Likelihood-Based Association Analysis for Nuclear Families and Unrelated Subjects with Missing Genotype Data

Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible...

Full description

Saved in:
Bibliographic Details
Published inHuman heredity Vol. 66; no. 2; pp. 87 - 98
Main Author Dudbridge, Frank
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.01.2008
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible loss of robustness to confounding by population stratification. Here a novel likelihood for nuclear families is proposed, in which distinct sets of association parameters are used to model the parental genotypes and the offspring genotypes. This approach is robust to population structure when the data are complete, and has only minor loss of robustness when there are missing data. It also allows a novel conditioning step that gives valid analysis for multiple offspring in the presence of linkage. Unrelated subjects are included by regarding them as the children of two missing parents. Simulations and theory indicate similar operating characteristics to TRANSMIT, but with no bias with missing data in the presence of linkage. In comparison with FBAT and PCPH, the proposed model is slightly less robust to population structure but has greater power to detect strong effects. In comparison to APL and MITDT, the model is more robust to stratification and can accommodate sibships of any size. The methods are implemented for binary and continuous traits in software, UNPHASED, available from the author.
AbstractList Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible loss of robustness to confounding by population stratification. Here a novel likelihood for nuclear families is proposed, in which distinct sets of association parameters are used to model the parental genotypes and the offspring genotypes. This approach is robust to population structure when the data are complete, and has only minor loss of robustness when there are missing data. It also allows a novel conditioning step that gives valid analysis for multiple offspring in the presence of linkage. Unrelated subjects are included by regarding them as the children of two missing parents. Simulations and theory indicate similar operating characteristics to TRANSMIT, but with no bias with missing data in the presence of linkage. In comparison with FBAT and PCPH, the proposed model is slightly less robust to population structure but has greater power to detect strong effects. In comparison to APL and MITDT, the model is more robust to stratification and can accommodate sibships of any size. The methods are implemented for binary and continuous traits in software, UNPHASED, available from the author.
Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible loss of robustness to confounding by population stratification. Here a novel likelihood for nuclear families is proposed, in which distinct sets of association parameters are used to model the parental genotypes and the offspring genotypes. This approach is robust to population structure when the data are complete, and has only minor loss of robustness when there are missing data. It also allows a novel conditioning step that gives valid analysis for multiple offspring in the presence of linkage. Unrelated subjects are included by regarding them as the children of two missing parents. Simulations and theory indicate similar operating characteristics to TRANSMIT, but with no bias with missing data in the presence of linkage. In comparison with FBAT and PCPH, the proposed model is slightly less robust to population structure but has greater power to detect strong effects. In comparison to APL and MITDT, the model is more robust to stratification and can accommodate sibships of any size. The methods are implemented for binary and continuous traits in software, UNPHASED, available from the author. Copyright [copy 2008 S. Karger AG, Basel
Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible loss of robustness to confounding by population stratification. Here a novel likelihood for nuclear families is proposed, in which distinct sets of association parameters are used to model the parental genotypes and the offspring genotypes. This approach is robust to population structure when the data are complete, and has only minor loss of robustness when there are missing data. It also allows a novel conditioning step that gives valid analysis for multiple offspring in the presence of linkage. Unrelated subjects are included by regarding them as the children of two missing parents. Simulations and theory indicate similar operating characteristics to TRANSMIT, but with no bias with missing data in the presence of linkage. In comparison with FBAT and PCPH, the proposed model is slightly less robust to population structure but has greater power to detect strong effects. In comparison to APL and MITDT, the model is more robust to stratification and can accommodate sibships of any size. The methods are implemented for binary and continuous traits in software, UNPHASED, available from the author.Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible loss of robustness to confounding by population stratification. Here a novel likelihood for nuclear families is proposed, in which distinct sets of association parameters are used to model the parental genotypes and the offspring genotypes. This approach is robust to population structure when the data are complete, and has only minor loss of robustness when there are missing data. It also allows a novel conditioning step that gives valid analysis for multiple offspring in the presence of linkage. Unrelated subjects are included by regarding them as the children of two missing parents. Simulations and theory indicate similar operating characteristics to TRANSMIT, but with no bias with missing data in the presence of linkage. In comparison with FBAT and PCPH, the proposed model is slightly less robust to population structure but has greater power to detect strong effects. In comparison to APL and MITDT, the model is more robust to stratification and can accommodate sibships of any size. The methods are implemented for binary and continuous traits in software, UNPHASED, available from the author.
Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible loss of robustness to confounding by population stratification. Here a novel likelihood for nuclear families is proposed, in which distinct sets of association parameters are used to model the parental genotypes and the offspring genotypes. This approach is robust to population structure when the data are complete, and has only minor loss of robustness when there are missing data. It also allows a novel conditioning step that gives valid analysis for multiple offspring in the presence of linkage. Unrelated subjects are included by regarding them as the children of two missing parents. Simulations and theory indicate similar operating characteristics to TRANSMIT, but with no bias with missing data in the presence of linkage. In comparison with FBAT and PCPH, the proposed model is slightly less robust to population structure but has greater power to detect strong effects. In comparison to APL and MITDT, the model is more robust to stratification and can accommodate sibships of any size. The methods are implemented for binary and continuous traits in software, UNPHASED, available from the author. [PUBLICATION ABSTRACT]
Author Dudbridge, Frank
Author_xml – sequence: 1
  givenname: Frank
  surname: Dudbridge
  fullname: Dudbridge, Frank
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18382088$$D View this record in MEDLINE/PubMed
BookMark eNqFkktvEzEUhQ0U0SSwYE-RxQKJxVC_7dkgpYUWpAAL6Hrk8TiJU2ccbA9V_j0uaRuokLAsWdb5ztG17x2Dgz70FoDnGL3FmNfHCCGMa4zUAzCmCnGuyhYPwQgzQiuEBHm0F6Q6AKNrR8UFJ4dgnNKqXBWS9Ak4xIoqgpQaAT9zl9a7ZQhddaKT7eA0pWCczi70cNprv00uwXmI8MtgvNURnum1884mqPsOXvTRep2L79vQrqzJCV65vISfXUquX8Bz24e83Vj4Xmf9FDyea5_ss5tzAi7OPnw__VjNvp5_Op3OKsMkyxWVtNZGcMFELYVqibCUSqnnHZOkFazDbU2MMlgqqnUnrNK8plgL0XaW0TmdgHe73M3Qrm1nbJ-j9s0murWO2yZo1_yt9G7ZLMLPhlAleMmagNc3ATH8GGzKzdolY73XvQ1DaiRirCaS_RckqCaEUF7AV_fAVRhi-d7ClFVzQWmBXv5Z913Bt-0qwJsdYGJIKdr5HkHN9ZA0d0NS2ON7rHH5d1vLk53_p-PFznGp48LGffatfLSTVymHvcoUx5QSRX8BKkfLtA
CitedBy_id crossref_primary_10_1007_s12975_010_0045_1
crossref_primary_10_1111_j_1600_0722_2011_00938_x
crossref_primary_10_1214_08_STS280
crossref_primary_10_1016_j_neulet_2012_04_052
crossref_primary_10_1371_journal_pgen_1004445
crossref_primary_10_1111_jcmm_13612
crossref_primary_10_1016_j_jpsychires_2013_07_025
crossref_primary_10_4306_pi_2010_7_3_196
crossref_primary_10_1186_1476_511X_11_155
crossref_primary_10_3899_jrheum_090440
crossref_primary_10_1371_journal_pgen_1007833
crossref_primary_10_1097_FPC_0b013e32834a53f9
crossref_primary_10_1002_humu_21577
crossref_primary_10_1016_j_biopsych_2010_05_039
crossref_primary_10_1016_j_ygeno_2008_05_002
crossref_primary_10_7705_biomedica_v38i3_3768
crossref_primary_10_1038_s41598_019_41191_4
crossref_primary_10_1371_journal_pone_0007418
crossref_primary_10_1371_journal_pone_0031763
crossref_primary_10_1111_jog_12362
crossref_primary_10_1177_1087054712438135
crossref_primary_10_1017_S0007114512002796
crossref_primary_10_1080_15622975_2017_1301681
crossref_primary_10_1016_j_schres_2011_08_007
crossref_primary_10_1038_gene_2016_39
crossref_primary_10_1002_ajmg_b_30919
crossref_primary_10_1038_s41576_018_0020_3
crossref_primary_10_1016_j_schres_2016_02_012
crossref_primary_10_1002_hup_2519
crossref_primary_10_1038_ng_379
crossref_primary_10_1515_dmpt_2022_0120
crossref_primary_10_1007_s10689_014_9727_2
crossref_primary_10_1016_S1001_9294_10_60031_4
crossref_primary_10_1038_ng_242
crossref_primary_10_1097_YPG_0b013e32833a2234
crossref_primary_10_1093_rheumatology_keu310
crossref_primary_10_1007_s00439_014_1467_8
crossref_primary_10_1371_journal_pone_0088991
crossref_primary_10_1007_s12031_020_01633_5
crossref_primary_10_1002_bdra_23382
crossref_primary_10_1097_YPG_0000000000000031
crossref_primary_10_1111_j_1469_1809_2010_00563_x
crossref_primary_10_1111_j_1365_2222_2009_03438_x
crossref_primary_10_1186_1471_2105_12_201
crossref_primary_10_1002_ajmg_b_32079
crossref_primary_10_1016_j_bbrc_2021_10_025
crossref_primary_10_1016_j_neurobiolaging_2008_10_003
crossref_primary_10_1007_s12519_022_00614_5
crossref_primary_10_1093_ije_dys212
crossref_primary_10_1016_j_neulet_2009_11_017
crossref_primary_10_1159_000445726
crossref_primary_10_1371_journal_pgen_1006710
crossref_primary_10_1016_j_schres_2010_06_018
crossref_primary_10_1016_j_plefa_2009_06_001
crossref_primary_10_1038_nutd_2017_24
crossref_primary_10_3389_fgene_2014_00103
crossref_primary_10_1371_journal_pone_0006875
crossref_primary_10_1186_1471_2350_10_19
crossref_primary_10_1016_j_psychres_2008_11_004
crossref_primary_10_1371_journal_pone_0025274
crossref_primary_10_1002_art_33366
crossref_primary_10_1002_aur_80
crossref_primary_10_1016_j_psyneuen_2018_09_036
crossref_primary_10_1212_WNL_0b013e3181a92c25
crossref_primary_10_1038_ejhg_2010_113
crossref_primary_10_1038_ejhg_2011_173
crossref_primary_10_1111_j_1526_4610_2011_02040_x
crossref_primary_10_1371_journal_pone_0006526
crossref_primary_10_1002_ajmg_b_30958
crossref_primary_10_1016_j_neulet_2012_02_015
crossref_primary_10_1016_j_pnpbp_2013_11_010
crossref_primary_10_1017_S104161020999072X
crossref_primary_10_1016_j_brainres_2008_08_063
crossref_primary_10_3389_fgene_2014_00464
crossref_primary_10_1016_j_jocn_2011_01_028
crossref_primary_10_1016_j_csda_2021_107168
crossref_primary_10_1002_aur_1597
crossref_primary_10_1016_j_pnpbp_2012_03_001
crossref_primary_10_1111_j_1469_1809_2011_00683_x
crossref_primary_10_1371_journal_pone_0132551
crossref_primary_10_1007_s10549_012_2359_z
crossref_primary_10_1186_1753_6561_5_S9_S28
crossref_primary_10_1371_journal_pone_0053008
crossref_primary_10_3390_genes10020088
crossref_primary_10_1002_ajmg_a_33528
crossref_primary_10_1080_10550887_2020_1740070
crossref_primary_10_1097_YPG_0000000000000108
crossref_primary_10_1111_j_1365_2036_2009_04057_x
crossref_primary_10_1371_journal_pone_0019934
crossref_primary_10_1007_s12072_011_9297_4
crossref_primary_10_1016_j_jpedp_2016_07_002
crossref_primary_10_1007_s00737_013_0349_8
crossref_primary_10_1016_j_jns_2014_06_025
crossref_primary_10_1093_rheumatology_ket252
crossref_primary_10_1159_000457903
crossref_primary_10_1016_j_humimm_2018_12_011
crossref_primary_10_1179_147683009X423355
crossref_primary_10_1111_joim_13616
crossref_primary_10_3389_fgene_2019_00175
crossref_primary_10_1161_CIRCGENETICS_111_962035
crossref_primary_10_1016_j_humimm_2020_10_002
crossref_primary_10_1007_s11033_021_06365_2
crossref_primary_10_1002_hup_2654
crossref_primary_10_1097_JCP_0000000000000261
crossref_primary_10_7705_biomedica_v32i4_593
crossref_primary_10_1136_ard_2009_112284
crossref_primary_10_1111_j_1600_0625_2010_01132_x
crossref_primary_10_1038_leu_2008_374
crossref_primary_10_1016_j_pnpbp_2016_07_001
crossref_primary_10_1186_1471_2350_12_163
crossref_primary_10_1038_mp_2008_134
crossref_primary_10_1002_ajmg_b_31178
crossref_primary_10_1097_YPG_0b013e328335117f
crossref_primary_10_1016_S1672_0229_10_60029_0
crossref_primary_10_1097_YPG_0b013e32833a2050
crossref_primary_10_1007_s00702_014_1230_2
crossref_primary_10_4306_pi_2009_6_2_102
crossref_primary_10_1016_j_schres_2009_01_013
crossref_primary_10_1002_ajmg_b_31065
crossref_primary_10_1002_ajmg_b_32033
crossref_primary_10_1016_j_diabres_2009_05_019
crossref_primary_10_1371_journal_pone_0053030
crossref_primary_10_1007_s00702_013_1065_2
crossref_primary_10_1016_j_schres_2011_06_023
crossref_primary_10_1371_journal_pone_0183772
crossref_primary_10_1016_j_gene_2016_11_041
crossref_primary_10_1093_hmg_ddt188
crossref_primary_10_1093_hmg_ddv129
crossref_primary_10_1101_pdb_top96
crossref_primary_10_1159_000535840
crossref_primary_10_1002_ajmg_b_31168
crossref_primary_10_1002_ajmg_b_31049
crossref_primary_10_1016_j_ajhg_2009_02_010
crossref_primary_10_2337_db15_0322
crossref_primary_10_1038_jhg_2014_82
crossref_primary_10_1371_journal_pone_0012273
crossref_primary_10_1371_journal_pone_0152107
crossref_primary_10_2337_db13_1785
crossref_primary_10_1016_j_jad_2011_10_026
crossref_primary_10_1002_hup_2239
crossref_primary_10_1038_tpj_2010_74
crossref_primary_10_1126_scitranslmed_3000278
crossref_primary_10_1002_ajmg_b_32009
crossref_primary_10_4306_pi_2012_9_2_191
crossref_primary_10_3109_15622975_2015_1076173
crossref_primary_10_1038_gene_2008_38
crossref_primary_10_1002_ajmg_b_32245
crossref_primary_10_1530_EJE_14_0432
crossref_primary_10_1002_ajmg_b_32489
crossref_primary_10_1016_j_schres_2010_01_014
crossref_primary_10_1186_s40064_015_1002_y
crossref_primary_10_1002_hup_1111
crossref_primary_10_1093_rheumatology_ken512
crossref_primary_10_1002_ajmg_b_32131
crossref_primary_10_1038_mp_2009_34
crossref_primary_10_1177_1933719113477489
crossref_primary_10_18632_oncotarget_20727
crossref_primary_10_1002_hup_2568
crossref_primary_10_1016_j_ejmg_2013_12_002
crossref_primary_10_1111_j_1601_183X_2008_00446_x
crossref_primary_10_1016_j_pnpbp_2010_12_013
crossref_primary_10_1155_2024_3813621
crossref_primary_10_1371_journal_pone_0066592
crossref_primary_10_1002_ajmg_b_32112
crossref_primary_10_1002_ajmg_b_32595
crossref_primary_10_1097_FPC_0b013e328337f992
crossref_primary_10_1002_ajmg_b_31026
crossref_primary_10_1002_hup_2460
crossref_primary_10_1093_hmg_ddt086
crossref_primary_10_1007_s42991_021_00126_1
crossref_primary_10_1111_ahg_12008
crossref_primary_10_1016_j_neulet_2018_08_007
crossref_primary_10_1038_jid_2014_5
crossref_primary_10_1002_ajmg_b_31030
crossref_primary_10_1016_j_jacc_2010_06_022
crossref_primary_10_1038_srep40060
crossref_primary_10_3109_15622975_2014_953011
crossref_primary_10_1111_j_1399_0039_2008_01181_x
crossref_primary_10_1080_01677063_2019_1672679
crossref_primary_10_1177_1753944714531063
crossref_primary_10_3389_fendo_2016_00021
crossref_primary_10_1016_j_schres_2014_09_029
crossref_primary_10_1093_bioinformatics_btp431
crossref_primary_10_1038_mp_2010_55
crossref_primary_10_1080_15622975_2016_1262061
crossref_primary_10_1007_s00439_013_1416_y
crossref_primary_10_1111_j_1601_183X_2010_00631_x
crossref_primary_10_1016_j_pnpbp_2020_109915
crossref_primary_10_1016_j_psychres_2009_05_014
crossref_primary_10_1186_2040_2392_2_10
crossref_primary_10_1002_gepi_22051
crossref_primary_10_1016_j_neulet_2018_01_033
crossref_primary_10_1186_1479_7364_5_6_538
crossref_primary_10_1097_YPG_0b013e32835bd5f1
crossref_primary_10_1186_1471_2105_11_592
crossref_primary_10_1002_gepi_22294
crossref_primary_10_1002_mgg3_22
crossref_primary_10_1007_s40618_017_0797_5
crossref_primary_10_1007_s11427_012_4315_x
crossref_primary_10_1159_000449224
crossref_primary_10_1007_s10803_020_04865_x
crossref_primary_10_1681_ASN_2015111210
crossref_primary_10_1111_tan_13076
crossref_primary_10_1002_hup_2396
crossref_primary_10_1038_jhg_2017_23
crossref_primary_10_1002_ajmg_b_32183
crossref_primary_10_1111_tan_14284
crossref_primary_10_1038_npp_2011_120
crossref_primary_10_1007_s00439_009_0740_8
crossref_primary_10_1371_journal_pone_0004978
crossref_primary_10_1371_journal_pone_0028929
crossref_primary_10_1177_039463201102400224
crossref_primary_10_1371_journal_pone_0025775
crossref_primary_10_1016_j_jpsychires_2009_01_003
crossref_primary_10_1177_0961203317742711
crossref_primary_10_1007_s00439_009_0643_8
crossref_primary_10_1097_FPC_0000000000000214
crossref_primary_10_1002_ajmg_b_32293
crossref_primary_10_1152_physiolgenomics_00027_2012
crossref_primary_10_1038_tpj_2013_37
crossref_primary_10_1159_000439405
crossref_primary_10_1186_s12885_015_1105_4
crossref_primary_10_1016_j_schres_2012_12_017
crossref_primary_10_3390_ijms24108671
crossref_primary_10_1038_gene_2010_26
crossref_primary_10_1136_annrheumdis_2015_207720
crossref_primary_10_1093_bioinformatics_btw077
crossref_primary_10_3389_fgene_2016_00020
crossref_primary_10_4049_jimmunol_1402047
crossref_primary_10_1203_PDR_0b013e31822f5863
crossref_primary_10_3892_mmr_2019_10455
crossref_primary_10_1007_s11033_021_06956_z
crossref_primary_10_1016_j_psyneuen_2016_10_027
crossref_primary_10_1371_journal_pone_0089253
crossref_primary_10_1016_j_jpsychires_2013_07_007
crossref_primary_10_1007_s10528_011_9454_4
crossref_primary_10_1038_s41398_022_02046_1
crossref_primary_10_1038_s41598_024_70188_x
crossref_primary_10_1002_gepi_20474
crossref_primary_10_1007_s00251_012_0652_y
crossref_primary_10_1038_mp_2010_96
crossref_primary_10_1038_gene_2010_59
crossref_primary_10_1371_journal_pone_0035439
crossref_primary_10_1038_ejhg_2017_1
crossref_primary_10_18632_aging_101067
crossref_primary_10_1371_journal_pone_0069333
crossref_primary_10_1002_gepi_22538
crossref_primary_10_1002_ajmg_b_31213
crossref_primary_10_1159_000371518
crossref_primary_10_1111_j_1601_183X_2011_00703_x
crossref_primary_10_1007_s00251_010_0504_6
crossref_primary_10_1016_j_pnpbp_2014_09_004
crossref_primary_10_1111_j_1469_1809_2010_00636_x
crossref_primary_10_1159_000356231
crossref_primary_10_1186_s12929_014_0089_8
crossref_primary_10_1111_bjd_12105
crossref_primary_10_1016_j_gene_2021_146157
crossref_primary_10_1002_ajmg_b_32417
crossref_primary_10_1002_ajmg_b_31209
crossref_primary_10_1002_gepi_21792
crossref_primary_10_3390_cancers13061412
crossref_primary_10_1016_j_psychres_2012_09_014
crossref_primary_10_1371_journal_pone_0036779
crossref_primary_10_1186_1750_9378_9_24
crossref_primary_10_1016_j_jns_2014_03_049
crossref_primary_10_1038_npp_2009_65
crossref_primary_10_3724_SP_J_1005_2012_00307
crossref_primary_10_1016_j_humgen_2022_201096
crossref_primary_10_1016_j_jstrokecerebrovasdis_2014_03_010
crossref_primary_10_3389_fgene_2015_00248
crossref_primary_10_1093_schbul_sbv017
crossref_primary_10_1016_j_bbi_2021_08_219
crossref_primary_10_1016_j_psyneuen_2017_10_020
crossref_primary_10_1016_j_schres_2010_11_030
crossref_primary_10_1007_s00702_011_0729_z
crossref_primary_10_1093_carcin_bgs262
crossref_primary_10_1155_2013_136241
crossref_primary_10_1038_s41390_020_0994_3
crossref_primary_10_3390_pharmaceutics16040561
crossref_primary_10_1176_appi_ajp_2008_08030442
crossref_primary_10_1007_s00702_019_02101_0
crossref_primary_10_1016_j_neulet_2011_06_038
crossref_primary_10_1016_j_jad_2011_04_031
crossref_primary_10_1002_ajmg_b_32403
crossref_primary_10_1016_j_ajhg_2012_03_007
crossref_primary_10_1186_s12863_020_00902_x
crossref_primary_10_1007_s11033_013_2693_1
crossref_primary_10_1016_j_schres_2015_04_032
crossref_primary_10_1038_gene_2009_82
crossref_primary_10_1038_mp_2014_103
crossref_primary_10_1002_mc_22305
crossref_primary_10_1016_j_ygeno_2018_07_014
crossref_primary_10_1002_gepi_20566
crossref_primary_10_1007_s00702_009_0338_2
crossref_primary_10_1007_s12519_023_00702_0
crossref_primary_10_1016_j_psychres_2010_05_010
crossref_primary_10_1016_j_jpsychires_2012_02_016
crossref_primary_10_1016_j_paid_2018_09_002
crossref_primary_10_3390_math12101422
crossref_primary_10_1176_appi_ajp_2010_09091380
crossref_primary_10_1038_ejhg_2009_195
crossref_primary_10_1038_gene_2009_93
crossref_primary_10_1016_j_psychres_2016_03_057
crossref_primary_10_1016_j_psychres_2016_10_001
crossref_primary_10_3346_jkms_2011_26_10_1356
crossref_primary_10_2217_14622416_10_2_181
crossref_primary_10_1002_ajmg_b_32108
crossref_primary_10_1002_gepi_22453
crossref_primary_10_1155_2017_3104180
crossref_primary_10_1186_1753_6561_3_S7_S33
crossref_primary_10_1111_j_1399_0039_2010_01625_x
crossref_primary_10_1186_s12944_017_0413_x
crossref_primary_10_1002_ajmg_b_32463
crossref_primary_10_3389_fgene_2019_00406
crossref_primary_10_3851_IMP1841
crossref_primary_10_1111_joim_12179
crossref_primary_10_3109_15622975_2014_984631
crossref_primary_10_1093_humrep_des075
crossref_primary_10_1111_1469_0691_12370
crossref_primary_10_1093_hmg_ddp192
crossref_primary_10_1007_s00702_014_1327_7
crossref_primary_10_1016_j_meegid_2012_12_030
crossref_primary_10_1186_1744_9081_8_24
crossref_primary_10_3109_15622975_2015_1036771
crossref_primary_10_1111_j_1541_0420_2011_01581_x
crossref_primary_10_1038_gene_2012_44
crossref_primary_10_1186_2040_2392_2_3
crossref_primary_10_1016_j_meegid_2012_04_017
crossref_primary_10_1146_annurev_genom_083117_021602
crossref_primary_10_1093_bioinformatics_btt500
crossref_primary_10_1093_hmg_ddq399
crossref_primary_10_1016_j_meegid_2011_04_033
crossref_primary_10_1016_j_neulet_2012_06_007
crossref_primary_10_1016_j_jped_2015_12_007
crossref_primary_10_1016_j_pnpbp_2018_01_016
crossref_primary_10_1002_mds_24029
crossref_primary_10_1016_j_pnpbp_2019_03_021
crossref_primary_10_1002_ddr_21681
crossref_primary_10_1159_000356388
crossref_primary_10_1111_j_1399_0039_2010_01580_x
crossref_primary_10_1371_journal_pone_0058352
crossref_primary_10_1016_j_jaci_2010_02_010
crossref_primary_10_1111_tan_12143
crossref_primary_10_1007_s40291_013_0059_y
crossref_primary_10_1016_j_schres_2010_09_002
crossref_primary_10_1111_j_1744_313X_2010_00897_x
crossref_primary_10_1371_journal_pgen_1000420
crossref_primary_10_1016_j_meegid_2013_06_016
crossref_primary_10_1002_ajmg_b_32324
crossref_primary_10_1111_j_1469_1809_2009_00515_x
crossref_primary_10_1002_ajmg_b_31115
crossref_primary_10_1016_j_jaci_2011_09_035
crossref_primary_10_1186_1471_2156_12_48
crossref_primary_10_1016_j_plefa_2011_08_007
crossref_primary_10_2217_epi_2019_0280
crossref_primary_10_1371_journal_pone_0012740
crossref_primary_10_4049_jimmunol_1500016
crossref_primary_10_1002_ajmg_b_31120
crossref_primary_10_1214_19_AOAS1298
crossref_primary_10_1016_j_ejwf_2025_01_004
crossref_primary_10_1016_j_psychres_2009_03_029
crossref_primary_10_1371_journal_pone_0072557
crossref_primary_10_1007_s00439_008_0568_7
crossref_primary_10_1038_ng_2397
crossref_primary_10_3109_15622975_2010_509451
crossref_primary_10_1186_1471_2156_11_80
crossref_primary_10_1089_gtmb_2012_0061
crossref_primary_10_1371_journal_pone_0007154
crossref_primary_10_1186_1465_9921_10_98
crossref_primary_10_1016_j_psychres_2015_09_052
crossref_primary_10_1016_j_cyto_2013_03_008
crossref_primary_10_1016_j_aquaculture_2023_739971
crossref_primary_10_1101_gr_166751_113
crossref_primary_10_1016_j_jaci_2012_07_051
crossref_primary_10_18632_oncotarget_12862
crossref_primary_10_1016_j_psychres_2012_08_039
crossref_primary_10_1111_eos_12025
crossref_primary_10_1038_jhh_2012_15
crossref_primary_10_1016_j_clinbiochem_2012_10_009
crossref_primary_10_1007_s11033_013_2589_0
crossref_primary_10_1371_journal_pone_0115955
crossref_primary_10_1111_gbb_12224
crossref_primary_10_1016_j_jneuroim_2014_06_024
crossref_primary_10_1186_1753_6561_3_S7_S77
crossref_primary_10_1016_j_ajhg_2008_12_005
crossref_primary_10_1186_s12885_015_1033_3
crossref_primary_10_1016_j_biopsych_2010_06_004
crossref_primary_10_1210_clinem_dgaa347
crossref_primary_10_1186_1471_2350_11_29
crossref_primary_10_1093_humrep_det127
crossref_primary_10_1111_j_1399_0039_2009_01359_x
crossref_primary_10_1007_s00439_008_0569_6
crossref_primary_10_1155_2011_307542
crossref_primary_10_3389_fgene_2020_570255
crossref_primary_10_1080_1028415X_2019_1570442
crossref_primary_10_1038_s41598_022_21948_0
crossref_primary_10_1371_journal_pone_0005196
crossref_primary_10_1002_ajmg_b_30991
crossref_primary_10_1093_schbul_sbr169
crossref_primary_10_1080_17453674_2017_1348439
crossref_primary_10_1002_gepi_20506
crossref_primary_10_1186_s12863_016_0401_6
crossref_primary_10_1007_s00702_009_0360_4
crossref_primary_10_1371_journal_pone_0060592
crossref_primary_10_1016_j_ajhg_2015_07_016
crossref_primary_10_1016_j_jad_2015_05_025
crossref_primary_10_1093_hmg_ddr328
crossref_primary_10_1371_journal_pgen_1000916
crossref_primary_10_1038_ejhg_2009_7
crossref_primary_10_1093_molehr_gap072
crossref_primary_10_1371_journal_pone_0144172
crossref_primary_10_1007_s12031_013_0044_2
crossref_primary_10_1093_aje_kwp180
crossref_primary_10_1002_gepi_21700
crossref_primary_10_1186_s12881_017_0469_5
crossref_primary_10_1038_jhg_2011_13
crossref_primary_10_1089_dna_2009_0944
crossref_primary_10_1007_s00251_016_0924_z
crossref_primary_10_1016_j_pnpbp_2019_01_006
crossref_primary_10_1681_ASN_2009060624
crossref_primary_10_1371_journal_pone_0063526
crossref_primary_10_1097_FPC_0b013e3283397d06
crossref_primary_10_1111_tan_12411
crossref_primary_10_1016_j_pnpbp_2011_05_005
crossref_primary_10_1111_1753_0407_12192
crossref_primary_10_1002_ibd_21499
crossref_primary_10_1038_ejhg_2016_131
crossref_primary_10_1186_s12885_018_4214_z
crossref_primary_10_1136_annrheumdis_2016_209449
crossref_primary_10_1007_s12031_012_9869_3
crossref_primary_10_1016_j_bjid_2015_12_008
crossref_primary_10_1016_j_neuint_2009_07_008
crossref_primary_10_1093_aje_kwr494
crossref_primary_10_1371_journal_pone_0029366
crossref_primary_10_1093_biostatistics_kxp061
crossref_primary_10_1016_j_ejogrb_2012_09_003
crossref_primary_10_1038_tp_2015_163
crossref_primary_10_1038_oby_2010_219
crossref_primary_10_1093_bioinformatics_btv626
crossref_primary_10_1111_j_1601_183X_2010_00571_x
crossref_primary_10_2217_pgs_12_86
crossref_primary_10_1016_j_ajhg_2016_01_015
crossref_primary_10_1093_sleep_zsz239
crossref_primary_10_1007_s12041_013_0279_2
crossref_primary_10_1111_j_1469_1809_2012_00707_x
crossref_primary_10_1016_j_bbi_2008_09_008
crossref_primary_10_1016_j_jaci_2009_04_018
crossref_primary_10_4049_jimmunol_1502056
crossref_primary_10_1016_j_pnpbp_2011_11_018
crossref_primary_10_1097_YPG_0b013e3283539550
crossref_primary_10_1176_appi_ajp_2012_11091423
crossref_primary_10_1016_j_pain_2012_12_003
crossref_primary_10_1016_j_biopsych_2010_07_019
crossref_primary_10_1002_gepi_20421
crossref_primary_10_1016_j_pan_2012_12_059
crossref_primary_10_1016_j_tube_2008_10_001
crossref_primary_10_1038_gene_2009_111
crossref_primary_10_1136_ard_2009_114934
crossref_primary_10_1177_1352458511415562
crossref_primary_10_1016_j_pnpbp_2011_11_014
crossref_primary_10_1038_tpj_2015_6
crossref_primary_10_1371_journal_pone_0062322
crossref_primary_10_1016_j_diabres_2017_02_006
crossref_primary_10_1093_hmg_ddz243
crossref_primary_10_1002_art_30145
crossref_primary_10_1016_j_biopsych_2009_12_011
crossref_primary_10_1007_s10072_014_2051_7
crossref_primary_10_1016_j_jpain_2016_02_003
crossref_primary_10_1038_s43856_022_00137_0
crossref_primary_10_1038_gene_2015_27
crossref_primary_10_1038_s41598_024_59290_2
crossref_primary_10_1590_0074_02760150003
crossref_primary_10_1007_s00439_018_1893_0
crossref_primary_10_1038_ng_285
crossref_primary_10_1097_FPC_0b013e3283602876
crossref_primary_10_1093_carcin_bgr211
crossref_primary_10_1055_s_0043_1760844
crossref_primary_10_1097_EDE_0b013e318212fec6
crossref_primary_10_1093_rheumatology_ker364
crossref_primary_10_1074_jbc_M116_715078
crossref_primary_10_1016_j_pnpbp_2011_04_003
crossref_primary_10_1007_s00439_011_1089_3
crossref_primary_10_1002_gepi_20539
crossref_primary_10_1002_ajmg_b_32601
crossref_primary_10_1093_biostatistics_kxr045
crossref_primary_10_1038_gene_2015_51
crossref_primary_10_1007_s00702_013_1091_0
crossref_primary_10_1016_j_biopsych_2010_07_035
crossref_primary_10_1016_j_neuroimage_2011_10_083
crossref_primary_10_1371_journal_pone_0142049
crossref_primary_10_1111_j_1469_1809_2009_00523_x
crossref_primary_10_1038_s41598_023_47117_5
crossref_primary_10_1038_gene_2015_44
crossref_primary_10_1093_biostatistics_kxr035
crossref_primary_10_3899_jrheum_101046
crossref_primary_10_1016_j_jpsychires_2012_01_010
crossref_primary_10_1515_sagmb_2016_0035
crossref_primary_10_1016_j_humimm_2016_09_009
crossref_primary_10_1016_j_biopsych_2013_03_033
Cites_doi 10.1086%2F378779
10.1198%2F016214502388618528
10.1086%2F512727
10.1086%2F380204
10.3802/jgo.2011.22.2.131
10.1002%2Fgepi.20032
10.1002%2Fgepi.20192
10.1007/s11894-010-0136-x
10.1093%2Fbioinformatics%2Fbtl580
10.1086%2F510498
10.1086%2F302698
10.1086%2F503711
10.1198%2F016214505000000808
10.1086%2F302577
10.1002%2Fgepi.10295
10.1002%2Fgepi.10323
10.1159%2F000100481
10.1111/j.1463-1318.2008.01485.x
10.1002%2Fgepi.20142
10.1002%2Fgepi.10252
10.1055/s-0029-1243881
10.1007/s10151-010-0569-0
10.1086%2F338007
10.1016/j.gie.2010.04.006
10.1086%2F302845
10.1086%2F430277
10.1086%2F338688
10.1002%2Fgepi.20203
10.1159%2F000022918
10.5009/gnl.2011.5.2.165
10.1002%2Fgepi.20020
10.1046%2Fj.1469-1809.1999.6340329.x
10.3748/wjg.v18.i24.3177
10.1086%2F316895
10.1086%2F429225
10.1002%2Fgepi.20001
ContentType Journal Article
Copyright 2008 S. Karger AG
2008 S. Karger AG, Basel
(c) 2008 S. Karger AG, Basel
Copyright (c) 2008 S. Karger AG, Basel
Copyright © 2008 S. Karger AG, Basel 2008
Copyright_xml – notice: 2008 S. Karger AG
– notice: 2008 S. Karger AG, Basel
– notice: (c) 2008 S. Karger AG, Basel
– notice: Copyright (c) 2008 S. Karger AG, Basel
– notice: Copyright © 2008 S. Karger AG, Basel 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M2P
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
5PM
DOI 10.1159/000119108
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Research Library
Science Database
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef


Genetics Abstracts
MEDLINE - Academic

Research Library Prep
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISBN 3805585586
9783805585583
EISSN 1423-0062
EndPage 98
ExternalDocumentID PMC2386559
1457893631
18382088
10_1159_000119108
119108
48513328
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MC_U105260799
– fundername: Medical Research Council
  grantid: U.1052.00.003.00002.01
– fundername: Medical Research Council :
  grantid: U.1052.00.003.00002.01 || MRC_
GroupedDBID ---
0~5
0~B
29I
30W
326
34G
36B
39C
3O.
4.4
5GY
5RE
7X7
88E
88I
8AO
8FE
8FH
8FI
8FJ
8FW
8G5
8UI
AAYIC
AAZDW
ABBHK
ABBTS
ABJNI
ABPAZ
ABUWG
ABWCG
ABXSQ
ACGFS
ACGOD
ACPRK
ACPSR
ADBBV
ADULT
AENEX
AEUPB
AEYAO
AFJJK
AFKRA
AHFRZ
AHMBA
AILCM
ALDHI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZPMC
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CYUIP
DU5
DWQXO
E0A
EBS
EJD
EMB
EMOBN
F5P
FB.
FYUFA
GNUQQ
GUQSH
HCIFZ
HMCUK
HZ~
IY7
JAAYA
JENOY
JKPJF
JPL
JPM
JST
JVCUD
KUZGX
L7B
LK8
M--
M1P
M2O
M2P
M7P
N9A
O1H
O9-
OK1
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
RKO
SA0
SV3
UJ6
UKHRP
3V.
88A
ADACV
AEJYH
JSODD
M0L
RIG
.GJ
53G
AAYXX
ACQXL
ADAGL
AFFNX
AFSIO
AI.
AIOBO
CITATION
IAO
IGS
IHR
INH
ITC
PJZUB
PPXIY
PQGLB
RXVBD
VH1
ZGI
ZXP
CGR
CUY
CVF
ECM
EIF
NPM
PMFND
7XB
8FD
8FK
FR3
K9.
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
PUEGO
Q9U
RC3
7X8
5PM
ID FETCH-LOGICAL-c474t-3739ac656469768b26e3377afd472b64d1b92c8c1783aad6e8a5931a66bde43f3
IEDL.DBID 7X7
ISBN 3805585578
9783805585576
ISSN 0001-5652
1423-0062
IngestDate Thu Aug 21 14:19:00 EDT 2025
Thu Jul 10 23:08:32 EDT 2025
Sun Aug 24 03:01:22 EDT 2025
Sat Aug 23 12:58:05 EDT 2025
Fri May 30 11:01:31 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Tue Aug 05 11:59:48 EDT 2025
Thu Aug 29 12:04:35 EDT 2024
Thu Jun 19 22:43:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Family-based association tests
Missing data
Conditional likelihood
Unphased genotype data
Transmission/disequilibrium test
Population stratification
Language English
License Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
https://www.karger.com/Services/SiteLicenses
(c) 2008 S. Karger AG, Basel
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-3739ac656469768b26e3377afd472b64d1b92c8c1783aad6e8a5931a66bde43f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.karger.com/Article/Pdf/119108
PMID 18382088
PQID 222295633
PQPubID 40827
PageCount 12
ParticipantIDs proquest_journals_222295633
crossref_primary_10_1159_000119108
proquest_miscellaneous_20922235
crossref_citationtrail_10_1159_000119108
karger_primary_119108
proquest_miscellaneous_70449274
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2386559
pubmed_primary_18382088
jstor_primary_48513328
PublicationCentury 2000
PublicationDate 2008-01-01
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – month: 01
  year: 2008
  text: 2008-01-01
  day: 01
PublicationDecade 2000
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Switzerland
– name: Basel
PublicationTitle Human heredity
PublicationTitleAlternate Hum Hered
PublicationYear 2008
Publisher S. Karger AG
Publisher_xml – name: S. Karger AG
References Excoffier L, Slatkin M: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995;12:921-927.http://dx.doi.org/10.1016/j.gie.2008.02.03810.3802/jgo.2011.22.2.131
Schaid DJ, Sommer SS: Genotype relative risks: methods for design and analysis of candidate-gene association studies. Am J Hum Genet 1993;53:1114-1126.8213835
Spielman RS, McGinnis RE, Ewens WJ: Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993;52:506-516.8447318
Abecasis GR, Cardon LR, Cookson WO: A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000;66:279-292.1063115710.1086%2F302698
Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES: Parametric and nonparametric linkage analysis: A unified multipoint approach. Am J Hum Genet 1996;58:1347-1363.8651312
Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes in C, ed 2. Cambridge, Cambridge University Press, 1992.
Lake SL, Blacker D, Laird NM: Family-based tests of association in the presence of linkage. Am J Hum Genet 2000;67:1515-1525.1105843210.1086%2F316895
Satten GA, Epstein MP: Comparison of prospective and retrospective methods for haplotype inference in case-control studies. Genet Epidemiol 2004;27:192-201.1537261910.1002%2Fgepi.20020
Becker T, Knapp M: Maximum-likelihood estimation of haplotype frequencies in nuclear families. Genet Epidemiol 2004;27:21-32.1518540010.1002%2Fgepi.10323
Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM: Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet Epidemiol 2004;26:61-69.1469195710.1002%2Fgepi.10295
Palmer LJ, Cardon LR: Population stratification and spurious allelic association. Lancet 2003;361:598-604.http://dx.doi.org/10.1046/j.1365-2168.2002.02148.x10.1007/s11894-010-0136-x
Epstein MP, Veal CD, Trembath RC, Barker JN, Li C, Satten GA: Genetic association analysis using data from triads and unrelated subjects. Am J Hum Genet 2005;76:592-608.1571210410.1086%2F429225
Epstein MP, Satten GA: Inference on haplotype effects in case-control studies using unphased genotype data. Am J Hum Genet 2003;73:1316-1329.1463155610.1086%2F380204
Croiseau P, Génin E, Cordell HJ: Dealing with missing data in family-based association studies: a mulitple imputation approach. Hum Hered 2007;63:229-238.1734757010.1159%2F000100481
Allen AS, Satten GA: Inference on haplotype/disease association using parent-affected-child data: the projection conditional on parental haplotypes method. Genet Epidemiol 2007;31:211-223.1726611410.1002%2Fgepi.20203
Nicodemus KK, Luna A, Shugart YY: An evaluation of power and type I error of single-nucleotide polymorphism transmission/disequilibrium-based statistical methods under different family structures, missing parental data, and population stratification. Am J Hum Genet 2007;80:178-185.1716090510.1086%2F510498
Laird NM, Lange C: Family-based designs in the age of large-scale gene association studies. Nat Rev Genet 2006;7:385-394.http://dx.doi.org/10.1007/s10350-008-9207-610.1055/s-0029-1243881</pub-id><pub-id pub-id-type="doi">10.1016/j.gie.2010.10.052
Dudbridge F: Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003;25:115-121.1291602010.1002%2Fgepi.10252
Cordell HJ, Clayton DG: A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet 2002;70:124-141.1171990010.1086%2F338007
Weinberg CR,Wilcox AJ, Lie RT: A log-linear approach to case-parent-triad data: Assessing effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting. Am J Hum Genet 1998;62:969-978.http://dx.doi.org/10.1016/j.gie.2011.12.02010.5009/gnl.2011.5.2.165</pub-id><pub-id pub-id-type="doi">10.5754/hge12139
Cordell HJ: Estimation and testing of genotype and haplotype effects in case-control studies: Comparison of weighted regression and multiple imputation procedures. Genet Epidemiol 2006;30:259-275.1649631210.1002%2Fgepi.20142
Martin ER, Bass MP, Hauser ER, Kaplan NL: Accounting for linkage in family-based tests of association with missing parental genotypes. Am J Hum Genet 2003;73:1016-1026.1455190210.1086%2F378779
Dudbridge F, Koeleman BP, Clayton DG, Todd JA: Unbiased application of the transmission/disequilibrium test to multilocus haplotypes. Am J Hum Genet 2000;66:2009-2012.http://dx.doi.org/10.1007/s10151-009-0543-x10.1007/s10151-010-0569-0</pub-id><pub-id pub-id-type="doi">10.3748/wjg.v16.i36.4570
Rabinowitz D: Adjusting for population heterogeneity and misspecified haplotype frequencies when testing nonparametric null hypotheses in statistical genetics. J Am Stat Assoc 2002;97:742-751.10.1198%2F016214502388618528
Spielman RS, Ewens WJ: The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet 1996;59:938-989.
Risch NJ: Searching for genetic determinants in the new millenium. Nature 2000;405:847-856.http://dx.doi.org/10.1016/j.gie.2009.07.00610.1016/j.gie.2010.04.006</pub-id><pub-id pub-id-type="doi">10.3109/13645706.2012.694367
Balding DJ: A tutorial on statistical methods for population association studies. Nat Rev Genet 2006;7:781-791.http://dx.doi.org/10.1007/s00384-008-0518-910.1111/j.1463-1318.2008.01485.x</pub-id><pub-id pub-id-type="doi">10.1111/j.1463-1318.2009.01885.x
Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA: Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002;70:425-434.1179121210.1086%2F338688
Kistner EO, Weinberg CR: Method for using complete and incomplete trios to identify genes related to a quantitative trait. Genet Epidemiol 2004;27:33-42.1518540110.1002%2Fgepi.20001
Li M, Boehnke M, Abecasis GR: Efficient study designs for test of genetic association using sibship data and unrelated cases and controls. Am J Hum Genet 2006;78:778-792.1664243410.1086%2F503711
Gould W, Pitblado J, Sribney W: Maximumlikelihood estimation with Stata. College Station, Stata Press, 2005.
Huang BE, Lin DY: Efficient association mapping of quantitative trait loci with selective genotyping. Am J Hum Genet 2007;80:567-576.1727397910.1086%2F512727
Lin DY, Zeng D: Likelihood-based inference on haplotype effects in genetic association studies. J Am Stat Assoc 2006;101:89-104.10.1198%2F016214505000000808
Clayton D: A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 1999;65:1170-1177.1048633610.1086%2F302577
Li M, Boehnke M, Abecasis GR: Joint modeling of linkage and association: Identifying SNPs responsible for a linkage signal. Am J Hum Genet 2005;76:934-949.1587727810.1086%2F430277
Kwee LC, Epstein MP, Manatunga AK, Duncan R, Allen AS, Satten GA: Simple methods for assessing haplotype-environment interactions in case-only and case-control studies. Genet Epidemiol 2007;31:75-90.1712330210.1002%2Fgepi.20192
Göring HH, Terwilliger JD: Linkage analysis in the presence of errors IV: Joint pseudomarker analysis of linkage and/or linkage disequilibrium on a mixture of pedigrees and singletons when the mode of inheritance cannot be accurately specified. Am J Hum Genet 2000;66:1310-1327.1073146610.1086%2F302845
Sasieni P: From genotypes to genes: doubling the sample size. Biometrics 1997;53:1253-1261.http://dx.doi.org/10.1007/s00464-011-1640-210.3748/wjg.v18.i24.3177</pub-id><pub-id pub-id-type="doi">10.1055/s-0029-1245972
Clayton D, Chapman J, Cooper J: Use of unphased multilocus genotype data in indirect association studies. Genet Epidemiol 2004;27:415-427.1548109910.1002%2Fgepi.20032
Rabinowitz D, Laird NM: A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 2000;50:211-223.1078201210.1159%2F000022918
Purcell S, Daly MJ, Sham PC: WHAP: Haplotype-based association analysis. Bioinformatics 2007;23:255-256.1711895910.1093%2Fbioinformatics%2Fbtl580
Waldman ID, Robinson BF, Rowe DC: A logistic regression based extension of the TDT for continuous and categorical traits. Ann Hum Genet 1999;63:320-340.10.1046%2Fj.1469-1809.1999.6340329.x
ref13
ref35
ref12
ref34
ref15
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – reference: Li M, Boehnke M, Abecasis GR: Joint modeling of linkage and association: Identifying SNPs responsible for a linkage signal. Am J Hum Genet 2005;76:934-949.1587727810.1086%2F430277
– reference: Palmer LJ, Cardon LR: Population stratification and spurious allelic association. Lancet 2003;361:598-604.http://dx.doi.org/10.1046/j.1365-2168.2002.02148.x10.1007/s11894-010-0136-x
– reference: Clayton D: A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 1999;65:1170-1177.1048633610.1086%2F302577
– reference: Abecasis GR, Cardon LR, Cookson WO: A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000;66:279-292.1063115710.1086%2F302698
– reference: Schaid DJ, Sommer SS: Genotype relative risks: methods for design and analysis of candidate-gene association studies. Am J Hum Genet 1993;53:1114-1126.8213835
– reference: Lake SL, Blacker D, Laird NM: Family-based tests of association in the presence of linkage. Am J Hum Genet 2000;67:1515-1525.1105843210.1086%2F316895
– reference: Lin DY, Zeng D: Likelihood-based inference on haplotype effects in genetic association studies. J Am Stat Assoc 2006;101:89-104.10.1198%2F016214505000000808
– reference: Epstein MP, Veal CD, Trembath RC, Barker JN, Li C, Satten GA: Genetic association analysis using data from triads and unrelated subjects. Am J Hum Genet 2005;76:592-608.1571210410.1086%2F429225
– reference: Allen AS, Satten GA: Inference on haplotype/disease association using parent-affected-child data: the projection conditional on parental haplotypes method. Genet Epidemiol 2007;31:211-223.1726611410.1002%2Fgepi.20203
– reference: Martin ER, Bass MP, Hauser ER, Kaplan NL: Accounting for linkage in family-based tests of association with missing parental genotypes. Am J Hum Genet 2003;73:1016-1026.1455190210.1086%2F378779
– reference: Becker T, Knapp M: Maximum-likelihood estimation of haplotype frequencies in nuclear families. Genet Epidemiol 2004;27:21-32.1518540010.1002%2Fgepi.10323
– reference: Balding DJ: A tutorial on statistical methods for population association studies. Nat Rev Genet 2006;7:781-791.http://dx.doi.org/10.1007/s00384-008-0518-910.1111/j.1463-1318.2008.01485.x</pub-id><pub-id pub-id-type="doi">10.1111/j.1463-1318.2009.01885.x
– reference: Croiseau P, Génin E, Cordell HJ: Dealing with missing data in family-based association studies: a mulitple imputation approach. Hum Hered 2007;63:229-238.1734757010.1159%2F000100481
– reference: Clayton D, Chapman J, Cooper J: Use of unphased multilocus genotype data in indirect association studies. Genet Epidemiol 2004;27:415-427.1548109910.1002%2Fgepi.20032
– reference: Kwee LC, Epstein MP, Manatunga AK, Duncan R, Allen AS, Satten GA: Simple methods for assessing haplotype-environment interactions in case-only and case-control studies. Genet Epidemiol 2007;31:75-90.1712330210.1002%2Fgepi.20192
– reference: Cordell HJ, Clayton DG: A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet 2002;70:124-141.1171990010.1086%2F338007
– reference: Risch NJ: Searching for genetic determinants in the new millenium. Nature 2000;405:847-856.http://dx.doi.org/10.1016/j.gie.2009.07.00610.1016/j.gie.2010.04.006</pub-id><pub-id pub-id-type="doi">10.3109/13645706.2012.694367
– reference: Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES: Parametric and nonparametric linkage analysis: A unified multipoint approach. Am J Hum Genet 1996;58:1347-1363.8651312
– reference: Epstein MP, Satten GA: Inference on haplotype effects in case-control studies using unphased genotype data. Am J Hum Genet 2003;73:1316-1329.1463155610.1086%2F380204
– reference: Purcell S, Daly MJ, Sham PC: WHAP: Haplotype-based association analysis. Bioinformatics 2007;23:255-256.1711895910.1093%2Fbioinformatics%2Fbtl580
– reference: Göring HH, Terwilliger JD: Linkage analysis in the presence of errors IV: Joint pseudomarker analysis of linkage and/or linkage disequilibrium on a mixture of pedigrees and singletons when the mode of inheritance cannot be accurately specified. Am J Hum Genet 2000;66:1310-1327.1073146610.1086%2F302845
– reference: Li M, Boehnke M, Abecasis GR: Efficient study designs for test of genetic association using sibship data and unrelated cases and controls. Am J Hum Genet 2006;78:778-792.1664243410.1086%2F503711
– reference: Rabinowitz D, Laird NM: A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 2000;50:211-223.1078201210.1159%2F000022918
– reference: Kistner EO, Weinberg CR: Method for using complete and incomplete trios to identify genes related to a quantitative trait. Genet Epidemiol 2004;27:33-42.1518540110.1002%2Fgepi.20001
– reference: Satten GA, Epstein MP: Comparison of prospective and retrospective methods for haplotype inference in case-control studies. Genet Epidemiol 2004;27:192-201.1537261910.1002%2Fgepi.20020
– reference: Excoffier L, Slatkin M: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995;12:921-927.http://dx.doi.org/10.1016/j.gie.2008.02.03810.3802/jgo.2011.22.2.131
– reference: Huang BE, Lin DY: Efficient association mapping of quantitative trait loci with selective genotyping. Am J Hum Genet 2007;80:567-576.1727397910.1086%2F512727
– reference: Cordell HJ: Estimation and testing of genotype and haplotype effects in case-control studies: Comparison of weighted regression and multiple imputation procedures. Genet Epidemiol 2006;30:259-275.1649631210.1002%2Fgepi.20142
– reference: Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM: Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet Epidemiol 2004;26:61-69.1469195710.1002%2Fgepi.10295
– reference: Gould W, Pitblado J, Sribney W: Maximumlikelihood estimation with Stata. College Station, Stata Press, 2005.
– reference: Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes in C, ed 2. Cambridge, Cambridge University Press, 1992.
– reference: Laird NM, Lange C: Family-based designs in the age of large-scale gene association studies. Nat Rev Genet 2006;7:385-394.http://dx.doi.org/10.1007/s10350-008-9207-610.1055/s-0029-1243881</pub-id><pub-id pub-id-type="doi">10.1016/j.gie.2010.10.052
– reference: Nicodemus KK, Luna A, Shugart YY: An evaluation of power and type I error of single-nucleotide polymorphism transmission/disequilibrium-based statistical methods under different family structures, missing parental data, and population stratification. Am J Hum Genet 2007;80:178-185.1716090510.1086%2F510498
– reference: Dudbridge F, Koeleman BP, Clayton DG, Todd JA: Unbiased application of the transmission/disequilibrium test to multilocus haplotypes. Am J Hum Genet 2000;66:2009-2012.http://dx.doi.org/10.1007/s10151-009-0543-x10.1007/s10151-010-0569-0</pub-id><pub-id pub-id-type="doi">10.3748/wjg.v16.i36.4570
– reference: Weinberg CR,Wilcox AJ, Lie RT: A log-linear approach to case-parent-triad data: Assessing effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting. Am J Hum Genet 1998;62:969-978.http://dx.doi.org/10.1016/j.gie.2011.12.02010.5009/gnl.2011.5.2.165</pub-id><pub-id pub-id-type="doi">10.5754/hge12139
– reference: Rabinowitz D: Adjusting for population heterogeneity and misspecified haplotype frequencies when testing nonparametric null hypotheses in statistical genetics. J Am Stat Assoc 2002;97:742-751.10.1198%2F016214502388618528
– reference: Dudbridge F: Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003;25:115-121.1291602010.1002%2Fgepi.10252
– reference: Sasieni P: From genotypes to genes: doubling the sample size. Biometrics 1997;53:1253-1261.http://dx.doi.org/10.1007/s00464-011-1640-210.3748/wjg.v18.i24.3177</pub-id><pub-id pub-id-type="doi">10.1055/s-0029-1245972
– reference: Waldman ID, Robinson BF, Rowe DC: A logistic regression based extension of the TDT for continuous and categorical traits. Ann Hum Genet 1999;63:320-340.10.1046%2Fj.1469-1809.1999.6340329.x
– reference: Spielman RS, McGinnis RE, Ewens WJ: Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993;52:506-516.8447318
– reference: Spielman RS, Ewens WJ: The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet 1996;59:938-989.
– reference: Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA: Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002;70:425-434.1179121210.1086%2F338688
– ident: ref21
  doi: 10.1086%2F378779
– ident: ref14
  doi: 10.1198%2F016214502388618528
– ident: ref27
  doi: 10.1086%2F512727
– ident: ref30
  doi: 10.1086%2F380204
– ident: ref7
  doi: 10.3802/jgo.2011.22.2.131
– ident: ref33
  doi: 10.1002%2Fgepi.20032
– ident: ref25
  doi: 10.1002%2Fgepi.20192
– ident: ref4
  doi: 10.1007/s11894-010-0136-x
– ident: ref20
  doi: 10.1093%2Fbioinformatics%2Fbtl580
– ident: ref13
  doi: 10.1086%2F510498
– ident: ref22
  doi: 10.1086%2F302698
– ident: ref19
  doi: 10.1086%2F503711
– ident: ref26
  doi: 10.1198%2F016214505000000808
– ident: ref12
  doi: 10.1086%2F302577
– ident: ref16
  doi: 10.1002%2Fgepi.10295
– ident: ref18
  doi: 10.1002%2Fgepi.10323
– ident: ref35
  doi: 10.1159%2F000100481
– ident: ref6
  doi: 10.1111/j.1463-1318.2008.01485.x
– ident: ref11
  doi: 10.1002%2Fgepi.20142
– ident: ref15
  doi: 10.1002%2Fgepi.10252
– ident: ref3
  doi: 10.1055/s-0029-1243881
– ident: ref8
  doi: 10.1007/s10151-010-0569-0
– ident: ref34
  doi: 10.1086%2F338007
– ident: ref1
  doi: 10.1016/j.gie.2010.04.006
– ident: ref23
  doi: 10.1086%2F302845
– ident: ref24
  doi: 10.1086%2F430277
– ident: ref32
  doi: 10.1086%2F338688
– ident: ref17
  doi: 10.1002%2Fgepi.20203
– ident: ref36
  doi: 10.1159%2F000022918
– ident: ref5
  doi: 10.5009/gnl.2011.5.2.165
– ident: ref10
  doi: 10.1002%2Fgepi.20020
– ident: ref28
  doi: 10.1046%2Fj.1469-1809.1999.6340329.x
– ident: ref2
  doi: 10.3748/wjg.v18.i24.3177
– ident: ref9
  doi: 10.1086%2F316895
– ident: ref31
  doi: 10.1086%2F429225
– ident: ref29
  doi: 10.1002%2Fgepi.20001
SSID ssj0008073
Score 2.3898704
Snippet Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a...
SourceID pubmedcentral
proquest
pubmed
crossref
karger
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 87
SubjectTerms Families & family life
Genetic research
Genetic Techniques
Genotype
Genotype & phenotype
Heredity
Humans
Likelihood Functions
Models, Genetic
Models, Statistical
Nuclear Family
Original Paper
Probability
Research methodology
Software
Title Likelihood-Based Association Analysis for Nuclear Families and Unrelated Subjects with Missing Genotype Data
URI https://www.jstor.org/stable/48513328
https://karger.com/doi/10.1159/000119108
https://www.ncbi.nlm.nih.gov/pubmed/18382088
https://www.proquest.com/docview/222295633
https://www.proquest.com/docview/20922235
https://www.proquest.com/docview/70449274
https://pubmed.ncbi.nlm.nih.gov/PMC2386559
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJhAvCMYGZTAsxAMv0ZrY8ccTYrAxIVohRKW-RY7taNWqdLTdA_89d46brWjw7LMS5Xy-333kdwDvasGHTiqXad74TOS-RJtDIBdCLgrf1CpEdv7RWJ5PxNdpOU29OavUVrm5E-NF7ReOcuTHRRw8LTn_cPUro6FRVFxNEzTuwy4xl1FHl5r28RZioVRgxogZcUuRiIXQgR9HKISeUm-5o64jEX3RJXVhL-8CnX_3Tt5yRmdP4HFCkexjp_ancC-0e_Cgmyv5ew8ejlLF_BnMv80uw3xG5MXZCXosz24phG0oSRhCVzYmamO7ZHEWBgbQzLaeTdr4twvuwyuGcjYrRqlbNkKFoddjX0K7oDQu-2zXdh8mZ6c_P51nacJC5oQSa7xduLEOIR0GyRh31IUMnCtlGy9UUUvh89oUTrtcaW6tl0Hb0vDcSln7IHjDD2CnXbThBTAMe3RoZJP7YS2E47VyoQnGSarTGRUG8H7zoSuX6MdpCsa8imFIaapeJwN424tedZwbdwkdRG31EkLTqJoCF_Y79d3sTRsON9qskp2uqv5UDeBNv4oGRlUT24bFNYoMDWGo8t8SaiiEweh-AM-7s3HzZM0RYWl8tto6Nb0AkXtvr7Szi0jyXdAw1tK8_O9bH8Kjrn-FUkKvYGe9vA6vESSt66NoCkewe3I6_v7jD_h0ESQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ9gicqLUQQtqGyMJr5cuNvd2917IEYELNI2xtCEt3Nvdy82NFdsSwx_lP8js_cFNegbzzvba26-fvNxMwDvMs5CI6QJFMttwCMbo84hkHMu4tTmmXTldP7BUPRG_OtZfLYCf5pvYXxbZWMTS0Ntp8bnyHdpuXhaMPbx4lfgl0b54mqzQaOSihN39Rsjtvne8QGy9z2lR4enn3tBvVQgMFzyBSoUS7RBFINxIULtjArHmJQ6t1zSTHAbZQk1ykRSMa2tcErHCYu0EJl1nOUMf_cBrHKGkUwHVvcPh9--t6ZfhXVJG2N0REq0HmWEkGG3BF_om9WSA6x6INH7nfu-79ldMPfvbs1b7u_oKTypcSv5VAnaM1hxxTo8rDZZXq3Do0Fdo38Ok_743E3GflxysI8-0pJbIkCaISgEwTIZ-mHKekbK7RsYshNdWDIqyu9r8B4aNZ8lmhOfLCYDFBH0s-SLK6Y-cUwO9EJvwOheXv8mdIpp4V4CwUBLuVzkkQ0zzg3LpHG5S4zwlcFEui58aF50auqB537vxiQtA584SVuedOFtS3pRTfm4i2iz5FZLwZVfjkPxYKNi383d-sJ2w820tgzztJXjLuy0p6jSvk6jCze9RJIw8agt_jeFDDlPqORdeFHJxs2TFUNMp_DZcklqWgI_Tnz5pBj_LMeKU7_-NU62_vuvd-Bx73TQT_vHw5NtWKu6Z3xC6hV0FrNL9xoh2iJ7UysGgR_3rYvXVn5NBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Likelihood-Based+Association+Analysis+for+Nuclear+Families+and+Unrelated+Subjects+with+Missing+Genotype+Data&rft.jtitle=Human+heredity&rft.au=Dudbridge%2C+Frank&rft.date=2008-01-01&rft.issn=0001-5652&rft.eissn=1423-0062&rft.volume=66&rft.issue=2&rft.spage=87&rft.epage=98&rft_id=info:doi/10.1159%2F000119108&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-5652&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-5652&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-5652&client=summon