Magnetic Resonance Imaging Evaluation of Remodeling by Cardiac Elastomeric Tissue Scaffold Biomaterials in a Rat Model of Myocardial Infarction

Grafting of elastomeric biomaterial scaffolds may offer a radical strategy for the prevention of heart failure after myocardial infarction by increasing efficacy of stem cell delivery as well as acting as mechanical restraint devices to constrain scar expansion. Biomaterials can be partially optimiz...

Full description

Saved in:
Bibliographic Details
Published inTissue engineering. Part A Vol. 16; no. 11; pp. 3395 - 3402
Main Authors Stuckey, Daniel J., Ishii, Hikaru, Chen, Qi-Zhi, Boccaccini, Aldo R., Hansen, Ulrich, Carr, Carolyn A., Roether, Judith A., Jawad, Hedeer, Tyler, Damian J., Ali, Nadire N., Clarke, Kieran, Harding, Sian E.
Format Journal Article
LanguageEnglish
Published United States Mary Ann Liebert, Inc 01.11.2010
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Grafting of elastomeric biomaterial scaffolds may offer a radical strategy for the prevention of heart failure after myocardial infarction by increasing efficacy of stem cell delivery as well as acting as mechanical restraint devices to constrain scar expansion. Biomaterials can be partially optimized in vitro , but their in vivo performance is most critical and should ideally be monitored serially and noninvasively. We used magnetic resonance imaging (MRI) to assess three scaffold materials with a range of structural moduli equal to or greater than myocardial tissue: poly(glycerol sebacate) (PGS), poly(ethyleneterephathalate)/dimer fatty acid (PED), and TiO 2 -reinforced PED (PED-TiO 2 ). Patches, 1 cm in diameter, were grafted onto the hearts of infarcted rats, with biomaterial-free infarcted rat hearts used as controls. MRI was able to determine scaffold size and location on the heart and identified unexpectedly rapid in vivo degradation of the PGS compared with previous in vitro testing. PED patches did not withstand in vivo attachment, but the more rigid PED-TiO 2 material was detrimental to heart function, increasing chamber and scar sizes and reducing ejection fractions compared with controls. In contrast, the mechanically compatible PGS scaffold successfully reduced hypertrophy, giving it potential for limiting excessive postinfarct remodeling. PGS was unable to support systolic function, but it would be suitable for strategies to deliver cardiac stem/progenitor cells, to limit remodeling during the period of functional cellular integration, and to degrade after cell assimilation by the heart. This work has also shown for the first time the value of using MRI as a noninvasive tool for evaluating and optimizing therapeutic biomaterials in vivo.
AbstractList Grafting of elastomeric biomaterial scaffolds may offer a radical strategy for the prevention of heart failure after myocardial infarction by increasing efficacy of stem cell delivery as well as acting as mechanical restraint devices to constrain scar expansion. Biomaterials can be partially optimized in vitro, but their in vivo performance is most critical and should ideally be monitored serially and noninvasively. We used magnetic resonance imaging (MRI) to assess three scaffold materials with a range of structural moduli equal to or greater than myocardial tissue: poly(glycerol sebacate) (PGS), poly(ethyleneterephathalate)/dimer fatty acid (PED), and TiO[sub]2-reinforced PED (PED-TiO[sub]2). Patches, 1 cm in diameter, were grafted onto the hearts of infarcted rats, with biomaterial-free infarcted rat hearts used as controls. MRI was able to determine scaffold size and location on the heart and identified unexpectedly rapid in vivo degradation of the PGS compared with previous in vitro testing. PED patches did not withstand in vivo attachment, but the more rigid PED-TiO[sub]2 material was detrimental to heart function, increasing chamber and scar sizes and reducing ejection fractions compared with controls. In contrast, the mechanically compatible PGS scaffold successfully reduced hypertrophy, giving it potential for limiting excessive postinfarct remodeling. PGS was unable to support systolic function, but it would be suitable for strategies to deliver cardiac stem/progenitor cells, to limit remodeling during the period of functional cellular integration, and to degrade after cell assimilation by the heart. This work has also shown for the first time the value of using MRI as a noninvasive tool for evaluating and optimizing therapeutic biomaterials in vivo. [PUBLICATION ABSTRACT]
Grafting of elastomeric biomaterial scaffolds may offer a radical strategy for the prevention of heart failure after myocardial infarction by increasing efficacy of stem cell delivery as well as acting as mechanical restraint devices to constrain scar expansion. Biomaterials can be partially optimized in vitro , but their in vivo performance is most critical and should ideally be monitored serially and noninvasively. We used magnetic resonance imaging (MRI) to assess three scaffold materials with a range of structural moduli equal to or greater than myocardial tissue: poly(glycerol sebacate) (PGS), poly(ethyleneterephathalate)/dimer fatty acid (PED), and TiO 2 -reinforced PED (PED-TiO 2 ). Patches, 1 cm in diameter, were grafted onto the hearts of infarcted rats, with biomaterial-free infarcted rat hearts used as controls. MRI was able to determine scaffold size and location on the heart and identified unexpectedly rapid in vivo degradation of the PGS compared with previous in vitro testing. PED patches did not withstand in vivo attachment, but the more rigid PED-TiO 2 material was detrimental to heart function, increasing chamber and scar sizes and reducing ejection fractions compared with controls. In contrast, the mechanically compatible PGS scaffold successfully reduced hypertrophy, giving it potential for limiting excessive postinfarct remodeling. PGS was unable to support systolic function, but it would be suitable for strategies to deliver cardiac stem/progenitor cells, to limit remodeling during the period of functional cellular integration, and to degrade after cell assimilation by the heart. This work has also shown for the first time the value of using MRI as a noninvasive tool for evaluating and optimizing therapeutic biomaterials in vivo.
Grafting of elastomeric biomaterial scaffolds may offer a radical strategy for the prevention of heart failure after myocardial infarction by increasing efficacy of stem cell delivery as well as acting as mechanical restraint devices to constrain scar expansion. Biomaterials can be partially optimized in vitro, but their in vivo performance is most critical and should ideally be monitored serially and noninvasively. We used magnetic resonance imaging (MRI) to assess three scaffold materials with a range of structural moduli equal to or greater than myocardial tissue: poly(glycerol sebacate) (PGS), poly(ethyleneterephathalate)/dimer fatty acid (PED), and TiO sub(2)-reinforced PED (PED-TiO sub(2)). Patches, 1cm in diameter, were grafted onto the hearts of infarcted rats, with biomaterial-free infarcted rat hearts used as controls. MRI was able to determine scaffold size and location on the heart and identified unexpectedly rapid in vivo degradation of the PGS compared with previous in vitro testing. PED patches did not withstand in vivo attachment, but the more rigid PED-TiO sub(2) material was detrimental to heart function, increasing chamber and scar sizes and reducing ejection fractions compared with controls. In contrast, the mechanically compatible PGS scaffold successfully reduced hypertrophy, giving it potential for limiting excessive postinfarct remodeling. PGS was unable to support systolic function, but it would be suitable for strategies to deliver cardiac stem/progenitor cells, to limit remodeling during the period of functional cellular integration, and to degrade after cell assimilation by the heart. This work has also shown for the first time the value of using MRI as a noninvasive tool for evaluating and optimizing therapeutic biomaterials in vivo.
Grafting of elastomeric biomaterial scaffolds may offer a radical strategy for the prevention of heart failure after myocardial infarction by increasing efficacy of stem cell delivery as well as acting as mechanical restraint devices to constrain scar expansion. Biomaterials can be partially optimized in vitro, but their in vivo performance is most critical and should ideally be monitored serially and noninvasively. We used magnetic resonance imaging ( MRI) to assess three scaffold materials with a range of structural moduli equal to or greater than myocardial tissue: poly(glycerol sebacate) (PGS), poly(ethyleneterephathalate)/dimer fatty acid (PED), and Ti[O.sub.2]-reinforced PED (PED-TiO2). Patches, 1 cm in diameter, were grafted onto the hearts of infarcted rats, with biomaterial-free infarcted rat hearts used as controls. MRI was able to determine scaffold size and location on the heart and identified unexpectedly rapid in vivo degradation of the PGS compared with previous in vitro testing. PED patches did not withstand in vivo attachment, but the more rigid PED-TiO2 material was detrimental to heart function, increasing chamber and scar sizes and reducing ejection fractions compared with controls. In contrast, the mechanically compatible PGS scaffold successfully reduced hypertrophy, giving it potential for limiting excessive postinfarct remodeling. PGS was unable to support systolic function, but it would be suitable for strategies to deliver cardiac stem/progenitor cells, to limit remodeling during the period of functional cellular integration, and to degrade after cell assimilation by the heart. This work has also shown for the first time the value of using MRI as a noninvasive tool for evaluating and optimizing therapeutic biomaterials in vivo.
Grafting of elastomeric biomaterial scaffolds may offer a radical strategy for the prevention of heart failure after myocardial infarction by increasing efficacy of stem cell delivery as well as acting as mechanical restraint devices to constrain scar expansion. Biomaterials can be partially optimized in vitro, but their in vivo performance is most critical and should ideally be monitored serially and noninvasively. We used magnetic resonance imaging (MRI) to assess three scaffold materials with a range of structural moduli equal to or greater than myocardial tissue: poly(glycerol sebacate) (PGS), poly(ethyleneterephathalate)/dimer fatty acid (PED), and TiO(2)-reinforced PED (PED-TiO(2)). Patches, 1  cm in diameter, were grafted onto the hearts of infarcted rats, with biomaterial-free infarcted rat hearts used as controls. MRI was able to determine scaffold size and location on the heart and identified unexpectedly rapid in vivo degradation of the PGS compared with previous in vitro testing. PED patches did not withstand in vivo attachment, but the more rigid PED-TiO(2) material was detrimental to heart function, increasing chamber and scar sizes and reducing ejection fractions compared with controls. In contrast, the mechanically compatible PGS scaffold successfully reduced hypertrophy, giving it potential for limiting excessive postinfarct remodeling. PGS was unable to support systolic function, but it would be suitable for strategies to deliver cardiac stem/progenitor cells, to limit remodeling during the period of functional cellular integration, and to degrade after cell assimilation by the heart. This work has also shown for the first time the value of using MRI as a noninvasive tool for evaluating and optimizing therapeutic biomaterials in vivo.
Audience Academic
Author Chen, Qi-Zhi
Roether, Judith A.
Harding, Sian E.
Jawad, Hedeer
Ishii, Hikaru
Hansen, Ulrich
Clarke, Kieran
Carr, Carolyn A.
Boccaccini, Aldo R.
Tyler, Damian J.
Stuckey, Daniel J.
Ali, Nadire N.
Author_xml – sequence: 1
  givenname: Daniel J.
  surname: Stuckey
  fullname: Stuckey, Daniel J.
  organization: 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
– sequence: 2
  givenname: Hikaru
  surname: Ishii
  fullname: Ishii, Hikaru
  organization: 2National Heart and Lung Institute, London, United Kingdom
– sequence: 3
  givenname: Qi-Zhi
  surname: Chen
  fullname: Chen, Qi-Zhi
  organization: 2National Heart and Lung Institute, London, United Kingdom
– sequence: 4
  givenname: Aldo R.
  surname: Boccaccini
  fullname: Boccaccini, Aldo R.
  organization: 4Institute of Biomaterials, University of Erlangen, Nuremberg, Germany
– sequence: 5
  givenname: Ulrich
  surname: Hansen
  fullname: Hansen, Ulrich
  organization: 5Department of Mechanical Engineering, Imperial College, London, United Kingdom
– sequence: 6
  givenname: Carolyn A.
  surname: Carr
  fullname: Carr, Carolyn A.
  organization: 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
– sequence: 7
  givenname: Judith A.
  surname: Roether
  fullname: Roether, Judith A.
  organization: 3Department of Materials, Imperial College, London, United Kingdom
– sequence: 8
  givenname: Hedeer
  surname: Jawad
  fullname: Jawad, Hedeer
  organization: 3Department of Materials, Imperial College, London, United Kingdom
– sequence: 9
  givenname: Damian J.
  surname: Tyler
  fullname: Tyler, Damian J.
  organization: 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
– sequence: 10
  givenname: Nadire N.
  surname: Ali
  fullname: Ali, Nadire N.
  organization: 2National Heart and Lung Institute, London, United Kingdom
– sequence: 11
  givenname: Kieran
  surname: Clarke
  fullname: Clarke, Kieran
  organization: 1Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
– sequence: 12
  givenname: Sian E.
  surname: Harding
  fullname: Harding, Sian E.
  organization: 2National Heart and Lung Institute, London, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/20528670$$D View this record in MEDLINE/PubMed
BookMark eNqNktuKFDEQhhtZcQ_6AN5I0AuvZsyhp9O5XIdRB3YQ1hW8C9XpZMiSTtYkLcxT-MomzrqgCEoICVVf_VUJ_3lz4oPXTfOc4CXBvXiTtV9mDUuKSwRTwh41Z0QwvmBs9eXk4d6S0-Y8pVuMO9xx_qQ5pXhF-47js-b7DvZeZ6vQtU7Bg1cabSfYW79Hm2_gZsg2eBRMyU9h1K4mhgNaQxwtKLRxkHKYdCwKNzalWaNPCowJbkRvbZgglxS4hKxHgK4ho11VqYK7Q1A_VRzaegNR1U5Pm8em4PrZ_XnRfH63uVl_WFx9fL9dX14tVMvbvGBECIMp9C1mpFWYcjYQ1auVopS0wyiI4gyLzrCWi_IbBjgnwgwDVX2_4j27aF4fde9i-DrrlOVkk9LOgddhTrKnhLOO9eSfJO8oprQTvJAv_yBvwxx9eUaBCGsFx7XxqyO0B6el9SbkCKpKykva1tnEChdq-ReqrFFPVhUXGFvivxWQY4GKIaWojbyLdoJ4kATLahZZzFI2yGoWWc1Sal7czzsPkx4fKn65owD8CNQweO-sHnTM_yH9A1Fqzmk
CitedBy_id crossref_primary_10_1021_bm500507z
crossref_primary_10_1161_CIRCIMAGING_113_000993
crossref_primary_10_1002_jbm_b_33081
crossref_primary_10_3892_etm_2016_3537
crossref_primary_10_1002_jbm_a_37550
crossref_primary_10_1039_c0sm00213e
crossref_primary_10_1002_adhm_201500892
crossref_primary_10_1002_adma_201403074
crossref_primary_10_3390_c8040072
crossref_primary_10_1016_j_progpolymsci_2012_05_003
crossref_primary_10_1016_j_msec_2015_04_035
crossref_primary_10_1016_j_yexcr_2013_11_005
crossref_primary_10_1021_acscentsci_7b00039
crossref_primary_10_1002_adfm_201800618
crossref_primary_10_1007_s11012_023_01681_2
crossref_primary_10_3390_bioengineering10050587
crossref_primary_10_1021_acsabm_2c00659
crossref_primary_10_4137_BMI_S20313
crossref_primary_10_1021_ie402499t
crossref_primary_10_1039_c2ra20736b
crossref_primary_10_1016_j_biomaterials_2013_05_009
crossref_primary_10_1002_pi_3165
crossref_primary_10_1177_0885328213499195
crossref_primary_10_1002_term_2255
crossref_primary_10_1002_mabi_201200483
crossref_primary_10_1016_j_biomaterials_2010_11_032
crossref_primary_10_1039_c2ra20113e
crossref_primary_10_1088_1748_6041_8_3_035006
crossref_primary_10_1002_adhm_201900065
crossref_primary_10_4061_2011_958247
crossref_primary_10_1002_pi_4608
crossref_primary_10_1021_acsbiomaterials_0c00243
crossref_primary_10_1016_j_biomaterials_2012_01_037
crossref_primary_10_1016_j_copbio_2016_04_008
crossref_primary_10_1016_j_jmbbm_2013_06_005
crossref_primary_10_1002_jbm_b_32761
crossref_primary_10_3390_bioengineering7040122
crossref_primary_10_1016_j_theriogenology_2012_05_012
crossref_primary_10_1002_adma_201303233
crossref_primary_10_1007_s13233_022_0056_2
crossref_primary_10_1016_j_progpolymsci_2012_02_001
crossref_primary_10_1088_1748_605X_ac2dd3
crossref_primary_10_1142_S1793984411000372
crossref_primary_10_1016_j_jmbbm_2011_05_038
crossref_primary_10_1038_s41551_019_0380_9
crossref_primary_10_1002_adma_201203824
crossref_primary_10_1016_j_eurpolymj_2015_09_013
crossref_primary_10_1186_2194_0517_1_2
crossref_primary_10_1021_acsami_8b06096
crossref_primary_10_1089_ten_tea_2012_0330
crossref_primary_10_3390_app10196805
crossref_primary_10_1007_s00259_011_1925_7
crossref_primary_10_1186_1532_429X_13_38
crossref_primary_10_1039_c1sm05350g
crossref_primary_10_1007_s40204_014_0026_7
crossref_primary_10_1016_j_biomaterials_2011_07_080
crossref_primary_10_1089_ten_tec_2013_0489
crossref_primary_10_3390_ijms20246210
crossref_primary_10_5966_sctm_2011_0028
crossref_primary_10_1088_1748_6041_7_3_035006
crossref_primary_10_1002_stem_2205
Cites_doi 10.1126/science.8140423
10.1016/S0735-1097(00)00525-8
10.1016/j.biomaterials.2006.06.022
10.1038/nm1394
10.1089/ten.tec.2009.0015
10.1016/j.jacc.2007.02.050
10.1016/j.biomaterials.2007.09.010
10.1089/ten.2006.12.2765
10.1634/stemcells.2006-0074
10.1016/j.jconrel.2008.11.023
10.1089/107632702320934128
10.1016/j.biomaterials.2010.01.108
10.1038/nature05664
10.1016/S0140-6736(08)61598-6
10.1152/ajpheart.00094.2008
10.1056/NEJM200011163432003
10.1089/ten.tec.2008.0488
10.1002/jbm.a.10534
10.1002/jbm.a.31578
10.1172/JCI118769
10.1073/pnas.0812242106
10.1089/ten.2006.0246
10.1002/mrm.21677
10.1634/stemcells.2007-0041
10.1007/s00259-008-0751-z
10.1179/174367508X297777
10.1002/term.46
10.1089/107632704323061762
10.1016/j.mser.2007.08.001
10.1161/01.CIR.98.22.2367
10.1634/stemcells.2007-0132
10.1016/j.jacc.2005.04.056
10.1002/jmri.1218
10.1016/j.actbio.2008.02.010
10.1016/S0140-6736(04)15695-X
10.1002/jbm.820240502
10.1126/science.1067404
10.1161/CIRCULATIONAHA.107.727420
10.1002/nbm.1268
ContentType Journal Article
Copyright 2010, Mary Ann Liebert, Inc.
COPYRIGHT 2010 Mary Ann Liebert, Inc.
(©) Copyright 2010, Mary Ann Liebert, Inc.
Copyright_xml – notice: 2010, Mary Ann Liebert, Inc.
– notice: COPYRIGHT 2010 Mary Ann Liebert, Inc.
– notice: (©) Copyright 2010, Mary Ann Liebert, Inc.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QP
7T5
7TK
7TM
7TO
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
7QO
8FD
FR3
P64
DOI 10.1089/ten.tea.2010.0213
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList ProQuest Central Student

Engineering Research Database

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: AUTh Library subscriptions: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-335X
EndPage 3402
ExternalDocumentID 2177279751
A248578950
10_1089_ten_tea_2010_0213
20528670
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GrantInformation_xml – fundername: British Heart Foundation
  grantid: PG/07/021/22511
– fundername: British Heart Foundation
  grantid: FS/10/002/28078
– fundername: British Heart Foundation
  grantid: PS/02/002/14893
– fundername: British Heart Foundation
  grantid: RG/07/004/22659
– fundername: Medical Research Council
  grantid: G0601490
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/D011027/1
GroupedDBID ---
0R~
123
29Q
3V.
4.4
53G
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
ABBKN
ABUWG
ACGFO
ACGOD
ACPRK
AENEX
AFKRA
AHMBA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DU5
DWQXO
EBS
EJD
F5P
FYUFA
GNUQQ
HCIFZ
HMCUK
IAO
IER
IGS
IHR
ITC
LK8
M0L
M1P
M2P
M7P
MV1
NQHIM
O9-
PQQKQ
PROAC
PSQYO
RML
RNS
UE5
UKHRP
1-M
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ACPNE
BDTCA
UJ9
7QP
7T5
7TK
7TM
7TO
7XB
8FK
H94
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c474t-3199f02a840314c0273b1c8c5c2214bd91c73096f3479335fa7719fbb2c885783
IEDL.DBID 7X7
ISSN 1937-3341
IngestDate Fri Aug 16 00:41:40 EDT 2024
Fri Aug 16 22:10:29 EDT 2024
Thu Oct 10 18:43:26 EDT 2024
Thu Feb 22 23:57:08 EST 2024
Tue Nov 12 23:13:20 EST 2024
Fri Aug 23 01:04:45 EDT 2024
Sat Sep 28 07:47:29 EDT 2024
Fri Sep 27 01:18:58 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-3199f02a840314c0273b1c8c5c2214bd91c73096f3479335fa7719fbb2c885783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 20528670
PQID 761349708
PQPubID 40309
PageCount 8
ParticipantIDs proquest_miscellaneous_821736381
proquest_miscellaneous_762022697
proquest_journals_761349708
gale_infotracmisc_A248578950
gale_infotracacademiconefile_A248578950
crossref_primary_10_1089_ten_tea_2010_0213
pubmed_primary_20528670
maryannliebert_primary_10_1089_ten_tea_2010_0213
PublicationCentury 2000
PublicationDate 2010-11-01
PublicationDateYYYYMMDD 2010-11-01
PublicationDate_xml – month: 11
  year: 2010
  text: 2010-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New Rochelle
PublicationTitle Tissue engineering. Part A
PublicationTitleAlternate Tissue Eng Part A
PublicationYear 2010
Publisher Mary Ann Liebert, Inc
Publisher_xml – name: Mary Ann Liebert, Inc
References Wang, Kim, Langer (B26) 2003; 66
Klug, Soonpaa, Koh, Field (B5) 1996; 98
Soonpaa, Koh, Klug, Field (B1) 1994; 264
Stuckey, Carr, Tyler, Aasum, Clarke (B24) 2008; 60
Macchiarini, Jungebluth, Go, Asnaghi, Rees, Cogan, Dodson, Martorell, Bellini, Parnigotto, Dickinson, Hollander, Mantero, Conconi, Birchall (B33) 2008; 372
Kempen, Yaszemski, Heijink, Hefferan, Creemers, Britson, Maran, Classic, Dhert, Lu (B34) 2009; 134
Chen, Harding, Ali, Lyon, Boccaccini (B11) 2008; 59
Nahrendorf, Wiesmann, Hiller, Hu, Waller, Ruff, Lanz, Neubauer, Haase, Ertl, Bauer (B28) 2001; 14
Jawad, Ali, Lyon, Chen, Harding, Boccaccini (B12) 2007; 1
Poirier-Quinot, Frasca, Wilhelm, Luciani, Ginefri, Darrasse, Letourneur, Le Visage, Gazeau (B40) 2010; 16
Vulliet, Greeley, Halloran, MacDonald, Kittleson (B6) 2004; 363
Wei, Chen, Chang, Hwang, Lin, Lai, Chiang, Hsu, Yang, Sung (B10) 2006; 27
Schakenraad, Hardonk, Feijen, Molenaar, Nieuwenhuis (B27) 1990; 24
Hwang do, Jang, Kim, Kim, Shim, Jeong, Chung, Lee, Lee, Kim, Kim, Lee (B35) 2008; 35
MacNeil (B31) 2007; 445
Fujimoto, Tobita, Merryman, Guan, Momoi, Stolz, Sacks, Keller, Wagner (B19) 2007; 49
Stuckey, Carr, Martin-Rendon, Tyler, Willmott, Cassidy, Hale, Schneider, Tatton, Harding, Radda, Watt, Clarke (B3) 2006; 24
Cwajg, Cwajg, Nagueh, He, Qureshi, Olmos, Quinones, Verani, Winters, Zoghbi (B18) 2000; 35
Radisic, Park, Martens, Salazar-Lazaro, Geng, Wang, Langer, Freed, Vunjak-Novakovic (B29) 2008; 86
Sheikh, Lin, Cao, Cao, van der Bogt, Chu, Chang, Contag, Robbins, Wu (B4) 2007; 25
Terrovitis, Bulte, Sarvananthan, Crowe, Sarathchandra, Batten, Sachlos, Chester, Czernuszka, Firmin, Taylor, Yacoub (B37) 2006; 12
Hartman, Pikkemaat, Vehof, Heerschap, Jansen, Spauwen (B39) 2002; 8
Chen, Bismarck, Hansen, Junaid, Tran, Harding, Ali, Boccaccini (B17) 2008; 29
Christman, Fok, Sievers, Fang, Lee (B14) 2004; 10
Mann, Willerson (B2) 1998; 98
Kim, Jeong, Hollister (B36) 2008; 4
Fujimoto, Tobita, Merryman, Guan, Momoi, Stolz, Sacks, Keller, Wagner (B8) 2007; 49
Nitzsche, Metz, Lochmann, Bernstein, Hause, Groth, Mader (B38) 2009; 15
Zheng, Willers, Kirilak, Yates, Xu, Wood, Shimmin (B32) 2007; 13
Zimmermann, Melnychenko, Wasmeier, Didie, Naito, Nixdorff, Hess, Budinsky, Brune, Michaelis, Dhein, Schwoerer, Ehmke, Eschenhagen (B13) 2006; 12
Stuckey, Carr, Tyler, Clarke (B20) 2008; 21
Dai, Wold, Dow, Kloner (B16) 2005; 46
Carr, Stuckey, Tatton, Tyler, Hale, Sweeney, Schneider, Martin-Rendon, Radda, Harding, Watt, Clarke (B23) 2008; 295
Hench, Polak (B30) 2002; 295
Piegat, El Fray, Jawad, Chen, Boccaccini (B22) 2008; 107
Chen, Ishii, Thouas, Wright, Blaker, Lyon, Chrzanowski, Boccaccini, Ali, Knowles, Harding (B25) 2010; 31
Simpson, Liu, Fan, Nerem, Dudley (B9) 2007; 25
Landa, Miller, Feinberg, Holbova, Shachar, Freeman, Cohen, Leor (B15) 2008; 117
Kim, Wu, Rafael, Chen, Parker, Simonetti, Klocke, Bonow, Judd (B21) 2000; 343
Dvir, Kedem, Ruvinov, Levy, Freeman, Landa, Holbova, Feinberg, Dror, Etzion, Leor, Cohen (B7) 2009; 106
B20
B21
B22
B23
B24
B25
B26
B27
B28
B29
B30
B31
B10
B32
B11
B33
B12
B34
B13
B35
B14
B36
B15
B37
B16
B38
B17
B39
B18
B19
B1
B2
B3
B4
B5
B6
B7
B8
B9
B40
References_xml – volume: 14
  start-page: 547
  year: 2001
  ident: B28
  article-title: Serial cine-magnetic resonance imaging of left ventricular remodeling after myocardial infarction in rats
  publication-title: J Magn Reson Imaging
  contributor:
    fullname: Bauer
– volume: 25
  start-page: 2677
  year: 2007
  ident: B4
  article-title: Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium
  publication-title: Stem Cells
  contributor:
    fullname: Wu
– volume: 24
  start-page: 529
  year: 1990
  ident: B27
  article-title: Enzymatic activity toward poly(L-lactic acid) implants
  publication-title: J Biomed Mater Res
  contributor:
    fullname: Nieuwenhuis
– volume: 445
  start-page: 874
  year: 2007
  ident: B31
  article-title: Progress and opportunities for tissue-engineered skin
  publication-title: Nature
  contributor:
    fullname: MacNeil
– volume: 24
  start-page: 1968
  year: 2006
  ident: B3
  article-title: Iron particles for noninvasive monitoring of bone marrow stromal cell engraftment into, and isolation of viable engrafted donor cells from, the heart
  publication-title: Stem Cells
  contributor:
    fullname: Clarke
– volume: 106
  start-page: 14990
  year: 2009
  ident: B7
  article-title: Prevascularization of cardiac patch on the omentum improves its therapeutic outcome
  publication-title: Proc Natl Acad Sci U S A
  contributor:
    fullname: Cohen
– volume: 31
  start-page: 3885
  year: 2010
  ident: B25
  article-title: An elastomeric patch derived from poly(glycerol sebacate) for delivery of embryonic stem cells to the heart
  publication-title: Biomaterials
  contributor:
    fullname: Harding
– volume: 15
  start-page: 513
  year: 2009
  ident: B38
  article-title: Characterization of scaffolds for tissue engineering by benchtop-MRI
  publication-title: Tissue Eng Part C Methods
  contributor:
    fullname: Mader
– volume: 117
  start-page: 1388
  year: 2008
  ident: B15
  article-title: Effect of injectable alginate implant on cardiac remodeling and function after recent and old infarcts in rat
  publication-title: Circulation
  contributor:
    fullname: Leor
– volume: 49
  start-page: 2292
  year: 2007
  ident: B19
  article-title: An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction
  publication-title: J Am Coll Cardiol
  contributor:
    fullname: Wagner
– volume: 8
  start-page: 1029
  year: 2002
  ident: B39
  article-title: In vivo magnetic resonance imaging explorative study of ectopic bone formation in the rat
  publication-title: Tissue Eng
  contributor:
    fullname: Spauwen
– volume: 98
  start-page: 2367
  year: 1998
  ident: B2
  article-title: Left ventricular assist devices and the failing heart—a bridge to recovery, a permanent assist device, or a bridge too far?
  publication-title: Circulation
  contributor:
    fullname: Willerson
– volume: 10
  start-page: 403
  year: 2004
  ident: B14
  article-title: Fibrin glue alone and skeletal myoblasts in a fibrin scaffold preserve cardiac function after myocardial infarction
  publication-title: Tissue Eng
  contributor:
    fullname: Lee
– volume: 66
  start-page: 192
  year: 2003
  ident: B26
  article-title: In vivo degradation characteristics of poly(glycerol sebacate)
  publication-title: J Biomed Mater Res A
  contributor:
    fullname: Langer
– volume: 4
  start-page: 783
  year: 2008
  ident: B36
  article-title: Non-invasive monitoring of tissue scaffold degradation using ultrasound elasticity imaging
  publication-title: Acta Biomater
  contributor:
    fullname: Hollister
– volume: 12
  start-page: 452
  year: 2006
  ident: B13
  article-title: Engineered heart tissue grafts improve systolic and diastolic function in infarcted rat hearts
  publication-title: Nat Med
  contributor:
    fullname: Eschenhagen
– volume: 29
  start-page: 47
  year: 2008
  ident: B17
  article-title: Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue
  publication-title: Biomaterials
  contributor:
    fullname: Boccaccini
– volume: 59
  start-page: 1
  year: 2008
  ident: B11
  article-title: Biomaterials in cardiac tissue engineering: ten years of research survey
  publication-title: Mater Sci Eng R Rep
  contributor:
    fullname: Boccaccini
– volume: 60
  start-page: 582
  year: 2008
  ident: B24
  article-title: Novel MRI method to detect altered left ventricular ejection and filling patterns in rodent models of disease
  publication-title: Magn Reson Med
  contributor:
    fullname: Clarke
– volume: 35
  start-page: 1887
  year: 2008
  ident: B35
  article-title: Real-time in vivo monitoring of viable stem cells implanted on biocompatible scaffolds
  publication-title: Eur J Nucl Med Mol Imaging
  contributor:
    fullname: Lee
– volume: 27
  start-page: 5409
  year: 2006
  ident: B10
  article-title: Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model
  publication-title: Biomaterials
  contributor:
    fullname: Sung
– volume: 372
  start-page: 2023
  year: 2008
  ident: B33
  article-title: Clinical transplantation of a tissue-engineered airway
  publication-title: Lancet
  contributor:
    fullname: Birchall
– volume: 49
  start-page: 2292
  year: 2007
  ident: B8
  article-title: An elastic, biodegradable cardiac patch induces contractile smooth muscle and improves cardiac remodeling and function in subacute myocardial infarction
  publication-title: J Am Coll Cardiol
  contributor:
    fullname: Wagner
– volume: 295
  start-page: H533
  year: 2008
  ident: B23
  article-title: Bone marrow-derived stromal cells home to and remain in the infarcted rat heart but fail to improve function: an in vivo cine-MRI study
  publication-title: Am J Physiol Heart Circ Physiol
  contributor:
    fullname: Clarke
– volume: 86
  start-page: 713
  year: 2008
  ident: B29
  article-title: Pre-treatment of synthetic elastomeric scaffolds by cardiac fibroblasts improves engineered heart tissue
  publication-title: J Biomed Mater Res A
  contributor:
    fullname: Vunjak-Novakovic
– volume: 21
  start-page: 765
  year: 2008
  ident: B20
  article-title: Cine-MRI versus two-dimensional echocardiography to measure in vivo left ventricular function in rat heart
  publication-title: NMR Biomed
  contributor:
    fullname: Clarke
– volume: 98
  start-page: 216
  year: 1996
  ident: B5
  article-title: Genetically selected cardiomyocytes from differentiating embryonic stem cells form stable intracardiac grafts
  publication-title: J Clin Invest
  contributor:
    fullname: Field
– volume: 46
  start-page: 714
  year: 2005
  ident: B16
  article-title: Thickening of the infarcted wall by collagen injection improves left ventricular function in rats: a novel approach to preserve cardiac function after myocardial infarction
  publication-title: J Am Coll Cardiol
  contributor:
    fullname: Kloner
– volume: 134
  start-page: 169
  year: 2009
  ident: B34
  article-title: Non-invasive monitoring of BMP-2 retention and bone formation in composites for bone tissue engineering using SPECT/CT and scintillation probes
  publication-title: J Control Release
  contributor:
    fullname: Lu
– volume: 264
  start-page: 98
  year: 1994
  ident: B1
  article-title: Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium
  publication-title: Science
  contributor:
    fullname: Field
– volume: 35
  start-page: 1152
  year: 2000
  ident: B18
  article-title: End-diastolic wall thickness as a predictor of recovery of function in myocardial hibernation: relation to rest-redistribution T1-201 tomography and dobutamine stress echocardiography
  publication-title: J Am Coll Cardiol
  contributor:
    fullname: Zoghbi
– volume: 363
  start-page: 783
  year: 2004
  ident: B6
  article-title: Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs
  publication-title: Lancet
  contributor:
    fullname: Kittleson
– volume: 107
  start-page: 287
  year: 2008
  ident: B22
  article-title: Inhibition of calcification of polymer-ceramic composites incorporating nanocrystalline TiO2
  publication-title: Adv Appl Ceramics
  contributor:
    fullname: Boccaccini
– volume: 1
  start-page: 327
  year: 2007
  ident: B12
  article-title: Myocardial tissue engineering: a review
  publication-title: J Tissue Eng Regen Med
  contributor:
    fullname: Boccaccini
– volume: 295
  start-page: 1014
  year: 2002
  ident: B30
  article-title: Third-generation biomedical materials
  publication-title: Science
  contributor:
    fullname: Polak
– volume: 16
  start-page: 185
  year: 2010
  ident: B40
  article-title: High-resolution 1.5-Tesla magnetic resonance imaging for tissue-engineered constructs: a noninvasive tool to assess three-dimensional scaffold architecture and cell seeding
  publication-title: Tissue Eng Part C Methods
  contributor:
    fullname: Gazeau
– volume: 25
  start-page: 2350
  year: 2007
  ident: B9
  article-title: A tissue engineering approach to progenitor cell delivery results in significant cell engraftment and improved myocardial remodeling
  publication-title: Stem Cells
  contributor:
    fullname: Dudley
– volume: 12
  start-page: 2765
  year: 2006
  ident: B37
  article-title: Magnetic resonance imaging of ferumoxide-labeled mesenchymal stem cells seeded on collagen scaffolds-relevance to tissue engineering
  publication-title: Tissue Eng
  contributor:
    fullname: Yacoub
– volume: 343
  start-page: 1445
  year: 2000
  ident: B21
  article-title: The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction
  publication-title: N Engl J Med
  contributor:
    fullname: Judd
– volume: 13
  start-page: 737
  year: 2007
  ident: B32
  article-title: Matrix-induced autologous chondrocyte implantation (MACI): biological and histological assessment
  publication-title: Tissue Eng
  contributor:
    fullname: Shimmin
– ident: B1
  doi: 10.1126/science.8140423
– ident: B18
  doi: 10.1016/S0735-1097(00)00525-8
– ident: B10
  doi: 10.1016/j.biomaterials.2006.06.022
– ident: B13
  doi: 10.1038/nm1394
– ident: B40
  doi: 10.1089/ten.tec.2009.0015
– ident: B8
  doi: 10.1016/j.jacc.2007.02.050
– ident: B17
  doi: 10.1016/j.biomaterials.2007.09.010
– ident: B37
  doi: 10.1089/ten.2006.12.2765
– ident: B3
  doi: 10.1634/stemcells.2006-0074
– ident: B34
  doi: 10.1016/j.jconrel.2008.11.023
– ident: B39
  doi: 10.1089/107632702320934128
– ident: B25
  doi: 10.1016/j.biomaterials.2010.01.108
– ident: B31
  doi: 10.1038/nature05664
– ident: B33
  doi: 10.1016/S0140-6736(08)61598-6
– ident: B23
  doi: 10.1152/ajpheart.00094.2008
– ident: B21
  doi: 10.1056/NEJM200011163432003
– ident: B38
  doi: 10.1089/ten.tec.2008.0488
– ident: B26
  doi: 10.1002/jbm.a.10534
– ident: B29
  doi: 10.1002/jbm.a.31578
– ident: B5
  doi: 10.1172/JCI118769
– ident: B7
  doi: 10.1073/pnas.0812242106
– ident: B32
  doi: 10.1089/ten.2006.0246
– ident: B24
  doi: 10.1002/mrm.21677
– ident: B4
  doi: 10.1634/stemcells.2007-0041
– ident: B35
  doi: 10.1007/s00259-008-0751-z
– ident: B22
  doi: 10.1179/174367508X297777
– ident: B12
  doi: 10.1002/term.46
– ident: B14
  doi: 10.1089/107632704323061762
– ident: B11
  doi: 10.1016/j.mser.2007.08.001
– ident: B2
  doi: 10.1161/01.CIR.98.22.2367
– ident: B9
  doi: 10.1634/stemcells.2007-0132
– ident: B16
  doi: 10.1016/j.jacc.2005.04.056
– ident: B28
  doi: 10.1002/jmri.1218
– ident: B36
  doi: 10.1016/j.actbio.2008.02.010
– ident: B6
  doi: 10.1016/S0140-6736(04)15695-X
– ident: B27
  doi: 10.1002/jbm.820240502
– ident: B30
  doi: 10.1126/science.1067404
– ident: B15
  doi: 10.1161/CIRCULATIONAHA.107.727420
– ident: B19
  doi: 10.1016/j.jacc.2007.02.050
– ident: B20
  doi: 10.1002/nbm.1268
SSID ssj0060677
Score 2.2875638
Snippet Grafting of elastomeric biomaterial scaffolds may offer a radical strategy for the prevention of heart failure after myocardial infarction by increasing...
SourceID proquest
gale
crossref
pubmed
maryannliebert
SourceType Aggregation Database
Index Database
Publisher
StartPage 3395
SubjectTerms Animals
Biocompatible Materials - pharmacology
Biomedical engineering
Biomedical materials
Cellular biology
Disease Models, Animal
Elastomers - pharmacology
Heart
Heart muscle
Magnetic Resonance Imaging
Myocardial Infarction - diagnosis
Myocardial Infarction - physiopathology
Myocardium - pathology
NMR
Nuclear magnetic resonance
Original Articles
Physiological aspects
Rats
Rodents
Tissue Engineering
Tissue Scaffolds - chemistry
Ventricular Remodeling - drug effects
Title Magnetic Resonance Imaging Evaluation of Remodeling by Cardiac Elastomeric Tissue Scaffold Biomaterials in a Rat Model of Myocardial Infarction
URI https://www.liebertpub.com/doi/abs/10.1089/ten.tea.2010.0213
https://www.ncbi.nlm.nih.gov/pubmed/20528670
https://www.proquest.com/docview/761349708
https://search.proquest.com/docview/762022697
https://search.proquest.com/docview/821736381
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEBZtcmkhpe-6SYMOhULBjSXLlnQqSdiQFDaUNIG9GVmWSmAr5-Ec8iv6lzsja033kNKDTxIa43noG8-LkI9aey462eaVETwXRopc1crlrQffABCCMB06ivPT-vhCfFtUi5Sbc5vSKlc2MRrqrrf4j3wP3O1SaFmor1fXOQ6NwuBqmqDxmGwyXtSY0SUXk79VY3O0MagMegTWehXUVHoP8OgX-IgptYuzcu1aSsZ5C4vHTAgABjHJ-WEMGu-io-fkWQKRdH_k-gvyyIWX5OlfrQVfkd9z8zNggSLFH_TYVcPRk19xJBGdTR2-ae9hPU7DwYX2nh5GibF0Bqh66GM4h55H5tAf1njfLzt6cNkDzh1Fl14GauiZGShOVVvigfN7uB_xlCU9CR4UCSm9JhdHs_PD4zwNX8itkGIA2wxsLLgBB7BkwmLbm5ZZZSvLORNtp5kF46BrH0tRy8obKZn2bcutUmAGyjdkI_TBvSO0agETWMmstR68nUqVnTNMVA6waC21y8jn1bdvrsYeG02MjSvdAKPgMQ0yqkFGZeQTcqdB_RtujDWpjABIYSerZh97tEmlqyIjO2s7QW_s2nKxzt__ob29koAmqfptMwlmRui0irQwey24_g63cIBKtZYPb1HgGpZgC1lG3o6iNb0OLyqualm8_yf1bfIkJjbEMskdsjHc3LkPgJeGdjdqxS7ZPJidfj_7A4QQFKo
link.rule.ids 315,783,787,12068,21400,27936,27937,31731,31732,33756,33757,43322,43817,74073,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHAAJxJvQAj4gISGFJo4d2yfUVlvtQrcH2Ep7sxwnRpWWpLTpob-if7kzjjdiD6045GTLE2Ue_ibzIuST1p7xWlapsJyl3EqeqlI1aeXBNwCEwG2NjuL8uJye8O9LsYy5ORcxrXJtE4OhrjuH_8h3wd0uuJaZ-nb2N8WhURhcjRM07pMH2IYLBxjI5ehvldgcbQgqgx6BtV4HNZXeBTz6FT5iTO1iebFxLUXj_ASLx2zbAhjEJOfbMWi4iw6fkacRRNK9gevPyb2mfUEe_9Na8CW5ntvfLRYoUvxBj101Gjr7E0YS0cnY4Zt2HtbDNBxcqK7oQZAYRyeAqvsuhHPoIjCH_nLW-25V0_3TDnDuILr0tKWW_rQ9xalqKzxwfgX3I56yorPWgyIhpVfk5HCyOJimcfhC6rjkPdhmYGPGLDiARc4dtr2pcqeccIzlvKp17sA46NKHUtRCeCtlrn1VMacUmIHiNdlqu7Z5S6ioABM4mTvnPHg7QhV1Y3MuGsCipdRNQr6sv705G3psmBAbV9oAo-CxBhllkFEJ-YzcMah__bl1NpYRACnsZGX2sEebVFpkCdnZ2Al64zaWs03-_g_t7bUEmKjqF2YUzITQcRVpYfZa23SXuIUBVCq1vH2LAtewAFuYJ-TNIFrj67BMMFXK7N2d1D-Sh9PF_MgczY5_bJNHIckhlEzukK3-_LJ5D9iprz4EDbkB4_AV9w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagSAikIl6F0AI-ICEhhY0dJ7ZPqJRddYGtELTS3izHiVGlJSlteuiv6F9mxvFG7KGIQ062PFHm4W8yL0LeaO25qGWVFlbwVFgpUlWqJq08-AaAEISt0VFcHJWHJ-LzsljGlkIXMa1ybRODoa47h__IJ-Bu50LLTE18zIr49mn24ex3igOkMNAap2ncJnckOCko8nI5-l4lNkobAsygU2C51wFOpSeATd_DB41pXpzlG1dUNNTbWEhm2xaAISY834xHw700e0geREBJ9wcJeERuNe1jcv-vNoNPyPXC_myxWJHiz3rssNHQ-a8wnohOx27ftPOwHibj4EJ1RQ-C9Dg6BYTddyG0Q48Do-gPZ73vVjX9eNoB5h3EmJ621NLvtqc4YW2FBy6u4K7EU1Z03npQKqT0lJzMpscHh2kcxJA6IUUPdhpYmnELzmDOhMMWOBVzyhWOcyaqWjMHhkKXPpSl5oW3UjLtq4o7pcAk5Dtkq-3a5jmhRQX4wEnmnPPg-RQqrxvLRNEALi2lbhLybv3tzdnQb8OEOLnSBhgFjzXIKIOMSshb5I5BXezPrbOxpABIYVcrs4_92qTSRZaQvY2doENuYznb5O__0N5dS4CJan9hRiFNCB1XkRZmsrVNd4lbOMCmUsubtyhwE3OwiywhzwbRGl-HZwVXpcxe_JP6a3IXlMN8nR992SX3Qr5DqJ7cI1v9-WXzEmBUX70KCvIHFYUaLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+Resonance+Imaging+Evaluation+of+Remodeling+by+Cardiac+Elastomeric+Tissue+Scaffold+Biomaterials+in+a+Rat+Model+of+Myocardial+Infarction&rft.jtitle=Tissue+engineering.+Part+A&rft.au=Stuckey%2C+Daniel+J.&rft.au=Ishii%2C+Hikaru&rft.au=Chen%2C+Qi-Zhi&rft.au=Boccaccini%2C+Aldo+R.&rft.date=2010-11-01&rft.pub=Mary+Ann+Liebert%2C+Inc&rft.issn=1937-3341&rft.eissn=1937-335X&rft.volume=16&rft.issue=11&rft.spage=3395&rft.epage=3402&rft_id=info:doi/10.1089%2Ften.tea.2010.0213&rft.externalDocID=10_1089_ten_tea_2010_0213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1937-3341&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1937-3341&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1937-3341&client=summon