A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based on Recurrent Neural Networks
In this paper, we propose a deep Recurrent Neural Networks (RNNs) based on Gated Recurrent Unit (GRU) in a bidirectional manner (BGRU) for human identification from electrocardiogram (ECG) based biometrics, a classification task which aims to identify a subject from a given time-series sequential da...
Saved in:
Published in | IEEE access Vol. 7; pp. 145395 - 145405 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2169-3536 2169-3536 |
DOI | 10.1109/ACCESS.2019.2939947 |
Cover
Loading…
Abstract | In this paper, we propose a deep Recurrent Neural Networks (RNNs) based on Gated Recurrent Unit (GRU) in a bidirectional manner (BGRU) for human identification from electrocardiogram (ECG) based biometrics, a classification task which aims to identify a subject from a given time-series sequential data. Despite having a major issue in traditional RNN networks which they learn representations from previous time sequences, bidirectional is designed to learn the representations from future time steps which enables for better understanding of context, and eliminate ambiguity. Moreover, GRU cell in RNNs deploys an update gate and a reset gate in a hidden state layer which is computationally efficient than a usual LSTM network due to the reduction of gates. The experimental results suggest that our proposed BGRU model, the combination of RNN with GRU cell unit in bidirectional manner, achieved a high classification accuracy of 98.55%. Various neural network architectures with different parameters are also evaluated for different approaches, including one-dimensional Convolutional Neural Network (1D-CNN), and traditional RNNs with LSTM and GRU for non-fiducial approach. The proposed models were evaluated with two publicly available datasets: ECG-ID Database (ECGID) and MIT-BIH Arrhythmia Database (MITDB). This paper is expected to demonstrate the feasibility and effectiveness of applying various deep learning approaches to biometric identification and also evaluate the effect of network performance on classification accuracy according to the changes in percentage of training dataset. |
---|---|
AbstractList | In this paper, we propose a deep Recurrent Neural Networks (RNNs) based on Gated Recurrent Unit (GRU) in a bidirectional manner (BGRU) for human identification from electrocardiogram (ECG) based biometrics, a classification task which aims to identify a subject from a given time-series sequential data. Despite having a major issue in traditional RNN networks which they learn representations from previous time sequences, bidirectional is designed to learn the representations from future time steps which enables for better understanding of context, and eliminate ambiguity. Moreover, GRU cell in RNNs deploys an update gate and a reset gate in a hidden state layer which is computationally efficient than a usual LSTM network due to the reduction of gates. The experimental results suggest that our proposed BGRU model, the combination of RNN with GRU cell unit in bidirectional manner, achieved a high classification accuracy of 98.55%. Various neural network architectures with different parameters are also evaluated for different approaches, including one-dimensional Convolutional Neural Network (1D-CNN), and traditional RNNs with LSTM and GRU for non-fiducial approach. The proposed models were evaluated with two publicly available datasets: ECG-ID Database (ECGID) and MIT-BIH Arrhythmia Database (MITDB). This paper is expected to demonstrate the feasibility and effectiveness of applying various deep learning approaches to biometric identification and also evaluate the effect of network performance on classification accuracy according to the changes in percentage of training dataset. |
Author | Pan, Sung Bum Kim, Pankoo Lynn, Htet Myet |
Author_xml | – sequence: 1 givenname: Htet Myet surname: Lynn fullname: Lynn, Htet Myet organization: Department of Computer Engineering, Chosun University, Gwangju, South Korea – sequence: 2 givenname: Sung Bum orcidid: 0000-0002-0960-5706 surname: Pan fullname: Pan, Sung Bum organization: Department of Electronics Engineering, Chosun University, Gwangju, South Korea – sequence: 3 givenname: Pankoo orcidid: 0000-0003-0111-5152 surname: Kim fullname: Kim, Pankoo email: pkkim@chosun.ac.kr organization: Department of Computer Engineering, Chosun University, Gwangju, South Korea |
BookMark | eNp9kU1vEzEQhleoSJTSX9CLJc4J_t71MQ2hrVRAaunZ8sds5bCJw3ijwr-v0w0IcWAuMxq976PRvG-bk23eQtNcMDpnjJoPi-VydX8_55SZOTfCGNm-ak4502YmlNAnf81vmvNS1rRWV1eqPW1-LshHgB25TDEhhDHlrRvI1d0D-QLjU8bv5HOOMJA-Y9XkDYyYAlkNVYo5OIwpP6LbkOXgSkl9Cu6AIJeuQCR1uIOwR4TtWHl7rOgjtrxrXvduKHB-7GfNw6fVt-X17Pbr1c1ycTsLspXjTEjnTKTCOAha0y4GxrjpoXM0ag6SRe-F0a1RSnlOO9dGJ5jUvuVMBRnEWXMzcWN2a7vDtHH4y2aX7Msi46N1OKYwgJUmRvBKacmU9MC97zxjnY5cCQ_gK-v9xNph_rGHMtp13mN9WLFcHnyaMlVVZlIFzKUg9Dak8eUtI7o0WEbtITc75WYPudljbtUr_vH-vvj_rovJlQDgj6PruK6Xi2cCbqaj |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_32604_cmc_2022_029198 crossref_primary_10_3390_s23063164 crossref_primary_10_1016_j_eswa_2022_119073 crossref_primary_10_1007_s11760_024_03081_9 crossref_primary_10_1007_s11831_022_09823_7 crossref_primary_10_1109_ACCESS_2020_2980002 crossref_primary_10_1016_j_neucom_2022_10_062 crossref_primary_10_3390_math12162529 crossref_primary_10_3390_s23104635 crossref_primary_10_1016_j_compbiomed_2020_103801 crossref_primary_10_2478_jaiscr_2023_0014 crossref_primary_10_1371_journal_pone_0309165 crossref_primary_10_1016_j_bspc_2024_106968 crossref_primary_10_3390_info14020065 crossref_primary_10_1007_s11276_024_03863_6 crossref_primary_10_3390_electronics13244974 crossref_primary_10_3390_math11112466 crossref_primary_10_1109_ACCESS_2023_3325992 crossref_primary_10_1371_journal_pone_0307498 crossref_primary_10_3390_app10093304 crossref_primary_10_1016_j_neuroscience_2025_02_035 crossref_primary_10_3389_fphys_2022_961724 crossref_primary_10_1007_s10845_020_01657_z crossref_primary_10_1093_bib_bbac053 crossref_primary_10_3390_axioms11110614 crossref_primary_10_1007_s12652_022_03868_z crossref_primary_10_32604_iasc_2023_028290 crossref_primary_10_3934_mbe_2022265 crossref_primary_10_1016_j_neucom_2024_128313 crossref_primary_10_1109_TIM_2024_3509578 crossref_primary_10_1016_j_eswa_2023_121323 crossref_primary_10_1038_s41598_024_75531_w crossref_primary_10_3390_su142013001 crossref_primary_10_1016_j_aej_2025_02_013 crossref_primary_10_3390_electronics9091452 crossref_primary_10_1109_TNNLS_2022_3222671 crossref_primary_10_1109_ACCESS_2020_2993538 crossref_primary_10_1016_j_csl_2024_101624 crossref_primary_10_3390_e23060733 crossref_primary_10_1016_j_aei_2024_102976 crossref_primary_10_1016_j_compbiomed_2025_109737 crossref_primary_10_1080_13658816_2023_2249968 crossref_primary_10_1016_j_bspc_2023_105465 crossref_primary_10_1016_j_egyr_2022_08_180 crossref_primary_10_1007_s12046_023_02188_y crossref_primary_10_3390_electronics10141685 crossref_primary_10_3390_jpm13030390 crossref_primary_10_3390_math11183942 crossref_primary_10_1007_s12530_024_09611_7 crossref_primary_10_1038_s41598_022_21136_0 crossref_primary_10_3390_s24227241 crossref_primary_10_3390_s21051568 crossref_primary_10_1109_ACCESS_2024_3352038 crossref_primary_10_1109_TSMC_2023_3285757 crossref_primary_10_3390_s20113069 crossref_primary_10_1080_0954898X_2025_2461046 crossref_primary_10_1109_ACCESS_2020_3016938 crossref_primary_10_3390_en13153914 crossref_primary_10_1016_j_cmpb_2021_106006 crossref_primary_10_1155_2022_1874237 crossref_primary_10_32604_cmc_2023_032816 crossref_primary_10_1021_acs_jpclett_5c00211 crossref_primary_10_1002_adsr_202300118 crossref_primary_10_1007_s12145_024_01585_z crossref_primary_10_47164_ijngc_v13i3_858 crossref_primary_10_32604_iasc_2023_023817 crossref_primary_10_3390_healthcare11071000 crossref_primary_10_2139_ssrn_4779046 crossref_primary_10_1016_j_bspc_2021_102779 crossref_primary_10_1038_s41598_023_37360_1 crossref_primary_10_17798_bitlisfen_1542941 crossref_primary_10_1016_j_engappai_2023_106484 crossref_primary_10_3390_s20041020 crossref_primary_10_1016_j_inffus_2025_102999 crossref_primary_10_1109_TIM_2022_3199260 crossref_primary_10_1109_ACCESS_2021_3074268 crossref_primary_10_1109_JTEHM_2021_3064675 crossref_primary_10_2139_ssrn_4017353 crossref_primary_10_1109_ACCESS_2020_3013029 crossref_primary_10_3390_biology11010043 crossref_primary_10_3390_en14216958 crossref_primary_10_1109_ACCESS_2022_3140342 crossref_primary_10_1016_j_patcog_2021_108376 crossref_primary_10_1016_j_eswa_2022_117410 crossref_primary_10_3390_diagnostics13030439 crossref_primary_10_1016_j_artmed_2020_101856 crossref_primary_10_1016_j_jastp_2024_106393 crossref_primary_10_1109_ACCESS_2020_2974039 crossref_primary_10_3233_JIFS_212465 crossref_primary_10_3390_app14103971 crossref_primary_10_1007_s00521_023_09394_z crossref_primary_10_1007_s11042_021_10852_w crossref_primary_10_1007_s11390_021_1033_5 crossref_primary_10_1007_s11042_023_14694_6 crossref_primary_10_1016_j_jafr_2024_101020 crossref_primary_10_32604_cmc_2023_033005 crossref_primary_10_3390_s22197185 crossref_primary_10_25046_aj060140 crossref_primary_10_1007_s13369_023_07798_6 crossref_primary_10_3233_JIFS_230721 crossref_primary_10_3390_su152416759 crossref_primary_10_1088_2632_2153_ac9a9d crossref_primary_10_1145_3461701 crossref_primary_10_1007_s11042_024_19740_5 crossref_primary_10_1109_TNNLS_2022_3145365 crossref_primary_10_3934_mbe_2024243 crossref_primary_10_1109_TETCI_2021_3131374 crossref_primary_10_1002_dac_4685 crossref_primary_10_32604_csse_2023_034456 crossref_primary_10_1016_j_media_2024_103136 crossref_primary_10_1016_j_engappai_2022_105193 crossref_primary_10_1007_s11042_020_09938_8 crossref_primary_10_1109_TIM_2021_3083556 crossref_primary_10_1038_s41598_023_42841_4 crossref_primary_10_3389_fdgth_2024_1463713 crossref_primary_10_1016_j_knosys_2023_111006 crossref_primary_10_3390_s21030951 crossref_primary_10_3390_biomimetics8040378 crossref_primary_10_3390_su16104069 crossref_primary_10_1016_j_neuroscience_2022_10_006 crossref_primary_10_1109_ACCESS_2021_3128736 crossref_primary_10_1155_2021_6665357 crossref_primary_10_1109_ACCESS_2020_3004464 crossref_primary_10_1016_j_jnca_2023_103704 crossref_primary_10_1016_j_ins_2021_11_066 crossref_primary_10_26634_jse_15_2_18164 crossref_primary_10_1016_j_bspc_2023_105420 crossref_primary_10_1016_j_bspc_2023_104725 crossref_primary_10_1109_JBHI_2022_3145999 crossref_primary_10_1007_s12243_021_00876_6 crossref_primary_10_1109_ACCESS_2023_3346943 crossref_primary_10_1016_j_procs_2021_01_249 crossref_primary_10_32604_csse_2023_030504 crossref_primary_10_3390_app13053070 crossref_primary_10_3390_s20154078 crossref_primary_10_1186_s13634_024_01187_3 crossref_primary_10_35784_jcsi_3273 crossref_primary_10_3390_app10020483 crossref_primary_10_1016_j_ins_2021_01_001 crossref_primary_10_1007_s13246_022_01112_8 crossref_primary_10_3390_app13169454 crossref_primary_10_1016_j_bspc_2022_103692 crossref_primary_10_2166_nh_2024_154 crossref_primary_10_1109_ACCESS_2021_3133482 crossref_primary_10_1109_TBME_2021_3129459 crossref_primary_10_1007_s42979_021_00924_x crossref_primary_10_1016_j_eswa_2023_120418 crossref_primary_10_32604_cmc_2022_021154 crossref_primary_10_32604_iasc_2023_034069 crossref_primary_10_1016_j_psep_2023_08_027 crossref_primary_10_1016_j_jrtpm_2022_100311 crossref_primary_10_32604_cmes_2021_016728 |
Cites_doi | 10.1109/MEES.2017.8248937 10.54856/jiswa.201812039 10.1016/j.aeue.2014.12.013 10.1177/0037549717709932 10.1016/j.compbiomed.2017.08.022 10.1016/j.measurement.2017.05.022 10.1016/0364-0213(90)90002-E 10.1016/j.compbiomed.2018.03.016 10.1109/TBME.2006.880879 10.1162/neco.1997.9.8.1735 10.22489/CinC.2017.070-060 10.1016/j.ins.2016.01.082 10.1161/01.CIR.101.23.e215 10.1109/TBME.1985.325532 10.1109/CISP-BMEI.2018.8633102 10.3115/v1/D14-1179 10.1561/2200000006 10.1109/5.726791 10.1016/j.compbiomed.2017.12.023 10.1016/j.eswa.2007.05.006 10.1109/ACCESS.2017.2707460 10.22489/CinC.2017.161-460 10.1109/TBME.1986.325695 10.1109/TBME.2015.2468589 10.1093/bib/bbw068 10.1016/j.bspc.2013.01.005 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2019.2939947 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 145405 |
ExternalDocumentID | oai_doaj_org_article_49ddeb5564154be2bb8b1186d253beeb 10_1109_ACCESS_2019_2939947 8826253 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation of Korea funderid: 10.13039/501100003725 – fundername: Ministry of Education grantid: 2017R1A6A1A03015496 funderid: 10.13039/100010002 – fundername: National Research Foundation of Korea grantid: NRF-2019R1H1A2080262 funderid: 10.13039/501100003725 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c474t-34aa9d039aec6608dc1129fe8a0d62e41dbb39679555b208a7da3146b7215c4c3 |
IEDL.DBID | RIE |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 01:16:25 EDT 2025 Mon Jun 30 05:03:33 EDT 2025 Thu Apr 24 22:56:55 EDT 2025 Tue Jul 01 02:41:54 EDT 2025 Wed Aug 27 08:28:56 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://creativecommons.org/licenses/by/4.0/legalcode |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-34aa9d039aec6608dc1129fe8a0d62e41dbb39679555b208a7da3146b7215c4c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0960-5706 0000-0003-0111-5152 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/8826253 |
PQID | 2455646015 |
PQPubID | 4845423 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_ACCESS_2019_2939947 crossref_citationtrail_10_1109_ACCESS_2019_2939947 ieee_primary_8826253 proquest_journals_2455646015 doaj_primary_oai_doaj_org_article_49ddeb5564154be2bb8b1186d253beeb |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190000 2019-00-00 20190101 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – year: 2019 text: 20190000 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | krizhevsky (ref12) 2012 ref15 ref14 ref10 ref2 ref1 ref17 ref16 ref19 (ref24) 2018 ref18 yildirim (ref11) 2018; 1 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 raman (ref3) 2016; 6 ref8 ref7 ref9 ref4 ref6 ref5 uçar (ref13) 2017; 9 |
References_xml | – ident: ref10 doi: 10.1109/MEES.2017.8248937 – volume: 1 start-page: 122 year: 2018 ident: ref11 article-title: Recognition of real-world texture images under challenging conditions with deep learning publication-title: Intell Syst App doi: 10.54856/jiswa.201812039 – ident: ref7 doi: 10.1016/j.aeue.2014.12.013 – volume: 9 start-page: 759 year: 2017 ident: ref13 article-title: Object recognition and detection with deep learning for autonomous driving applications publication-title: Simulation doi: 10.1177/0037549717709932 – ident: ref18 doi: 10.1016/j.compbiomed.2017.08.022 – ident: ref6 doi: 10.1016/j.measurement.2017.05.022 – ident: ref27 doi: 10.1016/0364-0213(90)90002-E – ident: ref23 doi: 10.1016/j.compbiomed.2018.03.016 – ident: ref5 doi: 10.1109/TBME.2006.880879 – ident: ref28 doi: 10.1162/neco.1997.9.8.1735 – ident: ref22 doi: 10.22489/CinC.2017.070-060 – ident: ref15 doi: 10.1016/j.ins.2016.01.082 – start-page: 1097 year: 2012 ident: ref12 article-title: Imagenet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Process Syst – ident: ref26 doi: 10.1161/01.CIR.101.23.e215 – year: 2018 ident: ref24 publication-title: Remove Trends from Data MathWorks – ident: ref1 doi: 10.1109/TBME.1985.325532 – ident: ref21 doi: 10.1109/CISP-BMEI.2018.8633102 – ident: ref29 doi: 10.3115/v1/D14-1179 – ident: ref2 doi: 10.1561/2200000006 – ident: ref9 doi: 10.1109/5.726791 – ident: ref16 doi: 10.1016/j.compbiomed.2017.12.023 – ident: ref4 doi: 10.1016/j.eswa.2007.05.006 – ident: ref20 doi: 10.1109/ACCESS.2017.2707460 – ident: ref19 doi: 10.22489/CinC.2017.161-460 – volume: 6 start-page: 6739 year: 2016 ident: ref3 article-title: Classification of heart diseases based on ECG analysis using FCM and SVM methods publication-title: Int J Eng Sci – ident: ref25 doi: 10.1109/TBME.1986.325695 – ident: ref17 doi: 10.1109/TBME.2015.2468589 – ident: ref14 doi: 10.1093/bib/bbw068 – ident: ref8 doi: 10.1016/j.bspc.2013.01.005 |
SSID | ssj0000816957 |
Score | 2.5363615 |
Snippet | In this paper, we propose a deep Recurrent Neural Networks (RNNs) based on Gated Recurrent Unit (GRU) in a bidirectional manner (BGRU) for human identification... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 145395 |
SubjectTerms | 1D-convolutional neural networks Accuracy Arrhythmia Artificial neural networks bidriectional recurrent neural networks Biological system modeling Biometric identification Biometrics biometrics classification Classification Computer architecture Datasets ECG signals Electrocardiography Feature extraction gated recurrent unit Heart Logic gates Machine learning Neural networks Recurrent neural networks Representations Sequences signal processing user identification |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7iSQ-iVrG-yMGjq_tIsptjWx9F0INY8BbyGEHQKlrBn-9MEktB0Iu3ZclmN5lJZr4w-32MHUFlhUSgXFhEOYUIUhdaIkohqGE7qIKIPwpf36jxRFzdy_sFqS-qCUv0wGniToXGBeikVBhphIPauc5hUqxCLRsH4Gj3xZi3AKbiHtxVSss20wxVpT4djEY4Iqrl0icY4rQmQZWFUBQZ-7PEyo99OQabi3W2lrNEPkhft8GWYLrJVhe4A3vsc8DPAF758DFFpXikxy9vJ_wmVXZzkjl74piUYpuXZ1LO8vw8qd74WIVKhVk8qmJSvVA0ER9iVAscL27pIJ6omzjxd2DXudv3LTa5OL8bjYsso1B40YpZ0QhrdSgbbcErVXbBU471AJ0tg6pBVMG5RqtWSyldXXa2DbbBDdQhOJRe-GabLU9fprDDuIPSVYi5wCKMchZzm0p2ToNqQfmuEn1Wf8-o8ZljnKQunkzEGqU2yQyGzGCyGfrseP7Qa6LY-L35kEw1b0r82PEGeo3JXmP-8po-65Gh550gzkAg2PTZ_rfhTV7L76YW1A8CV7n7H6_eYys0nHSMs8-WZ28fcICJzcwdRh_-Amft8ss priority: 102 providerName: Directory of Open Access Journals |
Title | A Deep Bidirectional GRU Network Model for Biometric Electrocardiogram Classification Based on Recurrent Neural Networks |
URI | https://ieeexplore.ieee.org/document/8826253 https://www.proquest.com/docview/2455646015 https://doaj.org/article/49ddeb5564154be2bb8b1186d253beeb |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NaxsxEB2SnNpDmzYtdZMGHXrMOvsh7a6OtvNFIDmEGnIT-phCaWqHxIbSX58ZSV5CW0pvi9EKmSdr5o1H7wF8xspKRUS5sMRyChmULrQilsJUw_ZYBRkvCl9dtxdzeXmrbrfgaLgLg4ix-QzH_Bj_yw9Lv-ZS2TFlg5SuN9uwTcQt3dUa6ilsIKFVl4WFqlIfT2Yz-g7cvaXHFNS0ZguVZ8EnavRnU5U_TuIYXs5ew9VmYamr5Pt4vXJj_-s3zcb_XfkuvMp5ppikjfEGtnDxFl4-Ux_cg58TcYJ4L6bfUlyLRUFxfjMX16k3XLBR2p2gtJbGLH-w95YXp8k3x8c-Vm7tEtFXkzuOIshiSnExCHq44VI-iz8JVgChqfO0j-9gfnb6ZXZRZCOGwstOropGWqtD2WiLvm3LPnjO0r5ib8vQ1iir4Fyj204rpVxd9rYLtqEj2BG9VF765j3sLJYL_ADCYekqYm1oiYg5S9lRpXqnse2w9X0lR1BvEDI-q5SzWcadiWyl1CbBahhWk2EdwdHw0n0S6fj38ClDPwxlhe34AUFm8g_WSE0Hv1OqpQxHOqyd6x2RsTYQjA7RjWCPYR4myQiP4GCzkUw-DR5NLXkeor7q49_f2ocXvMBU2jmAndXDGj9RsrNyh7FIcBj3-hO2ZPx3 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2VcoAe-CqogQI-cOym-2Hvro9JaAnQ5FA1Um-WP6YSoiQVTSTEr2fG66wqQIjbKvJajp7jmTcZvwfwDgsrFRHlzBLLyWRQOtOKWApTDdtiEWS8KDyb19OF_HSpLnfgqL8Lg4ix-QyH_Bj_yw8rv-FS2TFlg5SuV_fgvuLLuN1trb6iwhYSWjVJWqjI9fFoMqFvwf1bekhhTWs2UbkTfqJKf7JV-eMsjgHm9DHMtkvr-kq-DjdrN_Q_f1Nt_N-1P4FHKdMUo25rPIUdXD6DvTv6g_vwYyTeI96I8ZcussWyoPhwvhDzrjtcsFXataDElsasvrH7lhcnnXOOj52s3NwlorMm9xxFmMWYImMQ9HDOxXyWfxKsAUJTp2lvn8Pi9ORiMs2SFUPmZSPXWSWt1SGvtEVf13kbPOdpV9jaPNQlyiI4V-m60UopV-atbYKt6BB2RDCVl756AbvL1RIPQDjMXUG8DS1RMWcpPypU6zTWDda-LeQAyi1CxiedcrbLuDaRr-TadLAahtUkWAdw1L9008l0_Hv4mKHvh7LGdvyAIDPpJ2ukpqPfKVVTjiMdls61juhYHQhGh-gGsM8w95MkhAdwuN1IJp0Ht6aUPA-RX_Xy72-9hQfTi9mZOfs4__wKHvJiu0LPIeyuv2_wNaU-a_cm7vhfCfD-yg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Bidirectional+GRU+Network+Model+for+Biometric+Electrocardiogram+Classification+Based+on+Recurrent+Neural+Networks&rft.jtitle=IEEE+access&rft.au=Lynn%2C+Htet+Myet&rft.au=Pan%2C+Sung+Bum&rft.au=Kim%2C+Pankoo&rft.date=2019&rft.pub=IEEE&rft.eissn=2169-3536&rft.volume=7&rft.spage=145395&rft.epage=145405&rft_id=info:doi/10.1109%2FACCESS.2019.2939947&rft.externalDocID=8826253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |