Finite-/fixed-time synchronization for Cohen–Grossberg neural networks with discontinuous or continuous activations via periodically switching control

This paper is concerned with finite-/fixed-time synchronization for a class of Cohen–Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differenti...

Full description

Saved in:
Bibliographic Details
Published inCognitive neurodynamics Vol. 16; no. 1; pp. 195 - 213
Main Authors Pu, Hao, Li, Fengjun
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1871-4080
1871-4099
DOI10.1007/s11571-021-09694-x

Cover

Abstract This paper is concerned with finite-/fixed-time synchronization for a class of Cohen–Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differential inclusion theory, some useful finite-/fixed-time synchronization sufficient conditions for the considered Cohen–Grossberg neural networks are established by designing two kinds of novel periodically switching controllers. Instead of using uninterrupted high control strength, the periodically switching controller in each period is used with high strength control in one stage and weak strength in the other. It can overcome the effects caused by the uncertainties of Filippov solution induced by discontinuous neuron activation functions and reduce the control cost. Besides, the period switching control rate is closely related to the settling time T . Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of the obtained results.
AbstractList This paper is concerned with finite-/fixed-time synchronization for a class of Cohen–Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differential inclusion theory, some useful finite-/fixed-time synchronization sufficient conditions for the considered Cohen–Grossberg neural networks are established by designing two kinds of novel periodically switching controllers. Instead of using uninterrupted high control strength, the periodically switching controller in each period is used with high strength control in one stage and weak strength in the other. It can overcome the effects caused by the uncertainties of Filippov solution induced by discontinuous neuron activation functions and reduce the control cost. Besides, the period switching control rate is closely related to the settling time T. Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of the obtained results.
This paper is concerned with finite-/fixed-time synchronization for a class of Cohen–Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differential inclusion theory, some useful finite-/fixed-time synchronization sufficient conditions for the considered Cohen–Grossberg neural networks are established by designing two kinds of novel periodically switching controllers. Instead of using uninterrupted high control strength, the periodically switching controller in each period is used with high strength control in one stage and weak strength in the other. It can overcome the effects caused by the uncertainties of Filippov solution induced by discontinuous neuron activation functions and reduce the control cost. Besides, the period switching control rate is closely related to the settling time T . Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of the obtained results.
This paper is concerned with finite-/fixed-time synchronization for a class of Cohen-Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differential inclusion theory, some useful finite-/fixed-time synchronization sufficient conditions for the considered Cohen-Grossberg neural networks are established by designing two kinds of novel periodically switching controllers. Instead of using uninterrupted high control strength, the periodically switching controller in each period is used with high strength control in one stage and weak strength in the other. It can overcome the effects caused by the uncertainties of Filippov solution induced by discontinuous neuron activation functions and reduce the control cost. Besides, the period switching control rate is closely related to the settling time T. Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of the obtained results.This paper is concerned with finite-/fixed-time synchronization for a class of Cohen-Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differential inclusion theory, some useful finite-/fixed-time synchronization sufficient conditions for the considered Cohen-Grossberg neural networks are established by designing two kinds of novel periodically switching controllers. Instead of using uninterrupted high control strength, the periodically switching controller in each period is used with high strength control in one stage and weak strength in the other. It can overcome the effects caused by the uncertainties of Filippov solution induced by discontinuous neuron activation functions and reduce the control cost. Besides, the period switching control rate is closely related to the settling time T. Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of the obtained results.
This paper is concerned with finite-/fixed-time synchronization for a class of Cohen-Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differential inclusion theory, some useful finite-/fixed-time synchronization sufficient conditions for the considered Cohen-Grossberg neural networks are established by designing two kinds of novel periodically switching controllers. Instead of using uninterrupted high control strength, the periodically switching controller in each period is used with high strength control in one stage and weak strength in the other. It can overcome the effects caused by the uncertainties of Filippov solution induced by discontinuous neuron activation functions and reduce the control cost. Besides, the period switching control rate is closely related to the settling time . Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of the obtained results.
Author Pu, Hao
Li, Fengjun
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0000-0002-6835-1275
  surname: Pu
  fullname: Pu, Hao
  organization: School of Mathematics and Statistics, Ningxia University
– sequence: 2
  givenname: Fengjun
  surname: Li
  fullname: Li, Fengjun
  email: fjli@nxu.edu.cn
  organization: School of Mathematics and Statistics, Ningxia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35126778$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUtVAr-oAfYIEssWET6kecOBskNGoLUiU2ZW157JuJS8Ye7GQ6w4p_YMP38SW4mTKULirLun6cc5_nBB344AGhV5S8o4TUZ4lSUdOCsLybqimLzTN0TGV-KknTHOzPkhyhk5RuCBGVpOVzdMQFZVVdy2P068J5N0Bx1roN2GJwS8Bp600Xg3ff9eCCx22IeBY68L9__LyMIaU5xAX2MEbdZzPchvg14Vs3dNi6ZIIfnB_DmHDmPbhpM7j15DHhtdN4BdEF64zu-y1OmW465xcTI4b-BTpsdZ_g5b09RV8uzq9nH4urz5efZh-uClPW5VBwOxdMNlYY4ASEaCwvq1ZbIXWpq1qDoNwySyWF0hjDK0YFa5jRNWhrectP0fud39U4X4I1kKPrXq2iW-q4VUE79f-Pd51ahLWSkuQOsuzg7b2DGL6NkAa1zE2AvtcectmKVXmxikuZoW8eQW_CGH0uT_E8kKYWckK9fpjRPpW_Q8sAtgOYu2FEaPcQStSdMtROGSorQ03KUJtMko9Ixg3TNHJVrn-aynfUlOP4BcR_aT_B-gPHidVH
CitedBy_id crossref_primary_10_1007_s11063_023_11431_w
crossref_primary_10_1016_j_neunet_2022_10_033
crossref_primary_10_1007_s12555_021_0721_9
crossref_primary_10_1016_j_ins_2022_05_110
crossref_primary_10_1016_j_cnsns_2023_107295
crossref_primary_10_1177_01423312221140630
crossref_primary_10_3390_e26030199
crossref_primary_10_1016_j_neucom_2023_126460
Cites_doi 10.1016/j.neunet.2017.12.011
10.1016/j.neunet.2015.02.001
10.1016/j.neunet.2016.07.001
10.1016/j.neucom.2018.05.024
10.1016/j.neunet.2019.11.012
10.1016/j.amc.2004.10.028
10.1109/TCSI.2003.818614
10.1016/j.jfranklin.2014.01.008
10.1016/j.neucom.2019.11.018
10.1016/j.jfranklin.2017.08.026
10.1016/j.jfranklin.2017.08.013
10.1109/TNNLS.2019.2920672
10.1109/TNNLS.2015.2448549
10.1016/j.neucom.2014.06.016
10.1016/j.neucom.2015.11.077
10.1016/j.matcom.2019.05.011
10.1016/j.jfranklin.2015.07.001
10.1016/j.neunet.2019.04.008
10.1016/j.neunet.2017.02.001
10.1016/j.fss.2018.04.017
10.1109/TCSI.2013.2244451
10.1016/j.jfranklin.2018.11.002
10.1016/j.fss.2017.04.005
10.1016/j.neucom.2017.10.035
10.1080/00207160.2015.1105362
10.1016/j.jfranklin.2019.03.033
10.1016/j.neucom.2017.03.017
10.1016/j.jfranklin.2018.06.041
10.1016/j.jfranklin.2016.05.022
10.1007/s00521-020-04752-7
10.1016/j.jfranklin.2019.09.015
10.2478/jaiscr-2019-0003
10.1007/s10120-018-0793-2
10.1016/j.neucom.2018.11.020
10.1016/j.neunet.2019.04.010
10.1016/j.matcom.2017.10.016
10.1016/j.neunet.2016.12.006
10.1016/j.neucom.2016.02.012
10.1016/j.matcom.2017.11.001
10.1016/j.neucom.2020.03.040
10.1016/j.apm.2017.03.024
10.1016/j.neucom.2020.07.071
10.1016/j.amc.2017.05.073
10.1016/j.jfranklin.2019.05.017
10.1109/TNNLS.2016.2552640
10.1007/s11071-020-05719-y
10.1016/j.neunet.2020.09.023
10.1016/j.neunet.2016.09.003
10.1016/j.jfranklin.2018.04.026
10.1007/s13042-014-0258-9
10.1016/j.neunet.2011.06.005
10.1007/s11071-017-3782-9
10.1016/j.neunet.2016.12.007
10.1016/j.neunet.2018.04.006
10.1109/ACCESS.2019.2960828
10.1109/TAC.2011.2179869
10.1016/j.fss.2019.12.002
10.1016/j.jfranklin.2019.06.025
10.1109/ACCESS.2019.2924661
10.1016/j.neucom.2018.06.037
10.1016/j.neunet.2020.02.020
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2021
The Author(s), under exclusive licence to Springer Nature B.V. 2021.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021.
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
LK8
M0S
M7P
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
7X8
5PM
DOI 10.1007/s11571-021-09694-x
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList ProQuest One Psychology

MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 1871-4099
EndPage 213
ExternalDocumentID PMC8807782
35126778
10_1007_s11571_021_09694_x
Genre Journal Article
GrantInformation_xml – fundername: Guizhou Education Department Youth Science and Technology Talents Growth Project
  grantid: Qian Jiao he KY zi [2018] 313
  funderid: http://dx.doi.org/10.13039/501100013055
– fundername: Ministry of National Defense, People’s Republic of China
  grantid: 71461027
  funderid: http://dx.doi.org/10.13039/501100004717
– fundername: ;
  grantid: 71461027
– fundername: ;
  grantid: Qian Jiao he KY zi [2018] 313
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
203
29F
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5VS
67N
67Z
6NX
7X7
875
8FI
8FJ
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
AOIJS
ARAPS
ARMRJ
AXYYD
B-.
BA0
BAWUL
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DIK
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
F5P
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GX1
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HYE
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KPH
LLZTM
M4Y
M7P
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OK1
OVD
P2P
PF0
PSYQQ
PT4
QOR
QOS
R89
R9I
ROL
RPM
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TEORI
TR2
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
PQGLB
3V.
7XB
8FE
8FG
8FH
8FK
AZQEC
DWQXO
GNUQQ
JQ2
K9.
LK8
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-3db5289d5ce30e559d346fad58a4a67ae513d2d181e4ccc36215292ca7eadd3f3
IEDL.DBID AGYKE
ISSN 1871-4080
IngestDate Thu Aug 21 18:38:15 EDT 2025
Thu Sep 04 16:09:03 EDT 2025
Fri Jul 25 11:12:02 EDT 2025
Mon Jul 21 05:59:04 EDT 2025
Thu Apr 24 23:10:15 EDT 2025
Tue Jul 01 02:55:09 EDT 2025
Fri Feb 21 02:46:11 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Finite-/fixed-time synchronization
Periodically switching control
Discontinuous activation
Filippov solution
Mixed time delays
Language English
License The Author(s), under exclusive licence to Springer Nature B.V. 2021.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-3db5289d5ce30e559d346fad58a4a67ae513d2d181e4ccc36215292ca7eadd3f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6835-1275
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/8807782
PMID 35126778
PQID 3126975888
PQPubID 2043944
PageCount 19
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8807782
proquest_miscellaneous_2626226388
proquest_journals_3126975888
pubmed_primary_35126778
crossref_primary_10_1007_s11571_021_09694_x
crossref_citationtrail_10_1007_s11571_021_09694_x
springer_journals_10_1007_s11571_021_09694_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Netherlands
PublicationTitle Cognitive neurodynamics
PublicationTitleAbbrev Cogn Neurodyn
PublicationTitleAlternate Cogn Neurodyn
PublicationYear 2022
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Majid, Chongqi, Yucheng (CR31) 2020; 100
Sabri (CR44) 2019; 356
Peng, Dihua, Min (CR37) 2020; 123
Xiaofang, Gang, Shukai Duan, Liu (CR49) 2017; 28
Xinsong, Jinde (CR52) 2013; 60
Gaojian, Cheng, Juan, Haijun (CR18) 2018; 355
Lian, Qian, Hui, Zengyun (CR29) 2020; 401
Wang, Wang, Wang (CR47) 2018; 310
Na, Huina (CR34) 2019; 7
CR30
Forti, Nistri (CR17) 2003; I
Leimin, Yi, Guodong (CR26) 2016; 179
Polyakov (CR38) 2012; 57
Abdujelil, Haijun, Cheng (CR3) 2017; 354
Zuowei, Lihong, Lingling (CR60) 2015; 65
Lian, Hui, Lihong (CR28) 2019; 361
Yang, Samidurai, Sriraman (CR56) 2019; 9
Leimin, Zhigang, Junhao, Xiaoping (CR27) 2017; 87
Xinsong, Qiang, Jinling, Bin (CR53) 2015; 352
Prakash, Balasubramaniam, Lakshmanan (CR40) 2016; 83
Abdujelil, Haijun (CR1) 2016; 84
Qintao, Feng, Yan, Jing (CR42) 2019; 7
Xiaoyang, Ho Daniel, Qiang, Jinde (CR51) 2017; 90
Mingwen, Lixiang, Haipeng, Jinghua, Yixian, Yanping, Hui (CR33) 2018; 355
Xiaoyang, Tianping, Jinde, Wenlian (CR50) 2011; 24
Huaiqin, Xiaowei, Li (CR20) 2015; 6
Yi, Xinsong, Rongqiang, Zunshui (CR58) 2020; 357
Ozlem (CR36) 2020; 132
Chao, Lihong, Zuowei (CR9) 2019; 116
Jiarong, Haijun, Cheng, Zhiyong (CR23) 2018; 99
Mei, Haijun, Cheng (CR32) 2016; 194
Abdujelil, Haijun, Zhidong (CR2) 2016; 353
Fangmin, Minghui, Hao, Mengqin (CR16) 2020; 415
Yueheng, Biao, Derong, Zhanyu, Yunli (CR59) 2020; 381
Zuowei, Lihong, Lingling (CR61) 2017; 354
Alimi, Aouiti, Assali (CR6) 2019; 332
Hui, Wangli, Qinglong, Chen (CR22) 2019; 116
Cheng, Juan, Zhanheng, Haijun, Tingwen (CR11) 2017; 89
CR55
Hongzhi, Chunrong, Zhengwen, Ning (CR19) 2018; 275
Hui, Wangli, Qinglong, Chen (CR21) 2018; 314
Fanchao, Quanxin, Rathinasamy (CR15) 2020; 394
Ruoxia, Jinde, Ahmad, Fuad (CR43) 2017; 313
Arjmandzadeh, Safi, Nazemi (CR7) 2017; 89
Effati, Baymani (CR14) 2005; 168
Sabri (CR45) 2020; 31
Qintao, Feng, Hui (CR41) 2019; 356
Abdujelil, Haijun, Zhidong (CR4) 2017; 94
Ozlem (CR35) 2020; 125
Jun, Minghui, Xiaohong, Jiali, Shuangtao (CR25) 2014; 351
Dongshu, Lihong, Longkun, Jinsen (CR12) 2018; 104
Cheng, Juan, Haijun (CR10) 2014; 143
Yang, Sriraman, Shyamsundarraj, Samidurai (CR57) 2020; 171
Xudong, Shiping, Zheng, Tingwen, Yiran (CR54) 2020; 32
Dongxue, Jianxiang, Wei, Xiaodi (CR13) 2020; 357
Wentao (CR48) 2018; 338
Zuowei, Lihong, Lingling (CR62) 2017; 47
Toshiaki, Kazuharu, Tetsuya (CR46) 2018; 21
Jiarong, Haijun, Cheng, Ahmed (CR24) 2019; 356
Chao, Lihong (CR8) 2017; 249
Pradeep, Cao, Murugesu, Rakkiyappan (CR39) 2019; 155
W Dongshu (9694_CR12) 2018; 104
A Sabri (9694_CR45) 2020; 31
L Xiaoyang (9694_CR51) 2017; 90
L Yueheng (9694_CR59) 2020; 381
C Pradeep (9694_CR39) 2019; 155
Y Chao (9694_CR8) 2017; 249
L Hui (9694_CR22) 2019; 116
Y Chao (9694_CR9) 2019; 116
G Qintao (9694_CR42) 2019; 7
Y Xinsong (9694_CR53) 2015; 352
R Fangmin (9694_CR16) 2020; 415
W Peng (9694_CR37) 2020; 123
Z Mingwen (9694_CR33) 2018; 355
A Abdujelil (9694_CR3) 2017; 354
H Toshiaki (9694_CR46) 2018; 21
9694_CR55
L Hui (9694_CR21) 2018; 314
C Zuowei (9694_CR62) 2017; 47
A Abdujelil (9694_CR1) 2016; 84
A Sabri (9694_CR44) 2019; 356
X Xudong (9694_CR54) 2020; 32
J Gaojian (9694_CR18) 2018; 355
W Leimin (9694_CR26) 2016; 179
L Jiarong (9694_CR24) 2019; 356
H Xiaofang (9694_CR49) 2017; 28
S Effati (9694_CR14) 2005; 168
AM Alimi (9694_CR6) 2019; 332
M Forti (9694_CR17) 2003; I
W Wentao (9694_CR48) 2018; 338
W Huaiqin (9694_CR20) 2015; 6
M Prakash (9694_CR40) 2016; 83
L Ruoxia (9694_CR43) 2017; 313
K Fanchao (9694_CR15) 2020; 394
H Cheng (9694_CR10) 2014; 143
G Qintao (9694_CR41) 2019; 356
A Abdujelil (9694_CR4) 2017; 94
M Jun (9694_CR25) 2014; 351
D Lian (9694_CR29) 2020; 401
Z Wang (9694_CR47) 2018; 310
S Na (9694_CR34) 2019; 7
C Zuowei (9694_CR61) 2017; 354
H Cheng (9694_CR11) 2017; 89
F Ozlem (9694_CR36) 2020; 132
C Zuowei (9694_CR60) 2015; 65
W Leimin (9694_CR27) 2017; 87
C Yang (9694_CR56) 2019; 9
Y Xinsong (9694_CR52) 2013; 60
Z Arjmandzadeh (9694_CR7) 2017; 89
R Majid (9694_CR31) 2020; 100
A Abdujelil (9694_CR2) 2016; 353
9694_CR30
L Mei (9694_CR32) 2016; 194
Z Yi (9694_CR58) 2020; 357
D Lian (9694_CR28) 2019; 361
L Jiarong (9694_CR23) 2018; 99
F Ozlem (9694_CR35) 2020; 125
P Dongxue (9694_CR13) 2020; 357
W Hongzhi (9694_CR19) 2018; 275
L Xiaoyang (9694_CR50) 2011; 24
C Yang (9694_CR57) 2020; 171
A Polyakov (9694_CR38) 2012; 57
References_xml – volume: 123
  start-page: 1
  year: 2020
  end-page: 11
  ident: CR37
  article-title: Finite-time and fixed-time anti-synchronization of Markovian neural networks with stochastic disturbances via switching control
  publication-title: Neural Netw
– volume: 60
  start-page: 2431
  issue: 9
  year: 2013
  end-page: 2439
  ident: CR52
  article-title: Exponential synchronization of delayed neural networks with discontinuous activations
  publication-title: IEEE Trans Circuits Syst
– volume: 116
  start-page: 139
  year: 2019
  end-page: 149
  ident: CR22
  article-title: Fixed-time pinning-controlled synchronization for coupled delayed neural networks with discontinuous activations
  publication-title: Neural Netw
– volume: 7
  start-page: 186470
  year: 2019
  end-page: 186479
  ident: CR34
  article-title: Super resolution reconstruction of images based on interpolation and full convolutional neural network and application in medical fields
  publication-title: IEEE Access
– volume: 351
  start-page: 2691
  year: 2014
  end-page: 2710
  ident: CR25
  article-title: Finite-time synchronization of drive-response systems via periodically intermittent adaptive control
  publication-title: J Franklin Instit
– volume: 355
  start-page: 6780
  year: 2018
  end-page: 6809
  ident: CR33
  article-title: Fixed-time synchronization of memristor-based fuzzy cellular neural network with time-varying delay
  publication-title: J Franklin Instit
– volume: 361
  start-page: 56
  year: 2019
  end-page: 70
  ident: CR28
  article-title: Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous activations
  publication-title: Fuzzy Sets Syst
– volume: 89
  start-page: 74
  year: 2017
  end-page: 83
  ident: CR11
  article-title: Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks
  publication-title: Neural Netw
– volume: 394
  start-page: 87
  year: 2020
  end-page: 109
  ident: CR15
  article-title: Finite-time and fixed-time synchronization control of fuzzy Cohen–Grossberg neural networks
  publication-title: Fuzzy Sets Syst
– volume: 194
  start-page: 1
  year: 2016
  end-page: 9
  ident: CR32
  article-title: Finite-time synchronization of memristor-based Cohen–Grossberg neural networks with time-varying delays
  publication-title: Neurocomputing
– volume: 354
  start-page: 7028
  year: 2017
  end-page: 7052
  ident: CR3
  article-title: General decay synchronization of memristor-based Cohen–Grossberg neural networks with mixed time-delays and discontinuous activations
  publication-title: J Franklin Instit
– volume: 310
  start-page: 213
  year: 2018
  end-page: 222
  ident: CR47
  article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition
  publication-title: Neurocomputing
– volume: 99
  start-page: 101
  year: 2018
  end-page: 113
  ident: CR23
  article-title: Multiple types of synchronization analysis for discontinuous Cohen–Grossberg neural networks with time-varying delays
  publication-title: Neural Netw
– volume: 249
  start-page: 64
  year: 2017
  end-page: 71
  ident: CR8
  article-title: Finite-time synchronization of coupled time-delayed neural networks with discontinuous activations
  publication-title: Neurocomputing
– volume: 401
  start-page: 182
  year: 2020
  end-page: 192
  ident: CR29
  article-title: Multi-type synchronization dynamics of delayed reaction–diffusion recurrent neural networks with discontinuous activations
  publication-title: Neurocomputing
– volume: 125
  start-page: 330
  year: 2020
  end-page: 337
  ident: CR35
  article-title: New criteria for global stability of neutral-type Cohen–Grossberg neural networks with multiple delays
  publication-title: Neural Netw
– volume: 90
  start-page: 2057
  year: 2017
  end-page: 2068
  ident: CR51
  article-title: Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances
  publication-title: Nonlinear Dyn
– volume: 338
  start-page: 40
  year: 2018
  end-page: 49
  ident: CR48
  article-title: Finite-time synchronization for a class of fuzzy cellular neural networks with time-varying coefficients and proportional delays
  publication-title: Fuzzy Sets Syst
– volume: 132
  start-page: 532
  year: 2020
  end-page: 539
  ident: CR36
  article-title: An improved Lyapunov functional with application to stability of Cohen-Grossberg neural networks of neutral-type with multiple delays
  publication-title: Neural Netw
– volume: 313
  start-page: 37
  year: 2017
  end-page: 51
  ident: CR43
  article-title: Exponential and fixed-time synchronization of Cohen-Grossberg neural networks with time-varying delays
  publication-title: Appl Math Comput
– volume: 6
  start-page: 253
  issue: 2
  year: 2015
  end-page: 263
  ident: CR20
  article-title: Adaptive exponential synchronization of delayed Cohen–Grossberg neural networks with discontinuous activations
  publication-title: Int J Mach Learn Cybern
– volume: 143
  start-page: 90
  year: 2014
  end-page: 96
  ident: CR10
  article-title: Finite-time synchronization of delayed neural networks with Cohen–Grossberg type based on delayed feedback control
  publication-title: Neurocomputing
– volume: 354
  start-page: 6692
  year: 2017
  end-page: 6723
  ident: CR61
  article-title: Improved switching controllers for finite-time synchronization of delayed neural networks with discontinuous activations
  publication-title: J Franklin Instit
– volume: 314
  start-page: 143
  year: 2018
  end-page: 153
  ident: CR21
  article-title: Fixed-time synchronization for coupled delayed neural networks with discontinuous or continuous activations
  publication-title: Neurocomputing
– volume: 83
  start-page: 86
  year: 2016
  end-page: 93
  ident: CR40
  article-title: Synchronization of Markovian jumping inertial neural networks and its applications in image encryption
  publication-title: Neural Netw
– volume: 353
  start-page: 2859
  year: 2016
  end-page: 2880
  ident: CR2
  article-title: Exponential lag synchronization for memristor-based neural networks with mixed time delays via hybrid switching control
  publication-title: J. Franklin Instit
– volume: 116
  start-page: 101
  year: 2019
  end-page: 109
  ident: CR9
  article-title: Fixed-time synchronization of coupled memristor-based neural networks with time-varying delays
  publication-title: Neural Netw
– volume: 100
  start-page: 3979
  issue: 4
  year: 2020
  end-page: 4001
  ident: CR31
  article-title: Adaptive model-free synchronization of different fractional-order neural networks with an application in cryptography
  publication-title: Nonlinear Dyn
– volume: 47
  start-page: 208
  year: 2017
  end-page: 226
  ident: CR62
  article-title: Finite-time synchronization of master-slave neural networks with time-delays and discontinuous activations
  publication-title: Appl Math Modell
– volume: 415
  start-page: 74
  year: 2020
  end-page: 83
  ident: CR16
  article-title: Quasi fixed-time synchronization of memristive Cohen–Grossberg neural networks with reaction–diffusion
  publication-title: Neurocomputing
– volume: 9
  start-page: 189
  issue: 3
  year: 2019
  end-page: 204
  ident: CR56
  article-title: Stability and dissipativity analysis for neural type stochastic Markovian jump static neural networks with time delays
  publication-title: J Artif Intell Soft Comput Res
– volume: 275
  start-page: 2080
  year: 2018
  end-page: 2092
  ident: CR19
  article-title: New results on passivity analysis of memristive neural networks with time-varying delays and reaction–diffusion term
  publication-title: Neurocomputing
– volume: 332
  start-page: 29
  year: 2019
  end-page: 43
  ident: CR6
  article-title: Finite-time and fixed-time synchronization of a class of inertial neural networks with multi-proportional delays and its application to secure communication
  publication-title: Neurocomputing
– volume: 155
  start-page: 41
  year: 2019
  end-page: 56
  ident: CR39
  article-title: An event-triggered synchronization of semi-Markov jump neural networks with time-varying delays based on generalized free-weighting-matrix approach
  publication-title: Math Comput Simul
– volume: 21
  start-page: 653
  issue: 4
  year: 2018
  end-page: 660
  ident: CR46
  article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images
  publication-title: Gastr Cancer
– volume: 87
  start-page: 122
  year: 2017
  end-page: 131
  ident: CR27
  article-title: Controller design for global fixed-time synchronization of delayed neural networks with discontinuous activations
  publication-title: Neural Netw
– volume: 24
  start-page: 1013
  year: 2011
  end-page: 1021
  ident: CR50
  article-title: Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameter mismatches
  publication-title: Neural Netw
– ident: CR30
– volume: 7
  start-page: 83306
  year: 2019
  end-page: 83318
  ident: CR42
  article-title: Fixed-Time cluster synchronization of discontinuous directed community networks via periodically or aperiodically switching control
  publication-title: IEEE Access
– volume: 84
  start-page: 161
  year: 2016
  end-page: 171
  ident: CR1
  article-title: New results on exponential synchronization of memristor-based neural networks with discontinuous neuron activations
  publication-title: Neural Netw
– volume: 57
  start-page: 2106
  year: 2012
  end-page: 2110
  ident: CR38
  article-title: Nonlinear feedback design for fixed-time stabilization of linear control systems
  publication-title: IEEE Trans Autom Control
– volume: 89
  start-page: 11
  year: 2017
  end-page: 18
  ident: CR7
  article-title: A new neural network model for solving random interval linear programming problems
  publication-title: Neural Netw
– volume: 65
  start-page: 105
  year: 2015
  end-page: 114
  ident: CR60
  article-title: New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations
  publication-title: Neural Netw
– volume: I
  start-page: 1421
  issue: 50
  year: 2003
  end-page: 1435
  ident: CR17
  article-title: Global convergence of neural networks with discontinuous neuron activations
  publication-title: IEEE Trans Circuits Syst I-regular Papers
– volume: 171
  start-page: 207
  year: 2020
  end-page: 220
  ident: CR57
  article-title: Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays
  publication-title: Math Comput Simul
– volume: 357
  start-page: 11136
  year: 2020
  end-page: 11152
  ident: CR58
  article-title: Finite-time quantized synchronization of coupled discontinuous competitive neural networks with proportional delay and impulsive effects
  publication-title: J Franklin Instit
– volume: 168
  start-page: 1370
  issue: 2
  year: 2005
  end-page: 1379
  ident: CR14
  article-title: A new nonlinear neural network for solving convex nonlinear programming problems
  publication-title: Appl Math Comput
– volume: 381
  start-page: 196
  year: 2020
  end-page: 206
  ident: CR59
  article-title: Adaptive synchronization of memristor-based neural networks with discontinuous activations
  publication-title: Neurocomputing
– volume: 356
  start-page: 9928
  year: 2019
  end-page: 9952
  ident: CR24
  article-title: Finite/fixed-time synchronization control of coupled memristive neural networks
  publication-title: J Franklin Instit
– volume: 356
  start-page: 6656
  year: 2019
  end-page: 6677
  ident: CR41
  article-title: Fixed-time outer synchronization of hybrid-coupled delayed complex networks via periodically semi-intermittent control
  publication-title: J Franklin Instit
– volume: 31
  start-page: 1504
  issue: 5
  year: 2020
  end-page: 1513
  ident: CR45
  article-title: New criteria for stability of neutral-type neural networks with multiple time delays
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 179
  start-page: 169
  year: 2016
  end-page: 175
  ident: CR26
  article-title: General decay synchronization stability for a class of delayed chaotic neural networks with discontinuous activations
  publication-title: Neurocomputing
– volume: 355
  start-page: 4665
  year: 2018
  end-page: 4685
  ident: CR18
  article-title: Finite-time and fixed-time synchronization of discontinuous complex networks: a unified control framework design
  publication-title: J Franklin Instit
– volume: 104
  start-page: 80
  year: 2018
  end-page: 92
  ident: CR12
  article-title: Generalized pinning synchronization of delayed Cohen–Grossberg neural networks with discontinuous activations
  publication-title: Neural Netw
– volume: 94
  start-page: 275
  year: 2017
  end-page: 295
  ident: CR4
  article-title: Lag synchronization for Cohen-Grossberg neural networks with mixed time-delays via periodically intermittent control
  publication-title: Int J Comput Math
– ident: CR55
– volume: 357
  start-page: 11349
  year: 2020
  end-page: 11367
  ident: CR13
  article-title: Finite-time synchronization of coupled Cohen–Grossberg neural networks with mixed time delays
  publication-title: J Franklin Instit
– volume: 28
  start-page: 1889
  issue: 8
  year: 2017
  end-page: 1901
  ident: CR49
  article-title: A memristive multilayer cellular neural network with applications to image processing
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 32
  start-page: 13441
  year: 2020
  end-page: 13452
  ident: CR54
  article-title: Designing pulse-coupled neural networks with spike-synchronization-dependent plasticity rule: image segmentation and memristor circuit application
  publication-title: Neural Comput Appl
– volume: 356
  start-page: 276
  issue: 1
  year: 2019
  end-page: 291
  ident: CR44
  article-title: A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays
  publication-title: J Franklin Instit
– volume: 352
  start-page: 4382
  year: 2015
  end-page: 4406
  ident: CR53
  article-title: Finite-time synchronization of coupled discontinuous neural networks with mixed delays and nonidentical perturbations
  publication-title: J Franklin Instit
– volume: 99
  start-page: 101
  year: 2018
  ident: 9694_CR23
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2017.12.011
– volume: 65
  start-page: 105
  year: 2015
  ident: 9694_CR60
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2015.02.001
– volume: 83
  start-page: 86
  year: 2016
  ident: 9694_CR40
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2016.07.001
– volume: 310
  start-page: 213
  year: 2018
  ident: 9694_CR47
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.024
– volume: 123
  start-page: 1
  year: 2020
  ident: 9694_CR37
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.11.012
– volume: 168
  start-page: 1370
  issue: 2
  year: 2005
  ident: 9694_CR14
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2004.10.028
– volume: I
  start-page: 1421
  issue: 50
  year: 2003
  ident: 9694_CR17
  publication-title: IEEE Trans Circuits Syst I-regular Papers
  doi: 10.1109/TCSI.2003.818614
– volume: 351
  start-page: 2691
  year: 2014
  ident: 9694_CR25
  publication-title: J Franklin Instit
  doi: 10.1016/j.jfranklin.2014.01.008
– volume: 381
  start-page: 196
  year: 2020
  ident: 9694_CR59
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.11.018
– volume: 354
  start-page: 6692
  year: 2017
  ident: 9694_CR61
  publication-title: J Franklin Instit
  doi: 10.1016/j.jfranklin.2017.08.026
– volume: 354
  start-page: 7028
  year: 2017
  ident: 9694_CR3
  publication-title: J Franklin Instit
  doi: 10.1016/j.jfranklin.2017.08.013
– volume: 31
  start-page: 1504
  issue: 5
  year: 2020
  ident: 9694_CR45
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2019.2920672
– ident: 9694_CR30
  doi: 10.1109/TNNLS.2015.2448549
– volume: 143
  start-page: 90
  year: 2014
  ident: 9694_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.016
– volume: 179
  start-page: 169
  year: 2016
  ident: 9694_CR26
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.11.077
– volume: 171
  start-page: 207
  year: 2020
  ident: 9694_CR57
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2019.05.011
– volume: 352
  start-page: 4382
  year: 2015
  ident: 9694_CR53
  publication-title: J Franklin Instit
  doi: 10.1016/j.jfranklin.2015.07.001
– volume: 116
  start-page: 101
  year: 2019
  ident: 9694_CR9
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.04.008
– volume: 89
  start-page: 74
  year: 2017
  ident: 9694_CR11
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2017.02.001
– volume: 361
  start-page: 56
  year: 2019
  ident: 9694_CR28
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2018.04.017
– volume: 60
  start-page: 2431
  issue: 9
  year: 2013
  ident: 9694_CR52
  publication-title: IEEE Trans Circuits Syst
  doi: 10.1109/TCSI.2013.2244451
– volume: 356
  start-page: 276
  issue: 1
  year: 2019
  ident: 9694_CR44
  publication-title: J Franklin Instit
  doi: 10.1016/j.jfranklin.2018.11.002
– volume: 338
  start-page: 40
  year: 2018
  ident: 9694_CR48
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2017.04.005
– volume: 275
  start-page: 2080
  year: 2018
  ident: 9694_CR19
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.035
– volume: 94
  start-page: 275
  year: 2017
  ident: 9694_CR4
  publication-title: Int J Comput Math
  doi: 10.1080/00207160.2015.1105362
– volume: 356
  start-page: 6656
  year: 2019
  ident: 9694_CR41
  publication-title: J Franklin Instit
  doi: 10.1016/j.jfranklin.2019.03.033
– volume: 249
  start-page: 64
  year: 2017
  ident: 9694_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.017
– volume: 355
  start-page: 6780
  year: 2018
  ident: 9694_CR33
  publication-title: J Franklin Instit
  doi: 10.1016/j.jfranklin.2018.06.041
– volume: 353
  start-page: 2859
  year: 2016
  ident: 9694_CR2
  publication-title: J. Franklin Instit
  doi: 10.1016/j.jfranklin.2016.05.022
– volume: 32
  start-page: 13441
  year: 2020
  ident: 9694_CR54
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-020-04752-7
– volume: 356
  start-page: 9928
  year: 2019
  ident: 9694_CR24
  publication-title: J Franklin Instit
  doi: 10.1016/j.jfranklin.2019.09.015
– volume: 9
  start-page: 189
  issue: 3
  year: 2019
  ident: 9694_CR56
  publication-title: J Artif Intell Soft Comput Res
  doi: 10.2478/jaiscr-2019-0003
– volume: 21
  start-page: 653
  issue: 4
  year: 2018
  ident: 9694_CR46
  publication-title: Gastr Cancer
  doi: 10.1007/s10120-018-0793-2
– volume: 332
  start-page: 29
  year: 2019
  ident: 9694_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.020
– volume: 116
  start-page: 139
  year: 2019
  ident: 9694_CR22
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2019.04.010
– ident: 9694_CR55
  doi: 10.1016/j.matcom.2017.10.016
– volume: 87
  start-page: 122
  year: 2017
  ident: 9694_CR27
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2016.12.006
– volume: 194
  start-page: 1
  year: 2016
  ident: 9694_CR32
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.02.012
– volume: 155
  start-page: 41
  year: 2019
  ident: 9694_CR39
  publication-title: Math Comput Simul
  doi: 10.1016/j.matcom.2017.11.001
– volume: 401
  start-page: 182
  year: 2020
  ident: 9694_CR29
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.03.040
– volume: 47
  start-page: 208
  year: 2017
  ident: 9694_CR62
  publication-title: Appl Math Modell
  doi: 10.1016/j.apm.2017.03.024
– volume: 415
  start-page: 74
  year: 2020
  ident: 9694_CR16
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.07.071
– volume: 313
  start-page: 37
  year: 2017
  ident: 9694_CR43
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2017.05.073
– volume: 357
  start-page: 11136
  year: 2020
  ident: 9694_CR58
  publication-title: J Franklin Instit
  doi: 10.1016/j.jfranklin.2019.05.017
– volume: 28
  start-page: 1889
  issue: 8
  year: 2017
  ident: 9694_CR49
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2016.2552640
– volume: 100
  start-page: 3979
  issue: 4
  year: 2020
  ident: 9694_CR31
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-020-05719-y
– volume: 132
  start-page: 532
  year: 2020
  ident: 9694_CR36
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.09.023
– volume: 84
  start-page: 161
  year: 2016
  ident: 9694_CR1
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2016.09.003
– volume: 355
  start-page: 4665
  year: 2018
  ident: 9694_CR18
  publication-title: J Franklin Instit
  doi: 10.1016/j.jfranklin.2018.04.026
– volume: 6
  start-page: 253
  issue: 2
  year: 2015
  ident: 9694_CR20
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-014-0258-9
– volume: 24
  start-page: 1013
  year: 2011
  ident: 9694_CR50
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2011.06.005
– volume: 90
  start-page: 2057
  year: 2017
  ident: 9694_CR51
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-017-3782-9
– volume: 89
  start-page: 11
  year: 2017
  ident: 9694_CR7
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2016.12.007
– volume: 104
  start-page: 80
  year: 2018
  ident: 9694_CR12
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.04.006
– volume: 7
  start-page: 186470
  year: 2019
  ident: 9694_CR34
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960828
– volume: 57
  start-page: 2106
  year: 2012
  ident: 9694_CR38
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2011.2179869
– volume: 394
  start-page: 87
  year: 2020
  ident: 9694_CR15
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2019.12.002
– volume: 357
  start-page: 11349
  year: 2020
  ident: 9694_CR13
  publication-title: J Franklin Instit
  doi: 10.1016/j.jfranklin.2019.06.025
– volume: 7
  start-page: 83306
  year: 2019
  ident: 9694_CR42
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2924661
– volume: 314
  start-page: 143
  year: 2018
  ident: 9694_CR21
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.06.037
– volume: 125
  start-page: 330
  year: 2020
  ident: 9694_CR35
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2020.02.020
SSID ssj0056814
Score 2.3020732
Snippet This paper is concerned with finite-/fixed-time synchronization for a class of Cohen–Grossberg neural networks with discontinuous or continuous activations and...
This paper is concerned with finite-/fixed-time synchronization for a class of Cohen-Grossberg neural networks with discontinuous or continuous activations and...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 195
SubjectTerms Artificial Intelligence
Biochemistry
Biomedical and Life Sciences
Biomedicine
Cognitive Psychology
Computer Science
Neural networks
Neurosciences
Research Article
Stability
Switching
Synchronization
Time synchronization
Timing
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7RcuFSFRZKoCAjVb2A1U3sJM4JVYjtigMnVtpb5NhedaWStM0u2r31HbjwfDwJM46zy1LRY2Jb-Zmx_c145huAkyrRuK8UaJ1YFIO0xvLKmJjrOCeyD2ed89EWX7PxRH6ZptPgcGtDWGW_JvqF2jaGfORnIk6yAsGtUh-vbzhVjaLT1VBCYw8eY3NGeq5GF_1KTNxa_lQZjQK0k9QwJM10qXNxincpQAFBfCH5andjuoc27wdN_nNy6jek0SEcBCTJzjvRP4VHrn4Gg_Marejva3bKfGynd5oP4NdoTtiSn83mK2c5FZRn7bo2nhm3S8RkiF6ZT9b4fffzgl6RIr8Y8V3iU-ouWrxl5LdllMrbUImJZbNsGY7764oSJTo3b8t-zDUjJuXGHwZdrVmLw33wJgsh8s9hMvr87dOYh5oM3MhcLriwVYo2mk2NE0OH5ogVMptpmyotdZZrl8bCJhZxg5PGGNweESAUidE5qqwVM_EC9uumdi-BiUzbwiqnM4QxuFWrajgTVSHUUOrKKBtB3AukNIGwnOpmXJVbqmUSYolCLL0Qy1UE7zdjrju6jgd7H_dyLsPUbcutokXwbtOMk45OUnTt8FeWCZqBiFsF9Tnq1GLzOIEQilj5Ish3FGbTgQi9d1vq-aUn9sa1FAcmEXzoVWv7Wv__ilcPf8VreJJQyoaPND-G_cXt0r1BILWo3vrZ8gcqSiIU
  priority: 102
  providerName: ProQuest
Title Finite-/fixed-time synchronization for Cohen–Grossberg neural networks with discontinuous or continuous activations via periodically switching control
URI https://link.springer.com/article/10.1007/s11571-021-09694-x
https://www.ncbi.nlm.nih.gov/pubmed/35126778
https://www.proquest.com/docview/3126975888
https://www.proquest.com/docview/2626226388
https://pubmed.ncbi.nlm.nih.gov/PMC8807782
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED9B98ILg40_YWMyEuIFMhrbSZzHDrWdQJoQolJ5ihzb1SpGikg7rTzxHXjh8_FJduckLd0AaQ9N1cRu4tg-_8539zuA5wXXuK5kqJ1Y7AZpjQ0LY6JQRymRfTjrnPe2OEmOR_LtOB43QWFV6-3emiS9pF4Hu0Vxiqovx0-WZDJE5LgVRypTHdjqDT-967cSmDi1vDUZlQHUj1S3CZb5-79sLkjXUOZ1Z8krFlO_EA22YdQ2ofY_-Xy4mBeH5vsVdsebtvEe3G2QKevVQ-k-3HLlDuz2StTKvyzZC-Z9Rf0m_A5st8kgWCMbduHXYErwNXw9mV44G1LOelYtS-PJd-tYT4YAmfl4kN8_fg7pbZBzGSNKTbxxWTukV4y2hhlFC88oi8VitqgY1vvjF8Vi1DvJFTufakZkzTNvbzpbsgqre_9Q1njhP4DRoP_xzXHYpH0IjUzlPBS2iFENtLFxoutQ47FCJhNtY6WlTlLt4khYbhGaOGmMwRUYMUjGjU5xVlgxEQ-hU85K9xiYSLTNrHI6QaSEaEAV3YkoMqG6UhdG2QCitu9z03CiU2qOs3zN5kw9kmOP5L5H8osAXq7qfK0ZQf5ber8dUnkjHapcRDzJUFFTKoBnq8s4r8lYo0uHrzLnqGkiNBZU5lE9Ale3E4jSiPgvgHRjbK4KEGf45pVyeuq5w1FcY0UewKt2AK4f69-teHKz4ntwh1OUiHdu34fO_NvCPUXsNi8O4HY6TvGoBsODZtri91H_5P0HPDscR3gc8d4l1nlIUg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuFVB-AgWMBFwg6sZ2_g4ItdBlS8sKoVbqLTi2V12pJIXswu6Nd-DCU_BQPElnnGSXpaK3HpPY-Zvx-Bt75huAJzlXOK-k6J0YFIM02vi51oGvgpjIPqyx1kVbDKL-oXx3FB6twO82F4bCKlub6Ay1KTWtkW-KgEcpgtskeXX6xaeqUbS72pbQqNViz86-o8tWvdx9g_J9ynlv5-B132-qCvhaxnLsC5OH6GWYUFvRtQiojZDRUJkwUVJFsbJhIAw3OPNZqbVGA49TXMq1ivGnGzEUeN8rsCopo7UDq9s7gw8fW9tPbF5uHxvdEPTMkm6TplMn6wUhnqWQCHQbUulPl6fCc_j2fJjmP3u1bgrsXYe1BruyrVrZbsCKLW7C-laBfvvnGXvGXDSpW6Zfh1-9EaFZf3M4mlrjUwl7Vs0K7bh469RPhniZufSQPz9-vqVXpFgzRgyb-JSijk-vGK0UM0oeLqmoxaScVAz7_XVEqRn1wnLFvo0UI-7m0m0_ncxYhd1duChrgvJvweGlyOs2dIqysHeBiUiZ1CRWRQicEBwkeXco8lQkXalynRgPglYgmW4o0qlSx0m2IHcmIWYoxMwJMZt68Hze57QmCLmw9UYr56wxFlW2UG0PHs8v4zCnvRtVWPyVGUfHE5GyoDZ3arWYP04gaCMeQA_iJYWZNyAK8eUrxejYUYmj9caO3IMXrWotXuv_X3Hv4q94BFf7B-_3s_3dwd59uMYpYcTFuW9AZ_x1Yh8gjBvnD5uxw-DTZQ_XM3_KYUU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6hVkJceLQ8thQwEuICq2Rt7-sYAaE8VHEgUm-W1_aKSMWpuglqbvyHXvr7-kuY8e4mDQUkDjlEa2d3M2PPN56ZbwBeVFyjXSnRO7EoBmmNjStjklgnOZF9OOtcyLY4zA4m8uNRenSlij9ku_chybamgVia_HxwYuvBuvAtSXN0gzl-yqyUMaLIbdyOE9L0CR_1ezGxa4W4MroF6CkVw65s5s-_sWmaruHN62mTv8VOg0ka34XbHZZko1b49-CG8zuwO_LoR39fspcsZHeGY_MduNO3b2Ddat6Fi_GUAGc8qKdnzsbUZZ41S28CXW5bnckQ0rJQwXH58_w9PTWlgzEiwcQb-zaFvGF0mMuovndGfScWs0XDcN6Vb1Q90Z79NuzHVDOiV56FCNHxkjU4PWR0si5v_j5Mxu--vjmIu0YNsZG5nMfCVik6bjY1Tgwd-ihWyKzWNi201FmuXZoIyy2CCSeNMWgzETWU3Ogc9diKWjyALT_z7hEwkWlb2sLpDLEN2u-iGtaiKkUxlLoyhY0g6WWkTMdiTs00jtWaf5nkqlCuKshVnUXwajXnpOXw-Ofo_V70qlvPjRIJz0p0rYoiguery7gSKbyivcO_UnH0DRHMChrzsNWU1e0E4iqi6osg39Ch1QBi-d684qffAts3brA4kUfwute29WP9_S32_m_4M7j55e1Yff5w-Okx3OJU4hEy0_dha366cE8QeM2rp2Ft_QL5gyzs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-%2Ffixed-time+synchronization+for+Cohen%E2%80%93Grossberg+neural+networks+with+discontinuous+or+continuous+activations+via+periodically+switching+control&rft.jtitle=Cognitive+neurodynamics&rft.au=Pu%2C+Hao&rft.au=Li%2C+Fengjun&rft.date=2022-02-01&rft.pub=Springer+Netherlands&rft.issn=1871-4080&rft.eissn=1871-4099&rft.volume=16&rft.issue=1&rft.spage=195&rft.epage=213&rft_id=info:doi/10.1007%2Fs11571-021-09694-x&rft.externalDocID=10_1007_s11571_021_09694_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-4080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-4080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-4080&client=summon