Finite-/fixed-time synchronization for Cohen–Grossberg neural networks with discontinuous or continuous activations via periodically switching control
This paper is concerned with finite-/fixed-time synchronization for a class of Cohen–Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differenti...
Saved in:
Published in | Cognitive neurodynamics Vol. 16; no. 1; pp. 195 - 213 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1871-4080 1871-4099 |
DOI | 10.1007/s11571-021-09694-x |
Cover
Abstract | This paper is concerned with finite-/fixed-time synchronization for a class of Cohen–Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differential inclusion theory, some useful finite-/fixed-time synchronization sufficient conditions for the considered Cohen–Grossberg neural networks are established by designing two kinds of novel periodically switching controllers. Instead of using uninterrupted high control strength, the periodically switching controller in each period is used with high strength control in one stage and weak strength in the other. It can overcome the effects caused by the uncertainties of Filippov solution induced by discontinuous neuron activation functions and reduce the control cost. Besides, the period switching control rate is closely related to the settling time
T
. Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of the obtained results. |
---|---|
AbstractList | This paper is concerned with finite-/fixed-time synchronization for a class of Cohen–Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differential inclusion theory, some useful finite-/fixed-time synchronization sufficient conditions for the considered Cohen–Grossberg neural networks are established by designing two kinds of novel periodically switching controllers. Instead of using uninterrupted high control strength, the periodically switching controller in each period is used with high strength control in one stage and weak strength in the other. It can overcome the effects caused by the uncertainties of Filippov solution induced by discontinuous neuron activation functions and reduce the control cost. Besides, the period switching control rate is closely related to the settling time T. Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of the obtained results. This paper is concerned with finite-/fixed-time synchronization for a class of Cohen–Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differential inclusion theory, some useful finite-/fixed-time synchronization sufficient conditions for the considered Cohen–Grossberg neural networks are established by designing two kinds of novel periodically switching controllers. Instead of using uninterrupted high control strength, the periodically switching controller in each period is used with high strength control in one stage and weak strength in the other. It can overcome the effects caused by the uncertainties of Filippov solution induced by discontinuous neuron activation functions and reduce the control cost. Besides, the period switching control rate is closely related to the settling time T . Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of the obtained results. This paper is concerned with finite-/fixed-time synchronization for a class of Cohen-Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differential inclusion theory, some useful finite-/fixed-time synchronization sufficient conditions for the considered Cohen-Grossberg neural networks are established by designing two kinds of novel periodically switching controllers. Instead of using uninterrupted high control strength, the periodically switching controller in each period is used with high strength control in one stage and weak strength in the other. It can overcome the effects caused by the uncertainties of Filippov solution induced by discontinuous neuron activation functions and reduce the control cost. Besides, the period switching control rate is closely related to the settling time T. Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of the obtained results.This paper is concerned with finite-/fixed-time synchronization for a class of Cohen-Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differential inclusion theory, some useful finite-/fixed-time synchronization sufficient conditions for the considered Cohen-Grossberg neural networks are established by designing two kinds of novel periodically switching controllers. Instead of using uninterrupted high control strength, the periodically switching controller in each period is used with high strength control in one stage and weak strength in the other. It can overcome the effects caused by the uncertainties of Filippov solution induced by discontinuous neuron activation functions and reduce the control cost. Besides, the period switching control rate is closely related to the settling time T. Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of the obtained results. This paper is concerned with finite-/fixed-time synchronization for a class of Cohen-Grossberg neural networks with discontinuous or continuous activations and mixed time delays. Based on the finite-time stability theory, Lyapunov stability theory, the concept of Filippov solution and the differential inclusion theory, some useful finite-/fixed-time synchronization sufficient conditions for the considered Cohen-Grossberg neural networks are established by designing two kinds of novel periodically switching controllers. Instead of using uninterrupted high control strength, the periodically switching controller in each period is used with high strength control in one stage and weak strength in the other. It can overcome the effects caused by the uncertainties of Filippov solution induced by discontinuous neuron activation functions and reduce the control cost. Besides, the period switching control rate is closely related to the settling time . Finally, two numerical examples are given to demonstrate the effectiveness and feasibility of the obtained results. |
Author | Pu, Hao Li, Fengjun |
Author_xml | – sequence: 1 givenname: Hao orcidid: 0000-0002-6835-1275 surname: Pu fullname: Pu, Hao organization: School of Mathematics and Statistics, Ningxia University – sequence: 2 givenname: Fengjun surname: Li fullname: Li, Fengjun email: fjli@nxu.edu.cn organization: School of Mathematics and Statistics, Ningxia University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35126778$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUtVAr-oAfYIEssWET6kecOBskNGoLUiU2ZW157JuJS8Ye7GQ6w4p_YMP38SW4mTKULirLun6cc5_nBB344AGhV5S8o4TUZ4lSUdOCsLybqimLzTN0TGV-KknTHOzPkhyhk5RuCBGVpOVzdMQFZVVdy2P068J5N0Bx1roN2GJwS8Bp600Xg3ff9eCCx22IeBY68L9__LyMIaU5xAX2MEbdZzPchvg14Vs3dNi6ZIIfnB_DmHDmPbhpM7j15DHhtdN4BdEF64zu-y1OmW465xcTI4b-BTpsdZ_g5b09RV8uzq9nH4urz5efZh-uClPW5VBwOxdMNlYY4ASEaCwvq1ZbIXWpq1qDoNwySyWF0hjDK0YFa5jRNWhrectP0fud39U4X4I1kKPrXq2iW-q4VUE79f-Pd51ahLWSkuQOsuzg7b2DGL6NkAa1zE2AvtcectmKVXmxikuZoW8eQW_CGH0uT_E8kKYWckK9fpjRPpW_Q8sAtgOYu2FEaPcQStSdMtROGSorQ03KUJtMko9Ixg3TNHJVrn-aynfUlOP4BcR_aT_B-gPHidVH |
CitedBy_id | crossref_primary_10_1007_s11063_023_11431_w crossref_primary_10_1016_j_neunet_2022_10_033 crossref_primary_10_1007_s12555_021_0721_9 crossref_primary_10_1016_j_ins_2022_05_110 crossref_primary_10_1016_j_cnsns_2023_107295 crossref_primary_10_1177_01423312221140630 crossref_primary_10_3390_e26030199 crossref_primary_10_1016_j_neucom_2023_126460 |
Cites_doi | 10.1016/j.neunet.2017.12.011 10.1016/j.neunet.2015.02.001 10.1016/j.neunet.2016.07.001 10.1016/j.neucom.2018.05.024 10.1016/j.neunet.2019.11.012 10.1016/j.amc.2004.10.028 10.1109/TCSI.2003.818614 10.1016/j.jfranklin.2014.01.008 10.1016/j.neucom.2019.11.018 10.1016/j.jfranklin.2017.08.026 10.1016/j.jfranklin.2017.08.013 10.1109/TNNLS.2019.2920672 10.1109/TNNLS.2015.2448549 10.1016/j.neucom.2014.06.016 10.1016/j.neucom.2015.11.077 10.1016/j.matcom.2019.05.011 10.1016/j.jfranklin.2015.07.001 10.1016/j.neunet.2019.04.008 10.1016/j.neunet.2017.02.001 10.1016/j.fss.2018.04.017 10.1109/TCSI.2013.2244451 10.1016/j.jfranklin.2018.11.002 10.1016/j.fss.2017.04.005 10.1016/j.neucom.2017.10.035 10.1080/00207160.2015.1105362 10.1016/j.jfranklin.2019.03.033 10.1016/j.neucom.2017.03.017 10.1016/j.jfranklin.2018.06.041 10.1016/j.jfranklin.2016.05.022 10.1007/s00521-020-04752-7 10.1016/j.jfranklin.2019.09.015 10.2478/jaiscr-2019-0003 10.1007/s10120-018-0793-2 10.1016/j.neucom.2018.11.020 10.1016/j.neunet.2019.04.010 10.1016/j.matcom.2017.10.016 10.1016/j.neunet.2016.12.006 10.1016/j.neucom.2016.02.012 10.1016/j.matcom.2017.11.001 10.1016/j.neucom.2020.03.040 10.1016/j.apm.2017.03.024 10.1016/j.neucom.2020.07.071 10.1016/j.amc.2017.05.073 10.1016/j.jfranklin.2019.05.017 10.1109/TNNLS.2016.2552640 10.1007/s11071-020-05719-y 10.1016/j.neunet.2020.09.023 10.1016/j.neunet.2016.09.003 10.1016/j.jfranklin.2018.04.026 10.1007/s13042-014-0258-9 10.1016/j.neunet.2011.06.005 10.1007/s11071-017-3782-9 10.1016/j.neunet.2016.12.007 10.1016/j.neunet.2018.04.006 10.1109/ACCESS.2019.2960828 10.1109/TAC.2011.2179869 10.1016/j.fss.2019.12.002 10.1016/j.jfranklin.2019.06.025 10.1109/ACCESS.2019.2924661 10.1016/j.neucom.2018.06.037 10.1016/j.neunet.2020.02.020 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2021 The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021 – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. LK8 M0S M7P P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ 7X8 5PM |
DOI | 10.1007/s11571-021-09694-x |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | ProQuest One Psychology MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Computer Science |
EISSN | 1871-4099 |
EndPage | 213 |
ExternalDocumentID | PMC8807782 35126778 10_1007_s11571_021_09694_x |
Genre | Journal Article |
GrantInformation_xml | – fundername: Guizhou Education Department Youth Science and Technology Talents Growth Project grantid: Qian Jiao he KY zi [2018] 313 funderid: http://dx.doi.org/10.13039/501100013055 – fundername: Ministry of National Defense, People’s Republic of China grantid: 71461027 funderid: http://dx.doi.org/10.13039/501100004717 – fundername: ; grantid: 71461027 – fundername: ; grantid: Qian Jiao he KY zi [2018] 313 |
GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 203 29F 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5VS 67N 67Z 6NX 7X7 875 8FI 8FJ 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG AOIJS ARAPS ARMRJ AXYYD B-. BA0 BAWUL BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI CAG CCPQU COF CS3 CSCUP DDRTE DIK DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EN4 ESBYG F5P FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GX1 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HYE HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KPH LLZTM M4Y M7P MA- NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OK1 OVD P2P PF0 PSYQQ PT4 QOR QOS R89 R9I ROL RPM RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TEORI TR2 TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ NPM PQGLB 3V. 7XB 8FE 8FG 8FH 8FK AZQEC DWQXO GNUQQ JQ2 K9. LK8 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c474t-3db5289d5ce30e559d346fad58a4a67ae513d2d181e4ccc36215292ca7eadd3f3 |
IEDL.DBID | AGYKE |
ISSN | 1871-4080 |
IngestDate | Thu Aug 21 18:38:15 EDT 2025 Thu Sep 04 16:09:03 EDT 2025 Fri Jul 25 11:12:02 EDT 2025 Mon Jul 21 05:59:04 EDT 2025 Thu Apr 24 23:10:15 EDT 2025 Tue Jul 01 02:55:09 EDT 2025 Fri Feb 21 02:46:11 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Finite-/fixed-time synchronization Periodically switching control Discontinuous activation Filippov solution Mixed time delays |
Language | English |
License | The Author(s), under exclusive licence to Springer Nature B.V. 2021. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-3db5289d5ce30e559d346fad58a4a67ae513d2d181e4ccc36215292ca7eadd3f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-6835-1275 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/8807782 |
PMID | 35126778 |
PQID | 3126975888 |
PQPubID | 2043944 |
PageCount | 19 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8807782 proquest_miscellaneous_2626226388 proquest_journals_3126975888 pubmed_primary_35126778 crossref_primary_10_1007_s11571_021_09694_x crossref_citationtrail_10_1007_s11571_021_09694_x springer_journals_10_1007_s11571_021_09694_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Netherlands |
PublicationTitle | Cognitive neurodynamics |
PublicationTitleAbbrev | Cogn Neurodyn |
PublicationTitleAlternate | Cogn Neurodyn |
PublicationYear | 2022 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | Majid, Chongqi, Yucheng (CR31) 2020; 100 Sabri (CR44) 2019; 356 Peng, Dihua, Min (CR37) 2020; 123 Xiaofang, Gang, Shukai Duan, Liu (CR49) 2017; 28 Xinsong, Jinde (CR52) 2013; 60 Gaojian, Cheng, Juan, Haijun (CR18) 2018; 355 Lian, Qian, Hui, Zengyun (CR29) 2020; 401 Wang, Wang, Wang (CR47) 2018; 310 Na, Huina (CR34) 2019; 7 CR30 Forti, Nistri (CR17) 2003; I Leimin, Yi, Guodong (CR26) 2016; 179 Polyakov (CR38) 2012; 57 Abdujelil, Haijun, Cheng (CR3) 2017; 354 Zuowei, Lihong, Lingling (CR60) 2015; 65 Lian, Hui, Lihong (CR28) 2019; 361 Yang, Samidurai, Sriraman (CR56) 2019; 9 Leimin, Zhigang, Junhao, Xiaoping (CR27) 2017; 87 Xinsong, Qiang, Jinling, Bin (CR53) 2015; 352 Prakash, Balasubramaniam, Lakshmanan (CR40) 2016; 83 Abdujelil, Haijun (CR1) 2016; 84 Qintao, Feng, Yan, Jing (CR42) 2019; 7 Xiaoyang, Ho Daniel, Qiang, Jinde (CR51) 2017; 90 Mingwen, Lixiang, Haipeng, Jinghua, Yixian, Yanping, Hui (CR33) 2018; 355 Xiaoyang, Tianping, Jinde, Wenlian (CR50) 2011; 24 Huaiqin, Xiaowei, Li (CR20) 2015; 6 Yi, Xinsong, Rongqiang, Zunshui (CR58) 2020; 357 Ozlem (CR36) 2020; 132 Chao, Lihong, Zuowei (CR9) 2019; 116 Jiarong, Haijun, Cheng, Zhiyong (CR23) 2018; 99 Mei, Haijun, Cheng (CR32) 2016; 194 Abdujelil, Haijun, Zhidong (CR2) 2016; 353 Fangmin, Minghui, Hao, Mengqin (CR16) 2020; 415 Yueheng, Biao, Derong, Zhanyu, Yunli (CR59) 2020; 381 Zuowei, Lihong, Lingling (CR61) 2017; 354 Alimi, Aouiti, Assali (CR6) 2019; 332 Hui, Wangli, Qinglong, Chen (CR22) 2019; 116 Cheng, Juan, Zhanheng, Haijun, Tingwen (CR11) 2017; 89 CR55 Hongzhi, Chunrong, Zhengwen, Ning (CR19) 2018; 275 Hui, Wangli, Qinglong, Chen (CR21) 2018; 314 Fanchao, Quanxin, Rathinasamy (CR15) 2020; 394 Ruoxia, Jinde, Ahmad, Fuad (CR43) 2017; 313 Arjmandzadeh, Safi, Nazemi (CR7) 2017; 89 Effati, Baymani (CR14) 2005; 168 Sabri (CR45) 2020; 31 Qintao, Feng, Hui (CR41) 2019; 356 Abdujelil, Haijun, Zhidong (CR4) 2017; 94 Ozlem (CR35) 2020; 125 Jun, Minghui, Xiaohong, Jiali, Shuangtao (CR25) 2014; 351 Dongshu, Lihong, Longkun, Jinsen (CR12) 2018; 104 Cheng, Juan, Haijun (CR10) 2014; 143 Yang, Sriraman, Shyamsundarraj, Samidurai (CR57) 2020; 171 Xudong, Shiping, Zheng, Tingwen, Yiran (CR54) 2020; 32 Dongxue, Jianxiang, Wei, Xiaodi (CR13) 2020; 357 Wentao (CR48) 2018; 338 Zuowei, Lihong, Lingling (CR62) 2017; 47 Toshiaki, Kazuharu, Tetsuya (CR46) 2018; 21 Jiarong, Haijun, Cheng, Ahmed (CR24) 2019; 356 Chao, Lihong (CR8) 2017; 249 Pradeep, Cao, Murugesu, Rakkiyappan (CR39) 2019; 155 W Dongshu (9694_CR12) 2018; 104 A Sabri (9694_CR45) 2020; 31 L Xiaoyang (9694_CR51) 2017; 90 L Yueheng (9694_CR59) 2020; 381 C Pradeep (9694_CR39) 2019; 155 Y Chao (9694_CR8) 2017; 249 L Hui (9694_CR22) 2019; 116 Y Chao (9694_CR9) 2019; 116 G Qintao (9694_CR42) 2019; 7 Y Xinsong (9694_CR53) 2015; 352 R Fangmin (9694_CR16) 2020; 415 W Peng (9694_CR37) 2020; 123 Z Mingwen (9694_CR33) 2018; 355 A Abdujelil (9694_CR3) 2017; 354 H Toshiaki (9694_CR46) 2018; 21 9694_CR55 L Hui (9694_CR21) 2018; 314 C Zuowei (9694_CR62) 2017; 47 A Abdujelil (9694_CR1) 2016; 84 A Sabri (9694_CR44) 2019; 356 X Xudong (9694_CR54) 2020; 32 J Gaojian (9694_CR18) 2018; 355 W Leimin (9694_CR26) 2016; 179 L Jiarong (9694_CR24) 2019; 356 H Xiaofang (9694_CR49) 2017; 28 S Effati (9694_CR14) 2005; 168 AM Alimi (9694_CR6) 2019; 332 M Forti (9694_CR17) 2003; I W Wentao (9694_CR48) 2018; 338 W Huaiqin (9694_CR20) 2015; 6 M Prakash (9694_CR40) 2016; 83 L Ruoxia (9694_CR43) 2017; 313 K Fanchao (9694_CR15) 2020; 394 H Cheng (9694_CR10) 2014; 143 G Qintao (9694_CR41) 2019; 356 A Abdujelil (9694_CR4) 2017; 94 M Jun (9694_CR25) 2014; 351 D Lian (9694_CR29) 2020; 401 Z Wang (9694_CR47) 2018; 310 S Na (9694_CR34) 2019; 7 C Zuowei (9694_CR61) 2017; 354 H Cheng (9694_CR11) 2017; 89 F Ozlem (9694_CR36) 2020; 132 C Zuowei (9694_CR60) 2015; 65 W Leimin (9694_CR27) 2017; 87 C Yang (9694_CR56) 2019; 9 Y Xinsong (9694_CR52) 2013; 60 Z Arjmandzadeh (9694_CR7) 2017; 89 R Majid (9694_CR31) 2020; 100 A Abdujelil (9694_CR2) 2016; 353 9694_CR30 L Mei (9694_CR32) 2016; 194 Z Yi (9694_CR58) 2020; 357 D Lian (9694_CR28) 2019; 361 L Jiarong (9694_CR23) 2018; 99 F Ozlem (9694_CR35) 2020; 125 P Dongxue (9694_CR13) 2020; 357 W Hongzhi (9694_CR19) 2018; 275 L Xiaoyang (9694_CR50) 2011; 24 C Yang (9694_CR57) 2020; 171 A Polyakov (9694_CR38) 2012; 57 |
References_xml | – volume: 123 start-page: 1 year: 2020 end-page: 11 ident: CR37 article-title: Finite-time and fixed-time anti-synchronization of Markovian neural networks with stochastic disturbances via switching control publication-title: Neural Netw – volume: 60 start-page: 2431 issue: 9 year: 2013 end-page: 2439 ident: CR52 article-title: Exponential synchronization of delayed neural networks with discontinuous activations publication-title: IEEE Trans Circuits Syst – volume: 116 start-page: 139 year: 2019 end-page: 149 ident: CR22 article-title: Fixed-time pinning-controlled synchronization for coupled delayed neural networks with discontinuous activations publication-title: Neural Netw – volume: 7 start-page: 186470 year: 2019 end-page: 186479 ident: CR34 article-title: Super resolution reconstruction of images based on interpolation and full convolutional neural network and application in medical fields publication-title: IEEE Access – volume: 351 start-page: 2691 year: 2014 end-page: 2710 ident: CR25 article-title: Finite-time synchronization of drive-response systems via periodically intermittent adaptive control publication-title: J Franklin Instit – volume: 355 start-page: 6780 year: 2018 end-page: 6809 ident: CR33 article-title: Fixed-time synchronization of memristor-based fuzzy cellular neural network with time-varying delay publication-title: J Franklin Instit – volume: 361 start-page: 56 year: 2019 end-page: 70 ident: CR28 article-title: Finite-time synchronization of delayed fuzzy cellular neural networks with discontinuous activations publication-title: Fuzzy Sets Syst – volume: 89 start-page: 74 year: 2017 end-page: 83 ident: CR11 article-title: Fixed-time stability of dynamical systems and fixed-time synchronization of coupled discontinuous neural networks publication-title: Neural Netw – volume: 394 start-page: 87 year: 2020 end-page: 109 ident: CR15 article-title: Finite-time and fixed-time synchronization control of fuzzy Cohen–Grossberg neural networks publication-title: Fuzzy Sets Syst – volume: 194 start-page: 1 year: 2016 end-page: 9 ident: CR32 article-title: Finite-time synchronization of memristor-based Cohen–Grossberg neural networks with time-varying delays publication-title: Neurocomputing – volume: 354 start-page: 7028 year: 2017 end-page: 7052 ident: CR3 article-title: General decay synchronization of memristor-based Cohen–Grossberg neural networks with mixed time-delays and discontinuous activations publication-title: J Franklin Instit – volume: 310 start-page: 213 year: 2018 end-page: 222 ident: CR47 article-title: An intelligent diagnosis scheme based on generative adversarial learning deep neural networks and its application to planetary gearbox fault pattern recognition publication-title: Neurocomputing – volume: 99 start-page: 101 year: 2018 end-page: 113 ident: CR23 article-title: Multiple types of synchronization analysis for discontinuous Cohen–Grossberg neural networks with time-varying delays publication-title: Neural Netw – volume: 249 start-page: 64 year: 2017 end-page: 71 ident: CR8 article-title: Finite-time synchronization of coupled time-delayed neural networks with discontinuous activations publication-title: Neurocomputing – volume: 401 start-page: 182 year: 2020 end-page: 192 ident: CR29 article-title: Multi-type synchronization dynamics of delayed reaction–diffusion recurrent neural networks with discontinuous activations publication-title: Neurocomputing – volume: 125 start-page: 330 year: 2020 end-page: 337 ident: CR35 article-title: New criteria for global stability of neutral-type Cohen–Grossberg neural networks with multiple delays publication-title: Neural Netw – volume: 90 start-page: 2057 year: 2017 end-page: 2068 ident: CR51 article-title: Finite-/fixed-time robust stabilization of switched discontinuous systems with disturbances publication-title: Nonlinear Dyn – volume: 338 start-page: 40 year: 2018 end-page: 49 ident: CR48 article-title: Finite-time synchronization for a class of fuzzy cellular neural networks with time-varying coefficients and proportional delays publication-title: Fuzzy Sets Syst – volume: 132 start-page: 532 year: 2020 end-page: 539 ident: CR36 article-title: An improved Lyapunov functional with application to stability of Cohen-Grossberg neural networks of neutral-type with multiple delays publication-title: Neural Netw – volume: 313 start-page: 37 year: 2017 end-page: 51 ident: CR43 article-title: Exponential and fixed-time synchronization of Cohen-Grossberg neural networks with time-varying delays publication-title: Appl Math Comput – volume: 6 start-page: 253 issue: 2 year: 2015 end-page: 263 ident: CR20 article-title: Adaptive exponential synchronization of delayed Cohen–Grossberg neural networks with discontinuous activations publication-title: Int J Mach Learn Cybern – volume: 143 start-page: 90 year: 2014 end-page: 96 ident: CR10 article-title: Finite-time synchronization of delayed neural networks with Cohen–Grossberg type based on delayed feedback control publication-title: Neurocomputing – volume: 354 start-page: 6692 year: 2017 end-page: 6723 ident: CR61 article-title: Improved switching controllers for finite-time synchronization of delayed neural networks with discontinuous activations publication-title: J Franklin Instit – volume: 314 start-page: 143 year: 2018 end-page: 153 ident: CR21 article-title: Fixed-time synchronization for coupled delayed neural networks with discontinuous or continuous activations publication-title: Neurocomputing – volume: 83 start-page: 86 year: 2016 end-page: 93 ident: CR40 article-title: Synchronization of Markovian jumping inertial neural networks and its applications in image encryption publication-title: Neural Netw – volume: 353 start-page: 2859 year: 2016 end-page: 2880 ident: CR2 article-title: Exponential lag synchronization for memristor-based neural networks with mixed time delays via hybrid switching control publication-title: J. Franklin Instit – volume: 116 start-page: 101 year: 2019 end-page: 109 ident: CR9 article-title: Fixed-time synchronization of coupled memristor-based neural networks with time-varying delays publication-title: Neural Netw – volume: 100 start-page: 3979 issue: 4 year: 2020 end-page: 4001 ident: CR31 article-title: Adaptive model-free synchronization of different fractional-order neural networks with an application in cryptography publication-title: Nonlinear Dyn – volume: 47 start-page: 208 year: 2017 end-page: 226 ident: CR62 article-title: Finite-time synchronization of master-slave neural networks with time-delays and discontinuous activations publication-title: Appl Math Modell – volume: 415 start-page: 74 year: 2020 end-page: 83 ident: CR16 article-title: Quasi fixed-time synchronization of memristive Cohen–Grossberg neural networks with reaction–diffusion publication-title: Neurocomputing – volume: 9 start-page: 189 issue: 3 year: 2019 end-page: 204 ident: CR56 article-title: Stability and dissipativity analysis for neural type stochastic Markovian jump static neural networks with time delays publication-title: J Artif Intell Soft Comput Res – volume: 275 start-page: 2080 year: 2018 end-page: 2092 ident: CR19 article-title: New results on passivity analysis of memristive neural networks with time-varying delays and reaction–diffusion term publication-title: Neurocomputing – volume: 332 start-page: 29 year: 2019 end-page: 43 ident: CR6 article-title: Finite-time and fixed-time synchronization of a class of inertial neural networks with multi-proportional delays and its application to secure communication publication-title: Neurocomputing – volume: 155 start-page: 41 year: 2019 end-page: 56 ident: CR39 article-title: An event-triggered synchronization of semi-Markov jump neural networks with time-varying delays based on generalized free-weighting-matrix approach publication-title: Math Comput Simul – volume: 21 start-page: 653 issue: 4 year: 2018 end-page: 660 ident: CR46 article-title: Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images publication-title: Gastr Cancer – volume: 87 start-page: 122 year: 2017 end-page: 131 ident: CR27 article-title: Controller design for global fixed-time synchronization of delayed neural networks with discontinuous activations publication-title: Neural Netw – volume: 24 start-page: 1013 year: 2011 end-page: 1021 ident: CR50 article-title: Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameter mismatches publication-title: Neural Netw – ident: CR30 – volume: 7 start-page: 83306 year: 2019 end-page: 83318 ident: CR42 article-title: Fixed-Time cluster synchronization of discontinuous directed community networks via periodically or aperiodically switching control publication-title: IEEE Access – volume: 84 start-page: 161 year: 2016 end-page: 171 ident: CR1 article-title: New results on exponential synchronization of memristor-based neural networks with discontinuous neuron activations publication-title: Neural Netw – volume: 57 start-page: 2106 year: 2012 end-page: 2110 ident: CR38 article-title: Nonlinear feedback design for fixed-time stabilization of linear control systems publication-title: IEEE Trans Autom Control – volume: 89 start-page: 11 year: 2017 end-page: 18 ident: CR7 article-title: A new neural network model for solving random interval linear programming problems publication-title: Neural Netw – volume: 65 start-page: 105 year: 2015 end-page: 114 ident: CR60 article-title: New exponential synchronization criteria for time-varying delayed neural networks with discontinuous activations publication-title: Neural Netw – volume: I start-page: 1421 issue: 50 year: 2003 end-page: 1435 ident: CR17 article-title: Global convergence of neural networks with discontinuous neuron activations publication-title: IEEE Trans Circuits Syst I-regular Papers – volume: 171 start-page: 207 year: 2020 end-page: 220 ident: CR57 article-title: Robust stability of uncertain stochastic complex-valued neural networks with additive time-varying delays publication-title: Math Comput Simul – volume: 357 start-page: 11136 year: 2020 end-page: 11152 ident: CR58 article-title: Finite-time quantized synchronization of coupled discontinuous competitive neural networks with proportional delay and impulsive effects publication-title: J Franklin Instit – volume: 168 start-page: 1370 issue: 2 year: 2005 end-page: 1379 ident: CR14 article-title: A new nonlinear neural network for solving convex nonlinear programming problems publication-title: Appl Math Comput – volume: 381 start-page: 196 year: 2020 end-page: 206 ident: CR59 article-title: Adaptive synchronization of memristor-based neural networks with discontinuous activations publication-title: Neurocomputing – volume: 356 start-page: 9928 year: 2019 end-page: 9952 ident: CR24 article-title: Finite/fixed-time synchronization control of coupled memristive neural networks publication-title: J Franklin Instit – volume: 356 start-page: 6656 year: 2019 end-page: 6677 ident: CR41 article-title: Fixed-time outer synchronization of hybrid-coupled delayed complex networks via periodically semi-intermittent control publication-title: J Franklin Instit – volume: 31 start-page: 1504 issue: 5 year: 2020 end-page: 1513 ident: CR45 article-title: New criteria for stability of neutral-type neural networks with multiple time delays publication-title: IEEE Trans Neural Netw Learn Syst – volume: 179 start-page: 169 year: 2016 end-page: 175 ident: CR26 article-title: General decay synchronization stability for a class of delayed chaotic neural networks with discontinuous activations publication-title: Neurocomputing – volume: 355 start-page: 4665 year: 2018 end-page: 4685 ident: CR18 article-title: Finite-time and fixed-time synchronization of discontinuous complex networks: a unified control framework design publication-title: J Franklin Instit – volume: 104 start-page: 80 year: 2018 end-page: 92 ident: CR12 article-title: Generalized pinning synchronization of delayed Cohen–Grossberg neural networks with discontinuous activations publication-title: Neural Netw – volume: 94 start-page: 275 year: 2017 end-page: 295 ident: CR4 article-title: Lag synchronization for Cohen-Grossberg neural networks with mixed time-delays via periodically intermittent control publication-title: Int J Comput Math – ident: CR55 – volume: 357 start-page: 11349 year: 2020 end-page: 11367 ident: CR13 article-title: Finite-time synchronization of coupled Cohen–Grossberg neural networks with mixed time delays publication-title: J Franklin Instit – volume: 28 start-page: 1889 issue: 8 year: 2017 end-page: 1901 ident: CR49 article-title: A memristive multilayer cellular neural network with applications to image processing publication-title: IEEE Trans Neural Netw Learn Syst – volume: 32 start-page: 13441 year: 2020 end-page: 13452 ident: CR54 article-title: Designing pulse-coupled neural networks with spike-synchronization-dependent plasticity rule: image segmentation and memristor circuit application publication-title: Neural Comput Appl – volume: 356 start-page: 276 issue: 1 year: 2019 end-page: 291 ident: CR44 article-title: A modified Lyapunov functional with application to stability of neutral-type neural networks with time delays publication-title: J Franklin Instit – volume: 352 start-page: 4382 year: 2015 end-page: 4406 ident: CR53 article-title: Finite-time synchronization of coupled discontinuous neural networks with mixed delays and nonidentical perturbations publication-title: J Franklin Instit – volume: 99 start-page: 101 year: 2018 ident: 9694_CR23 publication-title: Neural Netw doi: 10.1016/j.neunet.2017.12.011 – volume: 65 start-page: 105 year: 2015 ident: 9694_CR60 publication-title: Neural Netw doi: 10.1016/j.neunet.2015.02.001 – volume: 83 start-page: 86 year: 2016 ident: 9694_CR40 publication-title: Neural Netw doi: 10.1016/j.neunet.2016.07.001 – volume: 310 start-page: 213 year: 2018 ident: 9694_CR47 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.05.024 – volume: 123 start-page: 1 year: 2020 ident: 9694_CR37 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.11.012 – volume: 168 start-page: 1370 issue: 2 year: 2005 ident: 9694_CR14 publication-title: Appl Math Comput doi: 10.1016/j.amc.2004.10.028 – volume: I start-page: 1421 issue: 50 year: 2003 ident: 9694_CR17 publication-title: IEEE Trans Circuits Syst I-regular Papers doi: 10.1109/TCSI.2003.818614 – volume: 351 start-page: 2691 year: 2014 ident: 9694_CR25 publication-title: J Franklin Instit doi: 10.1016/j.jfranklin.2014.01.008 – volume: 381 start-page: 196 year: 2020 ident: 9694_CR59 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.018 – volume: 354 start-page: 6692 year: 2017 ident: 9694_CR61 publication-title: J Franklin Instit doi: 10.1016/j.jfranklin.2017.08.026 – volume: 354 start-page: 7028 year: 2017 ident: 9694_CR3 publication-title: J Franklin Instit doi: 10.1016/j.jfranklin.2017.08.013 – volume: 31 start-page: 1504 issue: 5 year: 2020 ident: 9694_CR45 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2019.2920672 – ident: 9694_CR30 doi: 10.1109/TNNLS.2015.2448549 – volume: 143 start-page: 90 year: 2014 ident: 9694_CR10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.06.016 – volume: 179 start-page: 169 year: 2016 ident: 9694_CR26 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.11.077 – volume: 171 start-page: 207 year: 2020 ident: 9694_CR57 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2019.05.011 – volume: 352 start-page: 4382 year: 2015 ident: 9694_CR53 publication-title: J Franklin Instit doi: 10.1016/j.jfranklin.2015.07.001 – volume: 116 start-page: 101 year: 2019 ident: 9694_CR9 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.04.008 – volume: 89 start-page: 74 year: 2017 ident: 9694_CR11 publication-title: Neural Netw doi: 10.1016/j.neunet.2017.02.001 – volume: 361 start-page: 56 year: 2019 ident: 9694_CR28 publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2018.04.017 – volume: 60 start-page: 2431 issue: 9 year: 2013 ident: 9694_CR52 publication-title: IEEE Trans Circuits Syst doi: 10.1109/TCSI.2013.2244451 – volume: 356 start-page: 276 issue: 1 year: 2019 ident: 9694_CR44 publication-title: J Franklin Instit doi: 10.1016/j.jfranklin.2018.11.002 – volume: 338 start-page: 40 year: 2018 ident: 9694_CR48 publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2017.04.005 – volume: 275 start-page: 2080 year: 2018 ident: 9694_CR19 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.10.035 – volume: 94 start-page: 275 year: 2017 ident: 9694_CR4 publication-title: Int J Comput Math doi: 10.1080/00207160.2015.1105362 – volume: 356 start-page: 6656 year: 2019 ident: 9694_CR41 publication-title: J Franklin Instit doi: 10.1016/j.jfranklin.2019.03.033 – volume: 249 start-page: 64 year: 2017 ident: 9694_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.03.017 – volume: 355 start-page: 6780 year: 2018 ident: 9694_CR33 publication-title: J Franklin Instit doi: 10.1016/j.jfranklin.2018.06.041 – volume: 353 start-page: 2859 year: 2016 ident: 9694_CR2 publication-title: J. Franklin Instit doi: 10.1016/j.jfranklin.2016.05.022 – volume: 32 start-page: 13441 year: 2020 ident: 9694_CR54 publication-title: Neural Comput Appl doi: 10.1007/s00521-020-04752-7 – volume: 356 start-page: 9928 year: 2019 ident: 9694_CR24 publication-title: J Franklin Instit doi: 10.1016/j.jfranklin.2019.09.015 – volume: 9 start-page: 189 issue: 3 year: 2019 ident: 9694_CR56 publication-title: J Artif Intell Soft Comput Res doi: 10.2478/jaiscr-2019-0003 – volume: 21 start-page: 653 issue: 4 year: 2018 ident: 9694_CR46 publication-title: Gastr Cancer doi: 10.1007/s10120-018-0793-2 – volume: 332 start-page: 29 year: 2019 ident: 9694_CR6 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.11.020 – volume: 116 start-page: 139 year: 2019 ident: 9694_CR22 publication-title: Neural Netw doi: 10.1016/j.neunet.2019.04.010 – ident: 9694_CR55 doi: 10.1016/j.matcom.2017.10.016 – volume: 87 start-page: 122 year: 2017 ident: 9694_CR27 publication-title: Neural Netw doi: 10.1016/j.neunet.2016.12.006 – volume: 194 start-page: 1 year: 2016 ident: 9694_CR32 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.02.012 – volume: 155 start-page: 41 year: 2019 ident: 9694_CR39 publication-title: Math Comput Simul doi: 10.1016/j.matcom.2017.11.001 – volume: 401 start-page: 182 year: 2020 ident: 9694_CR29 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.03.040 – volume: 47 start-page: 208 year: 2017 ident: 9694_CR62 publication-title: Appl Math Modell doi: 10.1016/j.apm.2017.03.024 – volume: 415 start-page: 74 year: 2020 ident: 9694_CR16 publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.07.071 – volume: 313 start-page: 37 year: 2017 ident: 9694_CR43 publication-title: Appl Math Comput doi: 10.1016/j.amc.2017.05.073 – volume: 357 start-page: 11136 year: 2020 ident: 9694_CR58 publication-title: J Franklin Instit doi: 10.1016/j.jfranklin.2019.05.017 – volume: 28 start-page: 1889 issue: 8 year: 2017 ident: 9694_CR49 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2016.2552640 – volume: 100 start-page: 3979 issue: 4 year: 2020 ident: 9694_CR31 publication-title: Nonlinear Dyn doi: 10.1007/s11071-020-05719-y – volume: 132 start-page: 532 year: 2020 ident: 9694_CR36 publication-title: Neural Netw doi: 10.1016/j.neunet.2020.09.023 – volume: 84 start-page: 161 year: 2016 ident: 9694_CR1 publication-title: Neural Netw doi: 10.1016/j.neunet.2016.09.003 – volume: 355 start-page: 4665 year: 2018 ident: 9694_CR18 publication-title: J Franklin Instit doi: 10.1016/j.jfranklin.2018.04.026 – volume: 6 start-page: 253 issue: 2 year: 2015 ident: 9694_CR20 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-014-0258-9 – volume: 24 start-page: 1013 year: 2011 ident: 9694_CR50 publication-title: Neural Netw doi: 10.1016/j.neunet.2011.06.005 – volume: 90 start-page: 2057 year: 2017 ident: 9694_CR51 publication-title: Nonlinear Dyn doi: 10.1007/s11071-017-3782-9 – volume: 89 start-page: 11 year: 2017 ident: 9694_CR7 publication-title: Neural Netw doi: 10.1016/j.neunet.2016.12.007 – volume: 104 start-page: 80 year: 2018 ident: 9694_CR12 publication-title: Neural Netw doi: 10.1016/j.neunet.2018.04.006 – volume: 7 start-page: 186470 year: 2019 ident: 9694_CR34 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960828 – volume: 57 start-page: 2106 year: 2012 ident: 9694_CR38 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2011.2179869 – volume: 394 start-page: 87 year: 2020 ident: 9694_CR15 publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2019.12.002 – volume: 357 start-page: 11349 year: 2020 ident: 9694_CR13 publication-title: J Franklin Instit doi: 10.1016/j.jfranklin.2019.06.025 – volume: 7 start-page: 83306 year: 2019 ident: 9694_CR42 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2924661 – volume: 314 start-page: 143 year: 2018 ident: 9694_CR21 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.06.037 – volume: 125 start-page: 330 year: 2020 ident: 9694_CR35 publication-title: Neural Netw doi: 10.1016/j.neunet.2020.02.020 |
SSID | ssj0056814 |
Score | 2.3020732 |
Snippet | This paper is concerned with finite-/fixed-time synchronization for a class of Cohen–Grossberg neural networks with discontinuous or continuous activations and... This paper is concerned with finite-/fixed-time synchronization for a class of Cohen-Grossberg neural networks with discontinuous or continuous activations and... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 195 |
SubjectTerms | Artificial Intelligence Biochemistry Biomedical and Life Sciences Biomedicine Cognitive Psychology Computer Science Neural networks Neurosciences Research Article Stability Switching Synchronization Time synchronization Timing |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwEB7RcuFSFRZKoCAjVb2A1U3sJM4JVYjtigMnVtpb5NhedaWStM0u2r31HbjwfDwJM46zy1LRY2Jb-Zmx_c145huAkyrRuK8UaJ1YFIO0xvLKmJjrOCeyD2ed89EWX7PxRH6ZptPgcGtDWGW_JvqF2jaGfORnIk6yAsGtUh-vbzhVjaLT1VBCYw8eY3NGeq5GF_1KTNxa_lQZjQK0k9QwJM10qXNxincpQAFBfCH5andjuoc27wdN_nNy6jek0SEcBCTJzjvRP4VHrn4Gg_Marejva3bKfGynd5oP4NdoTtiSn83mK2c5FZRn7bo2nhm3S8RkiF6ZT9b4fffzgl6RIr8Y8V3iU-ouWrxl5LdllMrbUImJZbNsGY7764oSJTo3b8t-zDUjJuXGHwZdrVmLw33wJgsh8s9hMvr87dOYh5oM3MhcLriwVYo2mk2NE0OH5ogVMptpmyotdZZrl8bCJhZxg5PGGNweESAUidE5qqwVM_EC9uumdi-BiUzbwiqnM4QxuFWrajgTVSHUUOrKKBtB3AukNIGwnOpmXJVbqmUSYolCLL0Qy1UE7zdjrju6jgd7H_dyLsPUbcutokXwbtOMk45OUnTt8FeWCZqBiFsF9Tnq1GLzOIEQilj5Ish3FGbTgQi9d1vq-aUn9sa1FAcmEXzoVWv7Wv__ilcPf8VreJJQyoaPND-G_cXt0r1BILWo3vrZ8gcqSiIU priority: 102 providerName: ProQuest |
Title | Finite-/fixed-time synchronization for Cohen–Grossberg neural networks with discontinuous or continuous activations via periodically switching control |
URI | https://link.springer.com/article/10.1007/s11571-021-09694-x https://www.ncbi.nlm.nih.gov/pubmed/35126778 https://www.proquest.com/docview/3126975888 https://www.proquest.com/docview/2626226388 https://pubmed.ncbi.nlm.nih.gov/PMC8807782 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwED9B98ILg40_YWMyEuIFMhrbSZzHDrWdQJoQolJ5ihzb1SpGikg7rTzxHXjh8_FJduckLd0AaQ9N1cRu4tg-_8539zuA5wXXuK5kqJ1Y7AZpjQ0LY6JQRymRfTjrnPe2OEmOR_LtOB43QWFV6-3emiS9pF4Hu0Vxiqovx0-WZDJE5LgVRypTHdjqDT-967cSmDi1vDUZlQHUj1S3CZb5-79sLkjXUOZ1Z8krFlO_EA22YdQ2ofY_-Xy4mBeH5vsVdsebtvEe3G2QKevVQ-k-3HLlDuz2StTKvyzZC-Z9Rf0m_A5st8kgWCMbduHXYErwNXw9mV44G1LOelYtS-PJd-tYT4YAmfl4kN8_fg7pbZBzGSNKTbxxWTukV4y2hhlFC88oi8VitqgY1vvjF8Vi1DvJFTufakZkzTNvbzpbsgqre_9Q1njhP4DRoP_xzXHYpH0IjUzlPBS2iFENtLFxoutQ47FCJhNtY6WlTlLt4khYbhGaOGmMwRUYMUjGjU5xVlgxEQ-hU85K9xiYSLTNrHI6QaSEaEAV3YkoMqG6UhdG2QCitu9z03CiU2qOs3zN5kw9kmOP5L5H8osAXq7qfK0ZQf5ber8dUnkjHapcRDzJUFFTKoBnq8s4r8lYo0uHrzLnqGkiNBZU5lE9Ale3E4jSiPgvgHRjbK4KEGf45pVyeuq5w1FcY0UewKt2AK4f69-teHKz4ntwh1OUiHdu34fO_NvCPUXsNi8O4HY6TvGoBsODZtri91H_5P0HPDscR3gc8d4l1nlIUg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6V7QEuFVB-AgWMBFwg6sZ2_g4ItdBlS8sKoVbqLTi2V12pJIXswu6Nd-DCU_BQPElnnGSXpaK3HpPY-Zvx-Bt75huAJzlXOK-k6J0YFIM02vi51oGvgpjIPqyx1kVbDKL-oXx3FB6twO82F4bCKlub6Ay1KTWtkW-KgEcpgtskeXX6xaeqUbS72pbQqNViz86-o8tWvdx9g_J9ynlv5-B132-qCvhaxnLsC5OH6GWYUFvRtQiojZDRUJkwUVJFsbJhIAw3OPNZqbVGA49TXMq1ivGnGzEUeN8rsCopo7UDq9s7gw8fW9tPbF5uHxvdEPTMkm6TplMn6wUhnqWQCHQbUulPl6fCc_j2fJjmP3u1bgrsXYe1BruyrVrZbsCKLW7C-laBfvvnGXvGXDSpW6Zfh1-9EaFZf3M4mlrjUwl7Vs0K7bh469RPhniZufSQPz9-vqVXpFgzRgyb-JSijk-vGK0UM0oeLqmoxaScVAz7_XVEqRn1wnLFvo0UI-7m0m0_ncxYhd1duChrgvJvweGlyOs2dIqysHeBiUiZ1CRWRQicEBwkeXco8lQkXalynRgPglYgmW4o0qlSx0m2IHcmIWYoxMwJMZt68Hze57QmCLmw9UYr56wxFlW2UG0PHs8v4zCnvRtVWPyVGUfHE5GyoDZ3arWYP04gaCMeQA_iJYWZNyAK8eUrxejYUYmj9caO3IMXrWotXuv_X3Hv4q94BFf7B-_3s_3dwd59uMYpYcTFuW9AZ_x1Yh8gjBvnD5uxw-DTZQ_XM3_KYUU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6hVkJceLQ8thQwEuICq2Rt7-sYAaE8VHEgUm-W1_aKSMWpuglqbvyHXvr7-kuY8e4mDQUkDjlEa2d3M2PPN56ZbwBeVFyjXSnRO7EoBmmNjStjklgnOZF9OOtcyLY4zA4m8uNRenSlij9ku_chybamgVia_HxwYuvBuvAtSXN0gzl-yqyUMaLIbdyOE9L0CR_1ezGxa4W4MroF6CkVw65s5s-_sWmaruHN62mTv8VOg0ka34XbHZZko1b49-CG8zuwO_LoR39fspcsZHeGY_MduNO3b2Ddat6Fi_GUAGc8qKdnzsbUZZ41S28CXW5bnckQ0rJQwXH58_w9PTWlgzEiwcQb-zaFvGF0mMuovndGfScWs0XDcN6Vb1Q90Z79NuzHVDOiV56FCNHxkjU4PWR0si5v_j5Mxu--vjmIu0YNsZG5nMfCVik6bjY1Tgwd-ihWyKzWNi201FmuXZoIyy2CCSeNMWgzETWU3Ogc9diKWjyALT_z7hEwkWlb2sLpDLEN2u-iGtaiKkUxlLoyhY0g6WWkTMdiTs00jtWaf5nkqlCuKshVnUXwajXnpOXw-Ofo_V70qlvPjRIJz0p0rYoiguery7gSKbyivcO_UnH0DRHMChrzsNWU1e0E4iqi6osg39Ch1QBi-d684qffAts3brA4kUfwute29WP9_S32_m_4M7j55e1Yff5w-Okx3OJU4hEy0_dha366cE8QeM2rp2Ft_QL5gyzs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finite-%2Ffixed-time+synchronization+for+Cohen%E2%80%93Grossberg+neural+networks+with+discontinuous+or+continuous+activations+via+periodically+switching+control&rft.jtitle=Cognitive+neurodynamics&rft.au=Pu%2C+Hao&rft.au=Li%2C+Fengjun&rft.date=2022-02-01&rft.pub=Springer+Netherlands&rft.issn=1871-4080&rft.eissn=1871-4099&rft.volume=16&rft.issue=1&rft.spage=195&rft.epage=213&rft_id=info:doi/10.1007%2Fs11571-021-09694-x&rft.externalDocID=10_1007_s11571_021_09694_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1871-4080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1871-4080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1871-4080&client=summon |