015.07.061
10.1038/538020a
10.1145/604050.604056
10.1007/s13278-012-0079-3
10.1007/978-3-319-93846-2_45
10.1145/3236386.3241340
10.1016/j.bushor.2015.01.006
10.1109/TNNLS.2020.3027314
10.1109/DSAA.2018.00018
10.5220/0010382104020409
10.3390/bdcc2010006
10.1038/s41387-022-00226-y
10.1145/3236009
10.1016/j.ijdrr.2021.102101
10.18653/v1/S17-2089
10.1109/ACCESS.2018.2870052
10.1145/3313831.3376590
10.1007/978-3-030-50334-5_28
10.1613/jair.1.12228
10.18653/v1/P19-1560
10.1016/j.inffus.2019.12.012
10.1007/s11831-020-09464-8
10.1016/j.neunet.2011.07.003
10.1016/j.dsp.2017.10.011
10.1109/IWCMC.2019.8766571
10.24963/ijcai.2018/590
10.1007/978-3-540-30116-5_58
10.1109/TETCI.2021.3100641
10.1109/BigData.2018.8621970
10.1109/INFRKM.2018.8464775
10.1007/978-3-030-38724-2_15
10.1016/j.eswa.2020.113711
10.18653/v1/2020.emnlp-main.347
10.2316/P.2015.829-026
10.5824/ajite.2022.02.001.x
10.1109/CIG.2018.8490433
10.1016/j.ijpe.2014.12.037
10.1007/978-981-15-8610-1_7
10.18653/v1/2021.eacl-main.13
10.1109/TRPMS.2021.3066428
10.1609/icwsm.v8i1.14550
10.1145/3387166
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright Springer Nature B.V. Jun 2023
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Copyright Springer Nature B.V. Jun 2023
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1007/s11042-023-14432-y
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central (New)
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ABI/INFORM Global (Corporate)
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 22629
ExternalDocumentID PMC9892668
36747895
10_1007_s11042_023_14432_y
Genre Journal Article
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKFA
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
~EX
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFHIU
AFOHR
AHWEU
AIXLP
ATHPR
CITATION
PHGZM
ABRTQ
NPM
PQGLB
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
M0N
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-446e48d166bbed95ce358693508ff8872c0324a97fa2d195cd9338f88e1df80c3
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Thu Aug 21 18:38:15 EDT 2025
Sun Aug 24 03:49:57 EDT 2025
Fri Jul 25 20:56:06 EDT 2025
Mon Jul 21 06:00:55 EDT 2025
Tue Jul 01 05:15:25 EDT 2025
Thu Apr 24 22:58:35 EDT 2025
Thu Apr 10 07:12:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords Visualization
VADER
Interpretability
Explainability
LIME
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-446e48d166bbed95ce358693508ff8872c0324a97fa2d195cd9338f88e1df80c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9892668
PMID 36747895
PQID 2820819535
PQPubID 54626
PageCount 17
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9892668
proquest_miscellaneous_2774270344
proquest_journals_2820819535
pubmed_primary_36747895
crossref_citationtrail_10_1007_s11042_023_14432_y
crossref_primary_10_1007_s11042_023_14432_y
springer_journals_10_1007_s11042_023_14432_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationTitleAlternate Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 14432_CR20
14432_CR21
S Behl (14432_CR5) 2021; 55
14432_CR22
14432_CR23
14432_CR61
S Razavi (14432_CR48) 2021; 1
D Monner (14432_CR42) 2012; 25
A London (14432_CR37) 2019; 49
14432_CR17
14432_CR18
14432_CR19
D Castelvecchi (14432_CR13) 2016; 538
14432_CR14
14432_CR58
14432_CR59
14432_CR16
14432_CR53
14432_CR54
14432_CR55
14432_CR56
F Fan (14432_CR24) 2021; 5
HS Manaman (14432_CR40) 2016; 54
14432_CR50
14432_CR51
J Graham (14432_CR28) 1997; 68
R Guidotti (14432_CR29) 2019; 51
G Bologna (14432_CR8) 2018; 2
Y Zhu (14432_CR60) 2015; 58
GS Budhi (14432_CR10) 2021; 28
14432_CR46
14432_CR47
14432_CR49
14432_CR44
14432_CR45
B Chae (14432_CR15) 2015; 165
ZC Lipton (14432_CR35) 2018; 16
14432_CR41
G Montavon (14432_CR43) 2018; 73
M Venkataramaiah (14432_CR57) 2020; 13
14432_CR39
14432_CR36
14432_CR38
14432_CR31
S Stieglitz (14432_CR52) 2012; 3
DV Carvalho (14432_CR12) 2019; 8
14432_CR32
14432_CR33
14432_CR34
A Adadi (14432_CR1) 2018; 6
14432_CR30
A Borg (14432_CR9) 2020; 162
14432_CR6
14432_CR7
14432_CR4
14432_CR2
14432_CR3
14432_CR25
N Burkart (14432_CR11) 2021; 70
14432_CR26
14432_CR27
References_xml – ident: 14432_CR3
– ident: 14432_CR7
  doi: 10.1201/9780429027192-11
– ident: 14432_CR18
  doi: 10.5220/0010215303190328
– volume: 49
  start-page: 15
  issue: 1
  year: 2019
  ident: 14432_CR37
  publication-title: Hast Cent Rep
  doi: 10.1002/hast.973
– ident: 14432_CR50
  doi: 10.1145/2939672.2939778
– volume: 162
  start-page: 113746
  year: 2020
  ident: 14432_CR9
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113746
– volume: 8
  start-page: 832
  year: 2019
  ident: 14432_CR12
  publication-title: Electronics
  doi: 10.3390/electronics8080832
– ident: 14432_CR32
  doi: 10.1145/3313831.3376219
– ident: 14432_CR38
– volume: 54
  start-page: 94
  issue: C
  year: 2016
  ident: 14432_CR40
  publication-title: Comput Hum Behav
  doi: 10.1016/j.chb.2015.07.061
– volume: 538
  start-page: 20
  year: 2016
  ident: 14432_CR13
  publication-title: Nature
  doi: 10.1038/538020a
– ident: 14432_CR23
  doi: 10.1145/604050.604056
– volume: 3
  start-page: 1277
  year: 2012
  ident: 14432_CR52
  publication-title: Soc Netw Anal Min
  doi: 10.1007/s13278-012-0079-3
– ident: 14432_CR45
  doi: 10.1007/978-3-319-93846-2_45
– volume: 16
  start-page: 31
  year: 2018
  ident: 14432_CR35
  publication-title: Queue
  doi: 10.1145/3236386.3241340
– volume: 58
  start-page: 335
  year: 2015
  ident: 14432_CR60
  publication-title: Bus Horiz
  doi: 10.1016/j.bushor.2015.01.006
– ident: 14432_CR54
  doi: 10.1109/TNNLS.2020.3027314
– ident: 14432_CR26
  doi: 10.1109/DSAA.2018.00018
– ident: 14432_CR58
  doi: 10.5220/0010382104020409
– volume: 2
  start-page: 6
  year: 2018
  ident: 14432_CR8
  publication-title: Big Data Cogn Comput
  doi: 10.3390/bdcc2010006
– ident: 14432_CR30
– ident: 14432_CR55
  doi: 10.1038/s41387-022-00226-y
– volume: 51
  start-page: 1
  year: 2019
  ident: 14432_CR29
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/3236009
– volume: 55
  start-page: 102101
  year: 2021
  ident: 14432_CR5
  publication-title: Int J Disaster Risk Reduction
  doi: 10.1016/j.ijdrr.2021.102101
– ident: 14432_CR19
  doi: 10.18653/v1/S17-2089
– ident: 14432_CR49
– volume: 6
  start-page: 52138
  year: 2018
  ident: 14432_CR1
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2870052
– ident: 14432_CR34
  doi: 10.1145/3313831.3376590
– ident: 14432_CR51
  doi: 10.1007/978-3-030-50334-5_28
– volume: 70
  start-page: 245
  year: 2021
  ident: 14432_CR11
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.1.12228
– ident: 14432_CR36
  doi: 10.18653/v1/P19-1560
– ident: 14432_CR4
  doi: 10.1016/j.inffus.2019.12.012
– volume: 13
  start-page: 97
  year: 2020
  ident: 14432_CR57
  publication-title: Int J Intell Eng Syst
– volume: 28
  start-page: 1
  year: 2021
  ident: 14432_CR10
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-020-09464-8
– volume: 25
  start-page: 70
  issue: 1
  year: 2012
  ident: 14432_CR42
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2011.07.003
– volume: 73
  start-page: 1
  year: 2018
  ident: 14432_CR43
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2017.10.011
– ident: 14432_CR46
  doi: 10.1109/IWCMC.2019.8766571
– volume: 1
  start-page: 1
  year: 2021
  ident: 14432_CR48
  publication-title: Earth Space Sci Open Arch
– ident: 14432_CR39
  doi: 10.24963/ijcai.2018/590
– ident: 14432_CR21
  doi: 10.1007/978-3-540-30116-5_58
– ident: 14432_CR56
– ident: 14432_CR59
  doi: 10.1109/TETCI.2021.3100641
– ident: 14432_CR14
  doi: 10.1109/BigData.2018.8621970
– ident: 14432_CR2
  doi: 10.1109/INFRKM.2018.8464775
– ident: 14432_CR25
  doi: 10.1007/978-3-030-38724-2_15
– ident: 14432_CR33
  doi: 10.1016/j.eswa.2020.113711
– ident: 14432_CR16
  doi: 10.18653/v1/2020.emnlp-main.347
– ident: 14432_CR27
– ident: 14432_CR20
  doi: 10.2316/P.2015.829-026
– volume: 68
  start-page: 41
  issue: 6
  year: 1997
  ident: 14432_CR28
  publication-title: J AHIMA
– ident: 14432_CR17
  doi: 10.5824/ajite.2022.02.001.x
– ident: 14432_CR47
– ident: 14432_CR61
  doi: 10.1109/CIG.2018.8490433
– volume: 165
  start-page: 247
  year: 2015
  ident: 14432_CR15
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2014.12.037
– ident: 14432_CR53
– ident: 14432_CR6
  doi: 10.1007/978-981-15-8610-1_7
– ident: 14432_CR44
  doi: 10.18653/v1/2021.eacl-main.13
– volume: 5
  start-page: 741
  year: 2021
  ident: 14432_CR24
  publication-title: IEEE Trans Radiat Plasma Med Sci
  doi: 10.1109/TRPMS.2021.3066428
– ident: 14432_CR31
  doi: 10.1609/icwsm.v8i1.14550
– ident: 14432_CR41
  doi: 10.1145/3387166
– ident: 14432_CR22
SSID ssj0016524
Score 2.5078564
Snippet Today, Artificial Intelligence is achieving prodigious real-time performance, thanks to growing computational data and power capacities. However, there is...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22613
SubjectTerms Artificial intelligence
Bias
Computer Communication Networks
Computer Science
Data mining
Data Structures and Information Theory
Digital media
Multimedia Information Systems
Natural language processing
Sentiment analysis
Social networks
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90vuiD3x_VKRF802C7NmnzJCLOISgICnsrXZqiMDq1m-B_712bds7hnpPQj7vk7nJ3vx_AWRb6aBX8Dk9CHfIgVYajlyG4L6USqUEPxNB9x8Oj7L0E933RtxduhS2rrM_E8qBOR5ruyC8xNHDLnI-4ev_gxBpF2VVLobEMKx5aGtLwqHvXZBGksKS2kcvRMnq2aaZqnfOoMQUtFseQAt_1e9YwzXmb80WTfzKnpUHqbsK69STZdSX6LVgy-TZs1CwNzG7abVj7BTm4A09UdFexQjDqOyrB_VlioUkYBt-T4bhgo5xVt-msbC1hVB9SMEvqw77eCurFrDo4d-Gle_t80-OWVoHrIAzGHANAE0SpJ-VgYFIltPFFJJWPrlqW4ZnT0S56WYkKs6ST4h_XqcI4FkeMl2aRq_09aOWj3BwAS4JQuujxeAPhB8ZLIo3r3QTVIlNCSe2AV__TWFvMcaK-GMZTtGSSQ4xyiEs5xN8OnDdr3ivEjYWz27WoYrv7iniqKw6cNsO4bygZkuRmNME56Pd2QgI8dGC_kmzzOF8Sq4DC1eGMzJsJhMk9O5K_vZbY3CpSqIiRAxe1dkxf6_-vOFz8FUewSiz3VYVaG1rjz4k5Rl9oPDgpFf4HFkIF2w
  priority: 102
  providerName: ProQuest
Title Explaining sentiment analysis results on social media texts through visualization
URI https://link.springer.com/article/10.1007/s11042-023-14432-y
https://www.ncbi.nlm.nih.gov/pubmed/36747895
https://www.proquest.com/docview/2820819535
https://www.proquest.com/docview/2774270344
https://pubmed.ncbi.nlm.nih.gov/PMC9892668
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB6sfdEH7yMeZQXfdCHXbrKPVdqKoqhY0KeQY4MFScWkgv_e2WSTWquCT3nYI8fsZr7ZmfkG4Dj1HNQKjk1DL_aomwhJEWUw6nAuWCIRgUh13nF9wy-G7uUje9RJYXkd7V67JMs_9TTZzVKpJKhjKBoBOPtHC9oMbXe1rod2t_EdcKZL2fomRX1o6VSZn-eYVUdzGHM-VPKbv7RUQ_01WNH4kXQrga_Dgsw2YLWuzUD0Vt2A5S9Eg5twp0LtqloQRGUblZT-JNSEJARN7slLkZNxRqozdFImlBAVFZITXcqHvI9ylYFZ5W1uwbDfezi_oLqYAo1dzy0omn3S9ROL8yiSiWCxdJjPhYMALU3xT2PHJmKrUHhpaCcWticCrVdskVaS-mbsbMNiNs7kLpDQ9biJOMeKmONKK_RjHG-GuBhSwQSPDbDqbxrEmmlcFbx4CaYcyUoOAcohKOUQfBhw0ox5rXg2_ux9UIsq0HsuD9B4NEuvIDPgqGnG3aJcIGEmxxPsg2jX9hTNoQE7lWSb2zlc1RIQONqbkXnTQTFxz7Zko-eSkVv4AoGOb8BpvTqmj_X7W-z9r_s-LKla91Wc2gEsFm8TeYiIqIg60PL7gw60u4Onqx5ez3o3t_edclt8Ah-6B0Y
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcoAeeJRHAwWMBCewSOLYsQ8IIWDZ0oeE1Eq9pVnHEZWqbCG7oP1T_EZmHCfLUtFbz7bz8IztbzyPD-BFnQs8FUTKy9zmPKuM44gyJBdKGVk5RCCO7jv2D9T4KPtyLI_X4HefC0Nhlf2e6DfqamrpjvwNmgax9_nId-ffObFGkXe1p9Do1GLXLX6hyda-3fmI8n2ZpqNPhx_GPLAKcJvl2Yyj_eMyXSVKTSauMtI6IbUyApFKXeOSS22MIKM0eV2mFb7QVmjza2xxSVXr2Ap87jW4nglhKIRQjz4PXgslA4mujjmexElI0ulS9RJKhMETkqMJg3OzWD0IL6Dbi0Ga_3hq_QE4ugO3AnJl7ztVuwtrrtmE2z0rBAubxCZs_FXi8B58pSC_joWCUZ6TJxNgZSiFwtDYn5_NWjZtWHd7z3wqC6N4lJYFEiH287Sl3M8uY_Q-HF3JhD-A9WbauC1gZZarGBFWMpEic0mpLY6PS1TD2kijbARJP6eFDTXOiWrjrFhWZyY5FCiHwsuhWETwahhz3lX4uLT3di-qIqz2tljqZgTPh2Zcp-R8KRs3nWMfxNlpTgUWI3jYSXZ4nVDEYmBwdL4i86ED1QBfbWlOv_la4EYbhFg6gte9diw_6_9_8ejyv3gGN8aH-3vF3s7B7mO4mZLW-ounbVif_Zi7J4jDZpOnXvkZnFz1avsDPxlCIQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE48Civ0AJGghNYTeLYsQ-oqihLS6ECiUq9pVnHEZWqbCG7oP1r_LrOOE6WpaK3nm3n4Zmxv_F45gN4WecCdwWR8jK3Oc8q4ziiDMmFUkZWDhGIo_OOzwdq9zD7eCSPVuBPnwtD1yr7NdEv1NXE0hn5JroGsY_5yM06XIv4sjPaOvvBiUGKIq09nUanIvtu_hvdt_bt3g7K-lWajt5_e7fLA8MAt1meTTn6Qi7TVaLUeOwqI60TUisjELXUNZpfamMEHKXJ6zKt8OW2Qv9fY4tLqlrHVuBzr8H1XOiY2BP06MMQwVAyEOrqmOOunISEnS5tL6GkGNwtObozOE_z5U3xAtK9eGHzn6it3wxHd-F2QLFsu1O7e7DimjW40zNEsLBgrMGtv8od3oevdOGvY6RglPPkiQVYGcqiMHT8Z6fTlk0a1p3kM5_WwkgILQuEQuzXSUt5oF326AM4vJIJfwirzaRxj4GVWa5iRFvJWIrMJaW2OD4uUSVrI42yEST9nBY21Dsn2o3TYlGpmeRQoBwKL4diHsHrYcxZV-3j0t4bvaiKYPltsdDTCF4MzWizFIgpGzeZYR_E3GlOxRYjeNRJdnidUMRoYHB0viTzoQPVA19uaU6--7rgRhuEWzqCN712LD7r_3_x5PK_eA430M6KT3sH--twMyWl9WdQG7A6_TlzTxGSTcfPvO4zOL5qYzsHMqJGTg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Explaining+sentiment+analysis+results+on+social+media+texts+through+visualization&rft.jtitle=Multimedia+tools+and+applications&rft.au=Jain%2C+Rachna&rft.au=Kumar%2C+Ashish&rft.au=Nayyar%2C+Anand&rft.au=Dewan%2C+Kritika&rft.date=2023-06-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=15&rft.spage=22613&rft.epage=22629&rft_id=info:doi/10.1007%2Fs11042-023-14432-y&rft.externalDocID=10_1007_s11042_023_14432_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon