A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based on Recurrent Neural Networks

In this paper, we propose a deep Recurrent Neural Networks (RNNs) based on Gated Recurrent Unit (GRU) in a bidirectional manner (BGRU) for human identification from electrocardiogram (ECG) based biometrics, a classification task which aims to identify a subject from a given time-series sequential da...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 7; pp. 145395 - 145405
Main Authors Lynn, Htet Myet, Pan, Sung Bum, Kim, Pankoo
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2169-3536
2169-3536
DOI10.1109/ACCESS.2019.2939947

Cover

Loading…
Abstract In this paper, we propose a deep Recurrent Neural Networks (RNNs) based on Gated Recurrent Unit (GRU) in a bidirectional manner (BGRU) for human identification from electrocardiogram (ECG) based biometrics, a classification task which aims to identify a subject from a given time-series sequential data. Despite having a major issue in traditional RNN networks which they learn representations from previous time sequences, bidirectional is designed to learn the representations from future time steps which enables for better understanding of context, and eliminate ambiguity. Moreover, GRU cell in RNNs deploys an update gate and a reset gate in a hidden state layer which is computationally efficient than a usual LSTM network due to the reduction of gates. The experimental results suggest that our proposed BGRU model, the combination of RNN with GRU cell unit in bidirectional manner, achieved a high classification accuracy of 98.55%. Various neural network architectures with different parameters are also evaluated for different approaches, including one-dimensional Convolutional Neural Network (1D-CNN), and traditional RNNs with LSTM and GRU for non-fiducial approach. The proposed models were evaluated with two publicly available datasets: ECG-ID Database (ECGID) and MIT-BIH Arrhythmia Database (MITDB). This paper is expected to demonstrate the feasibility and effectiveness of applying various deep learning approaches to biometric identification and also evaluate the effect of network performance on classification accuracy according to the changes in percentage of training dataset.
AbstractList In this paper, we propose a deep Recurrent Neural Networks (RNNs) based on Gated Recurrent Unit (GRU) in a bidirectional manner (BGRU) for human identification from electrocardiogram (ECG) based biometrics, a classification task which aims to identify a subject from a given time-series sequential data. Despite having a major issue in traditional RNN networks which they learn representations from previous time sequences, bidirectional is designed to learn the representations from future time steps which enables for better understanding of context, and eliminate ambiguity. Moreover, GRU cell in RNNs deploys an update gate and a reset gate in a hidden state layer which is computationally efficient than a usual LSTM network due to the reduction of gates. The experimental results suggest that our proposed BGRU model, the combination of RNN with GRU cell unit in bidirectional manner, achieved a high classification accuracy of 98.55%. Various neural network architectures with different parameters are also evaluated for different approaches, including one-dimensional Convolutional Neural Network (1D-CNN), and traditional RNNs with LSTM and GRU for non-fiducial approach. The proposed models were evaluated with two publicly available datasets: ECG-ID Database (ECGID) and MIT-BIH Arrhythmia Database (MITDB). This paper is expected to demonstrate the feasibility and effectiveness of applying various deep learning approaches to biometric identification and also evaluate the effect of network performance on classification accuracy according to the changes in percentage of training dataset.
Author Pan, Sung Bum
Kim, Pankoo
Lynn, Htet Myet
Author_xml – sequence: 1
  givenname: Htet Myet
  surname: Lynn
  fullname: Lynn, Htet Myet
  organization: Department of Computer Engineering, Chosun University, Gwangju, South Korea
– sequence: 2
  givenname: Sung Bum
  orcidid: 0000-0002-0960-5706
  surname: Pan
  fullname: Pan, Sung Bum
  organization: Department of Electronics Engineering, Chosun University, Gwangju, South Korea
– sequence: 3
  givenname: Pankoo
  orcidid: 0000-0003-0111-5152
  surname: Kim
  fullname: Kim, Pankoo
  email: pkkim@chosun.ac.kr
  organization: Department of Computer Engineering, Chosun University, Gwangju, South Korea
BookMark eNp9kU1vEzEQhleoSJTSX9CLJc4J_t71MQ2hrVRAaunZ8sds5bCJw3ijwr-v0w0IcWAuMxq976PRvG-bk23eQtNcMDpnjJoPi-VydX8_55SZOTfCGNm-ak4502YmlNAnf81vmvNS1rRWV1eqPW1-LshHgB25TDEhhDHlrRvI1d0D-QLjU8bv5HOOMJA-Y9XkDYyYAlkNVYo5OIwpP6LbkOXgSkl9Cu6AIJeuQCR1uIOwR4TtWHl7rOgjtrxrXvduKHB-7GfNw6fVt-X17Pbr1c1ycTsLspXjTEjnTKTCOAha0y4GxrjpoXM0ag6SRe-F0a1RSnlOO9dGJ5jUvuVMBRnEWXMzcWN2a7vDtHH4y2aX7Msi46N1OKYwgJUmRvBKacmU9MC97zxjnY5cCQ_gK-v9xNph_rGHMtp13mN9WLFcHnyaMlVVZlIFzKUg9Dak8eUtI7o0WEbtITc75WYPudljbtUr_vH-vvj_rovJlQDgj6PruK6Xi2cCbqaj
CODEN IAECCG
CitedBy_id crossref_primary_10_32604_cmc_2022_029198
crossref_primary_10_3390_s23063164
crossref_primary_10_1016_j_eswa_2022_119073
crossref_primary_10_1007_s11760_024_03081_9
crossref_primary_10_1007_s11831_022_09823_7
crossref_primary_10_1109_ACCESS_2020_2980002
crossref_primary_10_1016_j_neucom_2022_10_062
crossref_primary_10_3390_math12162529
crossref_primary_10_3390_s23104635
crossref_primary_10_1016_j_compbiomed_2020_103801
crossref_primary_10_2478_jaiscr_2023_0014
crossref_primary_10_1371_journal_pone_0309165
crossref_primary_10_1016_j_bspc_2024_106968
crossref_primary_10_3390_info14020065
crossref_primary_10_1007_s11276_024_03863_6
crossref_primary_10_3390_electronics13244974
crossref_primary_10_3390_math11112466
crossref_primary_10_1109_ACCESS_2023_3325992
crossref_primary_10_1371_journal_pone_0307498
crossref_primary_10_3390_app10093304
crossref_primary_10_1016_j_neuroscience_2025_02_035
crossref_primary_10_3389_fphys_2022_961724
crossref_primary_10_1007_s10845_020_01657_z
crossref_primary_10_1093_bib_bbac053
crossref_primary_10_3390_axioms11110614
crossref_primary_10_1007_s12652_022_03868_z
crossref_primary_10_32604_iasc_2023_028290
crossref_primary_10_3934_mbe_2022265
crossref_primary_10_1016_j_neucom_2024_128313
crossref_primary_10_1109_TIM_2024_3509578
crossref_primary_10_1016_j_eswa_2023_121323
crossref_primary_10_1038_s41598_024_75531_w
crossref_primary_10_3390_su142013001
crossref_primary_10_1016_j_aej_2025_02_013
crossref_primary_10_3390_electronics9091452
crossref_primary_10_1109_TNNLS_2022_3222671
crossref_primary_10_1109_ACCESS_2020_2993538
crossref_primary_10_1016_j_csl_2024_101624
crossref_primary_10_3390_e23060733
crossref_primary_10_1016_j_aei_2024_102976
crossref_primary_10_1016_j_compbiomed_2025_109737
crossref_primary_10_1080_13658816_2023_2249968
crossref_primary_10_1016_j_bspc_2023_105465
crossref_primary_10_1016_j_egyr_2022_08_180
crossref_primary_10_1007_s12046_023_02188_y
crossref_primary_10_3390_electronics10141685
crossref_primary_10_3390_jpm13030390
crossref_primary_10_3390_math11183942
crossref_primary_10_1007_s12530_024_09611_7
crossref_primary_10_1038_s41598_022_21136_0
crossref_primary_10_3390_s24227241
crossref_primary_10_3390_s21051568
crossref_primary_10_1109_ACCESS_2024_3352038
crossref_primary_10_1109_TSMC_2023_3285757
crossref_primary_10_3390_s20113069
crossref_primary_10_1080_0954898X_2025_2461046
crossref_primary_10_1109_ACCESS_2020_3016938
crossref_primary_10_3390_en13153914
crossref_primary_10_1016_j_cmpb_2021_106006
crossref_primary_10_1155_2022_1874237
crossref_primary_10_32604_cmc_2023_032816
crossref_primary_10_1021_acs_jpclett_5c00211
crossref_primary_10_1002_adsr_202300118
crossref_primary_10_1007_s12145_024_01585_z
crossref_primary_10_47164_ijngc_v13i3_858
crossref_primary_10_32604_iasc_2023_023817
crossref_primary_10_3390_healthcare11071000
crossref_primary_10_2139_ssrn_4779046
crossref_primary_10_1016_j_bspc_2021_102779
crossref_primary_10_1038_s41598_023_37360_1
crossref_primary_10_17798_bitlisfen_1542941
crossref_primary_10_1016_j_engappai_2023_106484
crossref_primary_10_3390_s20041020
crossref_primary_10_1016_j_inffus_2025_102999
crossref_primary_10_1109_TIM_2022_3199260
crossref_primary_10_1109_ACCESS_2021_3074268
crossref_primary_10_1109_JTEHM_2021_3064675
crossref_primary_10_2139_ssrn_4017353
crossref_primary_10_1109_ACCESS_2020_3013029
crossref_primary_10_3390_biology11010043
crossref_primary_10_3390_en14216958
crossref_primary_10_1109_ACCESS_2022_3140342
crossref_primary_10_1016_j_patcog_2021_108376
crossref_primary_10_1016_j_eswa_2022_117410
crossref_primary_10_3390_diagnostics13030439
crossref_primary_10_1016_j_artmed_2020_101856
crossref_primary_10_1016_j_jastp_2024_106393
crossref_primary_10_1109_ACCESS_2020_2974039
crossref_primary_10_3233_JIFS_212465
crossref_primary_10_3390_app14103971
crossref_primary_10_1007_s00521_023_09394_z
crossref_primary_10_1007_s11042_021_10852_w
crossref_primary_10_1007_s11390_021_1033_5
crossref_primary_10_1007_s11042_023_14694_6
crossref_primary_10_1016_j_jafr_2024_101020
crossref_primary_10_32604_cmc_2023_033005
crossref_primary_10_3390_s22197185
crossref_primary_10_25046_aj060140
crossref_primary_10_1007_s13369_023_07798_6
crossref_primary_10_3233_JIFS_230721
crossref_primary_10_3390_su152416759
crossref_primary_10_1088_2632_2153_ac9a9d
crossref_primary_10_1145_3461701
crossref_primary_10_1007_s11042_024_19740_5
crossref_primary_10_1109_TNNLS_2022_3145365
crossref_primary_10_3934_mbe_2024243
crossref_primary_10_1109_TETCI_2021_3131374
crossref_primary_10_1002_dac_4685
crossref_primary_10_32604_csse_2023_034456
crossref_primary_10_1016_j_media_2024_103136
crossref_primary_10_1016_j_engappai_2022_105193
crossref_primary_10_1007_s11042_020_09938_8
crossref_primary_10_1109_TIM_2021_3083556
crossref_primary_10_1038_s41598_023_42841_4
crossref_primary_10_3389_fdgth_2024_1463713
crossref_primary_10_1016_j_knosys_2023_111006
crossref_primary_10_3390_s21030951
crossref_primary_10_3390_biomimetics8040378
crossref_primary_10_3390_su16104069
crossref_primary_10_1016_j_neuroscience_2022_10_006
crossref_primary_10_1109_ACCESS_2021_3128736
crossref_primary_10_1155_2021_6665357
crossref_primary_10_1109_ACCESS_2020_3004464
crossref_primary_10_1016_j_jnca_2023_103704
crossref_primary_10_1016_j_ins_2021_11_066
crossref_primary_10_26634_jse_15_2_18164
crossref_primary_10_1016_j_bspc_2023_105420
crossref_primary_10_1016_j_bspc_2023_104725
crossref_primary_10_1109_JBHI_2022_3145999
crossref_primary_10_1007_s12243_021_00876_6
crossref_primary_10_1109_ACCESS_2023_3346943
crossref_primary_10_1016_j_procs_2021_01_249
crossref_primary_10_32604_csse_2023_030504
crossref_primary_10_3390_app13053070
crossref_primary_10_3390_s20154078
crossref_primary_10_1186_s13634_024_01187_3
crossref_primary_10_35784_jcsi_3273
crossref_primary_10_3390_app10020483
crossref_primary_10_1016_j_ins_2021_01_001
crossref_primary_10_1007_s13246_022_01112_8
crossref_primary_10_3390_app13169454
crossref_primary_10_1016_j_bspc_2022_103692
crossref_primary_10_2166_nh_2024_154
crossref_primary_10_1109_ACCESS_2021_3133482
crossref_primary_10_1109_TBME_2021_3129459
crossref_primary_10_1007_s42979_021_00924_x
crossref_primary_10_1016_j_eswa_2023_120418
crossref_primary_10_32604_cmc_2022_021154
crossref_primary_10_32604_iasc_2023_034069
crossref_primary_10_1016_j_psep_2023_08_027
crossref_primary_10_1016_j_jrtpm_2022_100311
crossref_primary_10_32604_cmes_2021_016728
Cites_doi 10.1109/MEES.2017.8248937
10.54856/jiswa.201812039
10.1016/j.aeue.2014.12.013
10.1177/0037549717709932
10.1016/j.compbiomed.2017.08.022
10.1016/j.measurement.2017.05.022
10.1016/0364-0213(90)90002-E
10.1016/j.compbiomed.2018.03.016
10.1109/TBME.2006.880879
10.1162/neco.1997.9.8.1735
10.22489/CinC.2017.070-060
10.1016/j.ins.2016.01.082
10.1161/01.CIR.101.23.e215
10.1109/TBME.1985.325532
10.1109/CISP-BMEI.2018.8633102
10.3115/v1/D14-1179
10.1561/2200000006
10.1109/5.726791
10.1016/j.compbiomed.2017.12.023
10.1016/j.eswa.2007.05.006
10.1109/ACCESS.2017.2707460
10.22489/CinC.2017.161-460
10.1109/TBME.1986.325695
10.1109/TBME.2015.2468589
10.1093/bib/bbw068
10.1016/j.bspc.2013.01.005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2019.2939947
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 145405
ExternalDocumentID oai_doaj_org_article_49ddeb5564154be2bb8b1186d253beeb
10_1109_ACCESS_2019_2939947
8826253
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  funderid: 10.13039/501100003725
– fundername: Ministry of Education
  grantid: 2017R1A6A1A03015496
  funderid: 10.13039/100010002
– fundername: National Research Foundation of Korea
  grantid: NRF-2019R1H1A2080262
  funderid: 10.13039/501100003725
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c474t-34aa9d039aec6608dc1129fe8a0d62e41dbb39679555b208a7da3146b7215c4c3
IEDL.DBID RIE
ISSN 2169-3536
IngestDate Wed Aug 27 01:16:25 EDT 2025
Mon Jun 30 05:03:33 EDT 2025
Thu Apr 24 22:56:55 EDT 2025
Tue Jul 01 02:41:54 EDT 2025
Wed Aug 27 08:28:56 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-34aa9d039aec6608dc1129fe8a0d62e41dbb39679555b208a7da3146b7215c4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0960-5706
0000-0003-0111-5152
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8826253
PQID 2455646015
PQPubID 4845423
PageCount 11
ParticipantIDs crossref_primary_10_1109_ACCESS_2019_2939947
crossref_citationtrail_10_1109_ACCESS_2019_2939947
ieee_primary_8826253
proquest_journals_2455646015
doaj_primary_oai_doaj_org_article_49ddeb5564154be2bb8b1186d253beeb
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190000
2019-00-00
20190101
2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – year: 2019
  text: 20190000
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References krizhevsky (ref12) 2012
ref15
ref14
ref10
ref2
ref1
ref17
ref16
ref19
(ref24) 2018
ref18
yildirim (ref11) 2018; 1
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
raman (ref3) 2016; 6
ref8
ref7
ref9
ref4
ref6
ref5
uçar (ref13) 2017; 9
References_xml – ident: ref10
  doi: 10.1109/MEES.2017.8248937
– volume: 1
  start-page: 122
  year: 2018
  ident: ref11
  article-title: Recognition of real-world texture images under challenging conditions with deep learning
  publication-title: Intell Syst App
  doi: 10.54856/jiswa.201812039
– ident: ref7
  doi: 10.1016/j.aeue.2014.12.013
– volume: 9
  start-page: 759
  year: 2017
  ident: ref13
  article-title: Object recognition and detection with deep learning for autonomous driving applications
  publication-title: Simulation
  doi: 10.1177/0037549717709932
– ident: ref18
  doi: 10.1016/j.compbiomed.2017.08.022
– ident: ref6
  doi: 10.1016/j.measurement.2017.05.022
– ident: ref27
  doi: 10.1016/0364-0213(90)90002-E
– ident: ref23
  doi: 10.1016/j.compbiomed.2018.03.016
– ident: ref5
  doi: 10.1109/TBME.2006.880879
– ident: ref28
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref22
  doi: 10.22489/CinC.2017.070-060
– ident: ref15
  doi: 10.1016/j.ins.2016.01.082
– start-page: 1097
  year: 2012
  ident: ref12
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref26
  doi: 10.1161/01.CIR.101.23.e215
– year: 2018
  ident: ref24
  publication-title: Remove Trends from Data MathWorks
– ident: ref1
  doi: 10.1109/TBME.1985.325532
– ident: ref21
  doi: 10.1109/CISP-BMEI.2018.8633102
– ident: ref29
  doi: 10.3115/v1/D14-1179
– ident: ref2
  doi: 10.1561/2200000006
– ident: ref9
  doi: 10.1109/5.726791
– ident: ref16
  doi: 10.1016/j.compbiomed.2017.12.023
– ident: ref4
  doi: 10.1016/j.eswa.2007.05.006
– ident: ref20
  doi: 10.1109/ACCESS.2017.2707460
– ident: ref19
  doi: 10.22489/CinC.2017.161-460
– volume: 6
  start-page: 6739
  year: 2016
  ident: ref3
  article-title: Classification of heart diseases based on ECG analysis using FCM and SVM methods
  publication-title: Int J Eng Sci
– ident: ref25
  doi: 10.1109/TBME.1986.325695
– ident: ref17
  doi: 10.1109/TBME.2015.2468589
– ident: ref14
  doi: 10.1093/bib/bbw068
– ident: ref8
  doi: 10.1016/j.bspc.2013.01.005
SSID ssj0000816957
Score 2.5363615
Snippet In this paper, we propose a deep Recurrent Neural Networks (RNNs) based on Gated Recurrent Unit (GRU) in a bidirectional manner (BGRU) for human identification...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 145395
SubjectTerms 1D-convolutional neural networks
Accuracy
Arrhythmia
Artificial neural networks
bidriectional recurrent neural networks
Biological system modeling
Biometric identification
Biometrics
biometrics classification
Classification
Computer architecture
Datasets
ECG signals
Electrocardiography
Feature extraction
gated recurrent unit
Heart
Logic gates
Machine learning
Neural networks
Recurrent neural networks
Representations
Sequences
signal processing
user identification
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ-iVrG-yMGjq_tIsptjWx9F0INY8BbyGEHQKlrBn-9MEktB0Iu3ZclmN5lJZr4w-32MHUFlhUSgXFhEOYUIUhdaIkohqGE7qIKIPwpf36jxRFzdy_sFqS-qCUv0wGniToXGBeikVBhphIPauc5hUqxCLRsH4Gj3xZi3AKbiHtxVSss20wxVpT4djEY4Iqrl0icY4rQmQZWFUBQZ-7PEyo99OQabi3W2lrNEPkhft8GWYLrJVhe4A3vsc8DPAF758DFFpXikxy9vJ_wmVXZzkjl74piUYpuXZ1LO8vw8qd74WIVKhVk8qmJSvVA0ER9iVAscL27pIJ6omzjxd2DXudv3LTa5OL8bjYsso1B40YpZ0QhrdSgbbcErVXbBU471AJ0tg6pBVMG5RqtWSyldXXa2DbbBDdQhOJRe-GabLU9fprDDuIPSVYi5wCKMchZzm0p2ToNqQfmuEn1Wf8-o8ZljnKQunkzEGqU2yQyGzGCyGfrseP7Qa6LY-L35kEw1b0r82PEGeo3JXmP-8po-65Gh550gzkAg2PTZ_rfhTV7L76YW1A8CV7n7H6_eYys0nHSMs8-WZ28fcICJzcwdRh_-Amft8ss
  priority: 102
  providerName: Directory of Open Access Journals
Title A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based on Recurrent Neural Networks
URI https://ieeexplore.ieee.org/document/8826253
https://www.proquest.com/docview/2455646015
https://doaj.org/article/49ddeb5564154be2bb8b1186d253beeb
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NaxsxEB2SnNpDmzYtdZMGHXrMOvsh7a6OtvNFIDmEGnIT-phCaWqHxIbSX58ZSV5CW0pvi9EKmSdr5o1H7wF8xspKRUS5sMRyChmULrQilsJUw_ZYBRkvCl9dtxdzeXmrbrfgaLgLg4ix-QzH_Bj_yw9Lv-ZS2TFlg5SuN9uwTcQt3dUa6ilsIKFVl4WFqlIfT2Yz-g7cvaXHFNS0ZguVZ8EnavRnU5U_TuIYXs5ew9VmYamr5Pt4vXJj_-s3zcb_XfkuvMp5ppikjfEGtnDxFl4-Ux_cg58TcYJ4L6bfUlyLRUFxfjMX16k3XLBR2p2gtJbGLH-w95YXp8k3x8c-Vm7tEtFXkzuOIshiSnExCHq44VI-iz8JVgChqfO0j-9gfnb6ZXZRZCOGwstOropGWqtD2WiLvm3LPnjO0r5ib8vQ1iir4Fyj204rpVxd9rYLtqEj2BG9VF765j3sLJYL_ADCYekqYm1oiYg5S9lRpXqnse2w9X0lR1BvEDI-q5SzWcadiWyl1CbBahhWk2EdwdHw0n0S6fj38ClDPwxlhe34AUFm8g_WSE0Hv1OqpQxHOqyd6x2RsTYQjA7RjWCPYR4myQiP4GCzkUw-DR5NLXkeor7q49_f2ocXvMBU2jmAndXDGj9RsrNyh7FIcBj3-hO2ZPx3
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2VcoAe-CqogQI-cOym-2Hvro9JaAnQ5FA1Um-WP6YSoiQVTSTEr2fG66wqQIjbKvJajp7jmTcZvwfwDgsrFRHlzBLLyWRQOtOKWApTDdtiEWS8KDyb19OF_HSpLnfgqL8Lg4ix-QyH_Bj_yw8rv-FS2TFlg5SuV_fgvuLLuN1trb6iwhYSWjVJWqjI9fFoMqFvwf1bekhhTWs2UbkTfqJKf7JV-eMsjgHm9DHMtkvr-kq-DjdrN_Q_f1Nt_N-1P4FHKdMUo25rPIUdXD6DvTv6g_vwYyTeI96I8ZcussWyoPhwvhDzrjtcsFXataDElsasvrH7lhcnnXOOj52s3NwlorMm9xxFmMWYImMQ9HDOxXyWfxKsAUJTp2lvn8Pi9ORiMs2SFUPmZSPXWSWt1SGvtEVf13kbPOdpV9jaPNQlyiI4V-m60UopV-atbYKt6BB2RDCVl756AbvL1RIPQDjMXUG8DS1RMWcpPypU6zTWDda-LeQAyi1CxiedcrbLuDaRr-TadLAahtUkWAdw1L9008l0_Hv4mKHvh7LGdvyAIDPpJ2ukpqPfKVVTjiMdls61juhYHQhGh-gGsM8w95MkhAdwuN1IJp0Ht6aUPA-RX_Xy72-9hQfTi9mZOfs4__wKHvJiu0LPIeyuv2_wNaU-a_cm7vhfCfD-yg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Bidirectional+GRU+Network+Model+for+Biometric+Electrocardiogram+Classification+Based+on+Recurrent+Neural+Networks&rft.jtitle=IEEE+access&rft.au=Lynn%2C+Htet+Myet&rft.au=Pan%2C+Sung+Bum&rft.au=Kim%2C+Pankoo&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=145395&rft.epage=145405&rft_id=info:doi/10.1109%2FACCESS.2019.2939947&rft.externalDocID=8826253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon