A novel classification method for EEG-based motor imagery with narrow band spatial filters and deep convolutional neural network

The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical proc...

Full description

Saved in:
Bibliographic Details
Published inCognitive neurodynamics Vol. 16; no. 2; pp. 379 - 389
Main Authors Xu, Senwei, Zhu, Li, Kong, Wanzeng, Peng, Yong, Hu, Hua, Cao, Jianting
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1871-4080
1871-4099
DOI10.1007/s11571-021-09721-x

Cover

Loading…
Abstract The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical processing time required to build an effective model, which has been a challenge in current research. In this paper, we propose a narrow filter bank CSP (NFBCSP) algorithm, which automatically determines the optimal narrow band for two-class motor imagery by band search tree, and a high-performance classification model dedicated to each subject can be obtained in a short time for online processing or further offline analysis. The optimal narrow band is combined with the CSP algorithm to extract the dynamic features in the EEG signals. For the multi-class motor imagery task, it is first transformed into multiple One-Versus-Rest (OVR) tasks and determines the corresponding optimal narrow bands. After extracting the features of each optimal narrow band separately, the Deep Convolutional Neural Network (DCNN) is used for the fusion of band features and classification of multi-class motor imagery. Finally, we verified our method using two different motor imagery datasets, the BCI-VR dataset with two classes of motor imagery and the BCI Competition IV dataset 2a with four classes of motor imagery. The experimental results show that the proposed method achieves an average classification accuracy of 86.43% for the two-class motor imagery task, and 76.87% for the four-class motor imagery task, which outperforms other recent methods.
AbstractList The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical processing time required to build an effective model, which has been a challenge in current research. In this paper, we propose a narrow filter bank CSP (NFBCSP) algorithm, which automatically determines the optimal narrow band for two-class motor imagery by band search tree, and a high-performance classification model dedicated to each subject can be obtained in a short time for online processing or further offline analysis. The optimal narrow band is combined with the CSP algorithm to extract the dynamic features in the EEG signals. For the multi-class motor imagery task, it is first transformed into multiple One-Versus-Rest (OVR) tasks and determines the corresponding optimal narrow bands. After extracting the features of each optimal narrow band separately, the Deep Convolutional Neural Network (DCNN) is used for the fusion of band features and classification of multi-class motor imagery. Finally, we verified our method using two different motor imagery datasets, the BCI-VR dataset with two classes of motor imagery and the BCI Competition IV dataset 2a with four classes of motor imagery. The experimental results show that the proposed method achieves an average classification accuracy of 86.43% for the two-class motor imagery task, and 76.87% for the four-class motor imagery task, which outperforms other recent methods. The online version contains supplementary material available at 10.1007/s11571-021-09721-x.
The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical processing time required to build an effective model, which has been a challenge in current research. In this paper, we propose a narrow filter bank CSP (NFBCSP) algorithm, which automatically determines the optimal narrow band for two-class motor imagery by band search tree, and a high-performance classification model dedicated to each subject can be obtained in a short time for online processing or further offline analysis. The optimal narrow band is combined with the CSP algorithm to extract the dynamic features in the EEG signals. For the multi-class motor imagery task, it is first transformed into multiple One-Versus-Rest (OVR) tasks and determines the corresponding optimal narrow bands. After extracting the features of each optimal narrow band separately, the Deep Convolutional Neural Network (DCNN) is used for the fusion of band features and classification of multi-class motor imagery. Finally, we verified our method using two different motor imagery datasets, the BCI-VR dataset with two classes of motor imagery and the BCI Competition IV dataset 2a with four classes of motor imagery. The experimental results show that the proposed method achieves an average classification accuracy of 86.43% for the two-class motor imagery task, and 76.87% for the four-class motor imagery task, which outperforms other recent methods.
The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical processing time required to build an effective model, which has been a challenge in current research. In this paper, we propose a narrow filter bank CSP (NFBCSP) algorithm, which automatically determines the optimal narrow band for two-class motor imagery by band search tree, and a high-performance classification model dedicated to each subject can be obtained in a short time for online processing or further offline analysis. The optimal narrow band is combined with the CSP algorithm to extract the dynamic features in the EEG signals. For the multi-class motor imagery task, it is first transformed into multiple One-Versus-Rest (OVR) tasks and determines the corresponding optimal narrow bands. After extracting the features of each optimal narrow band separately, the Deep Convolutional Neural Network (DCNN) is used for the fusion of band features and classification of multi-class motor imagery. Finally, we verified our method using two different motor imagery datasets, the BCI-VR dataset with two classes of motor imagery and the BCI Competition IV dataset 2a with four classes of motor imagery. The experimental results show that the proposed method achieves an average classification accuracy of 86.43% for the two-class motor imagery task, and 76.87% for the four-class motor imagery task, which outperforms other recent methods.The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical processing time required to build an effective model, which has been a challenge in current research. In this paper, we propose a narrow filter bank CSP (NFBCSP) algorithm, which automatically determines the optimal narrow band for two-class motor imagery by band search tree, and a high-performance classification model dedicated to each subject can be obtained in a short time for online processing or further offline analysis. The optimal narrow band is combined with the CSP algorithm to extract the dynamic features in the EEG signals. For the multi-class motor imagery task, it is first transformed into multiple One-Versus-Rest (OVR) tasks and determines the corresponding optimal narrow bands. After extracting the features of each optimal narrow band separately, the Deep Convolutional Neural Network (DCNN) is used for the fusion of band features and classification of multi-class motor imagery. Finally, we verified our method using two different motor imagery datasets, the BCI-VR dataset with two classes of motor imagery and the BCI Competition IV dataset 2a with four classes of motor imagery. The experimental results show that the proposed method achieves an average classification accuracy of 86.43% for the two-class motor imagery task, and 76.87% for the four-class motor imagery task, which outperforms other recent methods.The online version contains supplementary material available at 10.1007/s11571-021-09721-x.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11571-021-09721-x.
Author Hu, Hua
Kong, Wanzeng
Peng, Yong
Xu, Senwei
Zhu, Li
Cao, Jianting
Author_xml – sequence: 1
  givenname: Senwei
  surname: Xu
  fullname: Xu, Senwei
  organization: School of Computer Science, Hangzhou Dianzi University
– sequence: 2
  givenname: Li
  surname: Zhu
  fullname: Zhu, Li
  organization: School of Computer Science, Hangzhou Dianzi University
– sequence: 3
  givenname: Wanzeng
  orcidid: 0000-0002-0113-6968
  surname: Kong
  fullname: Kong, Wanzeng
  email: kongwanzeng@hdu.edu.cn
  organization: School of Computer Science, Hangzhou Dianzi University, Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province
– sequence: 4
  givenname: Yong
  surname: Peng
  fullname: Peng, Yong
  organization: School of Computer Science, Hangzhou Dianzi University
– sequence: 5
  givenname: Hua
  surname: Hu
  fullname: Hu, Hua
  organization: Hangzhou Normal University
– sequence: 6
  givenname: Jianting
  surname: Cao
  fullname: Cao, Jianting
  organization: Graduate School of Engineering, Saitama Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35401871$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v3CAQRVWq5qP9Az1USL3k4hZsbOBSKYo2SaVIvbRnhAFnSW3YAt5Nbv3pnd1N0jaHHGBg5r2nN5o5RgchBofQe0o-UUL450xpy2lFajiSw333Ch1RASlGpDx4egtyiI5zviWk7QRlb9Bh0zKyLR6h32c4xLUbsRl1zn7wRhcfA55cWUaLh5jwYnFZ9To7i6dY4O8nfePSPd74ssRBpxQ3uNfB4rwCrh7x4MfiUsbbnHVuhU0M6zjOW2EoBzenXSibmH6-Ra8HPWb37iGeoB8Xi-_nV9X1t8uv52fXlWGclYo1hnV64H3NreklE01vDK97S2jHeOcGzhsqLaWat7YeyCB433Ta1m0tBWGmOUFf9rqruZ-cNS4UcKFWCdpJ9ypqr_6vBL9UN3GthGyYIBIETh8EUvw1u1zU5LNx46iDi3NWdcdk3baCdQD9-Ax6G-cEvQNKUgFDkG0LqA__Onqy8jgcAIg9wKSYc3KDMr7sxgMG_agoUds9UPs9ULAHarcH6g6o9TPqo_qLpGZPygAOMOO_tl9g_QH-38hE
CitedBy_id crossref_primary_10_1109_JETCAS_2023_3265928
crossref_primary_10_1007_s11571_022_09826_x
crossref_primary_10_1109_ACCESS_2025_3540202
crossref_primary_10_1007_s00521_024_10917_5
crossref_primary_10_1007_s11571_023_09940_4
crossref_primary_10_1007_s00521_022_07787_0
crossref_primary_10_1109_TNSRE_2022_3198434
crossref_primary_10_1007_s11571_024_10100_5
crossref_primary_10_1088_1741_2552_acb102
crossref_primary_10_1109_ACCESS_2023_3328618
crossref_primary_10_3390_s22052028
crossref_primary_10_1080_10255842_2024_2414069
crossref_primary_10_1007_s00500_023_08837_y
crossref_primary_10_1109_ACCESS_2024_3517639
crossref_primary_10_1007_s11571_024_10214_w
crossref_primary_10_1088_1748_0221_19_05_P05050
crossref_primary_10_1109_TNSRE_2023_3249831
Cites_doi 10.3389/fnins.2019.01275
10.1016/j.asoc.2018.11.031
10.1109/TFUZZ.2016.2540072
10.11613/BM.2012.031
10.1109/TBME.2009.2026181
10.1109/TNSRE.2011.2168542
10.1002/hbm.23730
10.3389/fnhum.2018.00014
10.1023/A:1018628609742
10.1109/5.939829
10.1109/TNNLS.2018.2789927
10.1109/TBME.2012.2215960
10.3390/s16020213
10.1007/s11571-020-09608-3
10.1186/s12984-016-0214-x
10.1109/TBME.2015.2487738
10.1088/1741-2552/aace8c
10.1016/j.neuroimage.2005.12.003
10.1016/0013-4694(87)90206-9
10.3389/fnins.2012.00039
10.1016/j.clinph.2007.06.059
10.3389/fnins.2012.00055
10.1080/2326263X.2020.1801112
10.1109/EUSIPCO.2015.7362882
10.1109/IJCNN.2015.7280578
10.1109/IJCNN.2016.7727457
10.23919/ChiCC.2019.8866574
10.1109/PRIA.2017.7983059
10.1109/IJCNN.2016.7727277
10.1109/TNNLS.2020.3015505
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0S
M7P
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
7X8
5PM
DOI 10.1007/s11571-021-09721-x
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList PubMed

ProQuest One Psychology
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 1871-4099
EndPage 389
ExternalDocumentID PMC8934809
35401871
10_1007_s11571_021_09721_x
Genre Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China for Intergovernmental International Science and Technology Innovation Cooperation Project
  grantid: 2017YFE0116800
– fundername: Science and Technology Program of Zhejiang Province
  grantid: 2018C04012
– fundername: National Natural Science Foundation of China
  grantid: U20B2074; U1909202
– fundername: ;
  grantid: U20B2074; U1909202
– fundername: ;
  grantid: 2017YFE0116800
– fundername: ;
  grantid: 2018C04012
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67N
67Z
6NX
7X7
875
8FI
8FJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARAPS
ARMRJ
AXYYD
B-.
BA0
BAWUL
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GX1
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HYE
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KPH
LLZTM
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OK1
OVD
P2P
PF0
PSYQQ
PT4
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TEORI
TR2
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
PQGLB
3V.
7XB
8FE
8FG
8FH
8FK
AZQEC
DWQXO
GNUQQ
JQ2
K9.
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
ID FETCH-LOGICAL-c474t-43c46af7b27dcb9483bcc72bd016476ef77319d11a75d2f0f87b36ad2529804c3
IEDL.DBID U2A
ISSN 1871-4080
IngestDate Thu Aug 21 18:38:58 EDT 2025
Fri Jul 11 09:16:27 EDT 2025
Sun Jul 13 05:36:26 EDT 2025
Mon Jul 21 06:08:44 EDT 2025
Thu Apr 24 23:00:28 EDT 2025
Tue Jul 01 02:55:09 EDT 2025
Fri Feb 21 02:47:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Motor imagery
Feature fusion
Deep Convolutional Neural Network (DCNN)
Narrow band
Language English
License The Author(s), under exclusive licence to Springer Nature B.V. 2021.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-43c46af7b27dcb9483bcc72bd016476ef77319d11a75d2f0f87b36ad2529804c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0113-6968
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8934809
PMID 35401871
PQID 2918681955
PQPubID 2043944
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8934809
proquest_miscellaneous_2649255846
proquest_journals_2918681955
pubmed_primary_35401871
crossref_citationtrail_10_1007_s11571_021_09721_x
crossref_primary_10_1007_s11571_021_09721_x
springer_journals_10_1007_s11571_021_09721_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationTitle Cognitive neurodynamics
PublicationTitleAbbrev Cogn Neurodyn
PublicationTitleAlternate Cogn Neurodyn
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Barry, Rushby, Smith, Clarke, Croft, Wallace (CR5) 2007; 118
Wang, Wang, Guo, He, Qi, Xu, Ming (CR32) 2017; 14
CR15
McHugh (CR17) 2012; 22
CR35
CR12
Pfurtscheller, Brunner, Schlögl, Da Silva (CR21) 2006; 31
CR11
Olivas-Padilla, Chacon-Murguia (CR18) 2019; 75
CR33
CR10
Suykens, Vandewalle (CR28) 1999; 9
Lawhern, Solon, Waytowich, Gordon, Hung, Lance (CR13) 2018; 15
Homan, Herman, Purdy (CR9) 1987; 66
Higashi, Tanaka (CR8) 2012; 60
Pfurtscheller, Neuper (CR20) 2001; 89
Aghaei, Mahanta, Plataniotis (CR1) 2015; 63
Tam, Tong, Meng, Gao (CR29) 2011; 19
Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (CR25) 2017; 38
CR2
Ang, Chin, Wang, Guan, Zhang (CR3) 2012; 6
Wu, Li, Li, Fu, Shi, Dong, Niu (CR34) 2019; 13
CR7
Das, Sundaram, Sundararajan (CR6) 2016; 24
CR26
CR24
Balakrishnama, Ganapathiraju (CR4) 1998; 18
CR22
Thomas, Guan, Lau, Vinod, Ang (CR31) 2009; 56
Ortner, Irimia, Scharinger, Guger (CR19) 2012; 181
Sun, Jin, Kong, Zuo, Li, Wang (CR27) 2021; 15
Sakhavi, Guan, Yan (CR23) 2018; 29
Lazarou, Nikolopoulos, Petrantonakis, Kompatsiaris, Tsolaki (CR14) 2018; 12
Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz (CR30) 2012; 6
Lo, Chien, Chen, Tsai, Fang, Lin (CR16) 2016; 16
S Sakhavi (9721_CR23) 2018; 29
AK Das (9721_CR6) 2016; 24
RW Homan (9721_CR9) 1987; 66
KP Thomas (9721_CR31) 2009; 56
I Lazarou (9721_CR14) 2018; 12
RJ Barry (9721_CR5) 2007; 118
9721_CR2
9721_CR7
BE Olivas-Padilla (9721_CR18) 2019; 75
H Sun (9721_CR27) 2021; 15
9721_CR26
VJ Lawhern (9721_CR13) 2018; 15
H Wu (9721_CR34) 2019; 13
9721_CR22
R Ortner (9721_CR19) 2012; 181
G Pfurtscheller (9721_CR20) 2001; 89
9721_CR24
M Tangermann (9721_CR30) 2012; 6
W-K Tam (9721_CR29) 2011; 19
H Higashi (9721_CR8) 2012; 60
G Pfurtscheller (9721_CR21) 2006; 31
ML McHugh (9721_CR17) 2012; 22
S Balakrishnama (9721_CR4) 1998; 18
JA Suykens (9721_CR28) 1999; 9
K Wang (9721_CR32) 2017; 14
KK Ang (9721_CR3) 2012; 6
9721_CR15
9721_CR10
9721_CR11
9721_CR33
9721_CR12
C-C Lo (9721_CR16) 2016; 16
AS Aghaei (9721_CR1) 2015; 63
RT Schirrmeister (9721_CR25) 2017; 38
9721_CR35
References_xml – volume: 13
  start-page: 1275
  year: 2019
  ident: CR34
  article-title: A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.01275
– ident: CR22
– volume: 75
  start-page: 461
  year: 2019
  end-page: 472
  ident: CR18
  article-title: Classification of multiple motor imagery using deep convolutional neural networks and spatial filters
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.11.031
– volume: 24
  start-page: 1565
  issue: 6
  year: 2016
  end-page: 1577
  ident: CR6
  article-title: A self-regulated interval type-2 neuro-fuzzy inference system for handling nonstationarities in EEG signals for BCI
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2016.2540072
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  end-page: 282
  ident: CR17
  article-title: Interrater reliability: the kappa statistic
  publication-title: Biochemia Medica: Biochemia Medica
  doi: 10.11613/BM.2012.031
– volume: 56
  start-page: 2730
  issue: 11
  year: 2009
  end-page: 2733
  ident: CR31
  article-title: A new discriminative common spatial pattern method for motor imagery brain-computer interfaces
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2026181
– volume: 19
  start-page: 617
  issue: 6
  year: 2011
  end-page: 627
  ident: CR29
  article-title: A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects: a multi-session study
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2011.2168542
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  end-page: 5420
  ident: CR25
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23730
– ident: CR2
– ident: CR12
– volume: 181
  start-page: 319
  year: 2012
  end-page: 323
  ident: CR19
  article-title: A motor imagery based brain-computer interface for stroke rehabilitation
  publication-title: Ann Rev Cyber Telemed
– ident: CR10
– volume: 12
  start-page: 14
  year: 2018
  ident: CR14
  article-title: Eeg-based brain-computer interfaces for communication and rehabilitation of people with motor impairment: A novel approach of the 21st century
  publication-title: Front Human Neurosc
  doi: 10.3389/fnhum.2018.00014
– ident: CR33
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  end-page: 300
  ident: CR28
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– ident: CR35
– volume: 89
  start-page: 1123
  issue: 7
  year: 2001
  end-page: 1134
  ident: CR20
  article-title: Motor imagery and direct brain-computer communication
  publication-title: Proc IEEE
  doi: 10.1109/5.939829
– volume: 29
  start-page: 5619
  issue: 11
  year: 2018
  end-page: 5629
  ident: CR23
  article-title: Learning temporal information for brain-computer interface using convolutional neural networks
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2789927
– volume: 60
  start-page: 1100
  issue: 4
  year: 2012
  end-page: 1110
  ident: CR8
  article-title: Simultaneous design of fir filter banks and spatial patterns for EEG signal classification
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2215960
– volume: 16
  start-page: 213
  issue: 2
  year: 2016
  ident: CR16
  article-title: A wearable channel selection-based brain-computer interface for motor imagery detection
  publication-title: Sensors
  doi: 10.3390/s16020213
– volume: 15
  start-page: 141
  issue: 1
  year: 2021
  end-page: 156
  ident: CR27
  article-title: Novel channel selection method based on position priori weighted permutation entropy and binary gravity search algorithm
  publication-title: Cognitive Neurodyn
  doi: 10.1007/s11571-020-09608-3
– volume: 14
  start-page: 1
  issue: 1
  year: 2017
  end-page: 10
  ident: CR32
  article-title: A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-016-0214-x
– volume: 63
  start-page: 15
  issue: 1
  year: 2015
  end-page: 29
  ident: CR1
  article-title: Separable common spatio-spectral patterns for motor imagery BCI systems
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2487738
– volume: 15
  start-page: 056013
  issue: 5
  year: 2018
  ident: CR13
  article-title: Eegnet: a compact convolutional neural network for EEG-based brain-computer interfaces
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aace8c
– volume: 31
  start-page: 153
  issue: 1
  year: 2006
  end-page: 159
  ident: CR21
  article-title: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.12.003
– volume: 66
  start-page: 376
  issue: 4
  year: 1987
  end-page: 382
  ident: CR9
  article-title: Cerebral location of international 10–20 system electrode placement
  publication-title: Electroencephalogr Clinical Neurophysiol
  doi: 10.1016/0013-4694(87)90206-9
– volume: 6
  start-page: 39
  year: 2012
  ident: CR3
  article-title: Filter bank common spatial pattern algorithm on BCI competition iv datasets 2a and 2b
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2012.00039
– ident: CR15
– volume: 18
  start-page: 1
  year: 1998
  end-page: 8
  ident: CR4
  article-title: Linear discriminant analysis-a brief tutorial
  publication-title: Inst Signal Inf Process
– ident: CR11
– ident: CR7
– ident: CR26
– ident: CR24
– volume: 118
  start-page: 2234
  issue: 10
  year: 2007
  end-page: 2247
  ident: CR5
  article-title: Brain dynamics in the active vs. passive auditory oddball task: exploration of narrow-band EEG phase effects
  publication-title: Clinical Neurophysiol
  doi: 10.1016/j.clinph.2007.06.059
– volume: 6
  start-page: 55
  year: 2012
  ident: CR30
  article-title: Review of the BCI competition IV
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2012.00055
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  ident: 9721_CR17
  publication-title: Biochemia Medica: Biochemia Medica
  doi: 10.11613/BM.2012.031
– volume: 6
  start-page: 39
  year: 2012
  ident: 9721_CR3
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2012.00039
– ident: 9721_CR15
  doi: 10.1080/2326263X.2020.1801112
– volume: 31
  start-page: 153
  issue: 1
  year: 2006
  ident: 9721_CR21
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.12.003
– ident: 9721_CR11
– volume: 38
  start-page: 5391
  issue: 11
  year: 2017
  ident: 9721_CR25
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23730
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 9721_CR28
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– volume: 89
  start-page: 1123
  issue: 7
  year: 2001
  ident: 9721_CR20
  publication-title: Proc IEEE
  doi: 10.1109/5.939829
– volume: 18
  start-page: 1
  year: 1998
  ident: 9721_CR4
  publication-title: Inst Signal Inf Process
– volume: 60
  start-page: 1100
  issue: 4
  year: 2012
  ident: 9721_CR8
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2012.2215960
– volume: 63
  start-page: 15
  issue: 1
  year: 2015
  ident: 9721_CR1
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2015.2487738
– volume: 6
  start-page: 55
  year: 2012
  ident: 9721_CR30
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2012.00055
– volume: 15
  start-page: 141
  issue: 1
  year: 2021
  ident: 9721_CR27
  publication-title: Cognitive Neurodyn
  doi: 10.1007/s11571-020-09608-3
– ident: 9721_CR24
  doi: 10.1109/EUSIPCO.2015.7362882
– ident: 9721_CR7
  doi: 10.1109/IJCNN.2015.7280578
– volume: 181
  start-page: 319
  year: 2012
  ident: 9721_CR19
  publication-title: Ann Rev Cyber Telemed
– ident: 9721_CR2
– volume: 24
  start-page: 1565
  issue: 6
  year: 2016
  ident: 9721_CR6
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2016.2540072
– volume: 29
  start-page: 5619
  issue: 11
  year: 2018
  ident: 9721_CR23
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2789927
– ident: 9721_CR12
  doi: 10.1109/IJCNN.2016.7727457
– volume: 75
  start-page: 461
  year: 2019
  ident: 9721_CR18
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2018.11.031
– volume: 15
  start-page: 056013
  issue: 5
  year: 2018
  ident: 9721_CR13
  publication-title: J Neural Eng
  doi: 10.1088/1741-2552/aace8c
– volume: 56
  start-page: 2730
  issue: 11
  year: 2009
  ident: 9721_CR31
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2009.2026181
– ident: 9721_CR33
  doi: 10.23919/ChiCC.2019.8866574
– ident: 9721_CR35
– ident: 9721_CR26
  doi: 10.1109/PRIA.2017.7983059
– volume: 118
  start-page: 2234
  issue: 10
  year: 2007
  ident: 9721_CR5
  publication-title: Clinical Neurophysiol
  doi: 10.1016/j.clinph.2007.06.059
– volume: 19
  start-page: 617
  issue: 6
  year: 2011
  ident: 9721_CR29
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2011.2168542
– volume: 16
  start-page: 213
  issue: 2
  year: 2016
  ident: 9721_CR16
  publication-title: Sensors
  doi: 10.3390/s16020213
– volume: 14
  start-page: 1
  issue: 1
  year: 2017
  ident: 9721_CR32
  publication-title: J Neuroeng Rehabil
  doi: 10.1186/s12984-016-0214-x
– volume: 66
  start-page: 376
  issue: 4
  year: 1987
  ident: 9721_CR9
  publication-title: Electroencephalogr Clinical Neurophysiol
  doi: 10.1016/0013-4694(87)90206-9
– ident: 9721_CR22
  doi: 10.1109/IJCNN.2016.7727277
– volume: 12
  start-page: 14
  year: 2018
  ident: 9721_CR14
  publication-title: Front Human Neurosc
  doi: 10.3389/fnhum.2018.00014
– ident: 9721_CR10
  doi: 10.1109/TNNLS.2020.3015505
– volume: 13
  start-page: 1275
  year: 2019
  ident: 9721_CR34
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2019.01275
SSID ssj0056814
Score 2.3451347
Snippet The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm....
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 379
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Artificial neural networks
Biochemistry
Biomedical and Life Sciences
Biomedicine
Classification
Cognitive Psychology
Competition
Computer Science
Data collection
Datasets
EEG
Electrodes
Electroencephalography
Experiments
Filter banks
Imagery
Mental task performance
Methods
Neural networks
Neurosciences
Research Article
Spatial filtering
Virtual reality
Wavelet transforms
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggaHkESuVKiAtEJI4d2ye0QluqSnCi0t6i-CVWar1bdovaGz-dGceb1VLRU5TYUZzMOP7m4W8Ieae0Eq4RvrTOtGCg2FBqpkTZi9AYVtmap-1j3763p-f8bCZm2eG2ymmVm39i-lG7hUUf-Semkdi91kJ8Xl6VWDUKo6u5hMZD8gipy9D4krPR4EJurRRVBqMAhqGqvGlm2DpXC7iKCQqJwKa82V2Y7qDNu0mT_0RO04J08pQ8yUiSTgbRPyMPfNwnB5MIVvTlLX1PU25ncpofkD8TGhe__QW1CJYxOygJhA71oykAVzqdfi1xSXMUhAfn80tkt7il6KilMVE1UtNHR1eYgw0PDnMMtK8oXnPeLykmsGdFhmYkykyHlGb-nJyfTH98OS1z7YXScsnXJW8sb_sgDZPOGs1VY6yVzLhEQNb6ICVMXlfXvRSOhSooaZq2d0wwrSpumxdkLy6if0WoMNwH1WKldgBflusA63LfMqkVYI3AC1JvPnxnMzE51se46LaUyiisDoTVJWF1NwX5MN6zHGg57u19uJFnl6foqtsqVEGOx2aYXBgx6aNfXEOfFrkbEaMV5OUg_vFx6DBDzSqI3FGMsQMSd--2xPnPROANGJGrShfk40aFtsP6_1u8vv8t3pDHDLdmpKyiQ7K3_nXt3wJgWpujNCv-Agx8E7s
  priority: 102
  providerName: ProQuest
Title A novel classification method for EEG-based motor imagery with narrow band spatial filters and deep convolutional neural network
URI https://link.springer.com/article/10.1007/s11571-021-09721-x
https://www.ncbi.nlm.nih.gov/pubmed/35401871
https://www.proquest.com/docview/2918681955
https://www.proquest.com/docview/2649255846
https://pubmed.ncbi.nlm.nih.gov/PMC8934809
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_B9sILHxsfGaMyEuIFIiWOHTuPAaWdQEwIUak8RbFja5W2dKId2t7407lzk1ZlgMRDGzV2m1R3F__Od_c7gFe60LLNpItta3J0UKyPC65l3EifGZ7YVITysU-n-clUfJjJWV8Uthyy3YeQZHhSb4vdUqnQ9eX4IsqZGJHjvkTfnfR6ysvh-UuMWiGWjK4AXlwnfanMn39jdzm6hTFvp0r-Fi8Ny9D4Idzv8SMr1wJ_BHdcdwCHZYe-88UNe81CRmfYKj-AB0PLBtZb8CH8LFm3-OHOmSXUTGlCQTJs3UiaIYJlVTWJaW1rGUoRP88viObihtGOLesCZyMzTdeyJSVj4734OUXcl4zOtc5dMspk7zUah4kxMxxCvvljmI6rr-9P4r4JQ2yFEqtYZFbkjVeGq9aaQujMWKu4aQMTWe68UmjFbZo2SrbcJ14rk-VNyyUvdCJs9gT2ukXnngGTRjivc2rZjijMisLjAt3kXBUaQYcXEaSDLGrbM5RTo4zzesutTPKrUX51kF99HcGbzXcu1_wc_5x9PIi47m11WfOCWgakhZQRvNwMo5VR6KTp3OIK5-RE4khgLYKna43YXI52zkjZIlA7urKZQAzeuyPd_CwweSNYFDopIng7aNX2tv7-L47-b_pzuMepZiOkGx3D3ur7lXuBSGplRnBXzRS-6_FkBPvl5NvHCo_vqtPPX_DsZJaOgmn9AjchHUI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a4wAXBIyPwAAjAReIaBw7cQ4IVdCuYx-nTdotxF-i0pYW2sF64y_ib-Q9J2lVJnbbqUrsNHXfs_2z_Xu_B_BKFUraVLrYWJ3hAsX4uOBKxpX0qeY9k4gQPnZwmI2OxZcTebIBf7pYGKJVdmNiGKjtxNAe-XtekLB7Ukj5cfo9pqxRdLrapdBo3GLPLX7hkm32Yfcz2vc158PB0adR3GYViI3IxTwWqRFZ5XPNc2t0IVSqjcm5tkFaK3M-z9EtbZJUubTc97zKdZpVlkteqJ4wKX7vDbgp0rQgCqEa7nQjP2l5hVNsXIRgs1WvDdJpQvUSiXeJEBEEc-KL9YnwErq9TNL856Q2TIDDu3CnRa6s37jaPdhw9X3Y6te4aj9bsDcscEnDJv0W_O6zevLTnTJD4JzYSMEBWJOvmiFQZoPBTkxTqGXoLHg9PiM1jQWjjWFWB2lIpqvashlxvvHFfkwH-zNG96xzU0aE-bbjYDEJc4aPQGt_AMfXYpWHsFlPavcYmNTCeZVRZngEe0YUHnFAlfG8UIhtvIgg6f740rRC6JSP47RcSTiTsUo0VhmMVV5E8Hb5zLSRAbmy9nZnz7IdEmblyoEjeLksxs5MJzRV7SbnWCcjrUjChBE8asy_fB1t0JFnRZCvOcayAgmFr5fU429BMBwxqVC9IoJ3nQutftb_W_Hk6la8gFujo4P9cn_3cO8p3OYUFhIYTduwOf9x7p4hWJvr56GHMPh63V3yL0V_UA8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkRAXHi2PlAJGQlwgauLYsX1cwS7lVXFgpd6i-CVWar0rdlvRGz-dGSfZZSkgcYiixM6uo5mJP3tmviHkudJKuEr43DpTwwLFhlwzJfJWhMqwwpY8pY99Oq6Ppvz9iTj5JYs_RbsPLskupwFZmuLqcOHC4SbxrRQSlsEMDqSfyQFFXofPcYlBXVM2Gr7FyK6V_MqwLICBqKJPm_nzb2xPTVfw5tWwyd98p2lKmtwht3osSUed8O-Saz7ukr1RhHX02SV9QVN0Z9o23yW3h_INtLfmPfJjROP8wp9SiwgaQ4aSlGhXVJoCmqXj8dsc5zlHQaJwPTtDyotLiru3NCb-Rmra6OgSA7NhLGGG3vclxXvO-wXFqPZeu6EZ2TPTKcWe3yPTyfjL66O8L8iQWy75KueV5XUbpGHSWaO5qoy1khmXWMlqH6QEi3Zl2UrhWCiCkqaqW8cE06rgtrpPduI8-oeECsN9UDWWbwdEZrkOMFm3NZNaAQAJPCPlIIvG9mzlWDTjtNnwLKP8GpBfk-TXfM_Iy_Uzi46r45-9DwYRN73dLhumsXxAqYXIyLN1M1gculHa6Ofn0KdGQkcEbhl50GnE-u9wFw2VLSNyS1fWHZDNe7slzr4mVm8AjlwVOiOvBq3aDOvvb7H_f92fkhuf30yaj--OPzwiNxmmcqQopAOys_p27h8DwFqZJ8mGfgLX4h6F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+classification+method+for+EEG-based+motor+imagery+with+narrow+band+spatial+filters+and+deep+convolutional+neural+network&rft.jtitle=Cognitive+neurodynamics&rft.au=Xu%2C+Senwei&rft.au=Zhu%2C+Li&rft.au=Kong%2C+Wanzeng&rft.au=Peng%2C+Yong&rft.date=2022-04-01&rft.issn=1871-4080&rft.eissn=1871-4099&rft.volume=16&rft.issue=2&rft.spage=379&rft.epage=389&rft_id=info:doi/10.1007%2Fs11571-021-09721-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11571_021_09721_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-4080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-4080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-4080&client=summon