Stereocontrolled 1,3-nitrogen migration to access chiral α-amino acids
α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for...
Saved in:
Published in | Nature chemistry Vol. 14; no. 5; pp. 566 - 573 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2022
NATURE PORTFOLIO Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C(
sp
3
)–H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products.
A straightforward method for synthesizing optically active α-amino acids from abundant carboxylic acids has been developed. Based on a nitrene-mediated stereocontrolled 1,3-nitrogen shift, this approach provides access to a large variety of unnatural α-amino acids with aryl, allyl, propargyl and alkyl side chains and enables late-stage amination of carboxylic-acid-containing drugs. |
---|---|
AbstractList | α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C(
sp
3
)–H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products.
A straightforward method for synthesizing optically active α-amino acids from abundant carboxylic acids has been developed. Based on a nitrene-mediated stereocontrolled 1,3-nitrogen shift, this approach provides access to a large variety of unnatural α-amino acids with aryl, allyl, propargyl and alkyl side chains and enables late-stage amination of carboxylic-acid-containing drugs. α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C(sp )-H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products. α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C(sp3)–H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products.A straightforward method for synthesizing optically active α-amino acids from abundant carboxylic acids has been developed. Based on a nitrene-mediated stereocontrolled 1,3-nitrogen shift, this approach provides access to a large variety of unnatural α-amino acids with aryl, allyl, propargyl and alkyl side chains and enables late-stage amination of carboxylic-acid-containing drugs. alpha-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active alpha-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C(sp(3))-H amination. This straightforward method displays a very broad scope, providing rapid access to optically active a-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products. α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C(sp3)-H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products.α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C(sp3)-H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products. α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical, and pharmaceutical properties. We here report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalyzed C( sp 3 )−H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl, and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic acid-containing drugs and natural products. |
Author | Meggers, Eric Chen, Shuming Shen, Xiang Ye, Chen-Xi |
AuthorAffiliation | 2 Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States 1 Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany |
AuthorAffiliation_xml | – name: 1 Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany – name: 2 Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States |
Author_xml | – sequence: 1 givenname: Chen-Xi orcidid: 0000-0003-4534-845X surname: Ye fullname: Ye, Chen-Xi organization: Fachbereich Chemie, Philipps-Universität Marburg – sequence: 2 givenname: Xiang surname: Shen fullname: Shen, Xiang organization: Fachbereich Chemie, Philipps-Universität Marburg – sequence: 3 givenname: Shuming orcidid: 0000-0003-1897-2249 surname: Chen fullname: Chen, Shuming email: shuming.chen@oberlin.edu organization: Department of Chemistry and Biochemistry, Oberlin College – sequence: 4 givenname: Eric orcidid: 0000-0002-8851-7623 surname: Meggers fullname: Meggers, Eric email: meggers@chemie.uni-marburg.de organization: Fachbereich Chemie, Philipps-Universität Marburg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35379900$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUstu1TAQtVARffEDLFAkNkjg1s_Y2VRCV1CQKnUBrC3Hmdy6SuxiJyA-ix_hm3B6b2-hi4qVx55zZs6MzyHaCzEAQi8oOaGE69MsqJQKE8YwIbqRmD9BB1RJiQUXzd4u5mQfHeZ8TUgtOa2foX0uuWoaQg7Q-ecJEkQXw5TiMEBX0bccB19uawjV6NfJTj6GaoqVdQ5yrtyVT3aofv_CdvRhefZdPkZPeztkeL49j9DXD--_rD7ii8vzT6t3F9gJJSbMKResJ5rWSjinlRS2rnvasaYTHe36TkvueuF6DZJB21LaWyIb1ZYhpBaUH6GzTd2buR2hc1B028HcJD_a9NNE682_meCvzDp-N6qmrG5YKfB6WyDFbzPkyYw-OxgGGyDO2bBaKEYpZwv01QPodZxTKOMVlGwEEYItil7-rWgn5W7HBfBmA_gBbeyz8xAc7GCEEKWUVoKViCxN9f-jV366_Z1VnMN0T3Up5pygN26bL5vwg6HELL4xG9-Y4htz6xvDC5U9oN51fJTEN6RcwGEN6X4_j7D-AINE0o0 |
CitedBy_id | crossref_primary_10_1021_jacs_3c05258 crossref_primary_10_1016_j_tet_2024_133944 crossref_primary_10_1021_acs_orglett_2c03249 crossref_primary_10_1016_j_matt_2023_04_002 crossref_primary_10_1021_acsorginorgau_3c00026 crossref_primary_10_1002_anie_202314398 crossref_primary_10_1021_jacs_3c13085 crossref_primary_10_1016_j_chempr_2023_03_002 crossref_primary_10_1021_jacs_4c09989 crossref_primary_10_1002_ange_202212595 crossref_primary_10_6023_cjoc202406042 crossref_primary_10_1021_acscatal_4c01034 crossref_primary_10_1021_acs_chemrev_2c00724 crossref_primary_10_1002_ange_202212158 crossref_primary_10_1002_ange_202417414 crossref_primary_10_1002_cjoc_202300162 crossref_primary_10_1038_s44160_023_00448_7 crossref_primary_10_1021_acs_inorgchem_2c02111 crossref_primary_10_1055_s_0043_1775371 crossref_primary_10_1021_acscatal_4c04504 crossref_primary_10_1002_ange_202317489 crossref_primary_10_1039_D3CY01353G crossref_primary_10_1039_D4CS01043D crossref_primary_10_1002_chem_202300267 crossref_primary_10_1016_j_gresc_2024_04_003 crossref_primary_10_1039_D3SC04661C crossref_primary_10_1002_chem_202403792 crossref_primary_10_1002_ejoc_202300296 crossref_primary_10_1002_ange_202211971 crossref_primary_10_1002_ange_202212983 crossref_primary_10_1021_jacs_3c01162 crossref_primary_10_1002_anie_202417414 crossref_primary_10_1021_acs_joc_4c01153 crossref_primary_10_1021_acs_oprd_2c00344 crossref_primary_10_1038_s41557_024_01479_z crossref_primary_10_1002_cctc_202400353 crossref_primary_10_1002_anie_202317489 crossref_primary_10_1002_anie_202211971 crossref_primary_10_1002_anie_202212983 crossref_primary_10_6023_cjoc202400041 crossref_primary_10_1038_s41929_024_01207_3 crossref_primary_10_1021_jacs_4c05560 crossref_primary_10_1021_acs_joc_2c01481 crossref_primary_10_1002_anie_202303795 crossref_primary_10_1038_s44160_023_00278_7 crossref_primary_10_1016_j_biortech_2023_130199 crossref_primary_10_1016_j_cej_2024_149018 crossref_primary_10_1016_j_tetlet_2024_155136 crossref_primary_10_1021_jacs_4c02142 crossref_primary_10_1002_ange_202314398 crossref_primary_10_1038_s41929_024_01149_w crossref_primary_10_1021_acs_accounts_3c00081 crossref_primary_10_1002_anie_202212158 crossref_primary_10_1039_D2CC06318B crossref_primary_10_1021_acs_orglett_3c04158 crossref_primary_10_1002_anie_202212595 crossref_primary_10_1021_acs_orglett_3c01448 crossref_primary_10_1021_acs_orglett_4c03130 crossref_primary_10_1002_ange_202303795 crossref_primary_10_1038_s44160_023_00267_w |
Cites_doi | 10.1038/s41570-021-00291-4 10.1002/anie.200801445 10.1002/anie.201902882 10.1021/ja0261325 10.1038/s41929-019-0410-8 10.1016/S0010-8545(02)00283-7 10.1039/c2sc20171b 10.1021/jacs.0c10415 10.1021/jacs.7b01098 10.1021/acs.chemrev.6b00644 10.1002/anie.201610129 10.1126/science.1148597 10.1038/s41929-019-0230-x 10.1021/ja8031955 10.1002/anie.201201945 10.1002/1521-3773(20020916)41:18<3465::AID-ANIE3465>3.0.CO;2-D 10.1021/jacs.9b05850 10.1039/C8DT04449J 10.1002/anie.201208906 10.1002/1521-3773(20020517)41:10<1790::AID-ANIE1790>3.0.CO;2-Y 10.1002/anie.200601248 10.1021/ic990582p 10.1002/anie.200462314 10.1016/S0040-4039(02)02432-2 10.1039/D0CS00340A 10.1021/jm00229a017 10.1021/ja307229e 10.1021/ja026412k 10.1002/9783527804498 10.1021/cr050580o 10.1021/ar300109n 10.1021/acscatal.0c00961 10.1016/j.chempr.2020.05.017 10.1021/cr800323s 10.1021/jacs.9b01352 10.1016/S0040-4039(01)00427-0 10.1007/BF01926776 10.1039/a907653k 10.1021/cr500425u 10.1021/ja800009z 10.1002/anie.201811927 10.1021/ar3000794 10.1002/hlca.19970800407 10.1021/jacs.0c00868 10.1021/acs.jmedchem.6b00319 10.1039/c3cc44197k 10.1021/jp504415p 10.1002/anie.201101801 10.1039/b200675h 10.1021/cr200409f 10.1021/ja407388y 10.1039/d0cs00340a 10.1039/c8dt04449j |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022 2022. The Author(s), under exclusive licence to Springer Nature Limited. The Author(s), under exclusive licence to Springer Nature Limited 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited. – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. |
DBID | AAYXX CITATION 17B 1KM 1KN AHQBO BLEPL DTL EGQ CGR CUY CVF ECM EIF NPM 3V. 7QR 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M1P M7P P64 PDBOC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI 7X8 5PM |
DOI | 10.1038/s41557-022-00895-3 |
DatabaseName | CrossRef Web of Knowledge Index Chemicus Current Chemical Reactions Web of Science - Science Citation Index Expanded - 2022 Web of Science Core Collection Science Citation Index Expanded Web of Science Primary (SCIE, SSCI & AHCI) Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Chemoreception Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Web of Science MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection Materials Science Database Chemoreception Abstracts ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student Web of Science MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 1KN name: Current Chemical Reactions url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR sourceTypes: Enrichment Source Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1755-4349 |
EndPage | 573 |
ExternalDocumentID | PMC7612692 35379900 000777874200002 10_1038_s41557_022_00895_3 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council) grantid: 883212 funderid: https://doi.org/10.13039/100010663 – fundername: Deutsche Forschungsgemeinschaft (German Research Foundation) grantid: ME1805/15-1 funderid: https://doi.org/10.13039/501100001659 – fundername: NSF; National Science Foundation (NSF) grantid: MRI 1427949 – fundername: Extreme Science and Engineering Discovery Environment (XSEDE) grantid: TG-CHE200100 – fundername: Deutsche Forschungsgemeinschaft; German Research Foundation (DFG) grantid: Me 1805/15-1 – fundername: Oberlin College – fundername: European Research Council (ERC) grantid: 883212 – fundername: European Research Council (ERC) under the European Union; European Research Council (ERC) grantid: 883212 – fundername: European Research Council grantid: 883212 |
GroupedDBID | --- 0R~ 123 29M 39C 3V. 4.4 53G 5BI 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJCF ABJNI ABLJU ABNNU ABUWG ACBWK ACGFS ACIWK ACPRK ACRPL ACUHS ADBBV ADNMO AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGGDT AGHTU AHMBA AHOSX AHSBF AIBTJ AIYXT ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ARMCB ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 D1I DB5 DU5 EBS EE. EJD EMOBN ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ KB. L-9 LK8 M1P M7P ML- NNMJJ O9- ODYON P2P PDBOC PQQKQ PROAC PSQYO Q2X RNS RNT RNTTT SHXYY SIXXV SNYQT SOJ SV3 TAOOD TBHMF TDRGL TSG TUS UKHRP AAYXX ABFSG ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 17B 1KM 1KN BLEPL DTL GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED GROUPED_WOS_WEB_OF_SCIENCE PJZUB PPXIY PQGLB AGQPQ CGR CUY CVF ECM EIF NFIDA NPM 7QR 7XB 8FD 8FK AZQEC DWQXO FR3 GNUQQ K9. P64 PKEHL PQEST PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c474t-31342f081674cc8754a66f1d29d4d1dfd853cf4cf8e52ebb11fa0597b33058413 |
IEDL.DBID | 7X7 |
ISICitedReferencesCount | 63 |
ISICitedReferencesURI | https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000777874200002 |
ISSN | 1755-4330 1755-4349 |
IngestDate | Thu Aug 21 18:39:59 EDT 2025 Thu Jul 10 22:41:14 EDT 2025 Sat Aug 23 14:33:44 EDT 2025 Mon Jul 21 06:03:35 EDT 2025 Fri Aug 29 16:21:36 EDT 2025 Wed Aug 06 11:37:31 EDT 2025 Tue Jul 01 03:02:13 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Fri Feb 21 02:38:17 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | AMIDATION CHEMISTRY RUTHENIUM IRON CATALYST C-H AMINATION METAL-COMPLEXES |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Nature Limited. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
LinkModel | DirectLink |
LogoURL | https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg |
MergedId | FETCHMERGED-LOGICAL-c474t-31342f081674cc8754a66f1d29d4d1dfd853cf4cf8e52ebb11fa0597b33058413 |
Notes | European Research Council (ERC) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4534-845X 0000-0002-8851-7623 0000-0003-1897-2249 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC7612692 |
PMID | 35379900 |
PQID | 2659404421 |
PQPubID | 536302 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612692 proquest_journals_2659404421 webofscience_primary_000777874200002 crossref_primary_10_1038_s41557_022_00895_3 webofscience_primary_000777874200002CitationCount crossref_citationtrail_10_1038_s41557_022_00895_3 springer_journals_10_1038_s41557_022_00895_3 pubmed_primary_35379900 proquest_miscellaneous_2647211322 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: BERLIN – name: England |
PublicationTitle | Nature chemistry |
PublicationTitleAbbrev | Nat. Chem NAT CHEM |
PublicationTitleAlternate | Nat Chem |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK NATURE PORTFOLIO Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: NATURE PORTFOLIO – name: Nature Publishing Group |
References | ZhengYOctahedral ruthenium complex with exclusive metal-centered chirality for highly effective asymmetric catalysisJ. Am. Chem. Soc.2017139432243251:CAS:528:DC%2BC2sXkt1Oitbg%3D2829068510.1021/jacs.7b01098 KumaragurubaranNJuhlKZhuangWBøgevigAJørgensenKADirect l-proline-catalyzed asymmetric α-amination of ketonesJ. Am. Chem. Soc.2002124625462551:CAS:528:DC%2BD38XjsFCmtro%3D1203385010.1021/ja026412k YamawakiMTsutsuiHKitagakiSAnadaMHashimotoSDirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate]: a new chiral Rh(II) catalyst for enantioselective amidation of C–H bondsTetrahedron Lett.200243956195641:CAS:528:DC%2BD38Xpt1Cqtrk%3D10.1016/S0040-4039(02)02432-2 JinL-MXuPXieJZhangXPEnantioselective intermolecular radical C–H aminationJ. Am. Chem. Soc.202014220828208361:CAS:528:DC%2BB3cXisVCjt7bF33238707772609110.1021/jacs.0c10415 ZhouZCatalytic enantioselective intramolecular C(sp3)–H amination of 2-azidoacetamidesAngew. Chem. Int. Ed.201958108810931:CAS:528:DC%2BC1cXisF2hs7fI10.1002/anie.201811927 ZalatanDNDu BoisJA chiral rhodium carboxamidate catalyst for enantioselective C–H aminationJ. Am. Chem. Soc.2008130922092211:CAS:528:DC%2BD1cXnvF2gtbk%3D18582043259718910.1021/ja8031955 EssDHHoukKNTheory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital modelsJ. Am. Chem. Soc.200813010187101981:CAS:528:DC%2BD1cXotlGlsb8%3D1861366910.1021/ja800009z HarveyJNPoliRSmithKMUnderstanding the reactivity of transition metal complexes involving multiple spin statesCoord. Chem. Rev.2003238-2393473611:CAS:528:DC%2BD3sXjt1Cmurk%3D10.1016/S0010-8545(02)00283-7 NägeliIRhodium(II)-catalyzed CH insertions with {[(4-nitrophenyl)sulfonyl]imino}phenyl-λ3-iodaneHelv. Chim. Acta1997801087110510.1002/hlca.19970800407 JaneyJMRecent advances in catalytic, enantioselective α aminations and α oxygenations of carbonyl compoundsAngew. Chem. Int. Ed.200544429243001:CAS:528:DC%2BD2MXmvVeiu7k%3D10.1002/anie.200462314 NasrallahACatalytic enantioselective intermolecular benzylic C(sp3)–H aminationAngew. Chem. Int. Ed.201958819281961:CAS:528:DC%2BC1MXptFKjsrc%3D10.1002/anie.201902882 KohmuraYKatsukiTMn(salen)-catalyzed enantioselective C–H aminationTetrahedron Lett.200142333933421:CAS:528:DC%2BD3MXivFarsr4%3D10.1016/S0040-4039(01)00427-0 GormiskyPEWhiteMCCatalyst-controlled aliphatic C–H oxidations with a predictive model for site-selectivityJ. Am. Chem. Soc.201313514052140551:CAS:528:DC%2BC3sXhsVWkur7L2402094010.1021/ja407388y ThirumuruganPMatosiukDJozwiakKClick chemistry for drug development and diverse chemical–biology applicationsChem. Rev.2013113490549791:CAS:528:DC%2BC3sXkslahtLY%3D2353104010.1021/cr200409f SaghyanASLangerPAsymmetric Synthesis of Non-proteinogenic Amino Acids2016Wiley-VCH10.1002/9783527804498 ChenMSWhiteMCA predictably selective aliphatic C–H oxidation reaction for complex molecule synthesisScience20073187837871:CAS:528:DC%2BD2sXht1elsrbO1797506210.1126/science.1148597 HökeTHerdtweckEBachTHydrogen-bond mediated regio- and enantioselectivity in a C–H amination reaction catalysed by a supramolecular Rh(II) complexChem. Commun.2013498009801110.1039/c3cc44197k1:CAS:528:DC%2BC3sXht1OjurfF Isidro-LlobetAÁlvarezMAlbericioFAmino acid-protecting groupsChem. Rev.2009109245525041:CAS:528:DC%2BD1MXksVSlur4%3D1936412110.1021/cr800323s ZhouZEnantioselective ring-closing C–H amination of urea derivativesChem20206202420341:CAS:528:DC%2BB3cXhsFKgurjK10.1016/j.chempr.2020.05.017 van VlietKMde BruinBDioxazolones: stable substrates for the catalytic transfer of acyl nitrenesACS Catal.2020104751476910.1021/acscatal.0c009611:CAS:528:DC%2BB3cXlvFeqtb4%3D MilczekEBoudetNBlakeySEnantioselective C–H amination using cationic ruthenium(II)–pybox catalystsAngew. Chem. Int. Ed.200847682568281:CAS:528:DC%2BD1cXhtV2iurjM10.1002/anie.200801445 DequirezGPonsVDaubanPNitrene chemistry in organic synthesis: still in its infancy?Angew. Chem. Int. Ed.201251738473951:CAS:528:DC%2BC38XovFejs7s%3D10.1002/anie.201201945 HongYJarrigeLHarmsKMeggersEChiral-at-iron catalyst: expanding the chemical space for asymmetric earth-abundant metal catalysisJ. Am. Chem. Soc.2019141456945721:CAS:528:DC%2BC1MXktFers7k%3D3083920110.1021/jacs.9b01352 JungHKeumHKweonJChangSTuning triplet energy transfer of hydroxamates as the nitrene precursor for intramolecular C(sp3)–H amidationJ. Am. Chem. Soc.2020142581158181:CAS:528:DC%2BB3cXktlOgsrY%3D3212961810.1021/jacs.0c00868 AgostiniFBiocatalysis with unnatural amino acids: enzymology meets xenobiologyAngew. Chem. Int. Ed.201756968097031:CAS:528:DC%2BC2sXhtFOlt7nK10.1002/anie.201610129 MitraMHighly enantioselective epoxidation of olefins by H2O2 catalyzed by a non-heme Fe(II) catalyst of a chiral tetradentate ligandDalton Trans.201948612361311:CAS:528:DC%2BC1MXmslOisLs%3D3095105410.1039/C8DT04449J MorrillLCLeblTSlawinAMZSmithADCatalytic asymmetric α-amination of carboxylic acids using isothioureasChem. Sci.20123208820931:CAS:528:DC%2BC38Xnt12qs7o%3D10.1039/c2sc20171b JuMSchomakerJMNitrene transfer catalysts for enantioselective C–N bond formationNat. Rev. Chem.202155805941:CAS:528:DC%2BB3MXhvVGgsbzP10.1038/s41570-021-00291-4 LiangJ-LYuanS-XHuangJ-SYuW-YCheC-MHighly diastereo- and enantioselective intramolecular amidation of saturated C–H bonds catalyzed by ruthenium porphyrinsAngew. Chem. Int. Ed.200241346534681:CAS:528:DC%2BD38XnsFKntb8%3D10.1002/1521-3773(20020916)41:18<3465::AID-ANIE3465>3.0.CO;2-D BlaskovichMATUnusual amino acids in medicinal chemistryJ. Med. Chem.20165910807108361:CAS:528:DC%2BC28XhsVKjsr7O2758934910.1021/acs.jmedchem.6b00319 YersinHHumbsWSpatial extensions of excited states of metal complexes. Tunability by chemical variationInorg. Chem.199938582058311:CAS:528:DyaK1MXnvVGktLo%3D10.1021/ic990582p Zhou, X.-G., Yu, X.-Q., Huang, J.-S. & Che, C.-M. Asymmetric amidation of saturated C–H bonds catalysed by chiral ruthenium and manganese porphyrins. Chem. Commun. 2377–2378 (1999). KrenskeEHHoukKNAromatic interactions as control elements in stereoselective organic reactionsAcc. Chem. Res.2013469799891:CAS:528:DC%2BC38XhtVyns7jL2282788310.1021/ar3000794 LangKTorkerSWojtasLZhangXPAsymmetric induction and enantiodivergence in catalytic radical C–H amination via enantiodifferentiative H-atom abstraction and stereoretentive radical substitutionJ. Am. Chem. Soc.201914112388123961:CAS:528:DC%2BC1MXhtlamsLjO31280562668754910.1021/jacs.9b05850 DrienovskáIRoelfesGExpanding the enzyme universe with genetically encoded unnatural amino acidsNat. Catal.2020319320210.1038/s41929-019-0410-81:CAS:528:DC%2BB3cXjslOhtQ%3D%3D WheelerSEUnderstanding substituent effects in noncovalent interactions involving aromatic ringsAcc. Chem. Res.201346102910381:CAS:528:DC%2BC38XovFWgu7k%3D2272583210.1021/ar300109n MaestreLSameeraWMCDíaz-RequejoMMMaserasFPérezPJA general mechanism for the copper- and silver-catalyzed olefin aziridination reactions: concomitant involvement of the singlet and triplet pathwaysJ. Am. Chem. Soc.2013135133813481:CAS:528:DC%2BC3sXitFSl2327628710.1021/ja307229e LiangCEfficient diastereoselective intermolecular rhodium-catalyzed C–H aminationAngew. Chem. Int. Ed.200645464146441:CAS:528:DC%2BD28Xnt1Grs7c%3D10.1002/anie.200601248 NishiokaYUchidaTKatsukiTEnantio- and regioselective intermolecular benzylic and allylic C–H bond aminationAngew. Chem. Int. Ed.201352173917421:CAS:528:DC%2BC3sXntFGqug%3D%3D10.1002/anie.201208906 PoliRHarveyJNSpin forbidden chemical reactions of transition metal compounds. New ideas and new computational challengesChem. Soc. Rev.200332181:CAS:528:DC%2BD38XpsFOmtbg%3D1259654010.1039/b200675h BøgevigAJuhlKKumaragurubaranNZhuangWJørgensenKADirect organo-catalytic asymmetric α-amination of aldehydes—a simple approach to optically active α-amino aldehydes, α-amino alcohols, and α-amino acidsAngew. Chem. Int. Ed.2002411790179310.1002/1521-3773(20020517)41:10<1790::AID-ANIE1790>3.0.CO;2-Y LiuYIron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesisChem. Soc. Rev.202049531053581:CAS:528:DC%2BB3cXht1WjtbjO3256834010.1039/D0CS00340A ParkYKimYChangSTransition metal-catalyzed C–H amination: scope, mechanism, and applicationsChem. Rev.2017117924793011:CAS:528:DC%2BC2sXis12htg%3D%3D2805185510.1021/acs.chemrev.6b00644 ParkYChangSAsymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalystsNat. Catal.2019921922710.1038/s41929-019-0230-x1:CAS:528:DC%2BC1MXhtFGisLfL NájeraCSansanoJMCatalytic asymmetric synthesis of α-amino acidsChem. Rev.2007107458446711791593310.1021/cr050580o1:CAS:528:DC%2BD2sXhtFWgurnL ListBDirect catalytic asymmetric α-amination of aldehydesJ. Am. Chem. Soc.2002124565656571:CAS:528:DC%2BD38XjtF2hu7s%3D1201003610.1021/ja0261325 KruppPJSodium [o-[(2,6-dichlorophenyl)-amino]-phenyl]-acetate (GP 45 840), a new non-steroidal anti-inflammatory agentExperientia1973294504521:CAS:528:DyaE3sXkt1Ogsbw%3D470834410.1007/BF01926776 UenoK6,11-Dihydro-11-oxodibenz[b,e]oxepinacetic acids with potent antiinflammatory activityJ. Med. Chem.1976199419461:CAS:528:DyaE28Xkt1yntbs%3D94011210.1021/jm00229a017 BauerIKnölkerH-JIron catalysis in organic synthesisChem. Rev.2015115317033871:CAS:528:DC%2BC2MXktVGktLc%3D2575171010.1021/cr500425u IchinoseMEnantioselective intramolecular benzylic C–H bond amination: efficient synthesis of optically active benzosultamsAngew. Chem. Int. Ed.201150988498871:CAS:528:DC%2BC3MXhtFKhs7vK10.1002/anie.201101801 WheelerSEBloomJWGToward a more complete understanding of noncovalent interactions involving aromatic ringsJ. Phys. Chem. A2014118613361471:CAS:528:DC%2BC2cXpvFCns7c%3D2493708410.1021/jp504415p Z Zhou (895_CR29) 2020; 6 K Ueno (895_CR31) 1976; 19 DH Ess (895_CR44) 2008; 130 A Bøgevig (895_CR4) 2002; 41 M Ju (895_CR10) 2021; 5 895_CR12 LC Morrill (895_CR7) 2012; 3 M Ichinose (895_CR22) 2011; 50 Y Zheng (895_CR27) 2017; 139 Y Liu (895_CR34) 2020; 49 H Yersin (895_CR41) 1999; 38 L-M Jin (895_CR19) 2020; 142 Z Zhou (895_CR28) 2019; 58 EH Krenske (895_CR45) 2013; 46 Y Park (895_CR9) 2017; 117 MS Chen (895_CR36) 2007; 318 T Höke (895_CR17) 2013; 49 A Nasrallah (895_CR18) 2019; 58 Y Park (895_CR25) 2019; 9 A Isidro-Llobet (895_CR48) 2009; 109 Y Nishioka (895_CR16) 2013; 52 JM Janey (895_CR3) 2005; 44 I Nägeli (895_CR11) 1997; 80 KM van Vliet (895_CR26) 2020; 10 N Kumaragurubaran (895_CR6) 2002; 124 MAT Blaskovich (895_CR49) 2016; 59 PE Gormisky (895_CR37) 2013; 135 R Poli (895_CR39) 2003; 32 B List (895_CR5) 2002; 124 P Thirumurugan (895_CR30) 2013; 113 L Maestre (895_CR42) 2013; 135 F Agostini (895_CR50) 2017; 56 K Lang (895_CR24) 2019; 141 C Nájera (895_CR2) 2007; 107 SE Wheeler (895_CR46) 2013; 46 M Yamawaki (895_CR14) 2002; 43 G Dequirez (895_CR8) 2012; 51 I Drienovská (895_CR51) 2020; 3 PJ Krupp (895_CR32) 1973; 29 E Milczek (895_CR21) 2008; 47 M Mitra (895_CR38) 2019; 48 C Liang (895_CR15) 2006; 45 AS Saghyan (895_CR1) 2016 I Bauer (895_CR33) 2015; 115 DN Zalatan (895_CR23) 2008; 130 Y Hong (895_CR35) 2019; 141 H Jung (895_CR43) 2020; 142 JN Harvey (895_CR40) 2003; 238-239 SE Wheeler (895_CR47) 2014; 118 Y Kohmura (895_CR13) 2001; 42 J-L Liang (895_CR20) 2002; 41 Nasrallah, A (WOS:000474117600048) 2019; 58 Kumaragurubaran, N (WOS:000175954800012) 2002; 124 Liang, CG (WOS:000239079900021) 2006; 45 Maestre, L (WOS:000314492500035) 2013; 135 Saghyan, AS. (000777874200002.1) 2016 Zheng, Y (WOS:000398247100022) 2017; 139 Harvey, JN (WOS:000182957600019) 2003; 238 Blaskovich, MAT (WOS:000390735500001) 2016; 59 Wheeler, SE (WOS:000340439800001) 2014; 118 Ichinose, M (WOS:000296207100018) 2011; 50 Höke, T (WOS:000323195600006) 2013; 49 Zhou, XG (WOS:000083844900025) 1999 Jin, LM (WOS:000599506900042) 2020; 142 Zalatan, DN (WOS:000257796500021) 2008; 130 UENO, K (WOS:A1976BV26300017) 1976; 19 Gormisky, PE (WOS:000330162900014) 2013; 135 Nageli, I (WOS:A1997XL00900006) 1997; 80 Yersin, H (WOS:000084245200028) 1999; 38 Liu, YG (WOS:000555535500004) 2020; 49 Bauer, I (WOS:000354906800005) 2015; 115 Nájera, C (WOS:000250970400004) 2007; 107 Drienovská, I (WOS:000507787600005) 2020; 3 Thirumurugan, P (WOS:000321810600010) 2013; 113 KRUPP, PJ (WOS:A1973P480900043) 1973; 29 Chen, MS (WOS:000250583900037) 2007; 318 Ju, M (WOS:000667590300001) 2021; 5 Dequirez, G (WOS:000306511600007) 2012; 51 Kohmura, Y (WOS:000168404000025) 2001; 42 Bogevig, A (WOS:000175900500036) 2002; 41 Hong, YB (WOS:000462260400014) 2019; 141 Park, Y (WOS:000405642800019) 2017; 117 Zhou, ZJ (WOS:000558679600017) 2020; 6 Mitra, M (WOS:000472449300041) 2019; 48 Milczek, E (WOS:000258835300016) 2008; 47 Janey, JM (WOS:000230521800006) 2005; 44 Krenske, EH (WOS:000318060000012) 2013; 46 Ess, DH (WOS:000258080600039) 2008; 130 Lang, K (WOS:000480497100032) 2019; 141 Nishioka, Y (WOS:000314650600023) 2013; 52 Isidro-Llobet, A (WOS:000266929800008) 2009; 109 van Vliet, KM (WOS:000543700400029) 2020; 10 List, B (WOS:000175648500026) 2002; 124 Yamanaka, M (WOS:000174765600021) 2002; 43 Wheeler, SE (WOS:000318060000017) 2013; 46 Agostini, F (WOS:000406798700004) 2017; 56 Poli, R (WOS:000180628100001) 2003; 32 Liang, JL (WOS:000178177700040) 2002; 41 Park, Y (WOS:000461099900012) 2019; 2 Zhou, ZJ (WOS:000456260200022) 2019; 58 Morrill, LC (WOS:000304365000048) 2012; 3 Jung, H (WOS:000526393100044) 2020; 142 |
References_xml | – reference: NägeliIRhodium(II)-catalyzed CH insertions with {[(4-nitrophenyl)sulfonyl]imino}phenyl-λ3-iodaneHelv. Chim. Acta1997801087110510.1002/hlca.19970800407 – reference: BauerIKnölkerH-JIron catalysis in organic synthesisChem. Rev.2015115317033871:CAS:528:DC%2BC2MXktVGktLc%3D2575171010.1021/cr500425u – reference: van VlietKMde BruinBDioxazolones: stable substrates for the catalytic transfer of acyl nitrenesACS Catal.2020104751476910.1021/acscatal.0c009611:CAS:528:DC%2BB3cXlvFeqtb4%3D – reference: MorrillLCLeblTSlawinAMZSmithADCatalytic asymmetric α-amination of carboxylic acids using isothioureasChem. Sci.20123208820931:CAS:528:DC%2BC38Xnt12qs7o%3D10.1039/c2sc20171b – reference: ZalatanDNDu BoisJA chiral rhodium carboxamidate catalyst for enantioselective C–H aminationJ. Am. Chem. Soc.2008130922092211:CAS:528:DC%2BD1cXnvF2gtbk%3D18582043259718910.1021/ja8031955 – reference: YamawakiMTsutsuiHKitagakiSAnadaMHashimotoSDirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate]: a new chiral Rh(II) catalyst for enantioselective amidation of C–H bondsTetrahedron Lett.200243956195641:CAS:528:DC%2BD38Xpt1Cqtrk%3D10.1016/S0040-4039(02)02432-2 – reference: BlaskovichMATUnusual amino acids in medicinal chemistryJ. Med. Chem.20165910807108361:CAS:528:DC%2BC28XhsVKjsr7O2758934910.1021/acs.jmedchem.6b00319 – reference: LiuYIron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesisChem. Soc. Rev.202049531053581:CAS:528:DC%2BB3cXht1WjtbjO3256834010.1039/D0CS00340A – reference: EssDHHoukKNTheory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital modelsJ. Am. Chem. Soc.200813010187101981:CAS:528:DC%2BD1cXotlGlsb8%3D1861366910.1021/ja800009z – reference: IchinoseMEnantioselective intramolecular benzylic C–H bond amination: efficient synthesis of optically active benzosultamsAngew. Chem. Int. Ed.201150988498871:CAS:528:DC%2BC3MXhtFKhs7vK10.1002/anie.201101801 – reference: JuMSchomakerJMNitrene transfer catalysts for enantioselective C–N bond formationNat. Rev. Chem.202155805941:CAS:528:DC%2BB3MXhvVGgsbzP10.1038/s41570-021-00291-4 – reference: Zhou, X.-G., Yu, X.-Q., Huang, J.-S. & Che, C.-M. Asymmetric amidation of saturated C–H bonds catalysed by chiral ruthenium and manganese porphyrins. Chem. Commun. 2377–2378 (1999). – reference: ParkYChangSAsymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalystsNat. Catal.2019921922710.1038/s41929-019-0230-x1:CAS:528:DC%2BC1MXhtFGisLfL – reference: ThirumuruganPMatosiukDJozwiakKClick chemistry for drug development and diverse chemical–biology applicationsChem. Rev.2013113490549791:CAS:528:DC%2BC3sXkslahtLY%3D2353104010.1021/cr200409f – reference: GormiskyPEWhiteMCCatalyst-controlled aliphatic C–H oxidations with a predictive model for site-selectivityJ. Am. Chem. Soc.201313514052140551:CAS:528:DC%2BC3sXhsVWkur7L2402094010.1021/ja407388y – reference: NasrallahACatalytic enantioselective intermolecular benzylic C(sp3)–H aminationAngew. Chem. Int. Ed.201958819281961:CAS:528:DC%2BC1MXptFKjsrc%3D10.1002/anie.201902882 – reference: ZhengYOctahedral ruthenium complex with exclusive metal-centered chirality for highly effective asymmetric catalysisJ. Am. Chem. Soc.2017139432243251:CAS:528:DC%2BC2sXkt1Oitbg%3D2829068510.1021/jacs.7b01098 – reference: JungHKeumHKweonJChangSTuning triplet energy transfer of hydroxamates as the nitrene precursor for intramolecular C(sp3)–H amidationJ. Am. Chem. Soc.2020142581158181:CAS:528:DC%2BB3cXktlOgsrY%3D3212961810.1021/jacs.0c00868 – reference: WheelerSEUnderstanding substituent effects in noncovalent interactions involving aromatic ringsAcc. Chem. Res.201346102910381:CAS:528:DC%2BC38XovFWgu7k%3D2272583210.1021/ar300109n – reference: SaghyanASLangerPAsymmetric Synthesis of Non-proteinogenic Amino Acids2016Wiley-VCH10.1002/9783527804498 – reference: LiangJ-LYuanS-XHuangJ-SYuW-YCheC-MHighly diastereo- and enantioselective intramolecular amidation of saturated C–H bonds catalyzed by ruthenium porphyrinsAngew. Chem. Int. Ed.200241346534681:CAS:528:DC%2BD38XnsFKntb8%3D10.1002/1521-3773(20020916)41:18<3465::AID-ANIE3465>3.0.CO;2-D – reference: KrenskeEHHoukKNAromatic interactions as control elements in stereoselective organic reactionsAcc. Chem. Res.2013469799891:CAS:528:DC%2BC38XhtVyns7jL2282788310.1021/ar3000794 – reference: ListBDirect catalytic asymmetric α-amination of aldehydesJ. Am. Chem. Soc.2002124565656571:CAS:528:DC%2BD38XjtF2hu7s%3D1201003610.1021/ja0261325 – reference: JinL-MXuPXieJZhangXPEnantioselective intermolecular radical C–H aminationJ. Am. Chem. Soc.202014220828208361:CAS:528:DC%2BB3cXisVCjt7bF33238707772609110.1021/jacs.0c10415 – reference: ZhouZCatalytic enantioselective intramolecular C(sp3)–H amination of 2-azidoacetamidesAngew. Chem. Int. Ed.201958108810931:CAS:528:DC%2BC1cXisF2hs7fI10.1002/anie.201811927 – reference: WheelerSEBloomJWGToward a more complete understanding of noncovalent interactions involving aromatic ringsJ. Phys. Chem. A2014118613361471:CAS:528:DC%2BC2cXpvFCns7c%3D2493708410.1021/jp504415p – reference: MilczekEBoudetNBlakeySEnantioselective C–H amination using cationic ruthenium(II)–pybox catalystsAngew. Chem. Int. Ed.200847682568281:CAS:528:DC%2BD1cXhtV2iurjM10.1002/anie.200801445 – reference: MitraMHighly enantioselective epoxidation of olefins by H2O2 catalyzed by a non-heme Fe(II) catalyst of a chiral tetradentate ligandDalton Trans.201948612361311:CAS:528:DC%2BC1MXmslOisLs%3D3095105410.1039/C8DT04449J – reference: AgostiniFBiocatalysis with unnatural amino acids: enzymology meets xenobiologyAngew. Chem. Int. Ed.201756968097031:CAS:528:DC%2BC2sXhtFOlt7nK10.1002/anie.201610129 – reference: DrienovskáIRoelfesGExpanding the enzyme universe with genetically encoded unnatural amino acidsNat. Catal.2020319320210.1038/s41929-019-0410-81:CAS:528:DC%2BB3cXjslOhtQ%3D%3D – reference: KruppPJSodium [o-[(2,6-dichlorophenyl)-amino]-phenyl]-acetate (GP 45 840), a new non-steroidal anti-inflammatory agentExperientia1973294504521:CAS:528:DyaE3sXkt1Ogsbw%3D470834410.1007/BF01926776 – reference: HarveyJNPoliRSmithKMUnderstanding the reactivity of transition metal complexes involving multiple spin statesCoord. Chem. Rev.2003238-2393473611:CAS:528:DC%2BD3sXjt1Cmurk%3D10.1016/S0010-8545(02)00283-7 – reference: LangKTorkerSWojtasLZhangXPAsymmetric induction and enantiodivergence in catalytic radical C–H amination via enantiodifferentiative H-atom abstraction and stereoretentive radical substitutionJ. Am. Chem. Soc.201914112388123961:CAS:528:DC%2BC1MXhtlamsLjO31280562668754910.1021/jacs.9b05850 – reference: KohmuraYKatsukiTMn(salen)-catalyzed enantioselective C–H aminationTetrahedron Lett.200142333933421:CAS:528:DC%2BD3MXivFarsr4%3D10.1016/S0040-4039(01)00427-0 – reference: ChenMSWhiteMCA predictably selective aliphatic C–H oxidation reaction for complex molecule synthesisScience20073187837871:CAS:528:DC%2BD2sXht1elsrbO1797506210.1126/science.1148597 – reference: ZhouZEnantioselective ring-closing C–H amination of urea derivativesChem20206202420341:CAS:528:DC%2BB3cXhsFKgurjK10.1016/j.chempr.2020.05.017 – reference: NájeraCSansanoJMCatalytic asymmetric synthesis of α-amino acidsChem. Rev.2007107458446711791593310.1021/cr050580o1:CAS:528:DC%2BD2sXhtFWgurnL – reference: BøgevigAJuhlKKumaragurubaranNZhuangWJørgensenKADirect organo-catalytic asymmetric α-amination of aldehydes—a simple approach to optically active α-amino aldehydes, α-amino alcohols, and α-amino acidsAngew. Chem. Int. Ed.2002411790179310.1002/1521-3773(20020517)41:10<1790::AID-ANIE1790>3.0.CO;2-Y – reference: ParkYKimYChangSTransition metal-catalyzed C–H amination: scope, mechanism, and applicationsChem. Rev.2017117924793011:CAS:528:DC%2BC2sXis12htg%3D%3D2805185510.1021/acs.chemrev.6b00644 – reference: KumaragurubaranNJuhlKZhuangWBøgevigAJørgensenKADirect l-proline-catalyzed asymmetric α-amination of ketonesJ. Am. Chem. Soc.2002124625462551:CAS:528:DC%2BD38XjsFCmtro%3D1203385010.1021/ja026412k – reference: Isidro-LlobetAÁlvarezMAlbericioFAmino acid-protecting groupsChem. Rev.2009109245525041:CAS:528:DC%2BD1MXksVSlur4%3D1936412110.1021/cr800323s – reference: LiangCEfficient diastereoselective intermolecular rhodium-catalyzed C–H aminationAngew. Chem. Int. Ed.200645464146441:CAS:528:DC%2BD28Xnt1Grs7c%3D10.1002/anie.200601248 – reference: HongYJarrigeLHarmsKMeggersEChiral-at-iron catalyst: expanding the chemical space for asymmetric earth-abundant metal catalysisJ. Am. Chem. Soc.2019141456945721:CAS:528:DC%2BC1MXktFers7k%3D3083920110.1021/jacs.9b01352 – reference: UenoK6,11-Dihydro-11-oxodibenz[b,e]oxepinacetic acids with potent antiinflammatory activityJ. Med. Chem.1976199419461:CAS:528:DyaE28Xkt1yntbs%3D94011210.1021/jm00229a017 – reference: HökeTHerdtweckEBachTHydrogen-bond mediated regio- and enantioselectivity in a C–H amination reaction catalysed by a supramolecular Rh(II) complexChem. Commun.2013498009801110.1039/c3cc44197k1:CAS:528:DC%2BC3sXht1OjurfF – reference: YersinHHumbsWSpatial extensions of excited states of metal complexes. Tunability by chemical variationInorg. Chem.199938582058311:CAS:528:DyaK1MXnvVGktLo%3D10.1021/ic990582p – reference: DequirezGPonsVDaubanPNitrene chemistry in organic synthesis: still in its infancy?Angew. Chem. Int. Ed.201251738473951:CAS:528:DC%2BC38XovFejs7s%3D10.1002/anie.201201945 – reference: JaneyJMRecent advances in catalytic, enantioselective α aminations and α oxygenations of carbonyl compoundsAngew. Chem. Int. Ed.200544429243001:CAS:528:DC%2BD2MXmvVeiu7k%3D10.1002/anie.200462314 – reference: NishiokaYUchidaTKatsukiTEnantio- and regioselective intermolecular benzylic and allylic C–H bond aminationAngew. Chem. Int. Ed.201352173917421:CAS:528:DC%2BC3sXntFGqug%3D%3D10.1002/anie.201208906 – reference: PoliRHarveyJNSpin forbidden chemical reactions of transition metal compounds. New ideas and new computational challengesChem. Soc. Rev.200332181:CAS:528:DC%2BD38XpsFOmtbg%3D1259654010.1039/b200675h – reference: MaestreLSameeraWMCDíaz-RequejoMMMaserasFPérezPJA general mechanism for the copper- and silver-catalyzed olefin aziridination reactions: concomitant involvement of the singlet and triplet pathwaysJ. Am. Chem. Soc.2013135133813481:CAS:528:DC%2BC3sXitFSl2327628710.1021/ja307229e – volume: 5 start-page: 580 year: 2021 ident: 895_CR10 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-021-00291-4 – volume: 47 start-page: 6825 year: 2008 ident: 895_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200801445 – volume: 58 start-page: 8192 year: 2019 ident: 895_CR18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201902882 – volume: 124 start-page: 5656 year: 2002 ident: 895_CR5 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0261325 – volume: 3 start-page: 193 year: 2020 ident: 895_CR51 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0410-8 – volume: 238-239 start-page: 347 year: 2003 ident: 895_CR40 publication-title: Coord. Chem. Rev. doi: 10.1016/S0010-8545(02)00283-7 – volume: 3 start-page: 2088 year: 2012 ident: 895_CR7 publication-title: Chem. Sci. doi: 10.1039/c2sc20171b – volume: 142 start-page: 20828 year: 2020 ident: 895_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10415 – volume: 139 start-page: 4322 year: 2017 ident: 895_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01098 – volume: 117 start-page: 9247 year: 2017 ident: 895_CR9 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00644 – volume: 56 start-page: 9680 year: 2017 ident: 895_CR50 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610129 – volume: 318 start-page: 783 year: 2007 ident: 895_CR36 publication-title: Science doi: 10.1126/science.1148597 – volume: 9 start-page: 219 year: 2019 ident: 895_CR25 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0230-x – volume: 130 start-page: 9220 year: 2008 ident: 895_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja8031955 – volume: 51 start-page: 7384 year: 2012 ident: 895_CR8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201201945 – volume: 41 start-page: 3465 year: 2002 ident: 895_CR20 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20020916)41:18<3465::AID-ANIE3465>3.0.CO;2-D – volume: 141 start-page: 12388 year: 2019 ident: 895_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b05850 – volume: 48 start-page: 6123 year: 2019 ident: 895_CR38 publication-title: Dalton Trans. doi: 10.1039/C8DT04449J – volume: 52 start-page: 1739 year: 2013 ident: 895_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201208906 – volume: 41 start-page: 1790 year: 2002 ident: 895_CR4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20020517)41:10<1790::AID-ANIE1790>3.0.CO;2-Y – volume: 45 start-page: 4641 year: 2006 ident: 895_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200601248 – volume: 38 start-page: 5820 year: 1999 ident: 895_CR41 publication-title: Inorg. Chem. doi: 10.1021/ic990582p – volume: 44 start-page: 4292 year: 2005 ident: 895_CR3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200462314 – volume: 43 start-page: 9561 year: 2002 ident: 895_CR14 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(02)02432-2 – volume: 49 start-page: 5310 year: 2020 ident: 895_CR34 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00340A – volume: 19 start-page: 941 year: 1976 ident: 895_CR31 publication-title: J. Med. Chem. doi: 10.1021/jm00229a017 – volume: 135 start-page: 1338 year: 2013 ident: 895_CR42 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja307229e – volume: 124 start-page: 6254 year: 2002 ident: 895_CR6 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja026412k – volume-title: Asymmetric Synthesis of Non-proteinogenic Amino Acids year: 2016 ident: 895_CR1 doi: 10.1002/9783527804498 – volume: 107 start-page: 4584 year: 2007 ident: 895_CR2 publication-title: Chem. Rev. doi: 10.1021/cr050580o – volume: 46 start-page: 1029 year: 2013 ident: 895_CR46 publication-title: Acc. Chem. Res. doi: 10.1021/ar300109n – volume: 10 start-page: 4751 year: 2020 ident: 895_CR26 publication-title: ACS Catal. doi: 10.1021/acscatal.0c00961 – volume: 6 start-page: 2024 year: 2020 ident: 895_CR29 publication-title: Chem doi: 10.1016/j.chempr.2020.05.017 – volume: 109 start-page: 2455 year: 2009 ident: 895_CR48 publication-title: Chem. Rev. doi: 10.1021/cr800323s – volume: 141 start-page: 4569 year: 2019 ident: 895_CR35 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b01352 – volume: 42 start-page: 3339 year: 2001 ident: 895_CR13 publication-title: Tetrahedron Lett. doi: 10.1016/S0040-4039(01)00427-0 – volume: 29 start-page: 450 year: 1973 ident: 895_CR32 publication-title: Experientia doi: 10.1007/BF01926776 – ident: 895_CR12 doi: 10.1039/a907653k – volume: 115 start-page: 3170 year: 2015 ident: 895_CR33 publication-title: Chem. Rev. doi: 10.1021/cr500425u – volume: 130 start-page: 10187 year: 2008 ident: 895_CR44 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800009z – volume: 58 start-page: 1088 year: 2019 ident: 895_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811927 – volume: 46 start-page: 979 year: 2013 ident: 895_CR45 publication-title: Acc. Chem. Res. doi: 10.1021/ar3000794 – volume: 80 start-page: 1087 year: 1997 ident: 895_CR11 publication-title: Helv. Chim. Acta doi: 10.1002/hlca.19970800407 – volume: 142 start-page: 5811 year: 2020 ident: 895_CR43 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00868 – volume: 59 start-page: 10807 year: 2016 ident: 895_CR49 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b00319 – volume: 49 start-page: 8009 year: 2013 ident: 895_CR17 publication-title: Chem. Commun. doi: 10.1039/c3cc44197k – volume: 118 start-page: 6133 year: 2014 ident: 895_CR47 publication-title: J. Phys. Chem. A doi: 10.1021/jp504415p – volume: 50 start-page: 9884 year: 2011 ident: 895_CR22 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201101801 – volume: 32 start-page: 1 year: 2003 ident: 895_CR39 publication-title: Chem. Soc. Rev. doi: 10.1039/b200675h – volume: 113 start-page: 4905 year: 2013 ident: 895_CR30 publication-title: Chem. Rev. doi: 10.1021/cr200409f – volume: 135 start-page: 14052 year: 2013 ident: 895_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja407388y – volume: 56 start-page: 9680 year: 2017 ident: WOS:000406798700004 article-title: Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201610129 – volume: 51 start-page: 7384 year: 2012 ident: WOS:000306511600007 article-title: Nitrene Chemistry in Organic Synthesis: Still in Its Infancy? publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201201945 – volume: 318 start-page: 783 year: 2007 ident: WOS:000250583900037 article-title: A predictably selective aliphatic C-H oxidation reaction for complex molecule synthesis publication-title: SCIENCE doi: 10.1126/science.1148597 – volume: 130 start-page: 9220 year: 2008 ident: WOS:000257796500021 article-title: A chiral rhodium carboxamidate catalyst for enantioselective C-H amination publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja8031955 – volume: 118 start-page: 6133 year: 2014 ident: WOS:000340439800001 article-title: Toward a More Complete Understanding of Noncovalent Interactions Involving Aromatic Rings publication-title: JOURNAL OF PHYSICAL CHEMISTRY A doi: 10.1021/jp504415p – volume: 6 start-page: 2024 year: 2020 ident: WOS:000558679600017 article-title: Enantioselective Ring-Closing C-H Amination of Urea Derivatives publication-title: CHEM doi: 10.1016/j.chempr.2020.05.017 – volume: 115 start-page: 3170 year: 2015 ident: WOS:000354906800005 article-title: Iron Catalysis in Organic Synthesis publication-title: CHEMICAL REVIEWS doi: 10.1021/cr500425u – volume: 58 start-page: 8192 year: 2019 ident: WOS:000474117600048 article-title: Catalytic Enantioselective Intermolecular Benzylic C(sp3)-H Amination publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201902882 – volume: 135 start-page: 1338 year: 2013 ident: WOS:000314492500035 article-title: A General Mechanism for the Copper- and Silver-Catalyzed Olefin Aziridination Reactions: Concomitant Involvement of the Singlet and Triplet Pathways publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja307229e – volume: 42 start-page: 3339 year: 2001 ident: WOS:000168404000025 article-title: Mn(salen)-catalyzed enantioselective C-H amination publication-title: TETRAHEDRON LETTERS – start-page: 2377 year: 1999 ident: WOS:000083844900025 article-title: Asymmetric amidation of saturated C-H bonds catalysed by chiral ruthenium and manganese porphyrins publication-title: CHEMICAL COMMUNICATIONS – volume: 46 start-page: 1029 year: 2013 ident: WOS:000318060000017 article-title: Understanding Substituent Effects in Noncovalent Interactions Involving Aromatic Rings publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar300109n – volume: 107 start-page: 4584 year: 2007 ident: WOS:000250970400004 article-title: Catalytic asymmetric synthesis of α-amino acids publication-title: CHEMICAL REVIEWS doi: 10.1021/cr050580o – volume: 49 start-page: 8009 year: 2013 ident: WOS:000323195600006 article-title: Hydrogen-bond mediated regio- and enantioselectivity in a C-H amination reaction catalysed by a supramolecular Rh(II) complex publication-title: CHEMICAL COMMUNICATIONS doi: 10.1039/c3cc44197k – volume: 130 start-page: 10187 year: 2008 ident: WOS:000258080600039 article-title: Theory of 1,3-dipolar cycloadditions: Distortion/interaction and frontier molecular orbital models publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja800009z – volume: 142 start-page: 5811 year: 2020 ident: WOS:000526393100044 article-title: Tuning Triplet Energy Transfer of Hydroxamates as the Nitrene Precursor for Intramolecular C(sp3)-H Amidation publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c00868 – volume: 38 start-page: 5820 year: 1999 ident: WOS:000084245200028 article-title: Spatial extensions of excited states of metal complexes. Tunability by chemical variation publication-title: INORGANIC CHEMISTRY – volume: 3 start-page: 2088 year: 2012 ident: WOS:000304365000048 article-title: Catalytic asymmetric α-amination of carboxylic acids using isothioureas publication-title: CHEMICAL SCIENCE doi: 10.1039/c2sc20171b – volume: 49 start-page: 5310 year: 2020 ident: WOS:000555535500004 article-title: Iron- and cobalt-catalyzed C(sp3)-H bond functionalization reactions and their application in organic synthesis publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/d0cs00340a – volume: 141 start-page: 4569 year: 2019 ident: WOS:000462260400014 article-title: Chiral-at-Iron Catalyst: Expanding the Chemical Space for Asymmetric Earth-Abundant Metal Catalysis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b01352 – volume: 139 start-page: 4322 year: 2017 ident: WOS:000398247100022 article-title: Octahedral Ruthenium Complex with Exclusive Metal-Centered Chirality for Highly Effective Asymmetric Catalysis publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.7b01098 – volume: 5 start-page: 580 year: 2021 ident: WOS:000667590300001 article-title: Nitrene transfer catalysts for enantioselective C-N bond formation publication-title: NATURE REVIEWS CHEMISTRY doi: 10.1038/s41570-021-00291-4 – volume: 47 start-page: 6825 year: 2008 ident: WOS:000258835300016 article-title: Enantioselective C-H amination using cationic ruthenium(II)-pybox catalysts publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200801445 – volume: 124 start-page: 6254 year: 2002 ident: WOS:000175954800012 article-title: Direct L-proline-catalyzed asymmetric α-amination of ketones publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja026412k – volume: 29 start-page: 450 year: 1973 ident: WOS:A1973P480900043 article-title: SODIUM [ORTHO-(2,6-DICHLOROPHENYL)-AMINO]-ACETATE (GP45840), - NEW NONSTEROIDAL ANTIINFLAMMATORY AGENT publication-title: EXPERIENTIA – volume: 10 start-page: 4751 year: 2020 ident: WOS:000543700400029 article-title: Dioxazolones: Stable Substrates for the Catalytic Transfer of Acyl Nitrenes publication-title: ACS CATALYSIS doi: 10.1021/acscatal.0c00961 – volume: 109 start-page: 2455 year: 2009 ident: WOS:000266929800008 article-title: Amino Acid-Protecting Groups publication-title: CHEMICAL REVIEWS doi: 10.1021/cr800323s – volume: 80 start-page: 1087 year: 1997 ident: WOS:A1997XL00900006 article-title: Rhodium(II)-catalyzed CH insertions with {[(4-nitrophenyl)sulfonyl]imino}phenyl-lambda(3)-iodane publication-title: HELVETICA CHIMICA ACTA – volume: 43 start-page: 2403 year: 2002 ident: WOS:000174765600021 article-title: An intriguing effect of Yb(OTf)3-TMSCl in the halogenation of 1,1-disubstituted alkenes by NXS:: selective synthesis of allyl halides publication-title: TETRAHEDRON LETTERS – volume: 52 start-page: 1739 year: 2013 ident: WOS:000314650600023 article-title: Enantio- and Regioselective Intermolecular Benzylic and Allylic C-H Bond Amination publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201208906 – volume: 238 start-page: 347 year: 2003 ident: WOS:000182957600019 article-title: Understanding the reactivity of transition metal complexes involving multiple spin states publication-title: COORDINATION CHEMISTRY REVIEWS – volume: 142 start-page: 20828 year: 2020 ident: WOS:000599506900042 article-title: Enantioselective Intermolecular Radical C-H Amination publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.0c10415 – volume: 117 start-page: 9247 year: 2017 ident: WOS:000405642800019 article-title: Transition Metal-Catalyzed C-H Amination: Scope, Mechanism, and Applications publication-title: CHEMICAL REVIEWS doi: 10.1021/acs.chemrev.6b00644 – volume: 45 start-page: 4641 year: 2006 ident: WOS:000239079900021 article-title: Efficient diastereoselective intermolecular rhodium-catalyzed C-H amination publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200601248 – volume: 3 start-page: 193 year: 2020 ident: WOS:000507787600005 article-title: Expanding the enzyme universe with genetically encoded unnatural amino acids publication-title: NATURE CATALYSIS doi: 10.1038/s41929-019-0410-8 – volume: 46 start-page: 979 year: 2013 ident: WOS:000318060000012 article-title: Aromatic Interactions as Control Elements in Stereoselective Organic Reactions publication-title: ACCOUNTS OF CHEMICAL RESEARCH doi: 10.1021/ar3000794 – volume: 48 start-page: 6123 year: 2019 ident: WOS:000472449300041 article-title: Highly enantioselective epoxidation of olefins by H2O2 catalyzed by a non-heme Fe(II) catalyst of a chiral tetradentate ligand publication-title: DALTON TRANSACTIONS doi: 10.1039/c8dt04449j – volume: 58 start-page: 1088 year: 2019 ident: WOS:000456260200022 article-title: Catalytic Enantioselective Intramolecular C(sp3)-H Amination of 2-Azidoacetamides publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201811927 – volume: 32 start-page: 1 year: 2003 ident: WOS:000180628100001 article-title: Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges publication-title: CHEMICAL SOCIETY REVIEWS doi: 10.1039/b200675h – volume: 50 start-page: 9884 year: 2011 ident: WOS:000296207100018 article-title: Enantioselective Intramolecular Benzylic C-H Bond Amination: Efficient Synthesis of Optically Active Benzosultams publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.201101801 – volume: 19 start-page: 941 year: 1976 ident: WOS:A1976BV26300017 article-title: 6,11-DIHYDRO-11-OXODIBENZ[B,E]OXEPINACETIC ACIDS WITH POTENT ANTIINFLAMMATORY ACTIVITY publication-title: JOURNAL OF MEDICINAL CHEMISTRY – volume: 2 start-page: 219 year: 2019 ident: WOS:000461099900012 article-title: Asymmetric formation of γ-lactams via C-H amidation enabled by chiral hydrogen-bond-donor catalysts publication-title: NATURE CATALYSIS doi: 10.1038/s41929-019-0230-x – volume: 41 start-page: 1790 year: 2002 ident: WOS:000175900500036 article-title: Direct organo-catalytic asymmetric α-amination of aldehydes -: A simple approach to optically active α-amino aldehydes, α-amino alcohols, and α-amino acids publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 44 start-page: 4292 year: 2005 ident: WOS:000230521800006 article-title: Recent advances in catalytic, enantioselective α aminations and α oxygenations of carbonyl compounds publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION doi: 10.1002/anie.200462314 – volume: 59 start-page: 10807 year: 2016 ident: WOS:000390735500001 article-title: Unusual Amino Acids in Medicinal Chemistry publication-title: JOURNAL OF MEDICINAL CHEMISTRY doi: 10.1021/acs.jmedchem.6b00319 – volume: 41 start-page: 3465 year: 2002 ident: WOS:000178177700040 article-title: Highly diastereo- and enantioselective intramolecular amidation of saturated C-H bonds catalyzed by ruthenium porphyrins publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION – volume: 124 start-page: 5656 year: 2002 ident: WOS:000175648500026 article-title: Direct catalytic asymmetric α-amination of aldehydes publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja0261325 – volume: 135 start-page: 14052 year: 2013 ident: WOS:000330162900014 article-title: Catalyst-Controlled Aliphatic C-H Oxidations with a Predictive Model for Site-Selectivity publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/ja407388y – volume: 113 start-page: 4905 year: 2013 ident: WOS:000321810600010 article-title: Click Chemistry for Drug Development and Diverse Chemical-Biology Applications publication-title: CHEMICAL REVIEWS doi: 10.1021/cr200409f – volume: 141 start-page: 12388 year: 2019 ident: WOS:000480497100032 article-title: Asymmetric Induction and Enantiodivergence in Catalytic Radical C-H Amination via Enantiodifferentiative H-Atom Abstraction and Stereoretentive Radical Substitution publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY doi: 10.1021/jacs.9b05850 – year: 2016 ident: 000777874200002.1 publication-title: Asymmetric Synthesis of Non-proteinogenic Amino Acids |
SSID | ssj0065316 |
Score | 2.5890076 |
Snippet | α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the... alpha-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the... |
Source | Web of Science |
SourceID | pubmedcentral proquest pubmed webofscience crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 566 |
SubjectTerms | 639/638/403/933 639/638/549/933 639/638/549/972 639/638/77/883 Amination Amines - chemistry Amino acids Amino Acids - chemistry Analytical Chemistry Aromatic compounds Biochemistry Carboxylic acids Catalysis Chains Chemistry Chemistry and Materials Science Chemistry, Multidisciplinary Chemistry/Food Science Drugs Enantiomers Inorganic Chemistry Natural products Nitrogen Nitrogen - chemistry Nitrogenation Optical activity Organic Chemistry Physical Chemistry Physical Sciences Reagents Ruthenium Science & Technology Stereoisomerism |
Title | Stereocontrolled 1,3-nitrogen migration to access chiral α-amino acids |
URI | https://link.springer.com/article/10.1038/s41557-022-00895-3 http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000777874200002 https://www.ncbi.nlm.nih.gov/pubmed/35379900 https://www.proquest.com/docview/2659404421 https://www.proquest.com/docview/2647211322 https://pubmed.ncbi.nlm.nih.gov/PMC7612692 |
Volume | 14 |
WOS | 000777874200002 |
WOSCitedRecordID | wos000777874200002 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELZaOLSXCvqbFlAqcSsRcWzHyQmxKxZUqauqLdLeIsd2IBIklA0PxovwTJ1xnNAV1aqXREoc2xl_nhnb80PIfkYrJQTG046NirjQOsoEenJppjKVVCBB0FH42zw9O-dfF2LhN9yW3qxy4ImOUZtW4x75YZKKnMecJ_To5neEWaPwdNWn0HhONjF0GZp0ycW44EoBX867SAqBnkGxd5qJWXa4REEqI7RlBymYi4itCqYn2uZTo8nx5PSfMsvJp9kWeeUVy_C4R8I2eWab1-TFdMjn9oac_gQS2tbbpl9ZE9IDFsGMvm0BROF1fdGDIezaULk0iqG-rKEP4cN9pK7rBh_XZvmWnM9Ofk3PIp9GIdJc8g64LONJhQk2JNca1idcpWlFTZIbbqipDEhsXXFdZVYktiwpDB8oXbIEioF6Qtk7stG0jf1AQtx0soJqlVc557IEAECdRihQE6CBMiB0oGGhfYxxTHVxVbizbpYVPd0LoHvh6F6wgHwZv7npI2ysLb0zDE3hZ9uyeMRGQD6Pr4G8ePihGtveYRmOi13gXwF534_k2BwTTIJUjgMiV8Z4LIAxuFffNPWli8UtQUNMc6jzYEDDY7fW_cX-34gZ20GNTQIL5ehAFUOt9H-KTT2lMYpB93E9gT6Rl4kDPZps7pCN7vbO7oJa1ZV7bu7ANZud7pHN49lkMof75GT-_ccf3xwf5g |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4q5VAuqKwNLRCkcqJR49iOkwNCaGA6pcuFVuotOLZDI7VJ6UyF-FNI_BF-E-9lK6OiEZdeE8dO3vo5fgvAZsIKLSXV0w6tDoQ0JkgkZXIZrhMdFehBKFH44DCeHItPJ_JkCX72uTAUVtnbxMZQ29rQP_LtKJapCIWI2LuLbwF1jaLT1b6FRisWe-7Hd9yyTd_ufkD-vo6i8cej0STougoERigxQ6PDRVRQvwkljEG4LnQcF8xGqRWW2cKiAzOFMEXiZOTynOHXIAZROe780VszjvPegbuC85Q0Khnv9JY_RnluspmUlJSJFHZJOiFPtqfkuFVAsfPodVMZ8HlHeAPd3gzSHE5q_-kjG384XoX7HZD137eS9wCWXPUQVkZ9_7hHsPMZWebqLhb-zFmfbfEALchljULrn5dfW-HzZ7Wvm7aNvjkt8R38378CfV5WdLm008dwfCsEfgLLVV25NfDpJ5eTzOi0SIVQOQoczmmlRliCC-QesJ6GmelqmlNrjbOsOVvnSdbSPUO6Zw3dM-7Bm-GZi7aix8LRGz1rsk67p9m1LHrwariN5KXDFl25-orGCNpco7304GnLyWE5LrlCFBB6oOZ4PAygmt_zd6rytKn9rRCRxinOudVLw_VrLfqKzb8lZliHEKJCky0oYSvEWdn_DBt1lKaqCbNniwn0ElYmRwf72f7u4d463IsaBaBw0Q1Ynl1euecI6Wb5i0aPfPhy24r7B9RhV9Y |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuUAkEqJxptHNtxckAIbVlaChUSVNpb6tgOjdQmbXcrxM_iyo_gNzGTV1kVrbj0mjh2MvPNw_E8ADYSVmgpqZ52aHUgpDFBIimTy3Cd6KhAC0KJwp_24u198WEqpyvwq8-FobDKXic2itrWhv6Rj6JYpiIUImKjoguL-Lw1eXNyGlAHKTpp7dtptBDZdT--4_Zt9npnC3n9Moom776Ot4Ouw0BghBJzVEBcRAX1nlDCGHTdhY7jgtkotcIyW1g0ZqYQpkicjFyeM_wy9EdUzlFMEtT_OO81uK64ZCRjajps9mLEdpPZpKSkrKSwS9gJeTKakRFXAcXRowVOZcAXjeIlT_dywOZwavtPe9nYxskduN05tf7bFoV3YcVV9-DmuO8ldx_ef0H2ubqLiz9y1mebPEBtclYjgP3j8lsLRH9e-7pp4eibwxLfwf_9M9DHZUWXSzt7APtXQuCHsFrVlXsMPv3wcpIZnRapECpH8OGcVmp0UXCB3APW0zAzXX1zarNxlDXn7DzJWrpnSPesoXvGPXg1PHPSVvdYOnq9Z03WSfosu8ClBy-G20heOnjRlavPaYygjTbqTg8etZwcluOSK_QIQg_UAo-HAVT_e_FOVR42dcAVeqdxinNu9mi4eK1lX7HxN2KGdchbVKi-BSVvhTgr-59h447SVEFhvracQM_hBops9nFnb_cJ3Ioa_FPk6Dqszs_O3VP07ub5s0aMfDi4arn9AwhFXAM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stereocontrolled+1%2C3-nitrogen+migration+to+access+chiral+%CE%B1-amino+acids&rft.jtitle=Nature+chemistry&rft.au=Ye%2C+Chen-Xi&rft.au=Shen%2C+Xiang&rft.au=Chen%2C+Shuming&rft.au=Meggers%2C+Eric&rft.date=2022-05-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=14&rft.issue=5&rft.spage=566&rft.epage=573&rft_id=info:doi/10.1038%2Fs41557-022-00895-3&rft.externalDocID=10_1038_s41557_022_00895_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon |