Development of machine learning models to prognosticate chronic shunt-dependent hydrocephalus after aneurysmal subarachnoid hemorrhage

Background Shunt-dependent hydrocephalus significantly complicates subarachnoid hemorrhage (SAH), and reliable prognosis methods have been sought in recent years to reduce morbidity and costs associated with delayed treatment or neglected onset. Machine learning (ML) defines modern data analysis tec...

Full description

Saved in:
Bibliographic Details
Published inActa neurochirurgica Vol. 162; no. 12; pp. 3093 - 3105
Main Authors Muscas, Giovanni, Matteuzzi, Tommaso, Becattini, Eleonora, Orlandini, Simone, Battista, Francesca, Laiso, Antonio, Nappini, Sergio, Limbucci, Nicola, Renieri, Leonardo, Carangelo, Biagio R., Mangiafico, Salvatore, Della Puppa, Alessandro
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…