A novel classification method for EEG-based motor imagery with narrow band spatial filters and deep convolutional neural network
The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical proc...
Saved in:
Published in | Cognitive neurodynamics Vol. 16; no. 2; pp. 379 - 389 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1871-4080 1871-4099 |
DOI | 10.1007/s11571-021-09721-x |
Cover
Loading…
Abstract | The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical processing time required to build an effective model, which has been a challenge in current research. In this paper, we propose a narrow filter bank CSP (NFBCSP) algorithm, which automatically determines the optimal narrow band for two-class motor imagery by band search tree, and a high-performance classification model dedicated to each subject can be obtained in a short time for online processing or further offline analysis. The optimal narrow band is combined with the CSP algorithm to extract the dynamic features in the EEG signals. For the multi-class motor imagery task, it is first transformed into multiple One-Versus-Rest (OVR) tasks and determines the corresponding optimal narrow bands. After extracting the features of each optimal narrow band separately, the Deep Convolutional Neural Network (DCNN) is used for the fusion of band features and classification of multi-class motor imagery. Finally, we verified our method using two different motor imagery datasets, the BCI-VR dataset with two classes of motor imagery and the BCI Competition IV dataset 2a with four classes of motor imagery. The experimental results show that the proposed method achieves an average classification accuracy of 86.43% for the two-class motor imagery task, and 76.87% for the four-class motor imagery task, which outperforms other recent methods. |
---|---|
AbstractList | The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical processing time required to build an effective model, which has been a challenge in current research. In this paper, we propose a narrow filter bank CSP (NFBCSP) algorithm, which automatically determines the optimal narrow band for two-class motor imagery by band search tree, and a high-performance classification model dedicated to each subject can be obtained in a short time for online processing or further offline analysis. The optimal narrow band is combined with the CSP algorithm to extract the dynamic features in the EEG signals. For the multi-class motor imagery task, it is first transformed into multiple One-Versus-Rest (OVR) tasks and determines the corresponding optimal narrow bands. After extracting the features of each optimal narrow band separately, the Deep Convolutional Neural Network (DCNN) is used for the fusion of band features and classification of multi-class motor imagery. Finally, we verified our method using two different motor imagery datasets, the BCI-VR dataset with two classes of motor imagery and the BCI Competition IV dataset 2a with four classes of motor imagery. The experimental results show that the proposed method achieves an average classification accuracy of 86.43% for the two-class motor imagery task, and 76.87% for the four-class motor imagery task, which outperforms other recent methods.
The online version contains supplementary material available at 10.1007/s11571-021-09721-x. The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical processing time required to build an effective model, which has been a challenge in current research. In this paper, we propose a narrow filter bank CSP (NFBCSP) algorithm, which automatically determines the optimal narrow band for two-class motor imagery by band search tree, and a high-performance classification model dedicated to each subject can be obtained in a short time for online processing or further offline analysis. The optimal narrow band is combined with the CSP algorithm to extract the dynamic features in the EEG signals. For the multi-class motor imagery task, it is first transformed into multiple One-Versus-Rest (OVR) tasks and determines the corresponding optimal narrow bands. After extracting the features of each optimal narrow band separately, the Deep Convolutional Neural Network (DCNN) is used for the fusion of band features and classification of multi-class motor imagery. Finally, we verified our method using two different motor imagery datasets, the BCI-VR dataset with two classes of motor imagery and the BCI Competition IV dataset 2a with four classes of motor imagery. The experimental results show that the proposed method achieves an average classification accuracy of 86.43% for the two-class motor imagery task, and 76.87% for the four-class motor imagery task, which outperforms other recent methods. The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical processing time required to build an effective model, which has been a challenge in current research. In this paper, we propose a narrow filter bank CSP (NFBCSP) algorithm, which automatically determines the optimal narrow band for two-class motor imagery by band search tree, and a high-performance classification model dedicated to each subject can be obtained in a short time for online processing or further offline analysis. The optimal narrow band is combined with the CSP algorithm to extract the dynamic features in the EEG signals. For the multi-class motor imagery task, it is first transformed into multiple One-Versus-Rest (OVR) tasks and determines the corresponding optimal narrow bands. After extracting the features of each optimal narrow band separately, the Deep Convolutional Neural Network (DCNN) is used for the fusion of band features and classification of multi-class motor imagery. Finally, we verified our method using two different motor imagery datasets, the BCI-VR dataset with two classes of motor imagery and the BCI Competition IV dataset 2a with four classes of motor imagery. The experimental results show that the proposed method achieves an average classification accuracy of 86.43% for the two-class motor imagery task, and 76.87% for the four-class motor imagery task, which outperforms other recent methods.The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm. However, due to the inter-subject variability, the CSP algorithm heavily relies on the selection of filter bands and extensive analytical processing time required to build an effective model, which has been a challenge in current research. In this paper, we propose a narrow filter bank CSP (NFBCSP) algorithm, which automatically determines the optimal narrow band for two-class motor imagery by band search tree, and a high-performance classification model dedicated to each subject can be obtained in a short time for online processing or further offline analysis. The optimal narrow band is combined with the CSP algorithm to extract the dynamic features in the EEG signals. For the multi-class motor imagery task, it is first transformed into multiple One-Versus-Rest (OVR) tasks and determines the corresponding optimal narrow bands. After extracting the features of each optimal narrow band separately, the Deep Convolutional Neural Network (DCNN) is used for the fusion of band features and classification of multi-class motor imagery. Finally, we verified our method using two different motor imagery datasets, the BCI-VR dataset with two classes of motor imagery and the BCI Competition IV dataset 2a with four classes of motor imagery. The experimental results show that the proposed method achieves an average classification accuracy of 86.43% for the two-class motor imagery task, and 76.87% for the four-class motor imagery task, which outperforms other recent methods.The online version contains supplementary material available at 10.1007/s11571-021-09721-x.Supplementary InformationThe online version contains supplementary material available at 10.1007/s11571-021-09721-x. |
Author | Hu, Hua Kong, Wanzeng Peng, Yong Xu, Senwei Zhu, Li Cao, Jianting |
Author_xml | – sequence: 1 givenname: Senwei surname: Xu fullname: Xu, Senwei organization: School of Computer Science, Hangzhou Dianzi University – sequence: 2 givenname: Li surname: Zhu fullname: Zhu, Li organization: School of Computer Science, Hangzhou Dianzi University – sequence: 3 givenname: Wanzeng orcidid: 0000-0002-0113-6968 surname: Kong fullname: Kong, Wanzeng email: kongwanzeng@hdu.edu.cn organization: School of Computer Science, Hangzhou Dianzi University, Key Laboratory of Brain Machine Collaborative Intelligence of Zhejiang Province – sequence: 4 givenname: Yong surname: Peng fullname: Peng, Yong organization: School of Computer Science, Hangzhou Dianzi University – sequence: 5 givenname: Hua surname: Hu fullname: Hu, Hua organization: Hangzhou Normal University – sequence: 6 givenname: Jianting surname: Cao fullname: Cao, Jianting organization: Graduate School of Engineering, Saitama Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35401871$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v3CAQRVWq5qP9Az1USL3k4hZsbOBSKYo2SaVIvbRnhAFnSW3YAt5Nbv3pnd1N0jaHHGBg5r2nN5o5RgchBofQe0o-UUL450xpy2lFajiSw333Ch1RASlGpDx4egtyiI5zviWk7QRlb9Bh0zKyLR6h32c4xLUbsRl1zn7wRhcfA55cWUaLh5jwYnFZ9To7i6dY4O8nfePSPd74ssRBpxQ3uNfB4rwCrh7x4MfiUsbbnHVuhU0M6zjOW2EoBzenXSibmH6-Ra8HPWb37iGeoB8Xi-_nV9X1t8uv52fXlWGclYo1hnV64H3NreklE01vDK97S2jHeOcGzhsqLaWat7YeyCB433Ta1m0tBWGmOUFf9rqruZ-cNS4UcKFWCdpJ9ypqr_6vBL9UN3GthGyYIBIETh8EUvw1u1zU5LNx46iDi3NWdcdk3baCdQD9-Ax6G-cEvQNKUgFDkG0LqA__Onqy8jgcAIg9wKSYc3KDMr7sxgMG_agoUds9UPs9ULAHarcH6g6o9TPqo_qLpGZPygAOMOO_tl9g_QH-38hE |
CitedBy_id | crossref_primary_10_1109_JETCAS_2023_3265928 crossref_primary_10_1007_s11571_022_09826_x crossref_primary_10_1109_ACCESS_2025_3540202 crossref_primary_10_1007_s00521_024_10917_5 crossref_primary_10_1007_s11571_023_09940_4 crossref_primary_10_1007_s00521_022_07787_0 crossref_primary_10_1109_TNSRE_2022_3198434 crossref_primary_10_1007_s11571_024_10100_5 crossref_primary_10_1088_1741_2552_acb102 crossref_primary_10_1109_ACCESS_2023_3328618 crossref_primary_10_3390_s22052028 crossref_primary_10_1080_10255842_2024_2414069 crossref_primary_10_1007_s00500_023_08837_y crossref_primary_10_1109_ACCESS_2024_3517639 crossref_primary_10_1007_s11571_024_10214_w crossref_primary_10_1088_1748_0221_19_05_P05050 crossref_primary_10_1109_TNSRE_2023_3249831 |
Cites_doi | 10.3389/fnins.2019.01275 10.1016/j.asoc.2018.11.031 10.1109/TFUZZ.2016.2540072 10.11613/BM.2012.031 10.1109/TBME.2009.2026181 10.1109/TNSRE.2011.2168542 10.1002/hbm.23730 10.3389/fnhum.2018.00014 10.1023/A:1018628609742 10.1109/5.939829 10.1109/TNNLS.2018.2789927 10.1109/TBME.2012.2215960 10.3390/s16020213 10.1007/s11571-020-09608-3 10.1186/s12984-016-0214-x 10.1109/TBME.2015.2487738 10.1088/1741-2552/aace8c 10.1016/j.neuroimage.2005.12.003 10.1016/0013-4694(87)90206-9 10.3389/fnins.2012.00039 10.1016/j.clinph.2007.06.059 10.3389/fnins.2012.00055 10.1080/2326263X.2020.1801112 10.1109/EUSIPCO.2015.7362882 10.1109/IJCNN.2015.7280578 10.1109/IJCNN.2016.7727457 10.23919/ChiCC.2019.8866574 10.1109/PRIA.2017.7983059 10.1109/IJCNN.2016.7727277 10.1109/TNNLS.2020.3015505 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0S M7P P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ 7X8 5PM |
DOI | 10.1007/s11571-021-09721-x |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | PubMed ProQuest One Psychology MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Computer Science |
EISSN | 1871-4099 |
EndPage | 389 |
ExternalDocumentID | PMC8934809 35401871 10_1007_s11571_021_09721_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Key R&D Program of China for Intergovernmental International Science and Technology Innovation Cooperation Project grantid: 2017YFE0116800 – fundername: Science and Technology Program of Zhejiang Province grantid: 2018C04012 – fundername: National Natural Science Foundation of China grantid: U20B2074; U1909202 – fundername: ; grantid: U20B2074; U1909202 – fundername: ; grantid: 2017YFE0116800 – fundername: ; grantid: 2018C04012 |
GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67N 67Z 6NX 7X7 875 8FI 8FJ 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARAPS ARMRJ AXYYD B-. BA0 BAWUL BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI CAG CCPQU COF CS3 CSCUP DDRTE DIK DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GX1 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HYE HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KPH LLZTM M4Y M7P MA- NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OK1 OVD P2P PF0 PSYQQ PT4 QOR QOS R89 R9I ROL RPM RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TR2 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ NPM PQGLB 3V. 7XB 8FE 8FG 8FH 8FK AZQEC DWQXO GNUQQ JQ2 K9. LK8 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 5PM |
ID | FETCH-LOGICAL-c474t-43c46af7b27dcb9483bcc72bd016476ef77319d11a75d2f0f87b36ad2529804c3 |
IEDL.DBID | U2A |
ISSN | 1871-4080 |
IngestDate | Thu Aug 21 18:38:58 EDT 2025 Fri Jul 11 09:16:27 EDT 2025 Sun Jul 13 05:36:26 EDT 2025 Mon Jul 21 06:08:44 EDT 2025 Thu Apr 24 23:00:28 EDT 2025 Tue Jul 01 02:55:09 EDT 2025 Fri Feb 21 02:47:51 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Motor imagery Feature fusion Deep Convolutional Neural Network (DCNN) Narrow band |
Language | English |
License | The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-43c46af7b27dcb9483bcc72bd016476ef77319d11a75d2f0f87b36ad2529804c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0113-6968 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8934809 |
PMID | 35401871 |
PQID | 2918681955 |
PQPubID | 2043944 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8934809 proquest_miscellaneous_2649255846 proquest_journals_2918681955 pubmed_primary_35401871 crossref_citationtrail_10_1007_s11571_021_09721_x crossref_primary_10_1007_s11571_021_09721_x springer_journals_10_1007_s11571_021_09721_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-04-01 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Netherlands |
PublicationTitle | Cognitive neurodynamics |
PublicationTitleAbbrev | Cogn Neurodyn |
PublicationTitleAlternate | Cogn Neurodyn |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Barry, Rushby, Smith, Clarke, Croft, Wallace (CR5) 2007; 118 Wang, Wang, Guo, He, Qi, Xu, Ming (CR32) 2017; 14 CR15 McHugh (CR17) 2012; 22 CR35 CR12 Pfurtscheller, Brunner, Schlögl, Da Silva (CR21) 2006; 31 CR11 Olivas-Padilla, Chacon-Murguia (CR18) 2019; 75 CR33 CR10 Suykens, Vandewalle (CR28) 1999; 9 Lawhern, Solon, Waytowich, Gordon, Hung, Lance (CR13) 2018; 15 Homan, Herman, Purdy (CR9) 1987; 66 Higashi, Tanaka (CR8) 2012; 60 Pfurtscheller, Neuper (CR20) 2001; 89 Aghaei, Mahanta, Plataniotis (CR1) 2015; 63 Tam, Tong, Meng, Gao (CR29) 2011; 19 Schirrmeister, Springenberg, Fiederer, Glasstetter, Eggensperger, Tangermann, Hutter, Burgard, Ball (CR25) 2017; 38 CR2 Ang, Chin, Wang, Guan, Zhang (CR3) 2012; 6 Wu, Li, Li, Fu, Shi, Dong, Niu (CR34) 2019; 13 CR7 Das, Sundaram, Sundararajan (CR6) 2016; 24 CR26 CR24 Balakrishnama, Ganapathiraju (CR4) 1998; 18 CR22 Thomas, Guan, Lau, Vinod, Ang (CR31) 2009; 56 Ortner, Irimia, Scharinger, Guger (CR19) 2012; 181 Sun, Jin, Kong, Zuo, Li, Wang (CR27) 2021; 15 Sakhavi, Guan, Yan (CR23) 2018; 29 Lazarou, Nikolopoulos, Petrantonakis, Kompatsiaris, Tsolaki (CR14) 2018; 12 Tangermann, Müller, Aertsen, Birbaumer, Braun, Brunner, Leeb, Mehring, Miller, Mueller-Putz (CR30) 2012; 6 Lo, Chien, Chen, Tsai, Fang, Lin (CR16) 2016; 16 S Sakhavi (9721_CR23) 2018; 29 AK Das (9721_CR6) 2016; 24 RW Homan (9721_CR9) 1987; 66 KP Thomas (9721_CR31) 2009; 56 I Lazarou (9721_CR14) 2018; 12 RJ Barry (9721_CR5) 2007; 118 9721_CR2 9721_CR7 BE Olivas-Padilla (9721_CR18) 2019; 75 H Sun (9721_CR27) 2021; 15 9721_CR26 VJ Lawhern (9721_CR13) 2018; 15 H Wu (9721_CR34) 2019; 13 9721_CR22 R Ortner (9721_CR19) 2012; 181 G Pfurtscheller (9721_CR20) 2001; 89 9721_CR24 M Tangermann (9721_CR30) 2012; 6 W-K Tam (9721_CR29) 2011; 19 H Higashi (9721_CR8) 2012; 60 G Pfurtscheller (9721_CR21) 2006; 31 ML McHugh (9721_CR17) 2012; 22 S Balakrishnama (9721_CR4) 1998; 18 JA Suykens (9721_CR28) 1999; 9 K Wang (9721_CR32) 2017; 14 KK Ang (9721_CR3) 2012; 6 9721_CR15 9721_CR10 9721_CR11 9721_CR33 9721_CR12 C-C Lo (9721_CR16) 2016; 16 AS Aghaei (9721_CR1) 2015; 63 RT Schirrmeister (9721_CR25) 2017; 38 9721_CR35 |
References_xml | – volume: 13 start-page: 1275 year: 2019 ident: CR34 article-title: A parallel multiscale filter bank convolutional neural networks for motor imagery EEG classification publication-title: Front Neurosci doi: 10.3389/fnins.2019.01275 – ident: CR22 – volume: 75 start-page: 461 year: 2019 end-page: 472 ident: CR18 article-title: Classification of multiple motor imagery using deep convolutional neural networks and spatial filters publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.11.031 – volume: 24 start-page: 1565 issue: 6 year: 2016 end-page: 1577 ident: CR6 article-title: A self-regulated interval type-2 neuro-fuzzy inference system for handling nonstationarities in EEG signals for BCI publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2016.2540072 – volume: 22 start-page: 276 issue: 3 year: 2012 end-page: 282 ident: CR17 article-title: Interrater reliability: the kappa statistic publication-title: Biochemia Medica: Biochemia Medica doi: 10.11613/BM.2012.031 – volume: 56 start-page: 2730 issue: 11 year: 2009 end-page: 2733 ident: CR31 article-title: A new discriminative common spatial pattern method for motor imagery brain-computer interfaces publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2026181 – volume: 19 start-page: 617 issue: 6 year: 2011 end-page: 627 ident: CR29 article-title: A minimal set of electrodes for motor imagery BCI to control an assistive device in chronic stroke subjects: a multi-session study publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2011.2168542 – volume: 38 start-page: 5391 issue: 11 year: 2017 end-page: 5420 ident: CR25 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Human Brain Mapping doi: 10.1002/hbm.23730 – ident: CR2 – ident: CR12 – volume: 181 start-page: 319 year: 2012 end-page: 323 ident: CR19 article-title: A motor imagery based brain-computer interface for stroke rehabilitation publication-title: Ann Rev Cyber Telemed – ident: CR10 – volume: 12 start-page: 14 year: 2018 ident: CR14 article-title: Eeg-based brain-computer interfaces for communication and rehabilitation of people with motor impairment: A novel approach of the 21st century publication-title: Front Human Neurosc doi: 10.3389/fnhum.2018.00014 – ident: CR33 – volume: 9 start-page: 293 issue: 3 year: 1999 end-page: 300 ident: CR28 article-title: Least squares support vector machine classifiers publication-title: Neural Process Lett doi: 10.1023/A:1018628609742 – ident: CR35 – volume: 89 start-page: 1123 issue: 7 year: 2001 end-page: 1134 ident: CR20 article-title: Motor imagery and direct brain-computer communication publication-title: Proc IEEE doi: 10.1109/5.939829 – volume: 29 start-page: 5619 issue: 11 year: 2018 end-page: 5629 ident: CR23 article-title: Learning temporal information for brain-computer interface using convolutional neural networks publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2789927 – volume: 60 start-page: 1100 issue: 4 year: 2012 end-page: 1110 ident: CR8 article-title: Simultaneous design of fir filter banks and spatial patterns for EEG signal classification publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2215960 – volume: 16 start-page: 213 issue: 2 year: 2016 ident: CR16 article-title: A wearable channel selection-based brain-computer interface for motor imagery detection publication-title: Sensors doi: 10.3390/s16020213 – volume: 15 start-page: 141 issue: 1 year: 2021 end-page: 156 ident: CR27 article-title: Novel channel selection method based on position priori weighted permutation entropy and binary gravity search algorithm publication-title: Cognitive Neurodyn doi: 10.1007/s11571-020-09608-3 – volume: 14 start-page: 1 issue: 1 year: 2017 end-page: 10 ident: CR32 article-title: A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-016-0214-x – volume: 63 start-page: 15 issue: 1 year: 2015 end-page: 29 ident: CR1 article-title: Separable common spatio-spectral patterns for motor imagery BCI systems publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2487738 – volume: 15 start-page: 056013 issue: 5 year: 2018 ident: CR13 article-title: Eegnet: a compact convolutional neural network for EEG-based brain-computer interfaces publication-title: J Neural Eng doi: 10.1088/1741-2552/aace8c – volume: 31 start-page: 153 issue: 1 year: 2006 end-page: 159 ident: CR21 article-title: Mu rhythm (de) synchronization and EEG single-trial classification of different motor imagery tasks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.12.003 – volume: 66 start-page: 376 issue: 4 year: 1987 end-page: 382 ident: CR9 article-title: Cerebral location of international 10–20 system electrode placement publication-title: Electroencephalogr Clinical Neurophysiol doi: 10.1016/0013-4694(87)90206-9 – volume: 6 start-page: 39 year: 2012 ident: CR3 article-title: Filter bank common spatial pattern algorithm on BCI competition iv datasets 2a and 2b publication-title: Front Neurosci doi: 10.3389/fnins.2012.00039 – ident: CR15 – volume: 18 start-page: 1 year: 1998 end-page: 8 ident: CR4 article-title: Linear discriminant analysis-a brief tutorial publication-title: Inst Signal Inf Process – ident: CR11 – ident: CR7 – ident: CR26 – ident: CR24 – volume: 118 start-page: 2234 issue: 10 year: 2007 end-page: 2247 ident: CR5 article-title: Brain dynamics in the active vs. passive auditory oddball task: exploration of narrow-band EEG phase effects publication-title: Clinical Neurophysiol doi: 10.1016/j.clinph.2007.06.059 – volume: 6 start-page: 55 year: 2012 ident: CR30 article-title: Review of the BCI competition IV publication-title: Front Neurosci doi: 10.3389/fnins.2012.00055 – volume: 22 start-page: 276 issue: 3 year: 2012 ident: 9721_CR17 publication-title: Biochemia Medica: Biochemia Medica doi: 10.11613/BM.2012.031 – volume: 6 start-page: 39 year: 2012 ident: 9721_CR3 publication-title: Front Neurosci doi: 10.3389/fnins.2012.00039 – ident: 9721_CR15 doi: 10.1080/2326263X.2020.1801112 – volume: 31 start-page: 153 issue: 1 year: 2006 ident: 9721_CR21 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.12.003 – ident: 9721_CR11 – volume: 38 start-page: 5391 issue: 11 year: 2017 ident: 9721_CR25 publication-title: Human Brain Mapping doi: 10.1002/hbm.23730 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 9721_CR28 publication-title: Neural Process Lett doi: 10.1023/A:1018628609742 – volume: 89 start-page: 1123 issue: 7 year: 2001 ident: 9721_CR20 publication-title: Proc IEEE doi: 10.1109/5.939829 – volume: 18 start-page: 1 year: 1998 ident: 9721_CR4 publication-title: Inst Signal Inf Process – volume: 60 start-page: 1100 issue: 4 year: 2012 ident: 9721_CR8 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2012.2215960 – volume: 63 start-page: 15 issue: 1 year: 2015 ident: 9721_CR1 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2015.2487738 – volume: 6 start-page: 55 year: 2012 ident: 9721_CR30 publication-title: Front Neurosci doi: 10.3389/fnins.2012.00055 – volume: 15 start-page: 141 issue: 1 year: 2021 ident: 9721_CR27 publication-title: Cognitive Neurodyn doi: 10.1007/s11571-020-09608-3 – ident: 9721_CR24 doi: 10.1109/EUSIPCO.2015.7362882 – ident: 9721_CR7 doi: 10.1109/IJCNN.2015.7280578 – volume: 181 start-page: 319 year: 2012 ident: 9721_CR19 publication-title: Ann Rev Cyber Telemed – ident: 9721_CR2 – volume: 24 start-page: 1565 issue: 6 year: 2016 ident: 9721_CR6 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2016.2540072 – volume: 29 start-page: 5619 issue: 11 year: 2018 ident: 9721_CR23 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2789927 – ident: 9721_CR12 doi: 10.1109/IJCNN.2016.7727457 – volume: 75 start-page: 461 year: 2019 ident: 9721_CR18 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2018.11.031 – volume: 15 start-page: 056013 issue: 5 year: 2018 ident: 9721_CR13 publication-title: J Neural Eng doi: 10.1088/1741-2552/aace8c – volume: 56 start-page: 2730 issue: 11 year: 2009 ident: 9721_CR31 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2009.2026181 – ident: 9721_CR33 doi: 10.23919/ChiCC.2019.8866574 – ident: 9721_CR35 – ident: 9721_CR26 doi: 10.1109/PRIA.2017.7983059 – volume: 118 start-page: 2234 issue: 10 year: 2007 ident: 9721_CR5 publication-title: Clinical Neurophysiol doi: 10.1016/j.clinph.2007.06.059 – volume: 19 start-page: 617 issue: 6 year: 2011 ident: 9721_CR29 publication-title: IEEE Trans Neural Syst Rehabil Eng doi: 10.1109/TNSRE.2011.2168542 – volume: 16 start-page: 213 issue: 2 year: 2016 ident: 9721_CR16 publication-title: Sensors doi: 10.3390/s16020213 – volume: 14 start-page: 1 issue: 1 year: 2017 ident: 9721_CR32 publication-title: J Neuroeng Rehabil doi: 10.1186/s12984-016-0214-x – volume: 66 start-page: 376 issue: 4 year: 1987 ident: 9721_CR9 publication-title: Electroencephalogr Clinical Neurophysiol doi: 10.1016/0013-4694(87)90206-9 – ident: 9721_CR22 doi: 10.1109/IJCNN.2016.7727277 – volume: 12 start-page: 14 year: 2018 ident: 9721_CR14 publication-title: Front Human Neurosc doi: 10.3389/fnhum.2018.00014 – ident: 9721_CR10 doi: 10.1109/TNNLS.2020.3015505 – volume: 13 start-page: 1275 year: 2019 ident: 9721_CR34 publication-title: Front Neurosci doi: 10.3389/fnins.2019.01275 |
SSID | ssj0056814 |
Score | 2.3451347 |
Snippet | The Common Spatial Pattern (CSP) algorithm is the most widely used method for decoding Electroencephalography (EEG) signals from motor imagery (MI) paradigm.... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 379 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Artificial neural networks Biochemistry Biomedical and Life Sciences Biomedicine Classification Cognitive Psychology Competition Computer Science Data collection Datasets EEG Electrodes Electroencephalography Experiments Filter banks Imagery Mental task performance Methods Neural networks Neurosciences Research Article Spatial filtering Virtual reality Wavelet transforms |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggaHkESuVKiAtEJI4d2ye0QluqSnCi0t6i-CVWar1bdovaGz-dGceb1VLRU5TYUZzMOP7m4W8Ieae0Eq4RvrTOtGCg2FBqpkTZi9AYVtmap-1j3763p-f8bCZm2eG2ymmVm39i-lG7hUUf-Semkdi91kJ8Xl6VWDUKo6u5hMZD8gipy9D4krPR4EJurRRVBqMAhqGqvGlm2DpXC7iKCQqJwKa82V2Y7qDNu0mT_0RO04J08pQ8yUiSTgbRPyMPfNwnB5MIVvTlLX1PU25ncpofkD8TGhe__QW1CJYxOygJhA71oykAVzqdfi1xSXMUhAfn80tkt7il6KilMVE1UtNHR1eYgw0PDnMMtK8oXnPeLykmsGdFhmYkykyHlGb-nJyfTH98OS1z7YXScsnXJW8sb_sgDZPOGs1VY6yVzLhEQNb6ICVMXlfXvRSOhSooaZq2d0wwrSpumxdkLy6if0WoMNwH1WKldgBflusA63LfMqkVYI3AC1JvPnxnMzE51se46LaUyiisDoTVJWF1NwX5MN6zHGg57u19uJFnl6foqtsqVEGOx2aYXBgx6aNfXEOfFrkbEaMV5OUg_vFx6DBDzSqI3FGMsQMSd--2xPnPROANGJGrShfk40aFtsP6_1u8vv8t3pDHDLdmpKyiQ7K3_nXt3wJgWpujNCv-Agx8E7s priority: 102 providerName: ProQuest |
Title | A novel classification method for EEG-based motor imagery with narrow band spatial filters and deep convolutional neural network |
URI | https://link.springer.com/article/10.1007/s11571-021-09721-x https://www.ncbi.nlm.nih.gov/pubmed/35401871 https://www.proquest.com/docview/2918681955 https://www.proquest.com/docview/2649255846 https://pubmed.ncbi.nlm.nih.gov/PMC8934809 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_B9sILHxsfGaMyEuIFIiWOHTuPAaWdQEwIUak8RbFja5W2dKId2t7407lzk1ZlgMRDGzV2m1R3F__Od_c7gFe60LLNpItta3J0UKyPC65l3EifGZ7YVITysU-n-clUfJjJWV8Uthyy3YeQZHhSb4vdUqnQ9eX4IsqZGJHjvkTfnfR6ysvh-UuMWiGWjK4AXlwnfanMn39jdzm6hTFvp0r-Fi8Ny9D4Idzv8SMr1wJ_BHdcdwCHZYe-88UNe81CRmfYKj-AB0PLBtZb8CH8LFm3-OHOmSXUTGlCQTJs3UiaIYJlVTWJaW1rGUoRP88viObihtGOLesCZyMzTdeyJSVj4734OUXcl4zOtc5dMspk7zUah4kxMxxCvvljmI6rr-9P4r4JQ2yFEqtYZFbkjVeGq9aaQujMWKu4aQMTWe68UmjFbZo2SrbcJ14rk-VNyyUvdCJs9gT2ukXnngGTRjivc2rZjijMisLjAt3kXBUaQYcXEaSDLGrbM5RTo4zzesutTPKrUX51kF99HcGbzXcu1_wc_5x9PIi47m11WfOCWgakhZQRvNwMo5VR6KTp3OIK5-RE4khgLYKna43YXI52zkjZIlA7urKZQAzeuyPd_CwweSNYFDopIng7aNX2tv7-L47-b_pzuMepZiOkGx3D3ur7lXuBSGplRnBXzRS-6_FkBPvl5NvHCo_vqtPPX_DsZJaOgmn9AjchHUI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFH8a4wAXBIyPwAAjAReIaBw7cQ4IVdCuYx-nTdotxF-i0pYW2sF64y_ib-Q9J2lVJnbbqUrsNHXfs_2z_Xu_B_BKFUraVLrYWJ3hAsX4uOBKxpX0qeY9k4gQPnZwmI2OxZcTebIBf7pYGKJVdmNiGKjtxNAe-XtekLB7Ukj5cfo9pqxRdLrapdBo3GLPLX7hkm32Yfcz2vc158PB0adR3GYViI3IxTwWqRFZ5XPNc2t0IVSqjcm5tkFaK3M-z9EtbZJUubTc97zKdZpVlkteqJ4wKX7vDbgp0rQgCqEa7nQjP2l5hVNsXIRgs1WvDdJpQvUSiXeJEBEEc-KL9YnwErq9TNL856Q2TIDDu3CnRa6s37jaPdhw9X3Y6te4aj9bsDcscEnDJv0W_O6zevLTnTJD4JzYSMEBWJOvmiFQZoPBTkxTqGXoLHg9PiM1jQWjjWFWB2lIpqvashlxvvHFfkwH-zNG96xzU0aE-bbjYDEJc4aPQGt_AMfXYpWHsFlPavcYmNTCeZVRZngEe0YUHnFAlfG8UIhtvIgg6f740rRC6JSP47RcSTiTsUo0VhmMVV5E8Hb5zLSRAbmy9nZnz7IdEmblyoEjeLksxs5MJzRV7SbnWCcjrUjChBE8asy_fB1t0JFnRZCvOcayAgmFr5fU429BMBwxqVC9IoJ3nQutftb_W_Hk6la8gFujo4P9cn_3cO8p3OYUFhIYTduwOf9x7p4hWJvr56GHMPh63V3yL0V_UA8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZQkRAXHi2PlAJGQlwgauLYsX1cwS7lVXFgpd6i-CVWar0rdlvRGz-dGSfZZSkgcYiixM6uo5mJP3tmviHkudJKuEr43DpTwwLFhlwzJfJWhMqwwpY8pY99Oq6Ppvz9iTj5JYs_RbsPLskupwFZmuLqcOHC4SbxrRQSlsEMDqSfyQFFXofPcYlBXVM2Gr7FyK6V_MqwLICBqKJPm_nzb2xPTVfw5tWwyd98p2lKmtwht3osSUed8O-Saz7ukr1RhHX02SV9QVN0Z9o23yW3h_INtLfmPfJjROP8wp9SiwgaQ4aSlGhXVJoCmqXj8dsc5zlHQaJwPTtDyotLiru3NCb-Rmra6OgSA7NhLGGG3vclxXvO-wXFqPZeu6EZ2TPTKcWe3yPTyfjL66O8L8iQWy75KueV5XUbpGHSWaO5qoy1khmXWMlqH6QEi3Zl2UrhWCiCkqaqW8cE06rgtrpPduI8-oeECsN9UDWWbwdEZrkOMFm3NZNaAQAJPCPlIIvG9mzlWDTjtNnwLKP8GpBfk-TXfM_Iy_Uzi46r45-9DwYRN73dLhumsXxAqYXIyLN1M1gculHa6Ofn0KdGQkcEbhl50GnE-u9wFw2VLSNyS1fWHZDNe7slzr4mVm8AjlwVOiOvBq3aDOvvb7H_f92fkhuf30yaj--OPzwiNxmmcqQopAOys_p27h8DwFqZJ8mGfgLX4h6F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+classification+method+for+EEG-based+motor+imagery+with+narrow+band+spatial+filters+and+deep+convolutional+neural+network&rft.jtitle=Cognitive+neurodynamics&rft.au=Xu%2C+Senwei&rft.au=Zhu%2C+Li&rft.au=Kong%2C+Wanzeng&rft.au=Peng%2C+Yong&rft.date=2022-04-01&rft.issn=1871-4080&rft.eissn=1871-4099&rft.volume=16&rft.issue=2&rft.spage=379&rft.epage=389&rft_id=info:doi/10.1007%2Fs11571-021-09721-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11571_021_09721_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-4080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-4080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-4080&client=summon |