MultiLink Analysis: Brain Network Comparison via Sparse Connectivity Analysis

The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data....

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; p. 65
Main Authors Crimi, Alessandro, Giancardo, Luca, Sambataro, Fabio, Gozzi, Alessandro, Murino, Vittorio, Sona, Diego
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.01.2019
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2045-2322
2045-2322
DOI10.1038/s41598-018-37300-4

Cover

Abstract The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets.
AbstractList The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets.
The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets.The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the lack of prior knowledge used to make hypotheses. Additionally, exploratory data analysis is made complex by the high dimensionality of data. Indeed, to assess the effect of pathological states on brain networks, neuroscientists are often required to evaluate experimental effects in case-control studies, with hundreds of thousands of connections. In this paper, we propose an approach to identify the multivariate relationships in brain connections that characterize two distinct groups, hence permitting the investigators to immediately discover the subnetworks that contain information about the differences between experimental groups. In particular, we are interested in data discovery related to connectomics, where the connections that characterize differences between two groups of subjects are found. Nevertheless, those connections do not necessarily maximize the accuracy in classification since this does not guarantee reliable interpretation of specific differences between groups. In practice, our method exploits recent machine learning techniques employing sparsity to deal with weighted networks describing the whole-brain macro connectivity. We evaluated our technique on functional and structural connectomes from human and murine brain data. In our experiments, we automatically identified disease-relevant connections in datasets with supervised and unsupervised anatomy-driven parcellation approaches and by using high-dimensional datasets.
ArticleNumber 65
Author Murino, Vittorio
Sona, Diego
Sambataro, Fabio
Giancardo, Luca
Gozzi, Alessandro
Crimi, Alessandro
Author_xml – sequence: 1
  givenname: Alessandro
  surname: Crimi
  fullname: Crimi, Alessandro
  email: alessandro.crimi@usz.ch
  organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Institute of Neuropathology, University Hospital of Zürich
– sequence: 2
  givenname: Luca
  orcidid: 0000-0002-4862-2277
  surname: Giancardo
  fullname: Giancardo, Luca
  organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston
– sequence: 3
  givenname: Fabio
  orcidid: 0000-0003-2102-416X
  surname: Sambataro
  fullname: Sambataro, Fabio
  organization: Department of Experimental and Clinical Medical Sciences, University of Udine
– sequence: 4
  givenname: Alessandro
  surname: Gozzi
  fullname: Gozzi, Alessandro
  organization: Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia
– sequence: 5
  givenname: Vittorio
  surname: Murino
  fullname: Murino, Vittorio
  organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Department of Computer Science, University of Verona
– sequence: 6
  givenname: Diego
  surname: Sona
  fullname: Sona, Diego
  organization: Pattern Analysis and Computer Vision, Istituto Italiano di Tecnologia, Neuroinformatics Laboratory, Fondazione Bruno Kessler
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30635604$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1P3DAUtBAIKOUP9FBF4sIl4M8k7gGJrtpSaWkPbc-W47xQQ9be2s6i_fd1unT5OOCL_eyZ8bw3b9Cu8w4QekfwGcGsOY-cCNmUmDQlqxnGJd9BhxRzUVJG6e6T8wE6jvEW5yWo5ETuowOGKyYqzA_R9fU4JDu37q64dHpYRxs_FB-Dtq74Buneh7ti5hdLHWz0rlhZXfzIRYR86xyYZFc2rbfUt2iv10OE44f9CP36_Onn7Kqcf__ydXY5Lw2veSoZM5TqmghCuOg5q3hLiIZKGEwptLKFWguq2950BDqBOZeCQdu1ddd3XSfZEbrY6C7HdgGdAZeCHtQy2IUOa-W1Vc9fnP2tbvxKVYzKWjRZ4PRBIPg_I8SkFjYaGAbtwI9RUVJLJhpJSIaevIDe-jHkhidUleeIOZ0E3z91tLXyf9IZQDcAE3yMAfothGA1Jao2iaqcqPqXqJpIzQuSsUkn66eu7PA6lW2oMf_jbiA82n6F9RfqR7V5
CitedBy_id crossref_primary_10_1002_hbm_26210
crossref_primary_10_3390_biomimetics9060362
crossref_primary_10_3390_brainsci11060735
crossref_primary_10_3280_RISS2022_002016
crossref_primary_10_3389_fnsys_2021_595507
crossref_primary_10_1098_rsif_2019_0610
Cites_doi 10.1109/TMI.2015.2463723
10.1111/nyas.12360
10.1016/j.schres.2005.11.020
10.1136/jnnp.64.1.138
10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
10.1016/j.biopsych.2009.07.022
10.1016/j.neuroimage.2013.09.050
10.1016/j.neuroimage.2015.03.069
10.1109/TMI.2010.2059709
10.1093/brain/awp089
10.3389/fpsyt.2011.00077
10.1038/tp.2014.69
10.1161/STROKEAHA.113.004137
10.1148/radiol.10091701
10.1016/j.neuron.2009.03.024
10.1038/nrn2575
10.1111/j.1749-6632.2010.05888.x
10.1016/j.neuroimage.2010.06.041
10.1016/j.neuroimage.2009.10.003
10.1016/j.neuroimage.2015.05.002
10.1016/j.nicl.2014.05.004
10.1093/brain/awn262
10.1186/s12859-015-0575-3
10.1016/j.neuroimage.2013.04.056
10.1089/brain.2016.0474
10.1016/j.neuroimage.2016.06.034
10.1109/TMI.2013.2276916
10.1016/j.biopsych.2007.06.025
10.1002/hbm.21333
10.1016/j.neuroimage.2010.02.040
10.1371/journal.pone.0076655
10.1016/j.neuroimage.2008.05.050
10.1198/TECH.2011.08118
10.1111/j.1467-9868.2010.00740.x
10.1167/iovs.06-1029
10.1177/1362361310386506
10.1016/j.neuroimage.2009.12.120
10.1016/j.biopsych.2010.08.022
10.1002/hbm.22278
10.1016/0197-4580(93)90015-4
10.1371/journal.pone.0019071
10.1016/j.neuroimage.2013.03.066
10.1186/s13064-015-0033-y
10.1371/journal.pcbi.1000100
10.1016/S0006-8993(03)02354-0
10.1016/j.biopsych.2011.02.019
10.1523/JNEUROSCI.2787-07.2007
10.1016/j.neuroimage.2013.04.007
10.1016/j.nicl.2018.01.014
10.1016/j.biopsych.2009.08.024
10.1016/j.brainres.2009.02.070
10.1109/TMI.2013.2281398
10.1002/hbm.10102
10.3389/fnsys.2012.00059
10.1016/j.neuroimage.2014.07.031
10.1016/j.neuroimage.2010.05.081
10.1186/1471-2377-12-46
10.1002/hbm.23007
10.1523/JNEUROSCI.3539-11.2011
10.1111/j.1467-9868.2005.00503.x
10.1109/ISBI.2017.7950677
10.7551/mitpress/8476.001.0001
10.1515/1544-6115.1792
10.3389/fncom.2013.00171
10.1007/s11682-016-9614-6
10.1109/PRNI.2013.14
10.1007/978-3-319-24574-4_72
10.7551/mitpress/9266.001.0001
10.1007/s00429-014-0948-9
10.1111/j.1467-9868.2011.00783.x
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-018-37300-4
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC6329758
30635604
10_1038_s41598_018_37300_4
Genre Research Support, U.S. Gov't, P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Department of Defense
  grantid: W81XWH-12-2-0012
– fundername: NIA NIH HHS
  grantid: U01 AG024904
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-33c22a7151145f4364b11ae65c022eb9be7a52abfcd1ed5044953ebdb7dfddd93
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 18:29:13 EDT 2025
Fri Sep 05 03:55:53 EDT 2025
Wed Aug 13 07:36:31 EDT 2025
Thu Jan 02 22:59:17 EST 2025
Tue Jul 01 00:58:25 EDT 2025
Thu Apr 24 23:11:59 EDT 2025
Fri Feb 21 02:38:40 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-33c22a7151145f4364b11ae65c022eb9be7a52abfcd1ed5044953ebdb7dfddd93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2102-416X
0000-0002-4862-2277
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-018-37300-4
PMID 30635604
PQID 2166350428
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6329758
proquest_miscellaneous_2179358911
proquest_journals_2166350428
pubmed_primary_30635604
crossref_primary_10_1038_s41598_018_37300_4
crossref_citationtrail_10_1038_s41598_018_37300_4
springer_journals_10_1038_s41598_018_37300_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-11
PublicationDateYYYYMMDD 2019-01-11
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-11
  day: 11
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Ryali, Supekar, Abrams, Menon (CR39) 2010; 51
Sheline (CR53) 2010; 67
Xie, He (CR32) 2012; 2
Castellanos (CR67) 2008; 63
van den Heuvel, Sporns (CR23) 2011; 31
CR37
Sforazzini, Schwarz, Galbusera, Bifone, Gozzi (CR45) 2014; 87
CR36
CR76
Ye (CR29) 2012; 12
Mori, Crain, Chacko, Van Zijl (CR70) 1999; 45
Meyer, Röricht (CR50) 1998; 64
Zhang (CR58) 2010; 256
Dodero (CR49) 2013; 8
CR2
Cocchi (CR8) 2014; 4
Berisha, Feke, Trempe, McMeel, Schepens (CR59) 2007; 48
McMenamin, Pessoa (CR27) 2015; 116
Lee, Lee, Kang, Kim, Chung (CR35) 2011; 30
He (CR7) 2009; 132
Meinshausen, Bühlmann (CR28) 2010; 72
CR42
CR40
Dagley (CR73) 2017; 144
Iturria-Medina (CR12) 2011; 6
Ng, Varoquaux, Poline, Greicius, Thirion (CR20) 2016; 35
Mastrovito, Hanson, Hanson (CR19) 2018; 18
Zou, Hastie (CR41) 2005; 67
Ren, Zhang, Plachez, Mori, Richards (CR47) 2007; 27
Frazier, Hardan (CR51) 2009; 66
Colby (CR60) 2012; 6
Rubinov, Sporns (CR4) 2010; 52
de LaCoste, White (CR55) 1993; 14
Andrews-Hanna, Smallwood, Spreng (CR63) 2014; 1316
Sporns (CR1) 2011; 1224
Fenlon (CR48) 2015; 10
Seeley, Crawford, Zhou, Miller, Greicius (CR57) 2009; 62
Zalesky (CR16) 2011; 69
Gaonkar, Davatzikos (CR21) 2013; 78
Varoquaux, Craddock (CR13) 2013; 80
Hofner, Boccuto, Göker (CR64) 2015; 16
CR17
Craddock, James, Holtzheimer, Hu, Mayberg (CR74) 2012; 33
CR11
Lazar (CR71) 2003; 18
Stam (CR6) 2009; 132
Zeng, Shen, Liu, Hu (CR10) 2014; 35
Kim, Wozniak, Mueller, Shen, Pan (CR24) 2014; 101
Yamashita, Sato, Yoshioka, Tong, Kamitani (CR38) 2008; 42
Bellec (CR75) 2017; 144
Richiardi, Eryilmaz, Schwartz, Vuilleumier, Van De Ville (CR3) 2011; 56
Fassbender (CR62) 2009; 1273
Bonilha, Rorden, Fridriksson (CR9) 2014; 45
Makris (CR72) 2006; 83
Rondina (CR25) 2014; 33
Squillace (CR43) 2014; 4
Supekar, Menon, Rubin, Musen, Greicius (CR54) 2008; 4
CR69
CR68
Chen, Kang, Xing, Wang (CR18) 2015; 36
CR22
CR66
CR65
Bullmore, Sporns (CR5) 2009; 10
Griffa, Baumann, Thiran, Hagmann (CR14) 2013; 80
CR61
Fornito, Yoon, Zalesky, Bullmore, Carter (CR15) 2011; 70
Casanova (CR52) 2011; 15
Allen (CR56) 2007; 64
Coloigner, Phlypo, Coates, Lepore, Wood (CR33) 2017; 7
Wahlsten, Metten, Crabbe (CR46) 2003; 971
Zalesky, Fornito, Bullmore (CR26) 2010; 53
Chang, Lin (CR44) 2011; 2
Clemmensen, Hastie, Witten, Ersbøll (CR30) 2011; 53
Huang (CR34) 2010; 50
Deligianni (CR31) 2013; 32
37300_CR22
37300_CR66
M Lazar (37300_CR71) 2003; 18
37300_CR65
C Stam (37300_CR6) 2009; 132
37300_CR61
T Xie (37300_CR32) 2012; 2
J Coloigner (37300_CR33) 2017; 7
RC Craddock (37300_CR74) 2012; 33
P Bellec (37300_CR75) 2017; 144
A Zalesky (37300_CR16) 2011; 69
A Dagley (37300_CR73) 2017; 144
M Squillace (37300_CR43) 2014; 4
N Makris (37300_CR72) 2006; 83
WW Seeley (37300_CR57) 2009; 62
L Bonilha (37300_CR9) 2014; 45
H-Y Zhang (37300_CR58) 2010; 256
K Supekar (37300_CR54) 2008; 4
MF Casanova (37300_CR52) 2011; 15
B Ng (37300_CR20) 2016; 35
B-U Meyer (37300_CR50) 1998; 64
37300_CR17
Y Iturria-Medina (37300_CR12) 2011; 6
C Fassbender (37300_CR62) 2009; 1273
37300_CR76
E Bullmore (37300_CR5) 2009; 10
J Kim (37300_CR24) 2014; 101
J Richiardi (37300_CR3) 2011; 56
N Meinshausen (37300_CR28) 2010; 72
M-C de LaCoste (37300_CR55) 1993; 14
A Griffa (37300_CR14) 2013; 80
L Dodero (37300_CR49) 2013; 8
Y He (37300_CR7) 2009; 132
H Lee (37300_CR35) 2011; 30
JR Andrews-Hanna (37300_CR63) 2014; 1316
B Gaonkar (37300_CR21) 2013; 78
LR Fenlon (37300_CR48) 2015; 10
G Allen (37300_CR56) 2007; 64
S Huang (37300_CR34) 2010; 50
J Ye (37300_CR29) 2012; 12
37300_CR69
S Ryali (37300_CR39) 2010; 51
37300_CR68
37300_CR42
L Cocchi (37300_CR8) 2014; 4
37300_CR40
O Sporns (37300_CR1) 2011; 1224
D Wahlsten (37300_CR46) 2003; 971
L Clemmensen (37300_CR30) 2011; 53
A Fornito (37300_CR15) 2011; 70
TW Frazier (37300_CR51) 2009; 66
C-C Chang (37300_CR44) 2011; 2
JM Rondina (37300_CR25) 2014; 33
O Yamashita (37300_CR38) 2008; 42
F Deligianni (37300_CR31) 2013; 32
MP van den Heuvel (37300_CR23) 2011; 31
H Zou (37300_CR41) 2005; 67
37300_CR37
37300_CR36
BW McMenamin (37300_CR27) 2015; 116
37300_CR11
A Zalesky (37300_CR26) 2010; 53
F Berisha (37300_CR59) 2007; 48
M Rubinov (37300_CR4) 2010; 52
YI Sheline (37300_CR53) 2010; 67
37300_CR2
S Chen (37300_CR18) 2015; 36
F Sforazzini (37300_CR45) 2014; 87
B Hofner (37300_CR64) 2015; 16
FX Castellanos (37300_CR67) 2008; 63
S Mori (37300_CR70) 1999; 45
L-L Zeng (37300_CR10) 2014; 35
T Ren (37300_CR47) 2007; 27
JB Colby (37300_CR60) 2012; 6
G Varoquaux (37300_CR13) 2013; 80
D Mastrovito (37300_CR19) 2018; 18
References_xml – volume: 35
  start-page: 208
  year: 2016
  end-page: 216
  ident: CR20
  article-title: Transport on Riemannian manifold for connectivity-based brain decoding
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2015.2463723
– volume: 1316
  start-page: 29
  year: 2014
  end-page: 52
  ident: CR63
  article-title: The default network and self-generated thought: component processes, dynamic control, and clinical relevance
  publication-title: Annals New York Acad. Sci
  doi: 10.1111/nyas.12360
– ident: CR22
– volume: 83
  start-page: 155
  year: 2006
  end-page: 171
  ident: CR72
  article-title: Decreased volume of left and total anterior insular lobule in schizophrenia
  publication-title: Schizophr. research
  doi: 10.1016/j.schres.2005.11.020
– volume: 64
  start-page: 138
  year: 1998
  end-page: 139
  ident: CR50
  article-title: In vivo visualisation of the longitudinal callosal fascicle (probst’s bundle) and other abnormalities in an acallosal brain
  publication-title: J. Neurol. Neurosurg. & Psychiatry
  doi: 10.1136/jnnp.64.1.138
– volume: 45
  start-page: 265
  year: 1999
  end-page: 269
  ident: CR70
  article-title: Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging
  publication-title: Annals neurology
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– volume: 66
  start-page: 935
  year: 2009
  end-page: 941
  ident: CR51
  article-title: A meta-analysis of the corpus callosum in autism
  publication-title: Biol. psychiatry
  doi: 10.1016/j.biopsych.2009.07.022
– volume: 87
  start-page: 403
  year: 2014
  end-page: 415
  ident: CR45
  article-title: Distributed BOLD and CBV-weighted resting-state networks in the mouse brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.09.050
– ident: CR68
– volume: 144
  start-page: 255
  year: 2017
  end-page: 258
  ident: CR73
  article-title: Harvard aging brain study: dataset and accessibility
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.03.069
– volume: 30
  start-page: 1154
  year: 2011
  end-page: 1165
  ident: CR35
  article-title: Sparse brain network recovery under compressed sensing
  publication-title: IEEE Transactions on Med. Imaging
  doi: 10.1109/TMI.2010.2059709
– volume: 132
  start-page: 3366
  year: 2009
  end-page: 3379
  ident: CR7
  article-title: Impaired small-world efficiency in structural cortical networks in multiple sclerosis associated with white matter lesion load
  publication-title: Brain
  doi: 10.1093/brain/awp089
– volume: 2
  start-page: 77
  year: 2012
  ident: CR32
  article-title: Mapping the alzheimer’s brain with connectomics
  publication-title: Front. psychiatry
  doi: 10.3389/fpsyt.2011.00077
– volume: 4
  year: 2014
  ident: CR43
  article-title: Dysfunctional dopaminergic neurotransmission in asocial BTBR mice
  publication-title: Transl. psychiatry
  doi: 10.1038/tp.2014.69
– volume: 45
  start-page: 988
  year: 2014
  end-page: 993
  ident: CR9
  article-title: Assessing the clinical effect of residual cortical disconnection after ischemic strokes
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.004137
– ident: CR61
– volume: 256
  start-page: 598
  year: 2010
  end-page: 606
  ident: CR58
  article-title: Resting brain connectivity: changes during the progress of alzheimer disease
  publication-title: Radiology
  doi: 10.1148/radiol.10091701
– volume: 62
  start-page: 42
  year: 2009
  end-page: 52
  ident: CR57
  article-title: Neurodegenerative diseases target large-scale human brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.024
– ident: CR42
– volume: 10
  start-page: 186
  year: 2009
  end-page: 198
  ident: CR5
  article-title: Complex brain networks: graph theoretical analysis of structural and functional systems
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 1224
  start-page: 109
  year: 2011
  end-page: 125
  ident: CR1
  article-title: The human connectome: a complex network
  publication-title: Annals New York Acad. Sci.
  doi: 10.1111/j.1749-6632.2010.05888.x
– volume: 53
  start-page: 1197
  year: 2010
  end-page: 1207
  ident: CR26
  article-title: Network-based statistic: identifying differences in brain networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.041
– volume: 52
  start-page: 1059
  year: 2010
  end-page: 1069
  ident: CR4
  article-title: Complex network measures of brain connectivity: uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 116
  start-page: 1
  year: 2015
  end-page: 9
  ident: CR27
  article-title: Discovering networks altered by potential threat (“anxiety”) using quadratic discriminant analysis
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.05.002
– volume: 4
  start-page: 779
  year: 2014
  end-page: 787
  ident: CR8
  article-title: Disruption of structure–function coupling in the schizophrenia connectome
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2014.05.004
– volume: 132
  start-page: 213
  year: 2009
  end-page: 224
  ident: CR6
  article-title: Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awn262
– ident: CR11
– volume: 16
  year: 2015
  ident: CR64
  article-title: Controlling false discoveries in high-dimensional situations: Boosting with stability selection
  publication-title: BMC bioinformatics
  doi: 10.1186/s12859-015-0575-3
– volume: 80
  start-page: 515
  year: 2013
  end-page: 526
  ident: CR14
  article-title: Structural connectomics in brain diseases
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.056
– volume: 7
  start-page: 443
  year: 2017
  end-page: 453
  ident: CR33
  article-title: Graph lasso-based test for evaluating functional brain connectivity in sickle cell disease
  publication-title: Brain connectivity
  doi: 10.1089/brain.2016.0474
– volume: 144
  start-page: 275
  year: 2017
  end-page: 286
  ident: CR75
  article-title: The neuro bureau adhd-200 preprocessed repository
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.06.034
– volume: 32
  start-page: 2200
  year: 2013
  end-page: 2214
  ident: CR31
  article-title: A framework for inter-subject prediction of functional connectivity from structural networks
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2013.2276916
– ident: CR36
– volume: 63
  start-page: 332
  year: 2008
  end-page: 337
  ident: CR67
  article-title: Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder
  publication-title: Biol. psychiatry
  doi: 10.1016/j.biopsych.2007.06.025
– volume: 33
  start-page: 1914
  year: 2012
  end-page: 1928
  ident: CR74
  article-title: A whole brain fMRI atlas generated via spatially constrained spectral clustering
  publication-title: Hum. brain mapping
  doi: 10.1002/hbm.21333
– volume: 51
  start-page: 752
  year: 2010
  end-page: 764
  ident: CR39
  article-title: Sparse logistic regression for whole-brain classification of fMRI data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.02.040
– volume: 8
  start-page: e76655
  year: 2013
  ident: CR49
  article-title: Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T+ TF/J mouse model of autism
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0076655
– volume: 42
  start-page: 1414
  year: 2008
  end-page: 1429
  ident: CR38
  article-title: Sparse estimation automatically selects voxels relevant for the decoding of fMRI activity patterns
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.050
– ident: CR66
– volume: 64
  start-page: 1482
  year: 2007
  end-page: 1487
  ident: CR56
  article-title: Reduced hippocampal functional connectivity in Alzheimer disease. Arch
  publication-title: neurology
– volume: 53
  start-page: 406
  year: 2011
  end-page: 413
  ident: CR30
  article-title: Sparse discriminant analysis
  publication-title: Technometrics
  doi: 10.1198/TECH.2011.08118
– volume: 72
  start-page: 417
  year: 2010
  end-page: 473
  ident: CR28
  article-title: Stability selection
  publication-title: J. Royal Stat. Soc. Ser. B (Statistical Methodol.
  doi: 10.1111/j.1467-9868.2010.00740.x
– ident: CR2
– ident: CR37
– volume: 48
  start-page: 2285
  year: 2007
  end-page: 2289
  ident: CR59
  article-title: Retinal abnormalities in early Alzheimer’s disease
  publication-title: Investig. ophthalmology & visual science
  doi: 10.1167/iovs.06-1029
– volume: 15
  start-page: 223
  year: 2011
  end-page: 238
  ident: CR52
  article-title: Quantitative analysis of the shape of the corpus callosum in patients with autism and comparison individuals
  publication-title: Autism
  doi: 10.1177/1362361310386506
– volume: 50
  start-page: 935
  year: 2010
  end-page: 949
  ident: CR34
  article-title: Learning brain connectivity of Alzheimer’s disease by sparse inverse covariance estimation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.120
– volume: 69
  start-page: 80
  year: 2011
  end-page: 89
  ident: CR16
  article-title: Disrupted axonal fiber connectivity in schizophrenia
  publication-title: Biol. psychiatry
  doi: 10.1016/j.biopsych.2010.08.022
– volume: 35
  start-page: 1630
  year: 2014
  end-page: 1641
  ident: CR10
  article-title: Unsupervised classification of major depression using functional connectivity MRI
  publication-title: Hum. brain mapping
  doi: 10.1002/hbm.22278
– volume: 14
  start-page: 1
  year: 1993
  end-page: 16
  ident: CR55
  article-title: The role of cortical connectivity in alzheimer’s disease pathogenesis: a review and model system
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(93)90015-4
– volume: 6
  start-page: e19071
  year: 2011
  ident: CR12
  article-title: Automated discrimination of brain pathological state attending to complex structural brain network properties: the shiverer mutant mouse case
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019071
– volume: 78
  start-page: 270
  year: 2013
  end-page: 283
  ident: CR21
  article-title: Analytic estimation of statistical significance maps for support vector machine based multi-variate image analysis and classification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.066
– volume: 10
  year: 2015
  ident: CR48
  article-title: Formation of functional areas in the cerebral cortex is disrupted in a mouse model of autism spectrum disorder
  publication-title: Neural development
  doi: 10.1186/s13064-015-0033-y
– ident: CR40
– volume: 4
  start-page: e1000100
  year: 2008
  ident: CR54
  article-title: Network analysis of intrinsic functional brain connectivity in alzheimer’s disease
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1000100
– volume: 971
  start-page: 47
  year: 2003
  end-page: 54
  ident: CR46
  article-title: Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T/+ tf/tf has severely reduced hippocampal commissure and absent corpus callosum
  publication-title: Brain research
  doi: 10.1016/S0006-8993(03)02354-0
– volume: 70
  start-page: 64
  year: 2011
  end-page: 72
  ident: CR15
  article-title: General and specific functional connectivity disturbances in first-episode schizophrenia during cognitive control performance
  publication-title: Biol. psychiatry
  doi: 10.1016/j.biopsych.2011.02.019
– ident: CR69
– volume: 27
  start-page: 10345
  year: 2007
  end-page: 10349
  ident: CR47
  article-title: Diffusion tensor magnetic resonance imaging and tract-tracing analysis of probst bundle structure in netrin1-and dcc-deficient mice
  publication-title: The J. Neurosci.
  doi: 10.1523/JNEUROSCI.2787-07.2007
– ident: CR65
– volume: 80
  start-page: 405
  year: 2013
  end-page: 415
  ident: CR13
  article-title: Learning and comparing functional connectomes across subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.007
– ident: CR17
– volume: 18
  start-page: 367
  year: 2018
  end-page: 376
  ident: CR19
  article-title: Differences in atypical resting-state effective connectivity distinguish autism from schizophrenia
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2018.01.014
– volume: 67
  start-page: 584
  year: 2010
  end-page: 587
  ident: CR53
  article-title: Amyloid plaques disrupt resting state default mode network connectivity in cognitively normal elderly
  publication-title: Biol. psychiatry
  doi: 10.1016/j.biopsych.2009.08.024
– volume: 1273
  start-page: 114
  year: 2009
  end-page: 128
  ident: CR62
  article-title: A lack of default network suppression is linked to increased distractibility in ADHD
  publication-title: Brain research
  doi: 10.1016/j.brainres.2009.02.070
– volume: 33
  start-page: 85
  year: 2014
  end-page: 98
  ident: CR25
  article-title: Scors—a method based on stability for feature selection and mapping in neuroimaging
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2013.2281398
– volume: 18
  start-page: 306
  year: 2003
  end-page: 321
  ident: CR71
  article-title: White matter tractography using diffusion tensor deflection
  publication-title: Hum. brain mapping
  doi: 10.1002/hbm.10102
– volume: 6
  start-page: 59
  year: 2012
  ident: CR60
  article-title: Insights into multimodal imaging classification of ADHD
  publication-title: Front. systems neuroscience
  doi: 10.3389/fnsys.2012.00059
– volume: 101
  start-page: 681
  year: 2014
  end-page: 694
  ident: CR24
  article-title: Comparison of statistical tests for group differences in brain functional networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.031
– ident: CR76
– volume: 56
  start-page: 616
  year: 2011
  end-page: 626
  ident: CR3
  article-title: Decoding brain states from fMRI connectivity graphs
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.081
– volume: 12
  year: 2012
  ident: CR29
  article-title: Sparse learning and stability selection for predicting MCI to AD conversion using baseline ADNI data
  publication-title: BMC neurology
  doi: 10.1186/1471-2377-12-46
– volume: 2
  start-page: 27
  year: 2011
  ident: CR44
  article-title: Libsvm: a library for support vector machines
  publication-title: ACM transactions on intelligent systems technology (TIST)
– volume: 36
  start-page: 5196
  year: 2015
  end-page: 5206
  ident: CR18
  article-title: A parsimonious statistical method to detect groupwise differentially expressed functional connectivity networks
  publication-title: Hum. brain mapping
  doi: 10.1002/hbm.23007
– volume: 31
  start-page: 15775
  year: 2011
  end-page: 15786
  ident: CR23
  article-title: Rich-club organization of the human connectome
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3539-11.2011
– volume: 67
  start-page: 301
  year: 2005
  end-page: 320
  ident: CR41
  article-title: Regularization and variable selection via the elastic net
  publication-title: J. Royal Stat. Soc. Ser. B (Statistical Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 72
  start-page: 417
  year: 2010
  ident: 37300_CR28
  publication-title: J. Royal Stat. Soc. Ser. B (Statistical Methodol.
  doi: 10.1111/j.1467-9868.2010.00740.x
– volume: 7
  start-page: 443
  year: 2017
  ident: 37300_CR33
  publication-title: Brain connectivity
  doi: 10.1089/brain.2016.0474
– volume: 116
  start-page: 1
  year: 2015
  ident: 37300_CR27
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.05.002
– volume: 12
  year: 2012
  ident: 37300_CR29
  publication-title: BMC neurology
  doi: 10.1186/1471-2377-12-46
– volume: 6
  start-page: 59
  year: 2012
  ident: 37300_CR60
  publication-title: Front. systems neuroscience
  doi: 10.3389/fnsys.2012.00059
– volume: 52
  start-page: 1059
  year: 2010
  ident: 37300_CR4
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 48
  start-page: 2285
  year: 2007
  ident: 37300_CR59
  publication-title: Investig. ophthalmology & visual science
  doi: 10.1167/iovs.06-1029
– volume: 14
  start-page: 1
  year: 1993
  ident: 37300_CR55
  publication-title: Neurobiol. Aging
  doi: 10.1016/0197-4580(93)90015-4
– volume: 971
  start-page: 47
  year: 2003
  ident: 37300_CR46
  publication-title: Brain research
  doi: 10.1016/S0006-8993(03)02354-0
– volume: 67
  start-page: 584
  year: 2010
  ident: 37300_CR53
  publication-title: Biol. psychiatry
  doi: 10.1016/j.biopsych.2009.08.024
– volume: 80
  start-page: 515
  year: 2013
  ident: 37300_CR14
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.056
– volume: 4
  start-page: e1000100
  year: 2008
  ident: 37300_CR54
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1000100
– ident: 37300_CR11
  doi: 10.1109/ISBI.2017.7950677
– volume: 62
  start-page: 42
  year: 2009
  ident: 37300_CR57
  publication-title: Neuron
  doi: 10.1016/j.neuron.2009.03.024
– ident: 37300_CR65
– volume: 101
  start-page: 681
  year: 2014
  ident: 37300_CR24
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.031
– ident: 37300_CR69
– volume: 6
  start-page: e19071
  year: 2011
  ident: 37300_CR12
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0019071
– volume: 35
  start-page: 208
  year: 2016
  ident: 37300_CR20
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2015.2463723
– volume: 64
  start-page: 138
  year: 1998
  ident: 37300_CR50
  publication-title: J. Neurol. Neurosurg. & Psychiatry
  doi: 10.1136/jnnp.64.1.138
– volume: 83
  start-page: 155
  year: 2006
  ident: 37300_CR72
  publication-title: Schizophr. research
  doi: 10.1016/j.schres.2005.11.020
– ident: 37300_CR2
  doi: 10.7551/mitpress/8476.001.0001
– volume: 51
  start-page: 752
  year: 2010
  ident: 37300_CR39
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2010.02.040
– ident: 37300_CR76
  doi: 10.1515/1544-6115.1792
– volume: 53
  start-page: 406
  year: 2011
  ident: 37300_CR30
  publication-title: Technometrics
  doi: 10.1198/TECH.2011.08118
– volume: 10
  start-page: 186
  year: 2009
  ident: 37300_CR5
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2575
– volume: 1224
  start-page: 109
  year: 2011
  ident: 37300_CR1
  publication-title: Annals New York Acad. Sci.
  doi: 10.1111/j.1749-6632.2010.05888.x
– ident: 37300_CR17
  doi: 10.3389/fncom.2013.00171
– volume: 144
  start-page: 255
  year: 2017
  ident: 37300_CR73
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.03.069
– volume: 70
  start-page: 64
  year: 2011
  ident: 37300_CR15
  publication-title: Biol. psychiatry
  doi: 10.1016/j.biopsych.2011.02.019
– volume: 31
  start-page: 15775
  year: 2011
  ident: 37300_CR23
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.3539-11.2011
– ident: 37300_CR61
  doi: 10.1007/s11682-016-9614-6
– ident: 37300_CR36
  doi: 10.1109/PRNI.2013.14
– volume: 4
  year: 2014
  ident: 37300_CR43
  publication-title: Transl. psychiatry
  doi: 10.1038/tp.2014.69
– ident: 37300_CR68
– volume: 50
  start-page: 935
  year: 2010
  ident: 37300_CR34
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.12.120
– volume: 132
  start-page: 213
  year: 2009
  ident: 37300_CR6
  publication-title: Brain
  doi: 10.1093/brain/awn262
– volume: 67
  start-page: 301
  year: 2005
  ident: 37300_CR41
  publication-title: J. Royal Stat. Soc. Ser. B (Statistical Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
– volume: 27
  start-page: 10345
  year: 2007
  ident: 37300_CR47
  publication-title: The J. Neurosci.
  doi: 10.1523/JNEUROSCI.2787-07.2007
– volume: 18
  start-page: 306
  year: 2003
  ident: 37300_CR71
  publication-title: Hum. brain mapping
  doi: 10.1002/hbm.10102
– volume: 36
  start-page: 5196
  year: 2015
  ident: 37300_CR18
  publication-title: Hum. brain mapping
  doi: 10.1002/hbm.23007
– volume: 53
  start-page: 1197
  year: 2010
  ident: 37300_CR26
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.06.041
– volume: 78
  start-page: 270
  year: 2013
  ident: 37300_CR21
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.03.066
– ident: 37300_CR22
  doi: 10.1007/978-3-319-24574-4_72
– volume: 16
  year: 2015
  ident: 37300_CR64
  publication-title: BMC bioinformatics
  doi: 10.1186/s12859-015-0575-3
– volume: 18
  start-page: 367
  year: 2018
  ident: 37300_CR19
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2018.01.014
– volume: 80
  start-page: 405
  year: 2013
  ident: 37300_CR13
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.007
– volume: 8
  start-page: e76655
  year: 2013
  ident: 37300_CR49
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0076655
– volume: 33
  start-page: 1914
  year: 2012
  ident: 37300_CR74
  publication-title: Hum. brain mapping
  doi: 10.1002/hbm.21333
– volume: 2
  start-page: 77
  year: 2012
  ident: 37300_CR32
  publication-title: Front. psychiatry
  doi: 10.3389/fpsyt.2011.00077
– volume: 69
  start-page: 80
  year: 2011
  ident: 37300_CR16
  publication-title: Biol. psychiatry
  doi: 10.1016/j.biopsych.2010.08.022
– volume: 10
  year: 2015
  ident: 37300_CR48
  publication-title: Neural development
  doi: 10.1186/s13064-015-0033-y
– volume: 45
  start-page: 265
  year: 1999
  ident: 37300_CR70
  publication-title: Annals neurology
  doi: 10.1002/1531-8249(199902)45:2<265::AID-ANA21>3.0.CO;2-3
– volume: 144
  start-page: 275
  year: 2017
  ident: 37300_CR75
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.06.034
– volume: 15
  start-page: 223
  year: 2011
  ident: 37300_CR52
  publication-title: Autism
  doi: 10.1177/1362361310386506
– volume: 1273
  start-page: 114
  year: 2009
  ident: 37300_CR62
  publication-title: Brain research
  doi: 10.1016/j.brainres.2009.02.070
– volume: 33
  start-page: 85
  year: 2014
  ident: 37300_CR25
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2013.2281398
– volume: 30
  start-page: 1154
  year: 2011
  ident: 37300_CR35
  publication-title: IEEE Transactions on Med. Imaging
  doi: 10.1109/TMI.2010.2059709
– ident: 37300_CR37
  doi: 10.7551/mitpress/9266.001.0001
– volume: 4
  start-page: 779
  year: 2014
  ident: 37300_CR8
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2014.05.004
– volume: 42
  start-page: 1414
  year: 2008
  ident: 37300_CR38
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2008.05.050
– volume: 35
  start-page: 1630
  year: 2014
  ident: 37300_CR10
  publication-title: Hum. brain mapping
  doi: 10.1002/hbm.22278
– volume: 87
  start-page: 403
  year: 2014
  ident: 37300_CR45
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.09.050
– volume: 63
  start-page: 332
  year: 2008
  ident: 37300_CR67
  publication-title: Biol. psychiatry
  doi: 10.1016/j.biopsych.2007.06.025
– volume: 132
  start-page: 3366
  year: 2009
  ident: 37300_CR7
  publication-title: Brain
  doi: 10.1093/brain/awp089
– volume: 66
  start-page: 935
  year: 2009
  ident: 37300_CR51
  publication-title: Biol. psychiatry
  doi: 10.1016/j.biopsych.2009.07.022
– ident: 37300_CR42
  doi: 10.1007/s00429-014-0948-9
– volume: 64
  start-page: 1482
  year: 2007
  ident: 37300_CR56
  publication-title: neurology
– volume: 256
  start-page: 598
  year: 2010
  ident: 37300_CR58
  publication-title: Radiology
  doi: 10.1148/radiol.10091701
– ident: 37300_CR40
  doi: 10.1111/j.1467-9868.2011.00783.x
– ident: 37300_CR66
– volume: 1316
  start-page: 29
  year: 2014
  ident: 37300_CR63
  publication-title: Annals New York Acad. Sci
  doi: 10.1111/nyas.12360
– volume: 45
  start-page: 988
  year: 2014
  ident: 37300_CR9
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.004137
– volume: 2
  start-page: 27
  year: 2011
  ident: 37300_CR44
  publication-title: ACM transactions on intelligent systems technology (TIST)
– volume: 56
  start-page: 616
  year: 2011
  ident: 37300_CR3
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2010.05.081
– volume: 32
  start-page: 2200
  year: 2013
  ident: 37300_CR31
  publication-title: IEEE transactions on medical imaging
  doi: 10.1109/TMI.2013.2276916
SSID ssj0000529419
Score 2.320798
Snippet The analysis of the brain from a connectivity perspective is revealing novel insights into brain structure and function. Discovery is, however, hindered by the...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 65
SubjectTerms 59
59/57
631/378/116/1925
64
64/60
692/617/375
Animals
Brain
Brain - anatomy & histology
Brain - physiology
Connectome - methods
Data processing
Datasets
Discriminant analysis
Discrimination
Experiments
Feature selection
Functional anatomy
Humanities and Social Sciences
Humans
Laboratories
Learning algorithms
Machine learning
Magnetic resonance imaging
Mice
multidisciplinary
Nerve Net - anatomy & histology
Nerve Net - physiology
Neural networks
Neural Pathways - anatomy & histology
Neural Pathways - physiology
Science
Science (multidisciplinary)
Sparsity
Structure-function relationships
Support vector machines
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwEA_qEHwRv51OieCbhi1N2qa-iIoiwoaog72VpklxIN10U_C_965NK3O4x5KkSe4uuUvucj9CTsFI1kpYxVLZsQw0RMIipRXLQN0ECHBsNF4NdHvBfV8-DPyBu3CbuLDKak8sNmozSvGOvO1x1I1o4V-O3xmiRqF31UFoLJMGbMEK5Lxxfdt7fKpvWdCPJXnkXst0hGpPYDz4qowrWFui02FyViPNmZnz0ZJ_XKaFJrrbIOvOhKRXJc83yZLNt8hqCSr5vU26xZtaPGPSKuPIBb1GJAjaK2O-6U0NPki_hgl9ho-JpUXMS1qiSdRNd0j_7vbl5p450ASgdiinTIjU85IQFDmXfiZFIDXniQ38FLS11ZG2YeJ7ic5Sw60BgmKAqdVGhyYzxkRil6zko9zuExpyDwwWOC9a6UkhfRUFSRToMPOjlGsTNQmvCBenLqM4Alu8xYVnW6i4JHYMxI4LYseySc7qNuMyn8bC2q2KH7FbW5P4VxKa5KQuhlWBro4kt6NPrBOigxd28ibZK9lXdweHJAF2Hvw8nGFsXQEzbs-W5MPXIvN2IPAhMvR7XonA77D-n8XB4lkckjWwwjBqjXHeIivTj097BJbOVB87cf4BVtX6zQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD7MieCLeLc6JYJvWmyatE19m8MxBtvLFHwrTZOiIJ24TfDfe5JeZE4FH0uuPbmc7-TcAC4QJEvBtHAz7mkXOUTqxkIKN0d2E5oEx0qap4HROBw88OFj8NgCv_aFsUb7NqSlvaZr67DrGXZjnMGowCPBPM_la7AukP35bVjvdoeTYfOyYnRXnMaVh4zHxA-Nl7nQCrRctZD8pia13Ke_DVsVbCTdcqI70NLFLmyUiSQ_9mBk_WiNXEnqKCM35NZkfyDj0s6b9JqEg-T9OSUT_JhpYu1csjKDRNN0Hx76d_e9gVslSkAKR3zuMpb5fhoh86Y8yDkLuaQ01WGQIYfWMpY6SgM_lXmmqFaBx41RqZZKRipXSsXsANrFtNBHQCLqI0hBGVFznzMeiDhM41BGeRBnVKrYAVoTLsmqKOImmcVLYrXZTCQlsRMkdmKJnXAHLps2r2UMjT9rd-r1SKrzNEt8apCRke8cOG-K8SQY9UZa6OnC1ImMUhdvbwcOy-VrhkPBiCG2w86jpYVtKpgo28slxfOTjbYdMuN8jONe1Vvga1q__8Xx_6qfwCYiMWO55lLagfb8baFPEe3M5Vm1vT8B_-j4nA
  priority: 102
  providerName: Springer Nature
Title MultiLink Analysis: Brain Network Comparison via Sparse Connectivity Analysis
URI https://link.springer.com/article/10.1038/s41598-018-37300-4
https://www.ncbi.nlm.nih.gov/pubmed/30635604
https://www.proquest.com/docview/2166350428
https://www.proquest.com/docview/2179358911
https://pubmed.ncbi.nlm.nih.gov/PMC6329758
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_6wUZfRvftrQ0a7G3zFlmyZA1GSUNLCSSMdYG8GcuSaaG4W5OO9b_fnWV7pB97MrYlZN9Jvt9Zd_cDeI8g2WbCZ3Ephz5GC1HEJrNZXKG5UURw7Cz9GpjO1MlcThbpYgM6uqNWgMt7XTvik5pfXXz68-vmABf815Aynn1e4hCUKMYzXC5iOIzlJmyjZVLkjE1buB9qfSdGctPmztzfdQceI4oWCATkuqm6gz_vhlHe2kttTNTxLjxpsSUbhcnwFDZ8_QweBbbJm-cwbZJtyflkXSmSL-yQKCLYLASDs3HPSsh-nxfsFE-WnjXBMGWgmei7voD58dGP8UncsimgGrRcxUKUSVJotPBcppUUSlrOC6_SEs24t8Z6XaRJYavSce_SoaTIU2-d1a5yzhnxErbqy9q_BqZ5gkgGHUkvEylkmhlVGGV1lZqSW2ci4J3g8rItNU6MFxd5s-UtsjzIPUe5543ccxnBh77Pz1Bo47-t9zp95N2cyRNO8ImcwAje9bdxudAeSFH7y2tqo2nnFz_xEbwK6uuH6_QegV5TbN-ASnGv36nPz5qS3EpQhjKO-7GbAv8e6-G3ePPgI7yFHURmFMkWc74HW6ura7-P6GdlB7CpF3oA26PR5HSCx8Oj2bfveHWsxoPmj8KgmfR_AVKaAmA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bSxwxFD7IitgXqdbWtV5SqE81uJlkboUiXlmruxSr4FucTDIoyKy6q-Kf6m_sOXOTVfTNxyHJJDk5yTnJuXwA31FJNpF0EU9Vx3GUEAmPIxPxDMVNQADH1tDTQK8fdE_V7zP_bAL-1bEw5FZZn4nFQW0HKb2Rb3iCZCNp-JvXN5xQo8i6WkNolGxx6B4f8Mo2_HWwi-u75nn7eyc7XV6hCuBwQjXiUqael4Qo6YTyMyUDZYRIXOCnKM6ciY0LE99LTJZa4Sz2SB6YzlgT2sxaS8mX8MifVBTR2oLJ7b3-n-PmVYfsZkrEVXROR0YbQ5w_RbGJCPey7HS4GpeAL9Tal96Zz0y0heTb_wgzlcrKtkoem4UJl8_BVAli-fgJekUML91pWZ3h5CfbJuQJ1i99zNlOA3bI7i8T9hc_ho4VPjZpiV7RNJ2H03ch52do5YPcLQALhYcKEt5PnfKUVH4UB0kcmDDz41QYG7dB1ITTaZXBnIA0rnRhSZeRLomtkdi6ILZWbfjRtLku83e8WXupXg9d7eWhfuK8NnxrinEXkmklyd3gjuqEZFBGydGGL-XyNd3hpUyiXok_D8cWtqlAGb7HS_LLiyLTdyAp8Bn7Xa9Z4GlYr89i8e1ZrMJ096R3pI8O-odf4QNqgOQxx4VYgtbo9s4to5Y1MisVazM4f-_d9B-zkzjf
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZT9wwEB6hRVR9QYVeSzlcqX1qrV3HTpxUqhDXCkpZobZIvLlx7AgklAV2AfHX-us6kwstCN54jOzEznjG39hzAXxCJdnG0sc8U33PESFSnsQ25jnCTUQFjp2lq4GDYbR7pH4ch8cz8K-JhSG3ymZPLDdqN8rojrwXCMJG0vB7ee0Wcbg9WD-_4FRBiiytTTmNikX2_e0NHt_G3_e2ca0_B8Fg58_WLq8rDODUtJpwKbMgSDWinlBhrmSkrBCpj8IMoc3bxHqdhkFq88wJ73B08sb01lntcuccJWLC7X9WIyqqDsxu7gwPf7U3PGRDUyKpI3X6Mu6NkRYU0SZilGvZ73M1jYYPVNyHnpr3zLUlCg5ewXytvrKNit8WYMYXizBXFbS8fQ0HZTwvnW9Zk-3kG9ukKhRsWPmbs6228CG7Pk3Zb3wYe1b622RVJYv21Tdw9CzkfAudYlT498C0CJCmeFb1KlBShXESpUlkdR4mmbAu6YJoCGeyOps5FdU4M6VVXcamIrZBYpuS2EZ14Uv7znmVy-PJ3svNepharsfmjgu78LFtRokkM0ta-NEV9dFkXEYU6cK7avna4fCAJlHHxI_rqYVtO1C27-mW4vSkzPodSQqCxnG_NixwN63H_2Lp6b9YgxcoRebn3nD_A7xEZZCc57gQy9CZXF75FVS4Jna15mwGf59bmP4DHbU9Cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MultiLink+Analysis%3A+Brain+Network+Comparison+via+Sparse+Connectivity+Analysis&rft.jtitle=Scientific+reports&rft.au=Crimi%2C+Alessandro&rft.au=Giancardo%2C+Luca&rft.au=Sambataro%2C+Fabio&rft.au=Gozzi%2C+Alessandro&rft.date=2019-01-11&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft.spage=65&rft_id=info:doi/10.1038%2Fs41598-018-37300-4&rft_id=info%3Apmid%2F30635604&rft.externalDocID=30635604
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon