MultiLink Analysis: Brain Network Comparison via Sparse Connectivity Analysis
The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data....
Saved in:
Published in | Scientific reports Vol. 9; no. 1; p. 65 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.01.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-018-37300-4 |
Cover
Abstract | The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets. |
---|---|
AbstractList | The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets. The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets.The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets. |
ArticleNumber | 65 |
Author | Murino, Vittorio Sona, Diego Sambataro, Fabio Giancardo, Luca Gozzi, Alessandro Crimi, Alessandro |
Author_xml | – sequence: 1 givenname: Alessandro surname: Crimi fullname: Crimi, Alessandro email: alessandro.crimi@usz.ch organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Institute of Neuropathology, University Hospital of Zürich – sequence: 2 givenname: Luca orcidid: 0000-0002-4862-2277 surname: Giancardo fullname: Giancardo, Luca organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston – sequence: 3 givenname: Fabio orcidid: 0000-0003-2102-416X surname: Sambataro fullname: Sambataro, Fabio organization: Department of Experimental and Clinical Medical Sciences, University of Udine – sequence: 4 givenname: Alessandro surname: Gozzi fullname: Gozzi, Alessandro organization: Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia – sequence: 5 givenname: Vittorio surname: Murino fullname: Murino, Vittorio organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Department of Computer Science, University of Verona – sequence: 6 givenname: Diego surname: Sona fullname: Sona, Diego organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Neuroinformatics Laboratory, Fondazione Bruno Kessler |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30635604$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UU1P3DAUtBAIKOUP9FBF4sIl4M8k7gGJrtpSaWkPbc-W47xQQ9be2s6i_fd1unT5OOCL_eyZ8bw3b9Cu8w4QekfwGcGsOY-cCNmUmDQlqxnGJd9BhxRzUVJG6e6T8wE6jvEW5yWo5ETuowOGKyYqzA_R9fU4JDu37q64dHpYRxs_FB-Dtq74Buneh7ti5hdLHWz0rlhZXfzIRYR86xyYZFc2rbfUt2iv10OE44f9CP36_Onn7Kqcf__ydXY5Lw2veSoZM5TqmghCuOg5q3hLiIZKGEwptLKFWguq2950BDqBOZeCQdu1ddd3XSfZEbrY6C7HdgGdAZeCHtQy2IUOa-W1Vc9fnP2tbvxKVYzKWjRZ4PRBIPg_I8SkFjYaGAbtwI9RUVJLJhpJSIaevIDe-jHkhidUleeIOZ0E3z91tLXyf9IZQDcAE3yMAfothGA1Jao2iaqcqPqXqJpIzQuSsUkn66eu7PA6lW2oMf_jbiA82n6F9RfqR7V5 |
CitedBy_id | crossref_primary_10_1002_hbm_26210 crossref_primary_10_3390_biomimetics9060362 crossref_primary_10_3390_brainsci11060735 crossref_primary_10_3280_RISS2022_002016 crossref_primary_10_3389_fnsys_2021_595507 crossref_primary_10_1098_rsif_2019_0610 |
Cites_doi | 10.1109/TMI.2015.2463723 10.1111/nyas.12360 10.1016/j.schres.2005.11.020 10.1136/jnnp.64.1.138 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 10.1016/j.biopsych.2009.07.022 10.1016/j.neuroimage.2013.09.050 10.1016/j.neuroimage.2015.03.069 10.1109/TMI.2010.2059709 10.1093/brain/awp089 10.3389/fpsyt.2011.00077 10.1038/tp.2014.69 10.1161/STROKEAHA.113.004137 10.1148/radiol.10091701 10.1016/j.neuron.2009.03.024 10.1038/nrn2575 10.1111/j.1749-6632.2010.05888.x 10.1016/j.neuroimage.2010.06.041 10.1016/j.neuroimage.2009.10.003 10.1016/j.neuroimage.2015.05.002 10.1016/j.nicl.2014.05.004 10.1093/brain/awn262 10.1186/s12859-015-0575-3 10.1016/j.neuroimage.2013.04.056 10.1089/brain.2016.0474 10.1016/j.neuroimage.2016.06.034 10.1109/TMI.2013.2276916 10.1016/j.biopsych.2007.06.025 10.1002/hbm.21333 10.1016/j.neuroimage.2010.02.040 10.1371/journal.pone.0076655 10.1016/j.neuroimage.2008.05.050 10.1198/TECH.2011.08118 10.1111/j.1467-9868.2010.00740.x 10.1167/iovs.06-1029 10.1177/1362361310386506 10.1016/j.neuroimage.2009.12.120 10.1016/j.biopsych.2010.08.022 10.1002/hbm.22278 10.1016/0197-4580(93)90015-4 10.1371/journal.pone.0019071 10.1016/j.neuroimage.2013.03.066 10.1186/s13064-015-0033-y 10.1371/journal.pcbi.1000100 10.1016/S0006-8993(03)02354-0 10.1016/j.biopsych.2011.02.019 10.1523/JNEUROSCI.2787-07.2007 10.1016/j.neuroimage.2013.04.007 10.1016/j.nicl.2018.01.014 10.1016/j.biopsych.2009.08.024 10.1016/j.brainres.2009.02.070 10.1109/TMI.2013.2281398 10.1002/hbm.10102 10.3389/fnsys.2012.00059 10.1016/j.neuroimage.2014.07.031 10.1016/j.neuroimage.2010.05.081 10.1186/1471-2377-12-46 10.1002/hbm.23007 10.1523/JNEUROSCI.3539-11.2011 10.1111/j.1467-9868.2005.00503.x 10.1109/ISBI.2017.7950677 10.7551/mitpress/8476.001.0001 10.1515/1544-6115.1792 10.3389/fncom.2013.00171 10.1007/s11682-016-9614-6 10.1109/PRNI.2013.14 10.1007/978-3-319-24574-4_72 10.7551/mitpress/9266.001.0001 10.1007/s00429-014-0948-9 10.1111/j.1467-9868.2011.00783.x |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-018-37300-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC6329758 30635604 10_1038_s41598_018_37300_4 |
Genre | Research Support, U.S. Gov't, P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Department of Defense grantid: W81XWH-12-2-0012 – fundername: NIA NIH HHS grantid: U01 AG024904 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c474t-33c22a7151145f4364b11ae65c022eb9be7a52abfcd1ed5044953ebdb7dfddd93 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 18:29:13 EDT 2025 Fri Sep 05 03:55:53 EDT 2025 Wed Aug 13 07:36:31 EDT 2025 Thu Jan 02 22:59:17 EST 2025 Tue Jul 01 00:58:25 EDT 2025 Thu Apr 24 23:11:59 EDT 2025 Fri Feb 21 02:38:40 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-33c22a7151145f4364b11ae65c022eb9be7a52abfcd1ed5044953ebdb7dfddd93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2102-416X 0000-0002-4862-2277 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-018-37300-4 |
PMID | 30635604 |
PQID | 2166350428 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6329758 proquest_miscellaneous_2179358911 proquest_journals_2166350428 pubmed_primary_30635604 crossref_primary_10_1038_s41598_018_37300_4 crossref_citationtrail_10_1038_s41598_018_37300_4 springer_journals_10_1038_s41598_018_37300_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-11 |
PublicationDateYYYYMMDD | 2019-01-11 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-11 day: 11 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Ryali, Supekar, Abrams, Menon (CR39) 2010; 51 Sheline (CR53) 2010; 67 Xie, He (CR32) 2012; 2 Castellanos (CR67) 2008; 63 van den Heuvel, Sporns (CR23) 2011; 31 CR37 Sforazzini, Schwarz, Galbusera, Bifone, Gozzi (CR45) 2014; 87 CR36 CR76 Ye (CR29) 2012; 12 Mori, Crain, Chacko, Van Zijl (CR70) 1999; 45 Meyer, Röricht (CR50) 1998; 64 Zhang (CR58) 2010; 256 Dodero (CR49) 2013; 8 CR2 Cocchi (CR8) 2014; 4 Berisha, Feke, Trempe, McMeel, Schepens (CR59) 2007; 48 McMenamin, Pessoa (CR27) 2015; 116 Lee, Lee, Kang, Kim, Chung (CR35) 2011; 30 He (CR7) 2009; 132 Meinshausen, Bühlmann (CR28) 2010; 72 CR42 CR40 Dagley (CR73) 2017; 144 Iturria-Medina (CR12) 2011; 6 Ng, Varoquaux, Poline, Greicius, Thirion (CR20) 2016; 35 Mastrovito, Hanson, Hanson (CR19) 2018; 18 Zou, Hastie (CR41) 2005; 67 Ren, Zhang, Plachez, Mori, Richards (CR47) 2007; 27 Frazier, Hardan (CR51) 2009; 66 Colby (CR60) 2012; 6 Rubinov, Sporns (CR4) 2010; 52 de LaCoste, White (CR55) 1993; 14 Andrews-Hanna, Smallwood, Spreng (CR63) 2014; 1316 Sporns (CR1) 2011; 1224 Fenlon (CR48) 2015; 10 Seeley, Crawford, Zhou, Miller, Greicius (CR57) 2009; 62 Zalesky (CR16) 2011; 69 Gaonkar, Davatzikos (CR21) 2013; 78 Varoquaux, Craddock (CR13) 2013; 80 Hofner, Boccuto, Göker (CR64) 2015; 16 CR17 Craddock, James, Holtzheimer, Hu, Mayberg (CR74) 2012; 33 CR11 Lazar (CR71) 2003; 18 Stam (CR6) 2009; 132 Zeng, Shen, Liu, Hu (CR10) 2014; 35 Kim, Wozniak, Mueller, Shen, Pan (CR24) 2014; 101 Yamashita, Sato, Yoshioka, Tong, Kamitani (CR38) 2008; 42 Bellec (CR75) 2017; 144 Richiardi, Eryilmaz, Schwartz, Vuilleumier, Van De Ville (CR3) 2011; 56 Fassbender (CR62) 2009; 1273 Bonilha, Rorden, Fridriksson (CR9) 2014; 45 Makris (CR72) 2006; 83 Rondina (CR25) 2014; 33 Squillace (CR43) 2014; 4 Supekar, Menon, Rubin, Musen, Greicius (CR54) 2008; 4 CR69 CR68 Chen, Kang, Xing, Wang (CR18) 2015; 36 CR22 CR66 CR65 Bullmore, Sporns (CR5) 2009; 10 Griffa, Baumann, Thiran, Hagmann (CR14) 2013; 80 CR61 Fornito, Yoon, Zalesky, Bullmore, Carter (CR15) 2011; 70 Casanova (CR52) 2011; 15 Allen (CR56) 2007; 64 Coloigner, Phlypo, Coates, Lepore, Wood (CR33) 2017; 7 Wahlsten, Metten, Crabbe (CR46) 2003; 971 Zalesky, Fornito, Bullmore (CR26) 2010; 53 Chang, Lin (CR44) 2011; 2 Clemmensen, Hastie, Witten, Ersbøll (CR30) 2011; 53 Huang (CR34) 2010; 50 Deligianni (CR31) 2013; 32 37300_CR22 37300_CR66 M Lazar (37300_CR71) 2003; 18 37300_CR65 C Stam (37300_CR6) 2009; 132 37300_CR61 T Xie (37300_CR32) 2012; 2 J Coloigner (37300_CR33) 2017; 7 RC Craddock (37300_CR74) 2012; 33 P Bellec (37300_CR75) 2017; 144 A Zalesky (37300_CR16) 2011; 69 A Dagley (37300_CR73) 2017; 144 M Squillace (37300_CR43) 2014; 4 N Makris (37300_CR72) 2006; 83 WW Seeley (37300_CR57) 2009; 62 L Bonilha (37300_CR9) 2014; 45 H-Y Zhang (37300_CR58) 2010; 256 K Supekar (37300_CR54) 2008; 4 MF Casanova (37300_CR52) 2011; 15 B Ng (37300_CR20) 2016; 35 B-U Meyer (37300_CR50) 1998; 64 37300_CR17 Y Iturria-Medina (37300_CR12) 2011; 6 C Fassbender (37300_CR62) 2009; 1273 37300_CR76 E Bullmore (37300_CR5) 2009; 10 J Kim (37300_CR24) 2014; 101 J Richiardi (37300_CR3) 2011; 56 N Meinshausen (37300_CR28) 2010; 72 M-C de LaCoste (37300_CR55) 1993; 14 A Griffa (37300_CR14) 2013; 80 L Dodero (37300_CR49) 2013; 8 Y He (37300_CR7) 2009; 132 H Lee (37300_CR35) 2011; 30 JR Andrews-Hanna (37300_CR63) 2014; 1316 B Gaonkar (37300_CR21) 2013; 78 LR Fenlon (37300_CR48) 2015; 10 G Allen (37300_CR56) 2007; 64 S Huang (37300_CR34) 2010; 50 J Ye (37300_CR29) 2012; 12 37300_CR69 S Ryali (37300_CR39) 2010; 51 37300_CR68 37300_CR42 L Cocchi (37300_CR8) 2014; 4 37300_CR40 O Sporns (37300_CR1) 2011; 1224 D Wahlsten (37300_CR46) 2003; 971 L Clemmensen (37300_CR30) 2011; 53 A Fornito (37300_CR15) 2011; 70 TW Frazier (37300_CR51) 2009; 66 C-C Chang (37300_CR44) 2011; 2 JM Rondina (37300_CR25) 2014; 33 O Yamashita (37300_CR38) 2008; 42 F Deligianni (37300_CR31) 2013; 32 MP van den Heuvel (37300_CR23) 2011; 31 H Zou (37300_CR41) 2005; 67 37300_CR37 37300_CR36 BW McMenamin (37300_CR27) 2015; 116 37300_CR11 A Zalesky (37300_CR26) 2010; 53 F Berisha (37300_CR59) 2007; 48 M Rubinov (37300_CR4) 2010; 52 YI Sheline (37300_CR53) 2010; 67 37300_CR2 S Chen (37300_CR18) 2015; 36 F Sforazzini (37300_CR45) 2014; 87 B Hofner (37300_CR64) 2015; 16 FX Castellanos (37300_CR67) 2008; 63 S Mori (37300_CR70) 1999; 45 L-L Zeng (37300_CR10) 2014; 35 T Ren (37300_CR47) 2007; 27 JB Colby (37300_CR60) 2012; 6 G Varoquaux (37300_CR13) 2013; 80 D Mastrovito (37300_CR19) 2018; 18 |
References_xml | – volume: 35 start-page: 208 year: 2016 end-page: 216 ident: CR20 article-title: Transport on Riemannian manifold for connectivity-based brain decoding publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2015.2463723 – volume: 1316 start-page: 29 year: 2014 end-page: 52 ident: CR63 article-title: The default network and self-generated thought: component processes, dynamic control, and clinical relevance publication-title: Annals New York Acad. Sci doi: 10.1111/nyas.12360 – ident: CR22 – volume: 83 start-page: 155 year: 2006 end-page: 171 ident: CR72 article-title: Decreased volume of left and total anterior insular lobule in schizophrenia publication-title: Schizophr. research doi: 10.1016/j.schres.2005.11.020 – volume: 64 start-page: 138 year: 1998 end-page: 139 ident: CR50 article-title: In vivo visualisation of the longitudinal callosal fascicle (probst’s bundle) and other abnormalities in an acallosal brain publication-title: J. Neurol. Neurosurg. & Psychiatry doi: 10.1136/jnnp.64.1.138 – volume: 45 start-page: 265 year: 1999 end-page: 269 ident: CR70 article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging publication-title: Annals neurology doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – volume: 66 start-page: 935 year: 2009 end-page: 941 ident: CR51 article-title: A meta-analysis of the corpus callosum in autism publication-title: Biol. psychiatry doi: 10.1016/j.biopsych.2009.07.022 – volume: 87 start-page: 403 year: 2014 end-page: 415 ident: CR45 article-title: Distributed BOLD and CBV-weighted resting-state networks in the mouse brain publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.09.050 – ident: CR68 – volume: 144 start-page: 255 year: 2017 end-page: 258 ident: CR73 article-title: Harvard aging brain study: dataset and accessibility publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.03.069 – volume: 30 start-page: 1154 year: 2011 end-page: 1165 ident: CR35 article-title: Sparse brain network recovery under compressed sensing publication-title: IEEE Transactions on Med. Imaging doi: 10.1109/TMI.2010.2059709 – volume: 132 start-page: 3366 year: 2009 end-page: 3379 ident: CR7 article-title: Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load publication-title: Brain doi: 10.1093/brain/awp089 – volume: 2 start-page: 77 year: 2012 ident: CR32 article-title: Mapping the alzheimer’s brain with connectomics publication-title: Front. psychiatry doi: 10.3389/fpsyt.2011.00077 – volume: 4 year: 2014 ident: CR43 article-title: Dysfunctional dopaminergic neurotransmission in asocial BTBR mice publication-title: Transl. psychiatry doi: 10.1038/tp.2014.69 – volume: 45 start-page: 988 year: 2014 end-page: 993 ident: CR9 article-title: Assessing the clinical effect of residual cortical disconnection after ischemic strokes publication-title: Stroke doi: 10.1161/STROKEAHA.113.004137 – ident: CR61 – volume: 256 start-page: 598 year: 2010 end-page: 606 ident: CR58 article-title: Resting brain connectivity: changes during the progress of alzheimer disease publication-title: Radiology doi: 10.1148/radiol.10091701 – volume: 62 start-page: 42 year: 2009 end-page: 52 ident: CR57 article-title: Neurodegenerative diseases target large-scale human brain networks publication-title: Neuron doi: 10.1016/j.neuron.2009.03.024 – ident: CR42 – volume: 10 start-page: 186 year: 2009 end-page: 198 ident: CR5 article-title: Complex brain networks: graph theoretical analysis of structural and functional systems publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2575 – volume: 1224 start-page: 109 year: 2011 end-page: 125 ident: CR1 article-title: The human connectome: a complex network publication-title: Annals New York Acad. Sci. doi: 10.1111/j.1749-6632.2010.05888.x – volume: 53 start-page: 1197 year: 2010 end-page: 1207 ident: CR26 article-title: Network-based statistic: identifying differences in brain networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.041 – volume: 52 start-page: 1059 year: 2010 end-page: 1069 ident: CR4 article-title: Complex network measures of brain connectivity: uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 116 start-page: 1 year: 2015 end-page: 9 ident: CR27 article-title: Discovering networks altered by potential threat (“anxiety”) using quadratic discriminant analysis publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.05.002 – volume: 4 start-page: 779 year: 2014 end-page: 787 ident: CR8 article-title: Disruption of structure–function coupling in the schizophrenia connectome publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2014.05.004 – volume: 132 start-page: 213 year: 2009 end-page: 224 ident: CR6 article-title: Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awn262 – ident: CR11 – volume: 16 year: 2015 ident: CR64 article-title: Controlling false discoveries in high-dimensional situations: Boosting with stability selection publication-title: BMC bioinformatics doi: 10.1186/s12859-015-0575-3 – volume: 80 start-page: 515 year: 2013 end-page: 526 ident: CR14 article-title: Structural connectomics in brain diseases publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.056 – volume: 7 start-page: 443 year: 2017 end-page: 453 ident: CR33 article-title: Graph lasso-based test for evaluating functional brain connectivity in sickle cell disease publication-title: Brain connectivity doi: 10.1089/brain.2016.0474 – volume: 144 start-page: 275 year: 2017 end-page: 286 ident: CR75 article-title: The neuro bureau adhd-200 preprocessed repository publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.06.034 – volume: 32 start-page: 2200 year: 2013 end-page: 2214 ident: CR31 article-title: A framework for inter-subject prediction of functional connectivity from structural networks publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2013.2276916 – ident: CR36 – volume: 63 start-page: 332 year: 2008 end-page: 337 ident: CR67 article-title: Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder publication-title: Biol. psychiatry doi: 10.1016/j.biopsych.2007.06.025 – volume: 33 start-page: 1914 year: 2012 end-page: 1928 ident: CR74 article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering publication-title: Hum. brain mapping doi: 10.1002/hbm.21333 – volume: 51 start-page: 752 year: 2010 end-page: 764 ident: CR39 article-title: Sparse logistic regression for whole-brain classification of fMRI data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.02.040 – volume: 8 start-page: e76655 year: 2013 ident: CR49 article-title: Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T+ TF/J mouse model of autism publication-title: PLoS One doi: 10.1371/journal.pone.0076655 – volume: 42 start-page: 1414 year: 2008 end-page: 1429 ident: CR38 article-title: Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.05.050 – ident: CR66 – volume: 64 start-page: 1482 year: 2007 end-page: 1487 ident: CR56 article-title: Reduced hippocampal functional connectivity in Alzheimer disease. Arch publication-title: neurology – volume: 53 start-page: 406 year: 2011 end-page: 413 ident: CR30 article-title: Sparse discriminant analysis publication-title: Technometrics doi: 10.1198/TECH.2011.08118 – volume: 72 start-page: 417 year: 2010 end-page: 473 ident: CR28 article-title: Stability selection publication-title: J. Royal Stat. Soc. Ser. B (Statistical Methodol. doi: 10.1111/j.1467-9868.2010.00740.x – ident: CR2 – ident: CR37 – volume: 48 start-page: 2285 year: 2007 end-page: 2289 ident: CR59 article-title: Retinal abnormalities in early Alzheimer’s disease publication-title: Investig. ophthalmology & visual science doi: 10.1167/iovs.06-1029 – volume: 15 start-page: 223 year: 2011 end-page: 238 ident: CR52 article-title: Quantitative analysis of the shape of the corpus callosum in patients with autism and comparison individuals publication-title: Autism doi: 10.1177/1362361310386506 – volume: 50 start-page: 935 year: 2010 end-page: 949 ident: CR34 article-title: Learning brain connectivity of Alzheimer’s disease by sparse inverse covariance estimation publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.120 – volume: 69 start-page: 80 year: 2011 end-page: 89 ident: CR16 article-title: Disrupted axonal fiber connectivity in schizophrenia publication-title: Biol. psychiatry doi: 10.1016/j.biopsych.2010.08.022 – volume: 35 start-page: 1630 year: 2014 end-page: 1641 ident: CR10 article-title: Unsupervised classification of major depression using functional connectivity MRI publication-title: Hum. brain mapping doi: 10.1002/hbm.22278 – volume: 14 start-page: 1 year: 1993 end-page: 16 ident: CR55 article-title: The role of cortical connectivity in alzheimer’s disease pathogenesis: a review and model system publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(93)90015-4 – volume: 6 start-page: e19071 year: 2011 ident: CR12 article-title: Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case publication-title: PLoS One doi: 10.1371/journal.pone.0019071 – volume: 78 start-page: 270 year: 2013 end-page: 283 ident: CR21 article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.066 – volume: 10 year: 2015 ident: CR48 article-title: Formation of functional areas in the cerebral cortex is disrupted in a mouse model of autism spectrum disorder publication-title: Neural development doi: 10.1186/s13064-015-0033-y – ident: CR40 – volume: 4 start-page: e1000100 year: 2008 ident: CR54 article-title: Network analysis of intrinsic functional brain connectivity in alzheimer’s disease publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1000100 – volume: 971 start-page: 47 year: 2003 end-page: 54 ident: CR46 article-title: Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T/+ tf/tf has severely reduced hippocampal commissure and absent corpus callosum publication-title: Brain research doi: 10.1016/S0006-8993(03)02354-0 – volume: 70 start-page: 64 year: 2011 end-page: 72 ident: CR15 article-title: General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance publication-title: Biol. psychiatry doi: 10.1016/j.biopsych.2011.02.019 – ident: CR69 – volume: 27 start-page: 10345 year: 2007 end-page: 10349 ident: CR47 article-title: Diffusion tensor magnetic resonance imaging and tract-tracing analysis of probst bundle structure in netrin1-and dcc-deficient mice publication-title: The J. Neurosci. doi: 10.1523/JNEUROSCI.2787-07.2007 – ident: CR65 – volume: 80 start-page: 405 year: 2013 end-page: 415 ident: CR13 article-title: Learning and comparing functional connectomes across subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.007 – ident: CR17 – volume: 18 start-page: 367 year: 2018 end-page: 376 ident: CR19 article-title: Differences in atypical resting-state effective connectivity distinguish autism from schizophrenia publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2018.01.014 – volume: 67 start-page: 584 year: 2010 end-page: 587 ident: CR53 article-title: Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly publication-title: Biol. psychiatry doi: 10.1016/j.biopsych.2009.08.024 – volume: 1273 start-page: 114 year: 2009 end-page: 128 ident: CR62 article-title: A lack of default network suppression is linked to increased distractibility in ADHD publication-title: Brain research doi: 10.1016/j.brainres.2009.02.070 – volume: 33 start-page: 85 year: 2014 end-page: 98 ident: CR25 article-title: Scors—a method based on stability for feature selection and mapping in neuroimaging publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2013.2281398 – volume: 18 start-page: 306 year: 2003 end-page: 321 ident: CR71 article-title: White matter tractography using diffusion tensor deflection publication-title: Hum. brain mapping doi: 10.1002/hbm.10102 – volume: 6 start-page: 59 year: 2012 ident: CR60 article-title: Insights into multimodal imaging classification of ADHD publication-title: Front. systems neuroscience doi: 10.3389/fnsys.2012.00059 – volume: 101 start-page: 681 year: 2014 end-page: 694 ident: CR24 article-title: Comparison of statistical tests for group differences in brain functional networks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.031 – ident: CR76 – volume: 56 start-page: 616 year: 2011 end-page: 626 ident: CR3 article-title: Decoding brain states from fMRI connectivity graphs publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.081 – volume: 12 year: 2012 ident: CR29 article-title: Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data publication-title: BMC neurology doi: 10.1186/1471-2377-12-46 – volume: 2 start-page: 27 year: 2011 ident: CR44 article-title: Libsvm: a library for support vector machines publication-title: ACM transactions on intelligent systems technology (TIST) – volume: 36 start-page: 5196 year: 2015 end-page: 5206 ident: CR18 article-title: A parsimonious statistical method to detect groupwise differentially expressed functional connectivity networks publication-title: Hum. brain mapping doi: 10.1002/hbm.23007 – volume: 31 start-page: 15775 year: 2011 end-page: 15786 ident: CR23 article-title: Rich-club organization of the human connectome publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3539-11.2011 – volume: 67 start-page: 301 year: 2005 end-page: 320 ident: CR41 article-title: Regularization and variable selection via the elastic net publication-title: J. Royal Stat. Soc. Ser. B (Statistical Methodol. doi: 10.1111/j.1467-9868.2005.00503.x – volume: 72 start-page: 417 year: 2010 ident: 37300_CR28 publication-title: J. Royal Stat. Soc. Ser. B (Statistical Methodol. doi: 10.1111/j.1467-9868.2010.00740.x – volume: 7 start-page: 443 year: 2017 ident: 37300_CR33 publication-title: Brain connectivity doi: 10.1089/brain.2016.0474 – volume: 116 start-page: 1 year: 2015 ident: 37300_CR27 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.05.002 – volume: 12 year: 2012 ident: 37300_CR29 publication-title: BMC neurology doi: 10.1186/1471-2377-12-46 – volume: 6 start-page: 59 year: 2012 ident: 37300_CR60 publication-title: Front. systems neuroscience doi: 10.3389/fnsys.2012.00059 – volume: 52 start-page: 1059 year: 2010 ident: 37300_CR4 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 48 start-page: 2285 year: 2007 ident: 37300_CR59 publication-title: Investig. ophthalmology & visual science doi: 10.1167/iovs.06-1029 – volume: 14 start-page: 1 year: 1993 ident: 37300_CR55 publication-title: Neurobiol. Aging doi: 10.1016/0197-4580(93)90015-4 – volume: 971 start-page: 47 year: 2003 ident: 37300_CR46 publication-title: Brain research doi: 10.1016/S0006-8993(03)02354-0 – volume: 67 start-page: 584 year: 2010 ident: 37300_CR53 publication-title: Biol. psychiatry doi: 10.1016/j.biopsych.2009.08.024 – volume: 80 start-page: 515 year: 2013 ident: 37300_CR14 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.056 – volume: 4 start-page: e1000100 year: 2008 ident: 37300_CR54 publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1000100 – ident: 37300_CR11 doi: 10.1109/ISBI.2017.7950677 – volume: 62 start-page: 42 year: 2009 ident: 37300_CR57 publication-title: Neuron doi: 10.1016/j.neuron.2009.03.024 – ident: 37300_CR65 – volume: 101 start-page: 681 year: 2014 ident: 37300_CR24 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2014.07.031 – ident: 37300_CR69 – volume: 6 start-page: e19071 year: 2011 ident: 37300_CR12 publication-title: PLoS One doi: 10.1371/journal.pone.0019071 – volume: 35 start-page: 208 year: 2016 ident: 37300_CR20 publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2015.2463723 – volume: 64 start-page: 138 year: 1998 ident: 37300_CR50 publication-title: J. Neurol. Neurosurg. & Psychiatry doi: 10.1136/jnnp.64.1.138 – volume: 83 start-page: 155 year: 2006 ident: 37300_CR72 publication-title: Schizophr. research doi: 10.1016/j.schres.2005.11.020 – ident: 37300_CR2 doi: 10.7551/mitpress/8476.001.0001 – volume: 51 start-page: 752 year: 2010 ident: 37300_CR39 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2010.02.040 – ident: 37300_CR76 doi: 10.1515/1544-6115.1792 – volume: 53 start-page: 406 year: 2011 ident: 37300_CR30 publication-title: Technometrics doi: 10.1198/TECH.2011.08118 – volume: 10 start-page: 186 year: 2009 ident: 37300_CR5 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2575 – volume: 1224 start-page: 109 year: 2011 ident: 37300_CR1 publication-title: Annals New York Acad. Sci. doi: 10.1111/j.1749-6632.2010.05888.x – ident: 37300_CR17 doi: 10.3389/fncom.2013.00171 – volume: 144 start-page: 255 year: 2017 ident: 37300_CR73 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.03.069 – volume: 70 start-page: 64 year: 2011 ident: 37300_CR15 publication-title: Biol. psychiatry doi: 10.1016/j.biopsych.2011.02.019 – volume: 31 start-page: 15775 year: 2011 ident: 37300_CR23 publication-title: J Neurosci doi: 10.1523/JNEUROSCI.3539-11.2011 – ident: 37300_CR61 doi: 10.1007/s11682-016-9614-6 – ident: 37300_CR36 doi: 10.1109/PRNI.2013.14 – volume: 4 year: 2014 ident: 37300_CR43 publication-title: Transl. psychiatry doi: 10.1038/tp.2014.69 – ident: 37300_CR68 – volume: 50 start-page: 935 year: 2010 ident: 37300_CR34 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.12.120 – volume: 132 start-page: 213 year: 2009 ident: 37300_CR6 publication-title: Brain doi: 10.1093/brain/awn262 – volume: 67 start-page: 301 year: 2005 ident: 37300_CR41 publication-title: J. Royal Stat. Soc. Ser. B (Statistical Methodol. doi: 10.1111/j.1467-9868.2005.00503.x – volume: 27 start-page: 10345 year: 2007 ident: 37300_CR47 publication-title: The J. Neurosci. doi: 10.1523/JNEUROSCI.2787-07.2007 – volume: 18 start-page: 306 year: 2003 ident: 37300_CR71 publication-title: Hum. brain mapping doi: 10.1002/hbm.10102 – volume: 36 start-page: 5196 year: 2015 ident: 37300_CR18 publication-title: Hum. brain mapping doi: 10.1002/hbm.23007 – volume: 53 start-page: 1197 year: 2010 ident: 37300_CR26 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.06.041 – volume: 78 start-page: 270 year: 2013 ident: 37300_CR21 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.03.066 – ident: 37300_CR22 doi: 10.1007/978-3-319-24574-4_72 – volume: 16 year: 2015 ident: 37300_CR64 publication-title: BMC bioinformatics doi: 10.1186/s12859-015-0575-3 – volume: 18 start-page: 367 year: 2018 ident: 37300_CR19 publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2018.01.014 – volume: 80 start-page: 405 year: 2013 ident: 37300_CR13 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.007 – volume: 8 start-page: e76655 year: 2013 ident: 37300_CR49 publication-title: PLoS One doi: 10.1371/journal.pone.0076655 – volume: 33 start-page: 1914 year: 2012 ident: 37300_CR74 publication-title: Hum. brain mapping doi: 10.1002/hbm.21333 – volume: 2 start-page: 77 year: 2012 ident: 37300_CR32 publication-title: Front. psychiatry doi: 10.3389/fpsyt.2011.00077 – volume: 69 start-page: 80 year: 2011 ident: 37300_CR16 publication-title: Biol. psychiatry doi: 10.1016/j.biopsych.2010.08.022 – volume: 10 year: 2015 ident: 37300_CR48 publication-title: Neural development doi: 10.1186/s13064-015-0033-y – volume: 45 start-page: 265 year: 1999 ident: 37300_CR70 publication-title: Annals neurology doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3 – volume: 144 start-page: 275 year: 2017 ident: 37300_CR75 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2016.06.034 – volume: 15 start-page: 223 year: 2011 ident: 37300_CR52 publication-title: Autism doi: 10.1177/1362361310386506 – volume: 1273 start-page: 114 year: 2009 ident: 37300_CR62 publication-title: Brain research doi: 10.1016/j.brainres.2009.02.070 – volume: 33 start-page: 85 year: 2014 ident: 37300_CR25 publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2013.2281398 – volume: 30 start-page: 1154 year: 2011 ident: 37300_CR35 publication-title: IEEE Transactions on Med. Imaging doi: 10.1109/TMI.2010.2059709 – ident: 37300_CR37 doi: 10.7551/mitpress/9266.001.0001 – volume: 4 start-page: 779 year: 2014 ident: 37300_CR8 publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2014.05.004 – volume: 42 start-page: 1414 year: 2008 ident: 37300_CR38 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2008.05.050 – volume: 35 start-page: 1630 year: 2014 ident: 37300_CR10 publication-title: Hum. brain mapping doi: 10.1002/hbm.22278 – volume: 87 start-page: 403 year: 2014 ident: 37300_CR45 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.09.050 – volume: 63 start-page: 332 year: 2008 ident: 37300_CR67 publication-title: Biol. psychiatry doi: 10.1016/j.biopsych.2007.06.025 – volume: 132 start-page: 3366 year: 2009 ident: 37300_CR7 publication-title: Brain doi: 10.1093/brain/awp089 – volume: 66 start-page: 935 year: 2009 ident: 37300_CR51 publication-title: Biol. psychiatry doi: 10.1016/j.biopsych.2009.07.022 – ident: 37300_CR42 doi: 10.1007/s00429-014-0948-9 – volume: 64 start-page: 1482 year: 2007 ident: 37300_CR56 publication-title: neurology – volume: 256 start-page: 598 year: 2010 ident: 37300_CR58 publication-title: Radiology doi: 10.1148/radiol.10091701 – ident: 37300_CR40 doi: 10.1111/j.1467-9868.2011.00783.x – ident: 37300_CR66 – volume: 1316 start-page: 29 year: 2014 ident: 37300_CR63 publication-title: Annals New York Acad. Sci doi: 10.1111/nyas.12360 – volume: 45 start-page: 988 year: 2014 ident: 37300_CR9 publication-title: Stroke doi: 10.1161/STROKEAHA.113.004137 – volume: 2 start-page: 27 year: 2011 ident: 37300_CR44 publication-title: ACM transactions on intelligent systems technology (TIST) – volume: 56 start-page: 616 year: 2011 ident: 37300_CR3 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2010.05.081 – volume: 32 start-page: 2200 year: 2013 ident: 37300_CR31 publication-title: IEEE transactions on medical imaging doi: 10.1109/TMI.2013.2276916 |
SSID | ssj0000529419 |
Score | 2.320798 |
Snippet | The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 65 |
SubjectTerms | 59 59/57 631/378/116/1925 64 64/60 692/617/375 Animals Brain Brain - anatomy & histology Brain - physiology Connectome - methods Data processing Datasets Discriminant analysis Discrimination Experiments Feature selection Functional anatomy Humanities and Social Sciences Humans Laboratories Learning algorithms Machine learning Magnetic resonance imaging Mice multidisciplinary Nerve Net - anatomy & histology Nerve Net - physiology Neural networks Neural Pathways - anatomy & histology Neural Pathways - physiology Science Science (multidisciplinary) Sparsity Structure-function relationships Support vector machines |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA_qEHwRv51OieCbhi1N2qa-iIoiwoaog72VpklxIN10U_C_965NK3O4x5KkSe4uuUvucj9CTsFI1kpYxVLZsQw0RMIipRXLQN0ECHBsNF4NdHvBfV8-DPyBu3CbuLDKak8sNmozSvGOvO1x1I1o4V-O3xmiRqF31UFoLJMGbMEK5Lxxfdt7fKpvWdCPJXnkXst0hGpPYDz4qowrWFui02FyViPNmZnz0ZJ_XKaFJrrbIOvOhKRXJc83yZLNt8hqCSr5vU26xZtaPGPSKuPIBb1GJAjaK2O-6U0NPki_hgl9ho-JpUXMS1qiSdRNd0j_7vbl5p450ASgdiinTIjU85IQFDmXfiZFIDXniQ38FLS11ZG2YeJ7ic5Sw60BgmKAqdVGhyYzxkRil6zko9zuExpyDwwWOC9a6UkhfRUFSRToMPOjlGsTNQmvCBenLqM4Alu8xYVnW6i4JHYMxI4LYseySc7qNuMyn8bC2q2KH7FbW5P4VxKa5KQuhlWBro4kt6NPrBOigxd28ibZK9lXdweHJAF2Hvw8nGFsXQEzbs-W5MPXIvN2IPAhMvR7XonA77D-n8XB4lkckjWwwjBqjXHeIivTj097BJbOVB87cf4BVtX6zQ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MieCLeLc6JYJvWmyatE19m8MxBtvLFHwrTZOiIJ24TfDfe5JeZE4FH0uuPbmc7-TcAC4QJEvBtHAz7mkXOUTqxkIKN0d2E5oEx0qap4HROBw88OFj8NgCv_aFsUb7NqSlvaZr67DrGXZjnMGowCPBPM_la7AukP35bVjvdoeTYfOyYnRXnMaVh4zHxA-Nl7nQCrRctZD8pia13Ke_DVsVbCTdcqI70NLFLmyUiSQ_9mBk_WiNXEnqKCM35NZkfyDj0s6b9JqEg-T9OSUT_JhpYu1csjKDRNN0Hx76d_e9gVslSkAKR3zuMpb5fhoh86Y8yDkLuaQ01WGQIYfWMpY6SgM_lXmmqFaBx41RqZZKRipXSsXsANrFtNBHQCLqI0hBGVFznzMeiDhM41BGeRBnVKrYAVoTLsmqKOImmcVLYrXZTCQlsRMkdmKJnXAHLps2r2UMjT9rd-r1SKrzNEt8apCRke8cOG-K8SQY9UZa6OnC1ImMUhdvbwcOy-VrhkPBiCG2w86jpYVtKpgo28slxfOTjbYdMuN8jONe1Vvga1q__8Xx_6qfwCYiMWO55lLagfb8baFPEe3M5Vm1vT8B_-j4nA priority: 102 providerName: Springer Nature |
Title | MultiLink Analysis: Brain Network Comparison via Sparse Connectivity Analysis |
URI | https://link.springer.com/article/10.1038/s41598-018-37300-4 https://www.ncbi.nlm.nih.gov/pubmed/30635604 https://www.proquest.com/docview/2166350428 https://www.proquest.com/docview/2179358911 https://pubmed.ncbi.nlm.nih.gov/PMC6329758 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_6wUZfRvftrQ0a7G3zFlmyZA1GSUNLCSSMdYG8GcuSaaG4W5OO9b_fnWV7pB97MrYlZN9Jvt9Zd_cDeI8g2WbCZ3Ephz5GC1HEJrNZXKG5UURw7Cz9GpjO1MlcThbpYgM6uqNWgMt7XTvik5pfXXz68-vmABf815Aynn1e4hCUKMYzXC5iOIzlJmyjZVLkjE1buB9qfSdGctPmztzfdQceI4oWCATkuqm6gz_vhlHe2kttTNTxLjxpsSUbhcnwFDZ8_QweBbbJm-cwbZJtyflkXSmSL-yQKCLYLASDs3HPSsh-nxfsFE-WnjXBMGWgmei7voD58dGP8UncsimgGrRcxUKUSVJotPBcppUUSlrOC6_SEs24t8Z6XaRJYavSce_SoaTIU2-d1a5yzhnxErbqy9q_BqZ5gkgGHUkvEylkmhlVGGV1lZqSW2ci4J3g8rItNU6MFxd5s-UtsjzIPUe5543ccxnBh77Pz1Bo47-t9zp95N2cyRNO8ImcwAje9bdxudAeSFH7y2tqo2nnFz_xEbwK6uuH6_QegV5TbN-ASnGv36nPz5qS3EpQhjKO-7GbAv8e6-G3ePPgI7yFHURmFMkWc74HW6ura7-P6GdlB7CpF3oA26PR5HSCx8Oj2bfveHWsxoPmj8KgmfR_AVKaAmA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSxwxFD7IitgXqdbWtV5SqE81uJlkboUiXlmruxSr4FucTDIoyKy6q-Kf6m_sOXOTVfTNxyHJJDk5yTnJuXwA31FJNpF0EU9Vx3GUEAmPIxPxDMVNQADH1tDTQK8fdE_V7zP_bAL-1bEw5FZZn4nFQW0HKb2Rb3iCZCNp-JvXN5xQo8i6WkNolGxx6B4f8Mo2_HWwi-u75nn7eyc7XV6hCuBwQjXiUqael4Qo6YTyMyUDZYRIXOCnKM6ciY0LE99LTJZa4Sz2SB6YzlgT2sxaS8mX8MifVBTR2oLJ7b3-n-PmVYfsZkrEVXROR0YbQ5w_RbGJCPey7HS4GpeAL9Tal96Zz0y0heTb_wgzlcrKtkoem4UJl8_BVAli-fgJekUML91pWZ3h5CfbJuQJ1i99zNlOA3bI7i8T9hc_ho4VPjZpiV7RNJ2H03ch52do5YPcLQALhYcKEt5PnfKUVH4UB0kcmDDz41QYG7dB1ITTaZXBnIA0rnRhSZeRLomtkdi6ILZWbfjRtLku83e8WXupXg9d7eWhfuK8NnxrinEXkmklyd3gjuqEZFBGydGGL-XyNd3hpUyiXok_D8cWtqlAGb7HS_LLiyLTdyAp8Bn7Xa9Z4GlYr89i8e1ZrMJ096R3pI8O-odf4QNqgOQxx4VYgtbo9s4to5Y1MisVazM4f-_d9B-zkzjf |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB6hRVR9QYVeSzlcqX1qrV3HTpxUqhDXCkpZobZIvLlx7AgklAV2AfHX-us6kwstCN54jOzEznjG39hzAXxCJdnG0sc8U33PESFSnsQ25jnCTUQFjp2lq4GDYbR7pH4ch8cz8K-JhSG3ymZPLDdqN8rojrwXCMJG0vB7ee0Wcbg9WD-_4FRBiiytTTmNikX2_e0NHt_G3_e2ca0_B8Fg58_WLq8rDODUtJpwKbMgSDWinlBhrmSkrBCpj8IMoc3bxHqdhkFq88wJ73B08sb01lntcuccJWLC7X9WIyqqDsxu7gwPf7U3PGRDUyKpI3X6Mu6NkRYU0SZilGvZ73M1jYYPVNyHnpr3zLUlCg5ewXytvrKNit8WYMYXizBXFbS8fQ0HZTwvnW9Zk-3kG9ukKhRsWPmbs6228CG7Pk3Zb3wYe1b622RVJYv21Tdw9CzkfAudYlT498C0CJCmeFb1KlBShXESpUlkdR4mmbAu6YJoCGeyOps5FdU4M6VVXcamIrZBYpuS2EZ14Uv7znmVy-PJ3svNepharsfmjgu78LFtRokkM0ta-NEV9dFkXEYU6cK7avna4fCAJlHHxI_rqYVtO1C27-mW4vSkzPodSQqCxnG_NixwN63H_2Lp6b9YgxcoRebn3nD_A7xEZZCc57gQy9CZXF75FVS4Jna15mwGf59bmP4DHbU9Cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MultiLink+Analysis%3A+Brain+Network+Comparison+via+Sparse+Connectivity+Analysis&rft.jtitle=Scientific+reports&rft.au=Crimi%2C+Alessandro&rft.au=Giancardo%2C+Luca&rft.au=Sambataro%2C+Fabio&rft.au=Gozzi%2C+Alessandro&rft.date=2019-01-11&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft.spage=65&rft_id=info:doi/10.1038%2Fs41598-018-37300-4&rft_id=info%3Apmid%2F30635604&rft.externalDocID=30635604 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |