Likelihood-Based Association Analysis for Nuclear Families and Unrelated Subjects with Missing Genotype Data
Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible...
Saved in:
Published in | Human heredity Vol. 66; no. 2; pp. 87 - 98 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.01.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible loss of robustness to confounding by population stratification. Here a novel likelihood for nuclear families is proposed, in which distinct sets of association parameters are used to model the parental genotypes and the offspring genotypes. This approach is robust to population structure when the data are complete, and has only minor loss of robustness when there are missing data. It also allows a novel conditioning step that gives valid analysis for multiple offspring in the presence of linkage. Unrelated subjects are included by regarding them as the children of two missing parents. Simulations and theory indicate similar operating characteristics to TRANSMIT, but with no bias with missing data in the presence of linkage. In comparison with FBAT and PCPH, the proposed model is slightly less robust to population structure but has greater power to detect strong effects. In comparison to APL and MITDT, the model is more robust to stratification and can accommodate sibships of any size. The methods are implemented for binary and continuous traits in software, UNPHASED, available from the author. |
---|---|
AbstractList | Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible loss of robustness to confounding by population stratification. Here a novel likelihood for nuclear families is proposed, in which distinct sets of association parameters are used to model the parental genotypes and the offspring genotypes. This approach is robust to population structure when the data are complete, and has only minor loss of robustness when there are missing data. It also allows a novel conditioning step that gives valid analysis for multiple offspring in the presence of linkage. Unrelated subjects are included by regarding them as the children of two missing parents. Simulations and theory indicate similar operating characteristics to TRANSMIT, but with no bias with missing data in the presence of linkage. In comparison with FBAT and PCPH, the proposed model is slightly less robust to population structure but has greater power to detect strong effects. In comparison to APL and MITDT, the model is more robust to stratification and can accommodate sibships of any size. The methods are implemented for binary and continuous traits in software, UNPHASED, available from the author. Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible loss of robustness to confounding by population stratification. Here a novel likelihood for nuclear families is proposed, in which distinct sets of association parameters are used to model the parental genotypes and the offspring genotypes. This approach is robust to population structure when the data are complete, and has only minor loss of robustness when there are missing data. It also allows a novel conditioning step that gives valid analysis for multiple offspring in the presence of linkage. Unrelated subjects are included by regarding them as the children of two missing parents. Simulations and theory indicate similar operating characteristics to TRANSMIT, but with no bias with missing data in the presence of linkage. In comparison with FBAT and PCPH, the proposed model is slightly less robust to population structure but has greater power to detect strong effects. In comparison to APL and MITDT, the model is more robust to stratification and can accommodate sibships of any size. The methods are implemented for binary and continuous traits in software, UNPHASED, available from the author. Copyright [copy 2008 S. Karger AG, Basel Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible loss of robustness to confounding by population stratification. Here a novel likelihood for nuclear families is proposed, in which distinct sets of association parameters are used to model the parental genotypes and the offspring genotypes. This approach is robust to population structure when the data are complete, and has only minor loss of robustness when there are missing data. It also allows a novel conditioning step that gives valid analysis for multiple offspring in the presence of linkage. Unrelated subjects are included by regarding them as the children of two missing parents. Simulations and theory indicate similar operating characteristics to TRANSMIT, but with no bias with missing data in the presence of linkage. In comparison with FBAT and PCPH, the proposed model is slightly less robust to population structure but has greater power to detect strong effects. In comparison to APL and MITDT, the model is more robust to stratification and can accommodate sibships of any size. The methods are implemented for binary and continuous traits in software, UNPHASED, available from the author.Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible loss of robustness to confounding by population stratification. Here a novel likelihood for nuclear families is proposed, in which distinct sets of association parameters are used to model the parental genotypes and the offspring genotypes. This approach is robust to population structure when the data are complete, and has only minor loss of robustness when there are missing data. It also allows a novel conditioning step that gives valid analysis for multiple offspring in the presence of linkage. Unrelated subjects are included by regarding them as the children of two missing parents. Simulations and theory indicate similar operating characteristics to TRANSMIT, but with no bias with missing data in the presence of linkage. In comparison with FBAT and PCPH, the proposed model is slightly less robust to population structure but has greater power to detect strong effects. In comparison to APL and MITDT, the model is more robust to stratification and can accommodate sibships of any size. The methods are implemented for binary and continuous traits in software, UNPHASED, available from the author. Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a commonly used approach to accommodate missing data, but it can be difficult to apply to family-based association studies, because of possible loss of robustness to confounding by population stratification. Here a novel likelihood for nuclear families is proposed, in which distinct sets of association parameters are used to model the parental genotypes and the offspring genotypes. This approach is robust to population structure when the data are complete, and has only minor loss of robustness when there are missing data. It also allows a novel conditioning step that gives valid analysis for multiple offspring in the presence of linkage. Unrelated subjects are included by regarding them as the children of two missing parents. Simulations and theory indicate similar operating characteristics to TRANSMIT, but with no bias with missing data in the presence of linkage. In comparison with FBAT and PCPH, the proposed model is slightly less robust to population structure but has greater power to detect strong effects. In comparison to APL and MITDT, the model is more robust to stratification and can accommodate sibships of any size. The methods are implemented for binary and continuous traits in software, UNPHASED, available from the author. [PUBLICATION ABSTRACT] |
Author | Dudbridge, Frank |
Author_xml | – sequence: 1 givenname: Frank surname: Dudbridge fullname: Dudbridge, Frank |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18382088$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkktvEzEUhQ0U0SSwYE-RxQKJxVC_7dkgpYUWpAAL6Hrk8TiJU2ccbA9V_j0uaRuokLAsWdb5ztG17x2Dgz70FoDnGL3FmNfHCCGMa4zUAzCmCnGuyhYPwQgzQiuEBHm0F6Q6AKNrR8UFJ4dgnNKqXBWS9Ak4xIoqgpQaAT9zl9a7ZQhddaKT7eA0pWCczi70cNprv00uwXmI8MtgvNURnum1884mqPsOXvTRep2L79vQrqzJCV65vISfXUquX8Bz24e83Vj4Xmf9FDyea5_ss5tzAi7OPnw__VjNvp5_Op3OKsMkyxWVtNZGcMFELYVqibCUSqnnHZOkFazDbU2MMlgqqnUnrNK8plgL0XaW0TmdgHe73M3Qrm1nbJ-j9s0murWO2yZo1_yt9G7ZLMLPhlAleMmagNc3ATH8GGzKzdolY73XvQ1DaiRirCaS_RckqCaEUF7AV_fAVRhi-d7ClFVzQWmBXv5Z913Bt-0qwJsdYGJIKdr5HkHN9ZA0d0NS2ON7rHH5d1vLk53_p-PFznGp48LGffatfLSTVymHvcoUx5QSRX8BKkfLtA |
CitedBy_id | crossref_primary_10_1007_s12975_010_0045_1 crossref_primary_10_1111_j_1600_0722_2011_00938_x crossref_primary_10_1214_08_STS280 crossref_primary_10_1016_j_neulet_2012_04_052 crossref_primary_10_1371_journal_pgen_1004445 crossref_primary_10_1111_jcmm_13612 crossref_primary_10_1016_j_jpsychires_2013_07_025 crossref_primary_10_4306_pi_2010_7_3_196 crossref_primary_10_1186_1476_511X_11_155 crossref_primary_10_3899_jrheum_090440 crossref_primary_10_1371_journal_pgen_1007833 crossref_primary_10_1097_FPC_0b013e32834a53f9 crossref_primary_10_1002_humu_21577 crossref_primary_10_1016_j_biopsych_2010_05_039 crossref_primary_10_1016_j_ygeno_2008_05_002 crossref_primary_10_7705_biomedica_v38i3_3768 crossref_primary_10_1038_s41598_019_41191_4 crossref_primary_10_1371_journal_pone_0007418 crossref_primary_10_1371_journal_pone_0031763 crossref_primary_10_1111_jog_12362 crossref_primary_10_1177_1087054712438135 crossref_primary_10_1017_S0007114512002796 crossref_primary_10_1080_15622975_2017_1301681 crossref_primary_10_1016_j_schres_2011_08_007 crossref_primary_10_1038_gene_2016_39 crossref_primary_10_1002_ajmg_b_30919 crossref_primary_10_1038_s41576_018_0020_3 crossref_primary_10_1016_j_schres_2016_02_012 crossref_primary_10_1002_hup_2519 crossref_primary_10_1038_ng_379 crossref_primary_10_1515_dmpt_2022_0120 crossref_primary_10_1007_s10689_014_9727_2 crossref_primary_10_1016_S1001_9294_10_60031_4 crossref_primary_10_1038_ng_242 crossref_primary_10_1097_YPG_0b013e32833a2234 crossref_primary_10_1093_rheumatology_keu310 crossref_primary_10_1007_s00439_014_1467_8 crossref_primary_10_1371_journal_pone_0088991 crossref_primary_10_1007_s12031_020_01633_5 crossref_primary_10_1002_bdra_23382 crossref_primary_10_1097_YPG_0000000000000031 crossref_primary_10_1111_j_1469_1809_2010_00563_x crossref_primary_10_1111_j_1365_2222_2009_03438_x crossref_primary_10_1186_1471_2105_12_201 crossref_primary_10_1002_ajmg_b_32079 crossref_primary_10_1016_j_bbrc_2021_10_025 crossref_primary_10_1016_j_neurobiolaging_2008_10_003 crossref_primary_10_1007_s12519_022_00614_5 crossref_primary_10_1093_ije_dys212 crossref_primary_10_1016_j_neulet_2009_11_017 crossref_primary_10_1159_000445726 crossref_primary_10_1371_journal_pgen_1006710 crossref_primary_10_1016_j_schres_2010_06_018 crossref_primary_10_1016_j_plefa_2009_06_001 crossref_primary_10_1038_nutd_2017_24 crossref_primary_10_3389_fgene_2014_00103 crossref_primary_10_1371_journal_pone_0006875 crossref_primary_10_1186_1471_2350_10_19 crossref_primary_10_1016_j_psychres_2008_11_004 crossref_primary_10_1371_journal_pone_0025274 crossref_primary_10_1002_art_33366 crossref_primary_10_1002_aur_80 crossref_primary_10_1016_j_psyneuen_2018_09_036 crossref_primary_10_1212_WNL_0b013e3181a92c25 crossref_primary_10_1038_ejhg_2010_113 crossref_primary_10_1038_ejhg_2011_173 crossref_primary_10_1111_j_1526_4610_2011_02040_x crossref_primary_10_1371_journal_pone_0006526 crossref_primary_10_1002_ajmg_b_30958 crossref_primary_10_1016_j_neulet_2012_02_015 crossref_primary_10_1016_j_pnpbp_2013_11_010 crossref_primary_10_1017_S104161020999072X crossref_primary_10_1016_j_brainres_2008_08_063 crossref_primary_10_3389_fgene_2014_00464 crossref_primary_10_1016_j_jocn_2011_01_028 crossref_primary_10_1016_j_csda_2021_107168 crossref_primary_10_1002_aur_1597 crossref_primary_10_1016_j_pnpbp_2012_03_001 crossref_primary_10_1111_j_1469_1809_2011_00683_x crossref_primary_10_1371_journal_pone_0132551 crossref_primary_10_1007_s10549_012_2359_z crossref_primary_10_1186_1753_6561_5_S9_S28 crossref_primary_10_1371_journal_pone_0053008 crossref_primary_10_3390_genes10020088 crossref_primary_10_1002_ajmg_a_33528 crossref_primary_10_1080_10550887_2020_1740070 crossref_primary_10_1097_YPG_0000000000000108 crossref_primary_10_1111_j_1365_2036_2009_04057_x crossref_primary_10_1371_journal_pone_0019934 crossref_primary_10_1007_s12072_011_9297_4 crossref_primary_10_1016_j_jpedp_2016_07_002 crossref_primary_10_1007_s00737_013_0349_8 crossref_primary_10_1016_j_jns_2014_06_025 crossref_primary_10_1093_rheumatology_ket252 crossref_primary_10_1159_000457903 crossref_primary_10_1016_j_humimm_2018_12_011 crossref_primary_10_1179_147683009X423355 crossref_primary_10_1111_joim_13616 crossref_primary_10_3389_fgene_2019_00175 crossref_primary_10_1161_CIRCGENETICS_111_962035 crossref_primary_10_1016_j_humimm_2020_10_002 crossref_primary_10_1007_s11033_021_06365_2 crossref_primary_10_1002_hup_2654 crossref_primary_10_1097_JCP_0000000000000261 crossref_primary_10_7705_biomedica_v32i4_593 crossref_primary_10_1136_ard_2009_112284 crossref_primary_10_1111_j_1600_0625_2010_01132_x crossref_primary_10_1038_leu_2008_374 crossref_primary_10_1016_j_pnpbp_2016_07_001 crossref_primary_10_1186_1471_2350_12_163 crossref_primary_10_1038_mp_2008_134 crossref_primary_10_1002_ajmg_b_31178 crossref_primary_10_1097_YPG_0b013e328335117f crossref_primary_10_1016_S1672_0229_10_60029_0 crossref_primary_10_1097_YPG_0b013e32833a2050 crossref_primary_10_1007_s00702_014_1230_2 crossref_primary_10_4306_pi_2009_6_2_102 crossref_primary_10_1016_j_schres_2009_01_013 crossref_primary_10_1002_ajmg_b_31065 crossref_primary_10_1002_ajmg_b_32033 crossref_primary_10_1016_j_diabres_2009_05_019 crossref_primary_10_1371_journal_pone_0053030 crossref_primary_10_1007_s00702_013_1065_2 crossref_primary_10_1016_j_schres_2011_06_023 crossref_primary_10_1371_journal_pone_0183772 crossref_primary_10_1016_j_gene_2016_11_041 crossref_primary_10_1093_hmg_ddt188 crossref_primary_10_1093_hmg_ddv129 crossref_primary_10_1101_pdb_top96 crossref_primary_10_1159_000535840 crossref_primary_10_1002_ajmg_b_31168 crossref_primary_10_1002_ajmg_b_31049 crossref_primary_10_1016_j_ajhg_2009_02_010 crossref_primary_10_2337_db15_0322 crossref_primary_10_1038_jhg_2014_82 crossref_primary_10_1371_journal_pone_0012273 crossref_primary_10_1371_journal_pone_0152107 crossref_primary_10_2337_db13_1785 crossref_primary_10_1016_j_jad_2011_10_026 crossref_primary_10_1002_hup_2239 crossref_primary_10_1038_tpj_2010_74 crossref_primary_10_1126_scitranslmed_3000278 crossref_primary_10_1002_ajmg_b_32009 crossref_primary_10_4306_pi_2012_9_2_191 crossref_primary_10_3109_15622975_2015_1076173 crossref_primary_10_1038_gene_2008_38 crossref_primary_10_1002_ajmg_b_32245 crossref_primary_10_1530_EJE_14_0432 crossref_primary_10_1002_ajmg_b_32489 crossref_primary_10_1016_j_schres_2010_01_014 crossref_primary_10_1186_s40064_015_1002_y crossref_primary_10_1002_hup_1111 crossref_primary_10_1093_rheumatology_ken512 crossref_primary_10_1002_ajmg_b_32131 crossref_primary_10_1038_mp_2009_34 crossref_primary_10_1177_1933719113477489 crossref_primary_10_18632_oncotarget_20727 crossref_primary_10_1002_hup_2568 crossref_primary_10_1016_j_ejmg_2013_12_002 crossref_primary_10_1111_j_1601_183X_2008_00446_x crossref_primary_10_1016_j_pnpbp_2010_12_013 crossref_primary_10_1155_2024_3813621 crossref_primary_10_1371_journal_pone_0066592 crossref_primary_10_1002_ajmg_b_32112 crossref_primary_10_1002_ajmg_b_32595 crossref_primary_10_1097_FPC_0b013e328337f992 crossref_primary_10_1002_ajmg_b_31026 crossref_primary_10_1002_hup_2460 crossref_primary_10_1093_hmg_ddt086 crossref_primary_10_1007_s42991_021_00126_1 crossref_primary_10_1111_ahg_12008 crossref_primary_10_1016_j_neulet_2018_08_007 crossref_primary_10_1038_jid_2014_5 crossref_primary_10_1002_ajmg_b_31030 crossref_primary_10_1016_j_jacc_2010_06_022 crossref_primary_10_1038_srep40060 crossref_primary_10_3109_15622975_2014_953011 crossref_primary_10_1111_j_1399_0039_2008_01181_x crossref_primary_10_1080_01677063_2019_1672679 crossref_primary_10_1177_1753944714531063 crossref_primary_10_3389_fendo_2016_00021 crossref_primary_10_1016_j_schres_2014_09_029 crossref_primary_10_1093_bioinformatics_btp431 crossref_primary_10_1038_mp_2010_55 crossref_primary_10_1080_15622975_2016_1262061 crossref_primary_10_1007_s00439_013_1416_y crossref_primary_10_1111_j_1601_183X_2010_00631_x crossref_primary_10_1016_j_pnpbp_2020_109915 crossref_primary_10_1016_j_psychres_2009_05_014 crossref_primary_10_1186_2040_2392_2_10 crossref_primary_10_1002_gepi_22051 crossref_primary_10_1016_j_neulet_2018_01_033 crossref_primary_10_1186_1479_7364_5_6_538 crossref_primary_10_1097_YPG_0b013e32835bd5f1 crossref_primary_10_1186_1471_2105_11_592 crossref_primary_10_1002_gepi_22294 crossref_primary_10_1002_mgg3_22 crossref_primary_10_1007_s40618_017_0797_5 crossref_primary_10_1007_s11427_012_4315_x crossref_primary_10_1159_000449224 crossref_primary_10_1007_s10803_020_04865_x crossref_primary_10_1681_ASN_2015111210 crossref_primary_10_1111_tan_13076 crossref_primary_10_1002_hup_2396 crossref_primary_10_1038_jhg_2017_23 crossref_primary_10_1002_ajmg_b_32183 crossref_primary_10_1111_tan_14284 crossref_primary_10_1038_npp_2011_120 crossref_primary_10_1007_s00439_009_0740_8 crossref_primary_10_1371_journal_pone_0004978 crossref_primary_10_1371_journal_pone_0028929 crossref_primary_10_1177_039463201102400224 crossref_primary_10_1371_journal_pone_0025775 crossref_primary_10_1016_j_jpsychires_2009_01_003 crossref_primary_10_1177_0961203317742711 crossref_primary_10_1007_s00439_009_0643_8 crossref_primary_10_1097_FPC_0000000000000214 crossref_primary_10_1002_ajmg_b_32293 crossref_primary_10_1152_physiolgenomics_00027_2012 crossref_primary_10_1038_tpj_2013_37 crossref_primary_10_1159_000439405 crossref_primary_10_1186_s12885_015_1105_4 crossref_primary_10_1016_j_schres_2012_12_017 crossref_primary_10_3390_ijms24108671 crossref_primary_10_1038_gene_2010_26 crossref_primary_10_1136_annrheumdis_2015_207720 crossref_primary_10_1093_bioinformatics_btw077 crossref_primary_10_3389_fgene_2016_00020 crossref_primary_10_4049_jimmunol_1402047 crossref_primary_10_1203_PDR_0b013e31822f5863 crossref_primary_10_3892_mmr_2019_10455 crossref_primary_10_1007_s11033_021_06956_z crossref_primary_10_1016_j_psyneuen_2016_10_027 crossref_primary_10_1371_journal_pone_0089253 crossref_primary_10_1016_j_jpsychires_2013_07_007 crossref_primary_10_1007_s10528_011_9454_4 crossref_primary_10_1038_s41398_022_02046_1 crossref_primary_10_1038_s41598_024_70188_x crossref_primary_10_1002_gepi_20474 crossref_primary_10_1007_s00251_012_0652_y crossref_primary_10_1038_mp_2010_96 crossref_primary_10_1038_gene_2010_59 crossref_primary_10_1371_journal_pone_0035439 crossref_primary_10_1038_ejhg_2017_1 crossref_primary_10_18632_aging_101067 crossref_primary_10_1371_journal_pone_0069333 crossref_primary_10_1002_gepi_22538 crossref_primary_10_1002_ajmg_b_31213 crossref_primary_10_1159_000371518 crossref_primary_10_1111_j_1601_183X_2011_00703_x crossref_primary_10_1007_s00251_010_0504_6 crossref_primary_10_1016_j_pnpbp_2014_09_004 crossref_primary_10_1111_j_1469_1809_2010_00636_x crossref_primary_10_1159_000356231 crossref_primary_10_1186_s12929_014_0089_8 crossref_primary_10_1111_bjd_12105 crossref_primary_10_1016_j_gene_2021_146157 crossref_primary_10_1002_ajmg_b_32417 crossref_primary_10_1002_ajmg_b_31209 crossref_primary_10_1002_gepi_21792 crossref_primary_10_3390_cancers13061412 crossref_primary_10_1016_j_psychres_2012_09_014 crossref_primary_10_1371_journal_pone_0036779 crossref_primary_10_1186_1750_9378_9_24 crossref_primary_10_1016_j_jns_2014_03_049 crossref_primary_10_1038_npp_2009_65 crossref_primary_10_3724_SP_J_1005_2012_00307 crossref_primary_10_1016_j_humgen_2022_201096 crossref_primary_10_1016_j_jstrokecerebrovasdis_2014_03_010 crossref_primary_10_3389_fgene_2015_00248 crossref_primary_10_1093_schbul_sbv017 crossref_primary_10_1016_j_bbi_2021_08_219 crossref_primary_10_1016_j_psyneuen_2017_10_020 crossref_primary_10_1016_j_schres_2010_11_030 crossref_primary_10_1007_s00702_011_0729_z crossref_primary_10_1093_carcin_bgs262 crossref_primary_10_1155_2013_136241 crossref_primary_10_1038_s41390_020_0994_3 crossref_primary_10_3390_pharmaceutics16040561 crossref_primary_10_1176_appi_ajp_2008_08030442 crossref_primary_10_1007_s00702_019_02101_0 crossref_primary_10_1016_j_neulet_2011_06_038 crossref_primary_10_1016_j_jad_2011_04_031 crossref_primary_10_1002_ajmg_b_32403 crossref_primary_10_1016_j_ajhg_2012_03_007 crossref_primary_10_1186_s12863_020_00902_x crossref_primary_10_1007_s11033_013_2693_1 crossref_primary_10_1016_j_schres_2015_04_032 crossref_primary_10_1038_gene_2009_82 crossref_primary_10_1038_mp_2014_103 crossref_primary_10_1002_mc_22305 crossref_primary_10_1016_j_ygeno_2018_07_014 crossref_primary_10_1002_gepi_20566 crossref_primary_10_1007_s00702_009_0338_2 crossref_primary_10_1007_s12519_023_00702_0 crossref_primary_10_1016_j_psychres_2010_05_010 crossref_primary_10_1016_j_jpsychires_2012_02_016 crossref_primary_10_1016_j_paid_2018_09_002 crossref_primary_10_3390_math12101422 crossref_primary_10_1176_appi_ajp_2010_09091380 crossref_primary_10_1038_ejhg_2009_195 crossref_primary_10_1038_gene_2009_93 crossref_primary_10_1016_j_psychres_2016_03_057 crossref_primary_10_1016_j_psychres_2016_10_001 crossref_primary_10_3346_jkms_2011_26_10_1356 crossref_primary_10_2217_14622416_10_2_181 crossref_primary_10_1002_ajmg_b_32108 crossref_primary_10_1002_gepi_22453 crossref_primary_10_1155_2017_3104180 crossref_primary_10_1186_1753_6561_3_S7_S33 crossref_primary_10_1111_j_1399_0039_2010_01625_x crossref_primary_10_1186_s12944_017_0413_x crossref_primary_10_1002_ajmg_b_32463 crossref_primary_10_3389_fgene_2019_00406 crossref_primary_10_3851_IMP1841 crossref_primary_10_1111_joim_12179 crossref_primary_10_3109_15622975_2014_984631 crossref_primary_10_1093_humrep_des075 crossref_primary_10_1111_1469_0691_12370 crossref_primary_10_1093_hmg_ddp192 crossref_primary_10_1007_s00702_014_1327_7 crossref_primary_10_1016_j_meegid_2012_12_030 crossref_primary_10_1186_1744_9081_8_24 crossref_primary_10_3109_15622975_2015_1036771 crossref_primary_10_1111_j_1541_0420_2011_01581_x crossref_primary_10_1038_gene_2012_44 crossref_primary_10_1186_2040_2392_2_3 crossref_primary_10_1016_j_meegid_2012_04_017 crossref_primary_10_1146_annurev_genom_083117_021602 crossref_primary_10_1093_bioinformatics_btt500 crossref_primary_10_1093_hmg_ddq399 crossref_primary_10_1016_j_meegid_2011_04_033 crossref_primary_10_1016_j_neulet_2012_06_007 crossref_primary_10_1016_j_jped_2015_12_007 crossref_primary_10_1016_j_pnpbp_2018_01_016 crossref_primary_10_1002_mds_24029 crossref_primary_10_1016_j_pnpbp_2019_03_021 crossref_primary_10_1002_ddr_21681 crossref_primary_10_1159_000356388 crossref_primary_10_1111_j_1399_0039_2010_01580_x crossref_primary_10_1371_journal_pone_0058352 crossref_primary_10_1016_j_jaci_2010_02_010 crossref_primary_10_1111_tan_12143 crossref_primary_10_1007_s40291_013_0059_y crossref_primary_10_1016_j_schres_2010_09_002 crossref_primary_10_1111_j_1744_313X_2010_00897_x crossref_primary_10_1371_journal_pgen_1000420 crossref_primary_10_1016_j_meegid_2013_06_016 crossref_primary_10_1002_ajmg_b_32324 crossref_primary_10_1111_j_1469_1809_2009_00515_x crossref_primary_10_1002_ajmg_b_31115 crossref_primary_10_1016_j_jaci_2011_09_035 crossref_primary_10_1186_1471_2156_12_48 crossref_primary_10_1016_j_plefa_2011_08_007 crossref_primary_10_2217_epi_2019_0280 crossref_primary_10_1371_journal_pone_0012740 crossref_primary_10_4049_jimmunol_1500016 crossref_primary_10_1002_ajmg_b_31120 crossref_primary_10_1214_19_AOAS1298 crossref_primary_10_1016_j_ejwf_2025_01_004 crossref_primary_10_1016_j_psychres_2009_03_029 crossref_primary_10_1371_journal_pone_0072557 crossref_primary_10_1007_s00439_008_0568_7 crossref_primary_10_1038_ng_2397 crossref_primary_10_3109_15622975_2010_509451 crossref_primary_10_1186_1471_2156_11_80 crossref_primary_10_1089_gtmb_2012_0061 crossref_primary_10_1371_journal_pone_0007154 crossref_primary_10_1186_1465_9921_10_98 crossref_primary_10_1016_j_psychres_2015_09_052 crossref_primary_10_1016_j_cyto_2013_03_008 crossref_primary_10_1016_j_aquaculture_2023_739971 crossref_primary_10_1101_gr_166751_113 crossref_primary_10_1016_j_jaci_2012_07_051 crossref_primary_10_18632_oncotarget_12862 crossref_primary_10_1016_j_psychres_2012_08_039 crossref_primary_10_1111_eos_12025 crossref_primary_10_1038_jhh_2012_15 crossref_primary_10_1016_j_clinbiochem_2012_10_009 crossref_primary_10_1007_s11033_013_2589_0 crossref_primary_10_1371_journal_pone_0115955 crossref_primary_10_1111_gbb_12224 crossref_primary_10_1016_j_jneuroim_2014_06_024 crossref_primary_10_1186_1753_6561_3_S7_S77 crossref_primary_10_1016_j_ajhg_2008_12_005 crossref_primary_10_1186_s12885_015_1033_3 crossref_primary_10_1016_j_biopsych_2010_06_004 crossref_primary_10_1210_clinem_dgaa347 crossref_primary_10_1186_1471_2350_11_29 crossref_primary_10_1093_humrep_det127 crossref_primary_10_1111_j_1399_0039_2009_01359_x crossref_primary_10_1007_s00439_008_0569_6 crossref_primary_10_1155_2011_307542 crossref_primary_10_3389_fgene_2020_570255 crossref_primary_10_1080_1028415X_2019_1570442 crossref_primary_10_1038_s41598_022_21948_0 crossref_primary_10_1371_journal_pone_0005196 crossref_primary_10_1002_ajmg_b_30991 crossref_primary_10_1093_schbul_sbr169 crossref_primary_10_1080_17453674_2017_1348439 crossref_primary_10_1002_gepi_20506 crossref_primary_10_1186_s12863_016_0401_6 crossref_primary_10_1007_s00702_009_0360_4 crossref_primary_10_1371_journal_pone_0060592 crossref_primary_10_1016_j_ajhg_2015_07_016 crossref_primary_10_1016_j_jad_2015_05_025 crossref_primary_10_1093_hmg_ddr328 crossref_primary_10_1371_journal_pgen_1000916 crossref_primary_10_1038_ejhg_2009_7 crossref_primary_10_1093_molehr_gap072 crossref_primary_10_1371_journal_pone_0144172 crossref_primary_10_1007_s12031_013_0044_2 crossref_primary_10_1093_aje_kwp180 crossref_primary_10_1002_gepi_21700 crossref_primary_10_1186_s12881_017_0469_5 crossref_primary_10_1038_jhg_2011_13 crossref_primary_10_1089_dna_2009_0944 crossref_primary_10_1007_s00251_016_0924_z crossref_primary_10_1016_j_pnpbp_2019_01_006 crossref_primary_10_1681_ASN_2009060624 crossref_primary_10_1371_journal_pone_0063526 crossref_primary_10_1097_FPC_0b013e3283397d06 crossref_primary_10_1111_tan_12411 crossref_primary_10_1016_j_pnpbp_2011_05_005 crossref_primary_10_1111_1753_0407_12192 crossref_primary_10_1002_ibd_21499 crossref_primary_10_1038_ejhg_2016_131 crossref_primary_10_1186_s12885_018_4214_z crossref_primary_10_1136_annrheumdis_2016_209449 crossref_primary_10_1007_s12031_012_9869_3 crossref_primary_10_1016_j_bjid_2015_12_008 crossref_primary_10_1016_j_neuint_2009_07_008 crossref_primary_10_1093_aje_kwr494 crossref_primary_10_1371_journal_pone_0029366 crossref_primary_10_1093_biostatistics_kxp061 crossref_primary_10_1016_j_ejogrb_2012_09_003 crossref_primary_10_1038_tp_2015_163 crossref_primary_10_1038_oby_2010_219 crossref_primary_10_1093_bioinformatics_btv626 crossref_primary_10_1111_j_1601_183X_2010_00571_x crossref_primary_10_2217_pgs_12_86 crossref_primary_10_1016_j_ajhg_2016_01_015 crossref_primary_10_1093_sleep_zsz239 crossref_primary_10_1007_s12041_013_0279_2 crossref_primary_10_1111_j_1469_1809_2012_00707_x crossref_primary_10_1016_j_bbi_2008_09_008 crossref_primary_10_1016_j_jaci_2009_04_018 crossref_primary_10_4049_jimmunol_1502056 crossref_primary_10_1016_j_pnpbp_2011_11_018 crossref_primary_10_1097_YPG_0b013e3283539550 crossref_primary_10_1176_appi_ajp_2012_11091423 crossref_primary_10_1016_j_pain_2012_12_003 crossref_primary_10_1016_j_biopsych_2010_07_019 crossref_primary_10_1002_gepi_20421 crossref_primary_10_1016_j_pan_2012_12_059 crossref_primary_10_1016_j_tube_2008_10_001 crossref_primary_10_1038_gene_2009_111 crossref_primary_10_1136_ard_2009_114934 crossref_primary_10_1177_1352458511415562 crossref_primary_10_1016_j_pnpbp_2011_11_014 crossref_primary_10_1038_tpj_2015_6 crossref_primary_10_1371_journal_pone_0062322 crossref_primary_10_1016_j_diabres_2017_02_006 crossref_primary_10_1093_hmg_ddz243 crossref_primary_10_1002_art_30145 crossref_primary_10_1016_j_biopsych_2009_12_011 crossref_primary_10_1007_s10072_014_2051_7 crossref_primary_10_1016_j_jpain_2016_02_003 crossref_primary_10_1038_s43856_022_00137_0 crossref_primary_10_1038_gene_2015_27 crossref_primary_10_1038_s41598_024_59290_2 crossref_primary_10_1590_0074_02760150003 crossref_primary_10_1007_s00439_018_1893_0 crossref_primary_10_1038_ng_285 crossref_primary_10_1097_FPC_0b013e3283602876 crossref_primary_10_1093_carcin_bgr211 crossref_primary_10_1055_s_0043_1760844 crossref_primary_10_1097_EDE_0b013e318212fec6 crossref_primary_10_1093_rheumatology_ker364 crossref_primary_10_1074_jbc_M116_715078 crossref_primary_10_1016_j_pnpbp_2011_04_003 crossref_primary_10_1007_s00439_011_1089_3 crossref_primary_10_1002_gepi_20539 crossref_primary_10_1002_ajmg_b_32601 crossref_primary_10_1093_biostatistics_kxr045 crossref_primary_10_1038_gene_2015_51 crossref_primary_10_1007_s00702_013_1091_0 crossref_primary_10_1016_j_biopsych_2010_07_035 crossref_primary_10_1016_j_neuroimage_2011_10_083 crossref_primary_10_1371_journal_pone_0142049 crossref_primary_10_1111_j_1469_1809_2009_00523_x crossref_primary_10_1038_s41598_023_47117_5 crossref_primary_10_1038_gene_2015_44 crossref_primary_10_1093_biostatistics_kxr035 crossref_primary_10_3899_jrheum_101046 crossref_primary_10_1016_j_jpsychires_2012_01_010 crossref_primary_10_1515_sagmb_2016_0035 crossref_primary_10_1016_j_humimm_2016_09_009 crossref_primary_10_1016_j_biopsych_2013_03_033 |
Cites_doi | 10.1086%2F378779 10.1198%2F016214502388618528 10.1086%2F512727 10.1086%2F380204 10.3802/jgo.2011.22.2.131 10.1002%2Fgepi.20032 10.1002%2Fgepi.20192 10.1007/s11894-010-0136-x 10.1093%2Fbioinformatics%2Fbtl580 10.1086%2F510498 10.1086%2F302698 10.1086%2F503711 10.1198%2F016214505000000808 10.1086%2F302577 10.1002%2Fgepi.10295 10.1002%2Fgepi.10323 10.1159%2F000100481 10.1111/j.1463-1318.2008.01485.x 10.1002%2Fgepi.20142 10.1002%2Fgepi.10252 10.1055/s-0029-1243881 10.1007/s10151-010-0569-0 10.1086%2F338007 10.1016/j.gie.2010.04.006 10.1086%2F302845 10.1086%2F430277 10.1086%2F338688 10.1002%2Fgepi.20203 10.1159%2F000022918 10.5009/gnl.2011.5.2.165 10.1002%2Fgepi.20020 10.1046%2Fj.1469-1809.1999.6340329.x 10.3748/wjg.v18.i24.3177 10.1086%2F316895 10.1086%2F429225 10.1002%2Fgepi.20001 |
ContentType | Journal Article |
Copyright | 2008 S. Karger AG 2008 S. Karger AG, Basel (c) 2008 S. Karger AG, Basel Copyright (c) 2008 S. Karger AG, Basel Copyright © 2008 S. Karger AG, Basel 2008 |
Copyright_xml | – notice: 2008 S. Karger AG – notice: 2008 S. Karger AG, Basel – notice: (c) 2008 S. Karger AG, Basel – notice: Copyright (c) 2008 S. Karger AG, Basel – notice: Copyright © 2008 S. Karger AG, Basel 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M2P M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 5PM |
DOI | 10.1159/000119108 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Research Library Science Database Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef Genetics Abstracts MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISBN | 3805585586 9783805585583 |
EISSN | 1423-0062 |
EndPage | 98 |
ExternalDocumentID | PMC2386559 1457893631 18382088 10_1159_000119108 119108 48513328 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MC_U105260799 – fundername: Medical Research Council grantid: U.1052.00.003.00002.01 – fundername: Medical Research Council : grantid: U.1052.00.003.00002.01 || MRC_ |
GroupedDBID | --- 0~5 0~B 29I 30W 326 34G 36B 39C 3O. 4.4 5GY 5RE 7X7 88E 88I 8AO 8FE 8FH 8FI 8FJ 8FW 8G5 8UI AAYIC AAZDW ABBHK ABBTS ABJNI ABPAZ ABUWG ABWCG ABXSQ ACGFS ACGOD ACPRK ACPSR ADBBV ADULT AENEX AEUPB AEYAO AFJJK AFKRA AHFRZ AHMBA AILCM ALDHI ALIPV ALMA_UNASSIGNED_HOLDINGS AZPMC AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CYUIP DU5 DWQXO E0A EBS EJD EMB EMOBN F5P FB. FYUFA GNUQQ GUQSH HCIFZ HMCUK HZ~ IY7 JAAYA JENOY JKPJF JPL JPM JST JVCUD KUZGX L7B LK8 M-- M1P M2O M2P M7P N9A O1H O9- OK1 PHGZM PHGZT PQQKQ PROAC PSQYO RKO SA0 SV3 UJ6 UKHRP 3V. 88A ADACV AEJYH JSODD M0L RIG .GJ 53G AAYXX ACQXL ADAGL AFFNX AFSIO AI. AIOBO CITATION IAO IGS IHR INH ITC PJZUB PPXIY PQGLB RXVBD VH1 ZGI ZXP CGR CUY CVF ECM EIF NPM PMFND 7XB 8FD 8FK FR3 K9. MBDVC P64 PKEHL PQEST PQUKI PRINS PUEGO Q9U RC3 7X8 5PM |
ID | FETCH-LOGICAL-c474t-3739ac656469768b26e3377afd472b64d1b92c8c1783aad6e8a5931a66bde43f3 |
IEDL.DBID | 7X7 |
ISBN | 3805585578 9783805585576 |
ISSN | 0001-5652 1423-0062 |
IngestDate | Thu Aug 21 14:19:00 EDT 2025 Thu Jul 10 23:08:32 EDT 2025 Sun Aug 24 03:01:22 EDT 2025 Sat Aug 23 12:58:05 EDT 2025 Fri May 30 11:01:31 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Tue Aug 05 11:59:48 EDT 2025 Thu Aug 29 12:04:35 EDT 2024 Thu Jun 19 22:43:58 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Family-based association tests Missing data Conditional likelihood Unphased genotype data Transmission/disequilibrium test Population stratification |
Language | English |
License | Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. https://www.karger.com/Services/SiteLicenses (c) 2008 S. Karger AG, Basel |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-3739ac656469768b26e3377afd472b64d1b92c8c1783aad6e8a5931a66bde43f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.karger.com/Article/Pdf/119108 |
PMID | 18382088 |
PQID | 222295633 |
PQPubID | 40827 |
PageCount | 12 |
ParticipantIDs | proquest_journals_222295633 crossref_primary_10_1159_000119108 proquest_miscellaneous_20922235 crossref_citationtrail_10_1159_000119108 karger_primary_119108 proquest_miscellaneous_70449274 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2386559 pubmed_primary_18382088 jstor_primary_48513328 |
PublicationCentury | 2000 |
PublicationDate | 2008-01-01 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – month: 01 year: 2008 text: 2008-01-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Switzerland – name: Basel |
PublicationTitle | Human heredity |
PublicationTitleAlternate | Hum Hered |
PublicationYear | 2008 |
Publisher | S. Karger AG |
Publisher_xml | – name: S. Karger AG |
References | Excoffier L, Slatkin M: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995;12:921-927.http://dx.doi.org/10.1016/j.gie.2008.02.03810.3802/jgo.2011.22.2.131 Schaid DJ, Sommer SS: Genotype relative risks: methods for design and analysis of candidate-gene association studies. Am J Hum Genet 1993;53:1114-1126.8213835 Spielman RS, McGinnis RE, Ewens WJ: Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993;52:506-516.8447318 Abecasis GR, Cardon LR, Cookson WO: A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000;66:279-292.1063115710.1086%2F302698 Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES: Parametric and nonparametric linkage analysis: A unified multipoint approach. Am J Hum Genet 1996;58:1347-1363.8651312 Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes in C, ed 2. Cambridge, Cambridge University Press, 1992. Lake SL, Blacker D, Laird NM: Family-based tests of association in the presence of linkage. Am J Hum Genet 2000;67:1515-1525.1105843210.1086%2F316895 Satten GA, Epstein MP: Comparison of prospective and retrospective methods for haplotype inference in case-control studies. Genet Epidemiol 2004;27:192-201.1537261910.1002%2Fgepi.20020 Becker T, Knapp M: Maximum-likelihood estimation of haplotype frequencies in nuclear families. Genet Epidemiol 2004;27:21-32.1518540010.1002%2Fgepi.10323 Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM: Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet Epidemiol 2004;26:61-69.1469195710.1002%2Fgepi.10295 Palmer LJ, Cardon LR: Population stratification and spurious allelic association. Lancet 2003;361:598-604.http://dx.doi.org/10.1046/j.1365-2168.2002.02148.x10.1007/s11894-010-0136-x Epstein MP, Veal CD, Trembath RC, Barker JN, Li C, Satten GA: Genetic association analysis using data from triads and unrelated subjects. Am J Hum Genet 2005;76:592-608.1571210410.1086%2F429225 Epstein MP, Satten GA: Inference on haplotype effects in case-control studies using unphased genotype data. Am J Hum Genet 2003;73:1316-1329.1463155610.1086%2F380204 Croiseau P, Génin E, Cordell HJ: Dealing with missing data in family-based association studies: a mulitple imputation approach. Hum Hered 2007;63:229-238.1734757010.1159%2F000100481 Allen AS, Satten GA: Inference on haplotype/disease association using parent-affected-child data: the projection conditional on parental haplotypes method. Genet Epidemiol 2007;31:211-223.1726611410.1002%2Fgepi.20203 Nicodemus KK, Luna A, Shugart YY: An evaluation of power and type I error of single-nucleotide polymorphism transmission/disequilibrium-based statistical methods under different family structures, missing parental data, and population stratification. Am J Hum Genet 2007;80:178-185.1716090510.1086%2F510498 Laird NM, Lange C: Family-based designs in the age of large-scale gene association studies. Nat Rev Genet 2006;7:385-394.http://dx.doi.org/10.1007/s10350-008-9207-610.1055/s-0029-1243881</pub-id><pub-id pub-id-type="doi">10.1016/j.gie.2010.10.052 Dudbridge F: Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003;25:115-121.1291602010.1002%2Fgepi.10252 Cordell HJ, Clayton DG: A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet 2002;70:124-141.1171990010.1086%2F338007 Weinberg CR,Wilcox AJ, Lie RT: A log-linear approach to case-parent-triad data: Assessing effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting. Am J Hum Genet 1998;62:969-978.http://dx.doi.org/10.1016/j.gie.2011.12.02010.5009/gnl.2011.5.2.165</pub-id><pub-id pub-id-type="doi">10.5754/hge12139 Cordell HJ: Estimation and testing of genotype and haplotype effects in case-control studies: Comparison of weighted regression and multiple imputation procedures. Genet Epidemiol 2006;30:259-275.1649631210.1002%2Fgepi.20142 Martin ER, Bass MP, Hauser ER, Kaplan NL: Accounting for linkage in family-based tests of association with missing parental genotypes. Am J Hum Genet 2003;73:1016-1026.1455190210.1086%2F378779 Dudbridge F, Koeleman BP, Clayton DG, Todd JA: Unbiased application of the transmission/disequilibrium test to multilocus haplotypes. Am J Hum Genet 2000;66:2009-2012.http://dx.doi.org/10.1007/s10151-009-0543-x10.1007/s10151-010-0569-0</pub-id><pub-id pub-id-type="doi">10.3748/wjg.v16.i36.4570 Rabinowitz D: Adjusting for population heterogeneity and misspecified haplotype frequencies when testing nonparametric null hypotheses in statistical genetics. J Am Stat Assoc 2002;97:742-751.10.1198%2F016214502388618528 Spielman RS, Ewens WJ: The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet 1996;59:938-989. Risch NJ: Searching for genetic determinants in the new millenium. Nature 2000;405:847-856.http://dx.doi.org/10.1016/j.gie.2009.07.00610.1016/j.gie.2010.04.006</pub-id><pub-id pub-id-type="doi">10.3109/13645706.2012.694367 Balding DJ: A tutorial on statistical methods for population association studies. Nat Rev Genet 2006;7:781-791.http://dx.doi.org/10.1007/s00384-008-0518-910.1111/j.1463-1318.2008.01485.x</pub-id><pub-id pub-id-type="doi">10.1111/j.1463-1318.2009.01885.x Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA: Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002;70:425-434.1179121210.1086%2F338688 Kistner EO, Weinberg CR: Method for using complete and incomplete trios to identify genes related to a quantitative trait. Genet Epidemiol 2004;27:33-42.1518540110.1002%2Fgepi.20001 Li M, Boehnke M, Abecasis GR: Efficient study designs for test of genetic association using sibship data and unrelated cases and controls. Am J Hum Genet 2006;78:778-792.1664243410.1086%2F503711 Gould W, Pitblado J, Sribney W: Maximumlikelihood estimation with Stata. College Station, Stata Press, 2005. Huang BE, Lin DY: Efficient association mapping of quantitative trait loci with selective genotyping. Am J Hum Genet 2007;80:567-576.1727397910.1086%2F512727 Lin DY, Zeng D: Likelihood-based inference on haplotype effects in genetic association studies. J Am Stat Assoc 2006;101:89-104.10.1198%2F016214505000000808 Clayton D: A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 1999;65:1170-1177.1048633610.1086%2F302577 Li M, Boehnke M, Abecasis GR: Joint modeling of linkage and association: Identifying SNPs responsible for a linkage signal. Am J Hum Genet 2005;76:934-949.1587727810.1086%2F430277 Kwee LC, Epstein MP, Manatunga AK, Duncan R, Allen AS, Satten GA: Simple methods for assessing haplotype-environment interactions in case-only and case-control studies. Genet Epidemiol 2007;31:75-90.1712330210.1002%2Fgepi.20192 Göring HH, Terwilliger JD: Linkage analysis in the presence of errors IV: Joint pseudomarker analysis of linkage and/or linkage disequilibrium on a mixture of pedigrees and singletons when the mode of inheritance cannot be accurately specified. Am J Hum Genet 2000;66:1310-1327.1073146610.1086%2F302845 Sasieni P: From genotypes to genes: doubling the sample size. Biometrics 1997;53:1253-1261.http://dx.doi.org/10.1007/s00464-011-1640-210.3748/wjg.v18.i24.3177</pub-id><pub-id pub-id-type="doi">10.1055/s-0029-1245972 Clayton D, Chapman J, Cooper J: Use of unphased multilocus genotype data in indirect association studies. Genet Epidemiol 2004;27:415-427.1548109910.1002%2Fgepi.20032 Rabinowitz D, Laird NM: A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 2000;50:211-223.1078201210.1159%2F000022918 Purcell S, Daly MJ, Sham PC: WHAP: Haplotype-based association analysis. Bioinformatics 2007;23:255-256.1711895910.1093%2Fbioinformatics%2Fbtl580 Waldman ID, Robinson BF, Rowe DC: A logistic regression based extension of the TDT for continuous and categorical traits. Ann Hum Genet 1999;63:320-340.10.1046%2Fj.1469-1809.1999.6340329.x ref13 ref35 ref12 ref34 ref15 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – reference: Li M, Boehnke M, Abecasis GR: Joint modeling of linkage and association: Identifying SNPs responsible for a linkage signal. Am J Hum Genet 2005;76:934-949.1587727810.1086%2F430277 – reference: Palmer LJ, Cardon LR: Population stratification and spurious allelic association. Lancet 2003;361:598-604.http://dx.doi.org/10.1046/j.1365-2168.2002.02148.x10.1007/s11894-010-0136-x – reference: Clayton D: A generalization of the transmission/disequilibrium test for uncertain-haplotype transmission. Am J Hum Genet 1999;65:1170-1177.1048633610.1086%2F302577 – reference: Abecasis GR, Cardon LR, Cookson WO: A general test of association for quantitative traits in nuclear families. Am J Hum Genet 2000;66:279-292.1063115710.1086%2F302698 – reference: Schaid DJ, Sommer SS: Genotype relative risks: methods for design and analysis of candidate-gene association studies. Am J Hum Genet 1993;53:1114-1126.8213835 – reference: Lake SL, Blacker D, Laird NM: Family-based tests of association in the presence of linkage. Am J Hum Genet 2000;67:1515-1525.1105843210.1086%2F316895 – reference: Lin DY, Zeng D: Likelihood-based inference on haplotype effects in genetic association studies. J Am Stat Assoc 2006;101:89-104.10.1198%2F016214505000000808 – reference: Epstein MP, Veal CD, Trembath RC, Barker JN, Li C, Satten GA: Genetic association analysis using data from triads and unrelated subjects. Am J Hum Genet 2005;76:592-608.1571210410.1086%2F429225 – reference: Allen AS, Satten GA: Inference on haplotype/disease association using parent-affected-child data: the projection conditional on parental haplotypes method. Genet Epidemiol 2007;31:211-223.1726611410.1002%2Fgepi.20203 – reference: Martin ER, Bass MP, Hauser ER, Kaplan NL: Accounting for linkage in family-based tests of association with missing parental genotypes. Am J Hum Genet 2003;73:1016-1026.1455190210.1086%2F378779 – reference: Becker T, Knapp M: Maximum-likelihood estimation of haplotype frequencies in nuclear families. Genet Epidemiol 2004;27:21-32.1518540010.1002%2Fgepi.10323 – reference: Balding DJ: A tutorial on statistical methods for population association studies. Nat Rev Genet 2006;7:781-791.http://dx.doi.org/10.1007/s00384-008-0518-910.1111/j.1463-1318.2008.01485.x</pub-id><pub-id pub-id-type="doi">10.1111/j.1463-1318.2009.01885.x – reference: Croiseau P, Génin E, Cordell HJ: Dealing with missing data in family-based association studies: a mulitple imputation approach. Hum Hered 2007;63:229-238.1734757010.1159%2F000100481 – reference: Clayton D, Chapman J, Cooper J: Use of unphased multilocus genotype data in indirect association studies. Genet Epidemiol 2004;27:415-427.1548109910.1002%2Fgepi.20032 – reference: Kwee LC, Epstein MP, Manatunga AK, Duncan R, Allen AS, Satten GA: Simple methods for assessing haplotype-environment interactions in case-only and case-control studies. Genet Epidemiol 2007;31:75-90.1712330210.1002%2Fgepi.20192 – reference: Cordell HJ, Clayton DG: A unified stepwise regression procedure for evaluating the relative effects of polymorphisms within a gene using case/control or family data: application to HLA in type 1 diabetes. Am J Hum Genet 2002;70:124-141.1171990010.1086%2F338007 – reference: Risch NJ: Searching for genetic determinants in the new millenium. Nature 2000;405:847-856.http://dx.doi.org/10.1016/j.gie.2009.07.00610.1016/j.gie.2010.04.006</pub-id><pub-id pub-id-type="doi">10.3109/13645706.2012.694367 – reference: Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES: Parametric and nonparametric linkage analysis: A unified multipoint approach. Am J Hum Genet 1996;58:1347-1363.8651312 – reference: Epstein MP, Satten GA: Inference on haplotype effects in case-control studies using unphased genotype data. Am J Hum Genet 2003;73:1316-1329.1463155610.1086%2F380204 – reference: Purcell S, Daly MJ, Sham PC: WHAP: Haplotype-based association analysis. Bioinformatics 2007;23:255-256.1711895910.1093%2Fbioinformatics%2Fbtl580 – reference: Göring HH, Terwilliger JD: Linkage analysis in the presence of errors IV: Joint pseudomarker analysis of linkage and/or linkage disequilibrium on a mixture of pedigrees and singletons when the mode of inheritance cannot be accurately specified. Am J Hum Genet 2000;66:1310-1327.1073146610.1086%2F302845 – reference: Li M, Boehnke M, Abecasis GR: Efficient study designs for test of genetic association using sibship data and unrelated cases and controls. Am J Hum Genet 2006;78:778-792.1664243410.1086%2F503711 – reference: Rabinowitz D, Laird NM: A unified approach to adjusting association tests for population admixture with arbitrary pedigree structure and arbitrary missing marker information. Hum Hered 2000;50:211-223.1078201210.1159%2F000022918 – reference: Kistner EO, Weinberg CR: Method for using complete and incomplete trios to identify genes related to a quantitative trait. Genet Epidemiol 2004;27:33-42.1518540110.1002%2Fgepi.20001 – reference: Satten GA, Epstein MP: Comparison of prospective and retrospective methods for haplotype inference in case-control studies. Genet Epidemiol 2004;27:192-201.1537261910.1002%2Fgepi.20020 – reference: Excoffier L, Slatkin M: Maximum-likelihood estimation of molecular haplotype frequencies in a diploid population. Mol Biol Evol 1995;12:921-927.http://dx.doi.org/10.1016/j.gie.2008.02.03810.3802/jgo.2011.22.2.131 – reference: Huang BE, Lin DY: Efficient association mapping of quantitative trait loci with selective genotyping. Am J Hum Genet 2007;80:567-576.1727397910.1086%2F512727 – reference: Cordell HJ: Estimation and testing of genotype and haplotype effects in case-control studies: Comparison of weighted regression and multiple imputation procedures. Genet Epidemiol 2006;30:259-275.1649631210.1002%2Fgepi.20142 – reference: Horvath S, Xu X, Lake SL, Silverman EK, Weiss ST, Laird NM: Family-based tests for associating haplotypes with general phenotype data: application to asthma genetics. Genet Epidemiol 2004;26:61-69.1469195710.1002%2Fgepi.10295 – reference: Gould W, Pitblado J, Sribney W: Maximumlikelihood estimation with Stata. College Station, Stata Press, 2005. – reference: Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical Recipes in C, ed 2. Cambridge, Cambridge University Press, 1992. – reference: Laird NM, Lange C: Family-based designs in the age of large-scale gene association studies. Nat Rev Genet 2006;7:385-394.http://dx.doi.org/10.1007/s10350-008-9207-610.1055/s-0029-1243881</pub-id><pub-id pub-id-type="doi">10.1016/j.gie.2010.10.052 – reference: Nicodemus KK, Luna A, Shugart YY: An evaluation of power and type I error of single-nucleotide polymorphism transmission/disequilibrium-based statistical methods under different family structures, missing parental data, and population stratification. Am J Hum Genet 2007;80:178-185.1716090510.1086%2F510498 – reference: Dudbridge F, Koeleman BP, Clayton DG, Todd JA: Unbiased application of the transmission/disequilibrium test to multilocus haplotypes. Am J Hum Genet 2000;66:2009-2012.http://dx.doi.org/10.1007/s10151-009-0543-x10.1007/s10151-010-0569-0</pub-id><pub-id pub-id-type="doi">10.3748/wjg.v16.i36.4570 – reference: Weinberg CR,Wilcox AJ, Lie RT: A log-linear approach to case-parent-triad data: Assessing effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting. Am J Hum Genet 1998;62:969-978.http://dx.doi.org/10.1016/j.gie.2011.12.02010.5009/gnl.2011.5.2.165</pub-id><pub-id pub-id-type="doi">10.5754/hge12139 – reference: Rabinowitz D: Adjusting for population heterogeneity and misspecified haplotype frequencies when testing nonparametric null hypotheses in statistical genetics. J Am Stat Assoc 2002;97:742-751.10.1198%2F016214502388618528 – reference: Dudbridge F: Pedigree disequilibrium tests for multilocus haplotypes. Genet Epidemiol 2003;25:115-121.1291602010.1002%2Fgepi.10252 – reference: Sasieni P: From genotypes to genes: doubling the sample size. Biometrics 1997;53:1253-1261.http://dx.doi.org/10.1007/s00464-011-1640-210.3748/wjg.v18.i24.3177</pub-id><pub-id pub-id-type="doi">10.1055/s-0029-1245972 – reference: Waldman ID, Robinson BF, Rowe DC: A logistic regression based extension of the TDT for continuous and categorical traits. Ann Hum Genet 1999;63:320-340.10.1046%2Fj.1469-1809.1999.6340329.x – reference: Spielman RS, McGinnis RE, Ewens WJ: Transmission test for linkage disequilibrium: The insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 1993;52:506-516.8447318 – reference: Spielman RS, Ewens WJ: The TDT and other family-based tests for linkage disequilibrium and association. Am J Hum Genet 1996;59:938-989. – reference: Schaid DJ, Rowland CM, Tines DE, Jacobson RM, Poland GA: Score tests for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 2002;70:425-434.1179121210.1086%2F338688 – ident: ref21 doi: 10.1086%2F378779 – ident: ref14 doi: 10.1198%2F016214502388618528 – ident: ref27 doi: 10.1086%2F512727 – ident: ref30 doi: 10.1086%2F380204 – ident: ref7 doi: 10.3802/jgo.2011.22.2.131 – ident: ref33 doi: 10.1002%2Fgepi.20032 – ident: ref25 doi: 10.1002%2Fgepi.20192 – ident: ref4 doi: 10.1007/s11894-010-0136-x – ident: ref20 doi: 10.1093%2Fbioinformatics%2Fbtl580 – ident: ref13 doi: 10.1086%2F510498 – ident: ref22 doi: 10.1086%2F302698 – ident: ref19 doi: 10.1086%2F503711 – ident: ref26 doi: 10.1198%2F016214505000000808 – ident: ref12 doi: 10.1086%2F302577 – ident: ref16 doi: 10.1002%2Fgepi.10295 – ident: ref18 doi: 10.1002%2Fgepi.10323 – ident: ref35 doi: 10.1159%2F000100481 – ident: ref6 doi: 10.1111/j.1463-1318.2008.01485.x – ident: ref11 doi: 10.1002%2Fgepi.20142 – ident: ref15 doi: 10.1002%2Fgepi.10252 – ident: ref3 doi: 10.1055/s-0029-1243881 – ident: ref8 doi: 10.1007/s10151-010-0569-0 – ident: ref34 doi: 10.1086%2F338007 – ident: ref1 doi: 10.1016/j.gie.2010.04.006 – ident: ref23 doi: 10.1086%2F302845 – ident: ref24 doi: 10.1086%2F430277 – ident: ref32 doi: 10.1086%2F338688 – ident: ref17 doi: 10.1002%2Fgepi.20203 – ident: ref36 doi: 10.1159%2F000022918 – ident: ref5 doi: 10.5009/gnl.2011.5.2.165 – ident: ref10 doi: 10.1002%2Fgepi.20020 – ident: ref28 doi: 10.1046%2Fj.1469-1809.1999.6340329.x – ident: ref2 doi: 10.3748/wjg.v18.i24.3177 – ident: ref9 doi: 10.1086%2F316895 – ident: ref31 doi: 10.1086%2F429225 – ident: ref29 doi: 10.1002%2Fgepi.20001 |
SSID | ssj0008073 |
Score | 2.3898704 |
Snippet | Missing data occur in genetic association studies for several reasons including missing family members and uncertain haplotype phase. Maximum likelihood is a... |
SourceID | pubmedcentral proquest pubmed crossref karger jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 87 |
SubjectTerms | Families & family life Genetic research Genetic Techniques Genotype Genotype & phenotype Heredity Humans Likelihood Functions Models, Genetic Models, Statistical Nuclear Family Original Paper Probability Research methodology Software |
Title | Likelihood-Based Association Analysis for Nuclear Families and Unrelated Subjects with Missing Genotype Data |
URI | https://www.jstor.org/stable/48513328 https://karger.com/doi/10.1159/000119108 https://www.ncbi.nlm.nih.gov/pubmed/18382088 https://www.proquest.com/docview/222295633 https://www.proquest.com/docview/20922235 https://www.proquest.com/docview/70449274 https://pubmed.ncbi.nlm.nih.gov/PMC2386559 |
Volume | 66 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BJhAvCMYGZTAsxAMv0ZrY8ccTYrAxIVohRKW-RY7taNWqdLTdA_89d46brWjw7LMS5Xy-333kdwDvasGHTiqXad74TOS-RJtDIBdCLgrf1CpEdv7RWJ5PxNdpOU29OavUVrm5E-NF7ReOcuTHRRw8LTn_cPUro6FRVFxNEzTuwy4xl1FHl5r28RZioVRgxogZcUuRiIXQgR9HKISeUm-5o64jEX3RJXVhL-8CnX_3Tt5yRmdP4HFCkexjp_ancC-0e_Cgmyv5ew8ejlLF_BnMv80uw3xG5MXZCXosz24phG0oSRhCVzYmamO7ZHEWBgbQzLaeTdr4twvuwyuGcjYrRqlbNkKFoddjX0K7oDQu-2zXdh8mZ6c_P51nacJC5oQSa7xduLEOIR0GyRh31IUMnCtlGy9UUUvh89oUTrtcaW6tl0Hb0vDcSln7IHjDD2CnXbThBTAMe3RoZJP7YS2E47VyoQnGSarTGRUG8H7zoSuX6MdpCsa8imFIaapeJwN424tedZwbdwkdRG31EkLTqJoCF_Y79d3sTRsON9qskp2uqv5UDeBNv4oGRlUT24bFNYoMDWGo8t8SaiiEweh-AM-7s3HzZM0RYWl8tto6Nb0AkXtvr7Szi0jyXdAw1tK8_O9bH8Kjrn-FUkKvYGe9vA6vESSt66NoCkewe3I6_v7jD_h0ESQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dTxNBEJ9gicqLUQQtqGyMJr5cuNvd2917IEYELNI2xtCEt3Nvdy82NFdsSwx_lP8js_cFNegbzzvba26-fvNxMwDvMs5CI6QJFMttwCMbo84hkHMu4tTmmXTldP7BUPRG_OtZfLYCf5pvYXxbZWMTS0Ntp8bnyHdpuXhaMPbx4lfgl0b54mqzQaOSihN39Rsjtvne8QGy9z2lR4enn3tBvVQgMFzyBSoUS7RBFINxIULtjArHmJQ6t1zSTHAbZQk1ykRSMa2tcErHCYu0EJl1nOUMf_cBrHKGkUwHVvcPh9--t6ZfhXVJG2N0REq0HmWEkGG3BF_om9WSA6x6INH7nfu-79ldMPfvbs1b7u_oKTypcSv5VAnaM1hxxTo8rDZZXq3Do0Fdo38Ok_743E3GflxysI8-0pJbIkCaISgEwTIZ-mHKekbK7RsYshNdWDIqyu9r8B4aNZ8lmhOfLCYDFBH0s-SLK6Y-cUwO9EJvwOheXv8mdIpp4V4CwUBLuVzkkQ0zzg3LpHG5S4zwlcFEui58aF50auqB537vxiQtA584SVuedOFtS3pRTfm4i2iz5FZLwZVfjkPxYKNi383d-sJ2w820tgzztJXjLuy0p6jSvk6jCze9RJIw8agt_jeFDDlPqORdeFHJxs2TFUNMp_DZcklqWgI_Tnz5pBj_LMeKU7_-NU62_vuvd-Bx73TQT_vHw5NtWKu6Z3xC6hV0FrNL9xoh2iJ7UysGgR_3rYvXVn5NBw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Likelihood-Based+Association+Analysis+for+Nuclear+Families+and+Unrelated+Subjects+with+Missing+Genotype+Data&rft.jtitle=Human+heredity&rft.au=Dudbridge%2C+Frank&rft.date=2008-01-01&rft.issn=0001-5652&rft.eissn=1423-0062&rft.volume=66&rft.issue=2&rft.spage=87&rft.epage=98&rft_id=info:doi/10.1159%2F000119108&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-5652&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-5652&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-5652&client=summon |