Stereocontrolled 1,3-nitrogen migration to access chiral α-amino acids

α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for...

Full description

Saved in:
Bibliographic Details
Published inNature chemistry Vol. 14; no. 5; pp. 566 - 573
Main Authors Ye, Chen-Xi, Shen, Xiang, Chen, Shuming, Meggers, Eric
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2022
NATURE PORTFOLIO
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C( sp 3 )–H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products. A straightforward method for synthesizing optically active α-amino acids from abundant carboxylic acids has been developed. Based on a nitrene-mediated stereocontrolled 1,3-nitrogen shift, this approach provides access to a large variety of unnatural α-amino acids with aryl, allyl, propargyl and alkyl side chains and enables late-stage amination of carboxylic-acid-containing drugs.
AbstractList α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C( sp 3 )–H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products. A straightforward method for synthesizing optically active α-amino acids from abundant carboxylic acids has been developed. Based on a nitrene-mediated stereocontrolled 1,3-nitrogen shift, this approach provides access to a large variety of unnatural α-amino acids with aryl, allyl, propargyl and alkyl side chains and enables late-stage amination of carboxylic-acid-containing drugs.
α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C(sp )-H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products.
α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C(sp3)–H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products.A straightforward method for synthesizing optically active α-amino acids from abundant carboxylic acids has been developed. Based on a nitrene-mediated stereocontrolled 1,3-nitrogen shift, this approach provides access to a large variety of unnatural α-amino acids with aryl, allyl, propargyl and alkyl side chains and enables late-stage amination of carboxylic-acid-containing drugs.
alpha-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active alpha-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C(sp(3))-H amination. This straightforward method displays a very broad scope, providing rapid access to optically active a-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products.
α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C(sp3)-H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products.α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical and pharmaceutical properties. Here we report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalysed C(sp3)-H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic-acid-containing drugs and natural products.
α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the incorporation of unnatural amino acids is often desirable for modulating chemical, physical, and pharmaceutical properties. We here report a protocol for the economical and practical synthesis of optically active α-amino acids based on an unprecedented stereocontrolled 1,3-nitrogen shift. Our method employs abundant and easily accessible carboxylic acids as starting materials, which are first connected to a nitrogenation reagent, followed by a highly regio- and enantioselective ruthenium- or iron-catalyzed C( sp 3 )−H amination. This straightforward method displays a very broad scope, providing rapid access to optically active α-amino acids with aryl, allyl, propargyl, and alkyl side chains, and also permits stereocontrolled late-stage amination of carboxylic acid-containing drugs and natural products.
Author Meggers, Eric
Chen, Shuming
Shen, Xiang
Ye, Chen-Xi
AuthorAffiliation 2 Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
1 Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
AuthorAffiliation_xml – name: 1 Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, 35043 Marburg, Germany
– name: 2 Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
Author_xml – sequence: 1
  givenname: Chen-Xi
  orcidid: 0000-0003-4534-845X
  surname: Ye
  fullname: Ye, Chen-Xi
  organization: Fachbereich Chemie, Philipps-Universität Marburg
– sequence: 2
  givenname: Xiang
  surname: Shen
  fullname: Shen, Xiang
  organization: Fachbereich Chemie, Philipps-Universität Marburg
– sequence: 3
  givenname: Shuming
  orcidid: 0000-0003-1897-2249
  surname: Chen
  fullname: Chen, Shuming
  email: shuming.chen@oberlin.edu
  organization: Department of Chemistry and Biochemistry, Oberlin College
– sequence: 4
  givenname: Eric
  orcidid: 0000-0002-8851-7623
  surname: Meggers
  fullname: Meggers, Eric
  email: meggers@chemie.uni-marburg.de
  organization: Fachbereich Chemie, Philipps-Universität Marburg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35379900$$D View this record in MEDLINE/PubMed
BookMark eNqNUstu1TAQtVARffEDLFAkNkjg1s_Y2VRCV1CQKnUBrC3Hmdy6SuxiJyA-ix_hm3B6b2-hi4qVx55zZs6MzyHaCzEAQi8oOaGE69MsqJQKE8YwIbqRmD9BB1RJiQUXzd4u5mQfHeZ8TUgtOa2foX0uuWoaQg7Q-ecJEkQXw5TiMEBX0bccB19uawjV6NfJTj6GaoqVdQ5yrtyVT3aofv_CdvRhefZdPkZPeztkeL49j9DXD--_rD7ii8vzT6t3F9gJJSbMKResJ5rWSjinlRS2rnvasaYTHe36TkvueuF6DZJB21LaWyIb1ZYhpBaUH6GzTd2buR2hc1B028HcJD_a9NNE682_meCvzDp-N6qmrG5YKfB6WyDFbzPkyYw-OxgGGyDO2bBaKEYpZwv01QPodZxTKOMVlGwEEYItil7-rWgn5W7HBfBmA_gBbeyz8xAc7GCEEKWUVoKViCxN9f-jV366_Z1VnMN0T3Up5pygN26bL5vwg6HELL4xG9-Y4htz6xvDC5U9oN51fJTEN6RcwGEN6X4_j7D-AINE0o0
CitedBy_id crossref_primary_10_1021_jacs_3c05258
crossref_primary_10_1016_j_tet_2024_133944
crossref_primary_10_1021_acs_orglett_2c03249
crossref_primary_10_1016_j_matt_2023_04_002
crossref_primary_10_1021_acsorginorgau_3c00026
crossref_primary_10_1002_anie_202314398
crossref_primary_10_1021_jacs_3c13085
crossref_primary_10_1016_j_chempr_2023_03_002
crossref_primary_10_1021_jacs_4c09989
crossref_primary_10_1002_ange_202212595
crossref_primary_10_6023_cjoc202406042
crossref_primary_10_1021_acscatal_4c01034
crossref_primary_10_1021_acs_chemrev_2c00724
crossref_primary_10_1002_ange_202212158
crossref_primary_10_1002_ange_202417414
crossref_primary_10_1002_cjoc_202300162
crossref_primary_10_1038_s44160_023_00448_7
crossref_primary_10_1021_acs_inorgchem_2c02111
crossref_primary_10_1055_s_0043_1775371
crossref_primary_10_1021_acscatal_4c04504
crossref_primary_10_1002_ange_202317489
crossref_primary_10_1039_D3CY01353G
crossref_primary_10_1039_D4CS01043D
crossref_primary_10_1002_chem_202300267
crossref_primary_10_1016_j_gresc_2024_04_003
crossref_primary_10_1039_D3SC04661C
crossref_primary_10_1002_chem_202403792
crossref_primary_10_1002_ejoc_202300296
crossref_primary_10_1002_ange_202211971
crossref_primary_10_1002_ange_202212983
crossref_primary_10_1021_jacs_3c01162
crossref_primary_10_1002_anie_202417414
crossref_primary_10_1021_acs_joc_4c01153
crossref_primary_10_1021_acs_oprd_2c00344
crossref_primary_10_1038_s41557_024_01479_z
crossref_primary_10_1002_cctc_202400353
crossref_primary_10_1002_anie_202317489
crossref_primary_10_1002_anie_202211971
crossref_primary_10_1002_anie_202212983
crossref_primary_10_6023_cjoc202400041
crossref_primary_10_1038_s41929_024_01207_3
crossref_primary_10_1021_jacs_4c05560
crossref_primary_10_1021_acs_joc_2c01481
crossref_primary_10_1002_anie_202303795
crossref_primary_10_1038_s44160_023_00278_7
crossref_primary_10_1016_j_biortech_2023_130199
crossref_primary_10_1016_j_cej_2024_149018
crossref_primary_10_1016_j_tetlet_2024_155136
crossref_primary_10_1021_jacs_4c02142
crossref_primary_10_1002_ange_202314398
crossref_primary_10_1038_s41929_024_01149_w
crossref_primary_10_1021_acs_accounts_3c00081
crossref_primary_10_1002_anie_202212158
crossref_primary_10_1039_D2CC06318B
crossref_primary_10_1021_acs_orglett_3c04158
crossref_primary_10_1002_anie_202212595
crossref_primary_10_1021_acs_orglett_3c01448
crossref_primary_10_1021_acs_orglett_4c03130
crossref_primary_10_1002_ange_202303795
crossref_primary_10_1038_s44160_023_00267_w
Cites_doi 10.1038/s41570-021-00291-4
10.1002/anie.200801445
10.1002/anie.201902882
10.1021/ja0261325
10.1038/s41929-019-0410-8
10.1016/S0010-8545(02)00283-7
10.1039/c2sc20171b
10.1021/jacs.0c10415
10.1021/jacs.7b01098
10.1021/acs.chemrev.6b00644
10.1002/anie.201610129
10.1126/science.1148597
10.1038/s41929-019-0230-x
10.1021/ja8031955
10.1002/anie.201201945
10.1002/1521-3773(20020916)41:18<3465::AID-ANIE3465>3.0.CO;2-D
10.1021/jacs.9b05850
10.1039/C8DT04449J
10.1002/anie.201208906
10.1002/1521-3773(20020517)41:10<1790::AID-ANIE1790>3.0.CO;2-Y
10.1002/anie.200601248
10.1021/ic990582p
10.1002/anie.200462314
10.1016/S0040-4039(02)02432-2
10.1039/D0CS00340A
10.1021/jm00229a017
10.1021/ja307229e
10.1021/ja026412k
10.1002/9783527804498
10.1021/cr050580o
10.1021/ar300109n
10.1021/acscatal.0c00961
10.1016/j.chempr.2020.05.017
10.1021/cr800323s
10.1021/jacs.9b01352
10.1016/S0040-4039(01)00427-0
10.1007/BF01926776
10.1039/a907653k
10.1021/cr500425u
10.1021/ja800009z
10.1002/anie.201811927
10.1021/ar3000794
10.1002/hlca.19970800407
10.1021/jacs.0c00868
10.1021/acs.jmedchem.6b00319
10.1039/c3cc44197k
10.1021/jp504415p
10.1002/anie.201101801
10.1039/b200675h
10.1021/cr200409f
10.1021/ja407388y
10.1039/d0cs00340a
10.1039/c8dt04449j
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2022
2022. The Author(s), under exclusive licence to Springer Nature Limited.
The Author(s), under exclusive licence to Springer Nature Limited 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2022.
DBID AAYXX
CITATION
17B
1KM
1KN
AHQBO
BLEPL
DTL
EGQ
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QR
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M1P
M7P
P64
PDBOC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
7X8
5PM
DOI 10.1038/s41557-022-00895-3
DatabaseName CrossRef
Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science - Science Citation Index Expanded - 2022
Web of Science Core Collection
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Chemoreception Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Web of Science
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
Materials Science Database
Chemoreception Abstracts
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
ProQuest Central Student
Web of Science
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1755-4349
EndPage 573
ExternalDocumentID PMC7612692
35379900
000777874200002
10_1038_s41557_022_00895_3
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
  grantid: 883212
  funderid: https://doi.org/10.13039/100010663
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: ME1805/15-1
  funderid: https://doi.org/10.13039/501100001659
– fundername: NSF; National Science Foundation (NSF)
  grantid: MRI 1427949
– fundername: Extreme Science and Engineering Discovery Environment (XSEDE)
  grantid: TG-CHE200100
– fundername: Deutsche Forschungsgemeinschaft; German Research Foundation (DFG)
  grantid: Me 1805/15-1
– fundername: Oberlin College
– fundername: European Research Council (ERC)
  grantid: 883212
– fundername: European Research Council (ERC) under the European Union; European Research Council (ERC)
  grantid: 883212
– fundername: European Research Council
  grantid: 883212
GroupedDBID ---
0R~
123
29M
39C
3V.
4.4
53G
5BI
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJCF
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGGDT
AGHTU
AHMBA
AHOSX
AHSBF
AIBTJ
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
KB.
L-9
LK8
M1P
M7P
ML-
NNMJJ
O9-
ODYON
P2P
PDBOC
PQQKQ
PROAC
PSQYO
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
AAYXX
ABFSG
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
17B
1KM
1KN
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
PJZUB
PPXIY
PQGLB
AGQPQ
CGR
CUY
CVF
ECM
EIF
NFIDA
NPM
7QR
7XB
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
K9.
P64
PKEHL
PQEST
PQUKI
7X8
5PM
ID FETCH-LOGICAL-c474t-31342f081674cc8754a66f1d29d4d1dfd853cf4cf8e52ebb11fa0597b33058413
IEDL.DBID 7X7
ISICitedReferencesCount 63
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000777874200002
ISSN 1755-4330
1755-4349
IngestDate Thu Aug 21 18:39:59 EDT 2025
Thu Jul 10 22:41:14 EDT 2025
Sat Aug 23 14:33:44 EDT 2025
Mon Jul 21 06:03:35 EDT 2025
Fri Aug 29 16:21:36 EDT 2025
Wed Aug 06 11:37:31 EDT 2025
Tue Jul 01 03:02:13 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Fri Feb 21 02:38:17 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords AMIDATION
CHEMISTRY
RUTHENIUM
IRON
CATALYST
C-H AMINATION
METAL-COMPLEXES
Language English
License 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c474t-31342f081674cc8754a66f1d29d4d1dfd853cf4cf8e52ebb11fa0597b33058413
Notes European Research Council (ERC)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4534-845X
0000-0002-8851-7623
0000-0003-1897-2249
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7612692
PMID 35379900
PQID 2659404421
PQPubID 536302
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7612692
proquest_journals_2659404421
webofscience_primary_000777874200002
crossref_primary_10_1038_s41557_022_00895_3
webofscience_primary_000777874200002CitationCount
crossref_citationtrail_10_1038_s41557_022_00895_3
springer_journals_10_1038_s41557_022_00895_3
pubmed_primary_35379900
proquest_miscellaneous_2647211322
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: BERLIN
– name: England
PublicationTitle Nature chemistry
PublicationTitleAbbrev Nat. Chem
NAT CHEM
PublicationTitleAlternate Nat Chem
PublicationYear 2022
Publisher Nature Publishing Group UK
NATURE PORTFOLIO
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: NATURE PORTFOLIO
– name: Nature Publishing Group
References ZhengYOctahedral ruthenium complex with exclusive metal-centered chirality for highly effective asymmetric catalysisJ. Am. Chem. Soc.2017139432243251:CAS:528:DC%2BC2sXkt1Oitbg%3D2829068510.1021/jacs.7b01098
KumaragurubaranNJuhlKZhuangWBøgevigAJørgensenKADirect l-proline-catalyzed asymmetric α-amination of ketonesJ. Am. Chem. Soc.2002124625462551:CAS:528:DC%2BD38XjsFCmtro%3D1203385010.1021/ja026412k
YamawakiMTsutsuiHKitagakiSAnadaMHashimotoSDirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate]: a new chiral Rh(II) catalyst for enantioselective amidation of C–H bondsTetrahedron Lett.200243956195641:CAS:528:DC%2BD38Xpt1Cqtrk%3D10.1016/S0040-4039(02)02432-2
JinL-MXuPXieJZhangXPEnantioselective intermolecular radical C–H aminationJ. Am. Chem. Soc.202014220828208361:CAS:528:DC%2BB3cXisVCjt7bF33238707772609110.1021/jacs.0c10415
ZhouZCatalytic enantioselective intramolecular C(sp3)–H amination of 2-azidoacetamidesAngew. Chem. Int. Ed.201958108810931:CAS:528:DC%2BC1cXisF2hs7fI10.1002/anie.201811927
ZalatanDNDu BoisJA chiral rhodium carboxamidate catalyst for enantioselective C–H aminationJ. Am. Chem. Soc.2008130922092211:CAS:528:DC%2BD1cXnvF2gtbk%3D18582043259718910.1021/ja8031955
EssDHHoukKNTheory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital modelsJ. Am. Chem. Soc.200813010187101981:CAS:528:DC%2BD1cXotlGlsb8%3D1861366910.1021/ja800009z
HarveyJNPoliRSmithKMUnderstanding the reactivity of transition metal complexes involving multiple spin statesCoord. Chem. Rev.2003238-2393473611:CAS:528:DC%2BD3sXjt1Cmurk%3D10.1016/S0010-8545(02)00283-7
NägeliIRhodium(II)-catalyzed CH insertions with {[(4-nitrophenyl)sulfonyl]imino}phenyl-λ3-iodaneHelv. Chim. Acta1997801087110510.1002/hlca.19970800407
JaneyJMRecent advances in catalytic, enantioselective α aminations and α oxygenations of carbonyl compoundsAngew. Chem. Int. Ed.200544429243001:CAS:528:DC%2BD2MXmvVeiu7k%3D10.1002/anie.200462314
NasrallahACatalytic enantioselective intermolecular benzylic C(sp3)–H aminationAngew. Chem. Int. Ed.201958819281961:CAS:528:DC%2BC1MXptFKjsrc%3D10.1002/anie.201902882
KohmuraYKatsukiTMn(salen)-catalyzed enantioselective C–H aminationTetrahedron Lett.200142333933421:CAS:528:DC%2BD3MXivFarsr4%3D10.1016/S0040-4039(01)00427-0
GormiskyPEWhiteMCCatalyst-controlled aliphatic C–H oxidations with a predictive model for site-selectivityJ. Am. Chem. Soc.201313514052140551:CAS:528:DC%2BC3sXhsVWkur7L2402094010.1021/ja407388y
ThirumuruganPMatosiukDJozwiakKClick chemistry for drug development and diverse chemical–biology applicationsChem. Rev.2013113490549791:CAS:528:DC%2BC3sXkslahtLY%3D2353104010.1021/cr200409f
SaghyanASLangerPAsymmetric Synthesis of Non-proteinogenic Amino Acids2016Wiley-VCH10.1002/9783527804498
ChenMSWhiteMCA predictably selective aliphatic C–H oxidation reaction for complex molecule synthesisScience20073187837871:CAS:528:DC%2BD2sXht1elsrbO1797506210.1126/science.1148597
HökeTHerdtweckEBachTHydrogen-bond mediated regio- and enantioselectivity in a C–H amination reaction catalysed by a supramolecular Rh(II) complexChem. Commun.2013498009801110.1039/c3cc44197k1:CAS:528:DC%2BC3sXht1OjurfF
Isidro-LlobetAÁlvarezMAlbericioFAmino acid-protecting groupsChem. Rev.2009109245525041:CAS:528:DC%2BD1MXksVSlur4%3D1936412110.1021/cr800323s
ZhouZEnantioselective ring-closing C–H amination of urea derivativesChem20206202420341:CAS:528:DC%2BB3cXhsFKgurjK10.1016/j.chempr.2020.05.017
van VlietKMde BruinBDioxazolones: stable substrates for the catalytic transfer of acyl nitrenesACS Catal.2020104751476910.1021/acscatal.0c009611:CAS:528:DC%2BB3cXlvFeqtb4%3D
MilczekEBoudetNBlakeySEnantioselective C–H amination using cationic ruthenium(II)–pybox catalystsAngew. Chem. Int. Ed.200847682568281:CAS:528:DC%2BD1cXhtV2iurjM10.1002/anie.200801445
DequirezGPonsVDaubanPNitrene chemistry in organic synthesis: still in its infancy?Angew. Chem. Int. Ed.201251738473951:CAS:528:DC%2BC38XovFejs7s%3D10.1002/anie.201201945
HongYJarrigeLHarmsKMeggersEChiral-at-iron catalyst: expanding the chemical space for asymmetric earth-abundant metal catalysisJ. Am. Chem. Soc.2019141456945721:CAS:528:DC%2BC1MXktFers7k%3D3083920110.1021/jacs.9b01352
JungHKeumHKweonJChangSTuning triplet energy transfer of hydroxamates as the nitrene precursor for intramolecular C(sp3)–H amidationJ. Am. Chem. Soc.2020142581158181:CAS:528:DC%2BB3cXktlOgsrY%3D3212961810.1021/jacs.0c00868
AgostiniFBiocatalysis with unnatural amino acids: enzymology meets xenobiologyAngew. Chem. Int. Ed.201756968097031:CAS:528:DC%2BC2sXhtFOlt7nK10.1002/anie.201610129
MitraMHighly enantioselective epoxidation of olefins by H2O2 catalyzed by a non-heme Fe(II) catalyst of a chiral tetradentate ligandDalton Trans.201948612361311:CAS:528:DC%2BC1MXmslOisLs%3D3095105410.1039/C8DT04449J
MorrillLCLeblTSlawinAMZSmithADCatalytic asymmetric α-amination of carboxylic acids using isothioureasChem. Sci.20123208820931:CAS:528:DC%2BC38Xnt12qs7o%3D10.1039/c2sc20171b
JuMSchomakerJMNitrene transfer catalysts for enantioselective C–N bond formationNat. Rev. Chem.202155805941:CAS:528:DC%2BB3MXhvVGgsbzP10.1038/s41570-021-00291-4
LiangJ-LYuanS-XHuangJ-SYuW-YCheC-MHighly diastereo- and enantioselective intramolecular amidation of saturated C–H bonds catalyzed by ruthenium porphyrinsAngew. Chem. Int. Ed.200241346534681:CAS:528:DC%2BD38XnsFKntb8%3D10.1002/1521-3773(20020916)41:18<3465::AID-ANIE3465>3.0.CO;2-D
BlaskovichMATUnusual amino acids in medicinal chemistryJ. Med. Chem.20165910807108361:CAS:528:DC%2BC28XhsVKjsr7O2758934910.1021/acs.jmedchem.6b00319
YersinHHumbsWSpatial extensions of excited states of metal complexes. Tunability by chemical variationInorg. Chem.199938582058311:CAS:528:DyaK1MXnvVGktLo%3D10.1021/ic990582p
Zhou, X.-G., Yu, X.-Q., Huang, J.-S. & Che, C.-M. Asymmetric amidation of saturated C–H bonds catalysed by chiral ruthenium and manganese porphyrins. Chem. Commun. 2377–2378 (1999).
KrenskeEHHoukKNAromatic interactions as control elements in stereoselective organic reactionsAcc. Chem. Res.2013469799891:CAS:528:DC%2BC38XhtVyns7jL2282788310.1021/ar3000794
LangKTorkerSWojtasLZhangXPAsymmetric induction and enantiodivergence in catalytic radical C–H amination via enantiodifferentiative H-atom abstraction and stereoretentive radical substitutionJ. Am. Chem. Soc.201914112388123961:CAS:528:DC%2BC1MXhtlamsLjO31280562668754910.1021/jacs.9b05850
DrienovskáIRoelfesGExpanding the enzyme universe with genetically encoded unnatural amino acidsNat. Catal.2020319320210.1038/s41929-019-0410-81:CAS:528:DC%2BB3cXjslOhtQ%3D%3D
WheelerSEUnderstanding substituent effects in noncovalent interactions involving aromatic ringsAcc. Chem. Res.201346102910381:CAS:528:DC%2BC38XovFWgu7k%3D2272583210.1021/ar300109n
MaestreLSameeraWMCDíaz-RequejoMMMaserasFPérezPJA general mechanism for the copper- and silver-catalyzed olefin aziridination reactions: concomitant involvement of the singlet and triplet pathwaysJ. Am. Chem. Soc.2013135133813481:CAS:528:DC%2BC3sXitFSl2327628710.1021/ja307229e
LiangCEfficient diastereoselective intermolecular rhodium-catalyzed C–H aminationAngew. Chem. Int. Ed.200645464146441:CAS:528:DC%2BD28Xnt1Grs7c%3D10.1002/anie.200601248
NishiokaYUchidaTKatsukiTEnantio- and regioselective intermolecular benzylic and allylic C–H bond aminationAngew. Chem. Int. Ed.201352173917421:CAS:528:DC%2BC3sXntFGqug%3D%3D10.1002/anie.201208906
PoliRHarveyJNSpin forbidden chemical reactions of transition metal compounds. New ideas and new computational challengesChem. Soc. Rev.200332181:CAS:528:DC%2BD38XpsFOmtbg%3D1259654010.1039/b200675h
BøgevigAJuhlKKumaragurubaranNZhuangWJørgensenKADirect organo-catalytic asymmetric α-amination of aldehydes—a simple approach to optically active α-amino aldehydes, α-amino alcohols, and α-amino acidsAngew. Chem. Int. Ed.2002411790179310.1002/1521-3773(20020517)41:10<1790::AID-ANIE1790>3.0.CO;2-Y
LiuYIron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesisChem. Soc. Rev.202049531053581:CAS:528:DC%2BB3cXht1WjtbjO3256834010.1039/D0CS00340A
ParkYKimYChangSTransition metal-catalyzed C–H amination: scope, mechanism, and applicationsChem. Rev.2017117924793011:CAS:528:DC%2BC2sXis12htg%3D%3D2805185510.1021/acs.chemrev.6b00644
ParkYChangSAsymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalystsNat. Catal.2019921922710.1038/s41929-019-0230-x1:CAS:528:DC%2BC1MXhtFGisLfL
NájeraCSansanoJMCatalytic asymmetric synthesis of α-amino acidsChem. Rev.2007107458446711791593310.1021/cr050580o1:CAS:528:DC%2BD2sXhtFWgurnL
ListBDirect catalytic asymmetric α-amination of aldehydesJ. Am. Chem. Soc.2002124565656571:CAS:528:DC%2BD38XjtF2hu7s%3D1201003610.1021/ja0261325
KruppPJSodium [o-[(2,6-dichlorophenyl)-amino]-phenyl]-acetate (GP 45 840), a new non-steroidal anti-inflammatory agentExperientia1973294504521:CAS:528:DyaE3sXkt1Ogsbw%3D470834410.1007/BF01926776
UenoK6,11-Dihydro-11-oxodibenz[b,e]oxepinacetic acids with potent antiinflammatory activityJ. Med. Chem.1976199419461:CAS:528:DyaE28Xkt1yntbs%3D94011210.1021/jm00229a017
BauerIKnölkerH-JIron catalysis in organic synthesisChem. Rev.2015115317033871:CAS:528:DC%2BC2MXktVGktLc%3D2575171010.1021/cr500425u
IchinoseMEnantioselective intramolecular benzylic C–H bond amination: efficient synthesis of optically active benzosultamsAngew. Chem. Int. Ed.201150988498871:CAS:528:DC%2BC3MXhtFKhs7vK10.1002/anie.201101801
WheelerSEBloomJWGToward a more complete understanding of noncovalent interactions involving aromatic ringsJ. Phys. Chem. A2014118613361471:CAS:528:DC%2BC2cXpvFCns7c%3D2493708410.1021/jp504415p
Z Zhou (895_CR29) 2020; 6
K Ueno (895_CR31) 1976; 19
DH Ess (895_CR44) 2008; 130
A Bøgevig (895_CR4) 2002; 41
M Ju (895_CR10) 2021; 5
895_CR12
LC Morrill (895_CR7) 2012; 3
M Ichinose (895_CR22) 2011; 50
Y Zheng (895_CR27) 2017; 139
Y Liu (895_CR34) 2020; 49
H Yersin (895_CR41) 1999; 38
L-M Jin (895_CR19) 2020; 142
Z Zhou (895_CR28) 2019; 58
EH Krenske (895_CR45) 2013; 46
Y Park (895_CR9) 2017; 117
MS Chen (895_CR36) 2007; 318
T Höke (895_CR17) 2013; 49
A Nasrallah (895_CR18) 2019; 58
Y Park (895_CR25) 2019; 9
A Isidro-Llobet (895_CR48) 2009; 109
Y Nishioka (895_CR16) 2013; 52
JM Janey (895_CR3) 2005; 44
I Nägeli (895_CR11) 1997; 80
KM van Vliet (895_CR26) 2020; 10
N Kumaragurubaran (895_CR6) 2002; 124
MAT Blaskovich (895_CR49) 2016; 59
PE Gormisky (895_CR37) 2013; 135
R Poli (895_CR39) 2003; 32
B List (895_CR5) 2002; 124
P Thirumurugan (895_CR30) 2013; 113
L Maestre (895_CR42) 2013; 135
F Agostini (895_CR50) 2017; 56
K Lang (895_CR24) 2019; 141
C Nájera (895_CR2) 2007; 107
SE Wheeler (895_CR46) 2013; 46
M Yamawaki (895_CR14) 2002; 43
G Dequirez (895_CR8) 2012; 51
I Drienovská (895_CR51) 2020; 3
PJ Krupp (895_CR32) 1973; 29
E Milczek (895_CR21) 2008; 47
M Mitra (895_CR38) 2019; 48
C Liang (895_CR15) 2006; 45
AS Saghyan (895_CR1) 2016
I Bauer (895_CR33) 2015; 115
DN Zalatan (895_CR23) 2008; 130
Y Hong (895_CR35) 2019; 141
H Jung (895_CR43) 2020; 142
JN Harvey (895_CR40) 2003; 238-239
SE Wheeler (895_CR47) 2014; 118
Y Kohmura (895_CR13) 2001; 42
J-L Liang (895_CR20) 2002; 41
Nasrallah, A (WOS:000474117600048) 2019; 58
Kumaragurubaran, N (WOS:000175954800012) 2002; 124
Liang, CG (WOS:000239079900021) 2006; 45
Maestre, L (WOS:000314492500035) 2013; 135
Saghyan, AS. (000777874200002.1) 2016
Zheng, Y (WOS:000398247100022) 2017; 139
Harvey, JN (WOS:000182957600019) 2003; 238
Blaskovich, MAT (WOS:000390735500001) 2016; 59
Wheeler, SE (WOS:000340439800001) 2014; 118
Ichinose, M (WOS:000296207100018) 2011; 50
Höke, T (WOS:000323195600006) 2013; 49
Zhou, XG (WOS:000083844900025) 1999
Jin, LM (WOS:000599506900042) 2020; 142
Zalatan, DN (WOS:000257796500021) 2008; 130
UENO, K (WOS:A1976BV26300017) 1976; 19
Gormisky, PE (WOS:000330162900014) 2013; 135
Nageli, I (WOS:A1997XL00900006) 1997; 80
Yersin, H (WOS:000084245200028) 1999; 38
Liu, YG (WOS:000555535500004) 2020; 49
Bauer, I (WOS:000354906800005) 2015; 115
Nájera, C (WOS:000250970400004) 2007; 107
Drienovská, I (WOS:000507787600005) 2020; 3
Thirumurugan, P (WOS:000321810600010) 2013; 113
KRUPP, PJ (WOS:A1973P480900043) 1973; 29
Chen, MS (WOS:000250583900037) 2007; 318
Ju, M (WOS:000667590300001) 2021; 5
Dequirez, G (WOS:000306511600007) 2012; 51
Kohmura, Y (WOS:000168404000025) 2001; 42
Bogevig, A (WOS:000175900500036) 2002; 41
Hong, YB (WOS:000462260400014) 2019; 141
Park, Y (WOS:000405642800019) 2017; 117
Zhou, ZJ (WOS:000558679600017) 2020; 6
Mitra, M (WOS:000472449300041) 2019; 48
Milczek, E (WOS:000258835300016) 2008; 47
Janey, JM (WOS:000230521800006) 2005; 44
Krenske, EH (WOS:000318060000012) 2013; 46
Ess, DH (WOS:000258080600039) 2008; 130
Lang, K (WOS:000480497100032) 2019; 141
Nishioka, Y (WOS:000314650600023) 2013; 52
Isidro-Llobet, A (WOS:000266929800008) 2009; 109
van Vliet, KM (WOS:000543700400029) 2020; 10
List, B (WOS:000175648500026) 2002; 124
Yamanaka, M (WOS:000174765600021) 2002; 43
Wheeler, SE (WOS:000318060000017) 2013; 46
Agostini, F (WOS:000406798700004) 2017; 56
Poli, R (WOS:000180628100001) 2003; 32
Liang, JL (WOS:000178177700040) 2002; 41
Park, Y (WOS:000461099900012) 2019; 2
Zhou, ZJ (WOS:000456260200022) 2019; 58
Morrill, LC (WOS:000304365000048) 2012; 3
Jung, H (WOS:000526393100044) 2020; 142
References_xml – reference: NägeliIRhodium(II)-catalyzed CH insertions with {[(4-nitrophenyl)sulfonyl]imino}phenyl-λ3-iodaneHelv. Chim. Acta1997801087110510.1002/hlca.19970800407
– reference: BauerIKnölkerH-JIron catalysis in organic synthesisChem. Rev.2015115317033871:CAS:528:DC%2BC2MXktVGktLc%3D2575171010.1021/cr500425u
– reference: van VlietKMde BruinBDioxazolones: stable substrates for the catalytic transfer of acyl nitrenesACS Catal.2020104751476910.1021/acscatal.0c009611:CAS:528:DC%2BB3cXlvFeqtb4%3D
– reference: MorrillLCLeblTSlawinAMZSmithADCatalytic asymmetric α-amination of carboxylic acids using isothioureasChem. Sci.20123208820931:CAS:528:DC%2BC38Xnt12qs7o%3D10.1039/c2sc20171b
– reference: ZalatanDNDu BoisJA chiral rhodium carboxamidate catalyst for enantioselective C–H aminationJ. Am. Chem. Soc.2008130922092211:CAS:528:DC%2BD1cXnvF2gtbk%3D18582043259718910.1021/ja8031955
– reference: YamawakiMTsutsuiHKitagakiSAnadaMHashimotoSDirhodium(II) tetrakis[N-tetrachlorophthaloyl-(S)-tert-leucinate]: a new chiral Rh(II) catalyst for enantioselective amidation of C–H bondsTetrahedron Lett.200243956195641:CAS:528:DC%2BD38Xpt1Cqtrk%3D10.1016/S0040-4039(02)02432-2
– reference: BlaskovichMATUnusual amino acids in medicinal chemistryJ. Med. Chem.20165910807108361:CAS:528:DC%2BC28XhsVKjsr7O2758934910.1021/acs.jmedchem.6b00319
– reference: LiuYIron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesisChem. Soc. Rev.202049531053581:CAS:528:DC%2BB3cXht1WjtbjO3256834010.1039/D0CS00340A
– reference: EssDHHoukKNTheory of 1,3-dipolar cycloadditions: distortion/interaction and frontier molecular orbital modelsJ. Am. Chem. Soc.200813010187101981:CAS:528:DC%2BD1cXotlGlsb8%3D1861366910.1021/ja800009z
– reference: IchinoseMEnantioselective intramolecular benzylic C–H bond amination: efficient synthesis of optically active benzosultamsAngew. Chem. Int. Ed.201150988498871:CAS:528:DC%2BC3MXhtFKhs7vK10.1002/anie.201101801
– reference: JuMSchomakerJMNitrene transfer catalysts for enantioselective C–N bond formationNat. Rev. Chem.202155805941:CAS:528:DC%2BB3MXhvVGgsbzP10.1038/s41570-021-00291-4
– reference: Zhou, X.-G., Yu, X.-Q., Huang, J.-S. & Che, C.-M. Asymmetric amidation of saturated C–H bonds catalysed by chiral ruthenium and manganese porphyrins. Chem. Commun. 2377–2378 (1999).
– reference: ParkYChangSAsymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalystsNat. Catal.2019921922710.1038/s41929-019-0230-x1:CAS:528:DC%2BC1MXhtFGisLfL
– reference: ThirumuruganPMatosiukDJozwiakKClick chemistry for drug development and diverse chemical–biology applicationsChem. Rev.2013113490549791:CAS:528:DC%2BC3sXkslahtLY%3D2353104010.1021/cr200409f
– reference: GormiskyPEWhiteMCCatalyst-controlled aliphatic C–H oxidations with a predictive model for site-selectivityJ. Am. Chem. Soc.201313514052140551:CAS:528:DC%2BC3sXhsVWkur7L2402094010.1021/ja407388y
– reference: NasrallahACatalytic enantioselective intermolecular benzylic C(sp3)–H aminationAngew. Chem. Int. Ed.201958819281961:CAS:528:DC%2BC1MXptFKjsrc%3D10.1002/anie.201902882
– reference: ZhengYOctahedral ruthenium complex with exclusive metal-centered chirality for highly effective asymmetric catalysisJ. Am. Chem. Soc.2017139432243251:CAS:528:DC%2BC2sXkt1Oitbg%3D2829068510.1021/jacs.7b01098
– reference: JungHKeumHKweonJChangSTuning triplet energy transfer of hydroxamates as the nitrene precursor for intramolecular C(sp3)–H amidationJ. Am. Chem. Soc.2020142581158181:CAS:528:DC%2BB3cXktlOgsrY%3D3212961810.1021/jacs.0c00868
– reference: WheelerSEUnderstanding substituent effects in noncovalent interactions involving aromatic ringsAcc. Chem. Res.201346102910381:CAS:528:DC%2BC38XovFWgu7k%3D2272583210.1021/ar300109n
– reference: SaghyanASLangerPAsymmetric Synthesis of Non-proteinogenic Amino Acids2016Wiley-VCH10.1002/9783527804498
– reference: LiangJ-LYuanS-XHuangJ-SYuW-YCheC-MHighly diastereo- and enantioselective intramolecular amidation of saturated C–H bonds catalyzed by ruthenium porphyrinsAngew. Chem. Int. Ed.200241346534681:CAS:528:DC%2BD38XnsFKntb8%3D10.1002/1521-3773(20020916)41:18<3465::AID-ANIE3465>3.0.CO;2-D
– reference: KrenskeEHHoukKNAromatic interactions as control elements in stereoselective organic reactionsAcc. Chem. Res.2013469799891:CAS:528:DC%2BC38XhtVyns7jL2282788310.1021/ar3000794
– reference: ListBDirect catalytic asymmetric α-amination of aldehydesJ. Am. Chem. Soc.2002124565656571:CAS:528:DC%2BD38XjtF2hu7s%3D1201003610.1021/ja0261325
– reference: JinL-MXuPXieJZhangXPEnantioselective intermolecular radical C–H aminationJ. Am. Chem. Soc.202014220828208361:CAS:528:DC%2BB3cXisVCjt7bF33238707772609110.1021/jacs.0c10415
– reference: ZhouZCatalytic enantioselective intramolecular C(sp3)–H amination of 2-azidoacetamidesAngew. Chem. Int. Ed.201958108810931:CAS:528:DC%2BC1cXisF2hs7fI10.1002/anie.201811927
– reference: WheelerSEBloomJWGToward a more complete understanding of noncovalent interactions involving aromatic ringsJ. Phys. Chem. A2014118613361471:CAS:528:DC%2BC2cXpvFCns7c%3D2493708410.1021/jp504415p
– reference: MilczekEBoudetNBlakeySEnantioselective C–H amination using cationic ruthenium(II)–pybox catalystsAngew. Chem. Int. Ed.200847682568281:CAS:528:DC%2BD1cXhtV2iurjM10.1002/anie.200801445
– reference: MitraMHighly enantioselective epoxidation of olefins by H2O2 catalyzed by a non-heme Fe(II) catalyst of a chiral tetradentate ligandDalton Trans.201948612361311:CAS:528:DC%2BC1MXmslOisLs%3D3095105410.1039/C8DT04449J
– reference: AgostiniFBiocatalysis with unnatural amino acids: enzymology meets xenobiologyAngew. Chem. Int. Ed.201756968097031:CAS:528:DC%2BC2sXhtFOlt7nK10.1002/anie.201610129
– reference: DrienovskáIRoelfesGExpanding the enzyme universe with genetically encoded unnatural amino acidsNat. Catal.2020319320210.1038/s41929-019-0410-81:CAS:528:DC%2BB3cXjslOhtQ%3D%3D
– reference: KruppPJSodium [o-[(2,6-dichlorophenyl)-amino]-phenyl]-acetate (GP 45 840), a new non-steroidal anti-inflammatory agentExperientia1973294504521:CAS:528:DyaE3sXkt1Ogsbw%3D470834410.1007/BF01926776
– reference: HarveyJNPoliRSmithKMUnderstanding the reactivity of transition metal complexes involving multiple spin statesCoord. Chem. Rev.2003238-2393473611:CAS:528:DC%2BD3sXjt1Cmurk%3D10.1016/S0010-8545(02)00283-7
– reference: LangKTorkerSWojtasLZhangXPAsymmetric induction and enantiodivergence in catalytic radical C–H amination via enantiodifferentiative H-atom abstraction and stereoretentive radical substitutionJ. Am. Chem. Soc.201914112388123961:CAS:528:DC%2BC1MXhtlamsLjO31280562668754910.1021/jacs.9b05850
– reference: KohmuraYKatsukiTMn(salen)-catalyzed enantioselective C–H aminationTetrahedron Lett.200142333933421:CAS:528:DC%2BD3MXivFarsr4%3D10.1016/S0040-4039(01)00427-0
– reference: ChenMSWhiteMCA predictably selective aliphatic C–H oxidation reaction for complex molecule synthesisScience20073187837871:CAS:528:DC%2BD2sXht1elsrbO1797506210.1126/science.1148597
– reference: ZhouZEnantioselective ring-closing C–H amination of urea derivativesChem20206202420341:CAS:528:DC%2BB3cXhsFKgurjK10.1016/j.chempr.2020.05.017
– reference: NájeraCSansanoJMCatalytic asymmetric synthesis of α-amino acidsChem. Rev.2007107458446711791593310.1021/cr050580o1:CAS:528:DC%2BD2sXhtFWgurnL
– reference: BøgevigAJuhlKKumaragurubaranNZhuangWJørgensenKADirect organo-catalytic asymmetric α-amination of aldehydes—a simple approach to optically active α-amino aldehydes, α-amino alcohols, and α-amino acidsAngew. Chem. Int. Ed.2002411790179310.1002/1521-3773(20020517)41:10<1790::AID-ANIE1790>3.0.CO;2-Y
– reference: ParkYKimYChangSTransition metal-catalyzed C–H amination: scope, mechanism, and applicationsChem. Rev.2017117924793011:CAS:528:DC%2BC2sXis12htg%3D%3D2805185510.1021/acs.chemrev.6b00644
– reference: KumaragurubaranNJuhlKZhuangWBøgevigAJørgensenKADirect l-proline-catalyzed asymmetric α-amination of ketonesJ. Am. Chem. Soc.2002124625462551:CAS:528:DC%2BD38XjsFCmtro%3D1203385010.1021/ja026412k
– reference: Isidro-LlobetAÁlvarezMAlbericioFAmino acid-protecting groupsChem. Rev.2009109245525041:CAS:528:DC%2BD1MXksVSlur4%3D1936412110.1021/cr800323s
– reference: LiangCEfficient diastereoselective intermolecular rhodium-catalyzed C–H aminationAngew. Chem. Int. Ed.200645464146441:CAS:528:DC%2BD28Xnt1Grs7c%3D10.1002/anie.200601248
– reference: HongYJarrigeLHarmsKMeggersEChiral-at-iron catalyst: expanding the chemical space for asymmetric earth-abundant metal catalysisJ. Am. Chem. Soc.2019141456945721:CAS:528:DC%2BC1MXktFers7k%3D3083920110.1021/jacs.9b01352
– reference: UenoK6,11-Dihydro-11-oxodibenz[b,e]oxepinacetic acids with potent antiinflammatory activityJ. Med. Chem.1976199419461:CAS:528:DyaE28Xkt1yntbs%3D94011210.1021/jm00229a017
– reference: HökeTHerdtweckEBachTHydrogen-bond mediated regio- and enantioselectivity in a C–H amination reaction catalysed by a supramolecular Rh(II) complexChem. Commun.2013498009801110.1039/c3cc44197k1:CAS:528:DC%2BC3sXht1OjurfF
– reference: YersinHHumbsWSpatial extensions of excited states of metal complexes. Tunability by chemical variationInorg. Chem.199938582058311:CAS:528:DyaK1MXnvVGktLo%3D10.1021/ic990582p
– reference: DequirezGPonsVDaubanPNitrene chemistry in organic synthesis: still in its infancy?Angew. Chem. Int. Ed.201251738473951:CAS:528:DC%2BC38XovFejs7s%3D10.1002/anie.201201945
– reference: JaneyJMRecent advances in catalytic, enantioselective α aminations and α oxygenations of carbonyl compoundsAngew. Chem. Int. Ed.200544429243001:CAS:528:DC%2BD2MXmvVeiu7k%3D10.1002/anie.200462314
– reference: NishiokaYUchidaTKatsukiTEnantio- and regioselective intermolecular benzylic and allylic C–H bond aminationAngew. Chem. Int. Ed.201352173917421:CAS:528:DC%2BC3sXntFGqug%3D%3D10.1002/anie.201208906
– reference: PoliRHarveyJNSpin forbidden chemical reactions of transition metal compounds. New ideas and new computational challengesChem. Soc. Rev.200332181:CAS:528:DC%2BD38XpsFOmtbg%3D1259654010.1039/b200675h
– reference: MaestreLSameeraWMCDíaz-RequejoMMMaserasFPérezPJA general mechanism for the copper- and silver-catalyzed olefin aziridination reactions: concomitant involvement of the singlet and triplet pathwaysJ. Am. Chem. Soc.2013135133813481:CAS:528:DC%2BC3sXitFSl2327628710.1021/ja307229e
– volume: 5
  start-page: 580
  year: 2021
  ident: 895_CR10
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-021-00291-4
– volume: 47
  start-page: 6825
  year: 2008
  ident: 895_CR21
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200801445
– volume: 58
  start-page: 8192
  year: 2019
  ident: 895_CR18
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201902882
– volume: 124
  start-page: 5656
  year: 2002
  ident: 895_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0261325
– volume: 3
  start-page: 193
  year: 2020
  ident: 895_CR51
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0410-8
– volume: 238-239
  start-page: 347
  year: 2003
  ident: 895_CR40
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/S0010-8545(02)00283-7
– volume: 3
  start-page: 2088
  year: 2012
  ident: 895_CR7
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc20171b
– volume: 142
  start-page: 20828
  year: 2020
  ident: 895_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10415
– volume: 139
  start-page: 4322
  year: 2017
  ident: 895_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01098
– volume: 117
  start-page: 9247
  year: 2017
  ident: 895_CR9
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00644
– volume: 56
  start-page: 9680
  year: 2017
  ident: 895_CR50
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610129
– volume: 318
  start-page: 783
  year: 2007
  ident: 895_CR36
  publication-title: Science
  doi: 10.1126/science.1148597
– volume: 9
  start-page: 219
  year: 2019
  ident: 895_CR25
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0230-x
– volume: 130
  start-page: 9220
  year: 2008
  ident: 895_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8031955
– volume: 51
  start-page: 7384
  year: 2012
  ident: 895_CR8
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201201945
– volume: 41
  start-page: 3465
  year: 2002
  ident: 895_CR20
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20020916)41:18<3465::AID-ANIE3465>3.0.CO;2-D
– volume: 141
  start-page: 12388
  year: 2019
  ident: 895_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b05850
– volume: 48
  start-page: 6123
  year: 2019
  ident: 895_CR38
  publication-title: Dalton Trans.
  doi: 10.1039/C8DT04449J
– volume: 52
  start-page: 1739
  year: 2013
  ident: 895_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201208906
– volume: 41
  start-page: 1790
  year: 2002
  ident: 895_CR4
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20020517)41:10<1790::AID-ANIE1790>3.0.CO;2-Y
– volume: 45
  start-page: 4641
  year: 2006
  ident: 895_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200601248
– volume: 38
  start-page: 5820
  year: 1999
  ident: 895_CR41
  publication-title: Inorg. Chem.
  doi: 10.1021/ic990582p
– volume: 44
  start-page: 4292
  year: 2005
  ident: 895_CR3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200462314
– volume: 43
  start-page: 9561
  year: 2002
  ident: 895_CR14
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(02)02432-2
– volume: 49
  start-page: 5310
  year: 2020
  ident: 895_CR34
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00340A
– volume: 19
  start-page: 941
  year: 1976
  ident: 895_CR31
  publication-title: J. Med. Chem.
  doi: 10.1021/jm00229a017
– volume: 135
  start-page: 1338
  year: 2013
  ident: 895_CR42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja307229e
– volume: 124
  start-page: 6254
  year: 2002
  ident: 895_CR6
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja026412k
– volume-title: Asymmetric Synthesis of Non-proteinogenic Amino Acids
  year: 2016
  ident: 895_CR1
  doi: 10.1002/9783527804498
– volume: 107
  start-page: 4584
  year: 2007
  ident: 895_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/cr050580o
– volume: 46
  start-page: 1029
  year: 2013
  ident: 895_CR46
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar300109n
– volume: 10
  start-page: 4751
  year: 2020
  ident: 895_CR26
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00961
– volume: 6
  start-page: 2024
  year: 2020
  ident: 895_CR29
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.05.017
– volume: 109
  start-page: 2455
  year: 2009
  ident: 895_CR48
  publication-title: Chem. Rev.
  doi: 10.1021/cr800323s
– volume: 141
  start-page: 4569
  year: 2019
  ident: 895_CR35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b01352
– volume: 42
  start-page: 3339
  year: 2001
  ident: 895_CR13
  publication-title: Tetrahedron Lett.
  doi: 10.1016/S0040-4039(01)00427-0
– volume: 29
  start-page: 450
  year: 1973
  ident: 895_CR32
  publication-title: Experientia
  doi: 10.1007/BF01926776
– ident: 895_CR12
  doi: 10.1039/a907653k
– volume: 115
  start-page: 3170
  year: 2015
  ident: 895_CR33
  publication-title: Chem. Rev.
  doi: 10.1021/cr500425u
– volume: 130
  start-page: 10187
  year: 2008
  ident: 895_CR44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800009z
– volume: 58
  start-page: 1088
  year: 2019
  ident: 895_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811927
– volume: 46
  start-page: 979
  year: 2013
  ident: 895_CR45
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar3000794
– volume: 80
  start-page: 1087
  year: 1997
  ident: 895_CR11
  publication-title: Helv. Chim. Acta
  doi: 10.1002/hlca.19970800407
– volume: 142
  start-page: 5811
  year: 2020
  ident: 895_CR43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00868
– volume: 59
  start-page: 10807
  year: 2016
  ident: 895_CR49
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b00319
– volume: 49
  start-page: 8009
  year: 2013
  ident: 895_CR17
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc44197k
– volume: 118
  start-page: 6133
  year: 2014
  ident: 895_CR47
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp504415p
– volume: 50
  start-page: 9884
  year: 2011
  ident: 895_CR22
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201101801
– volume: 32
  start-page: 1
  year: 2003
  ident: 895_CR39
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b200675h
– volume: 113
  start-page: 4905
  year: 2013
  ident: 895_CR30
  publication-title: Chem. Rev.
  doi: 10.1021/cr200409f
– volume: 135
  start-page: 14052
  year: 2013
  ident: 895_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja407388y
– volume: 56
  start-page: 9680
  year: 2017
  ident: WOS:000406798700004
  article-title: Biocatalysis with Unnatural Amino Acids: Enzymology Meets Xenobiology
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201610129
– volume: 51
  start-page: 7384
  year: 2012
  ident: WOS:000306511600007
  article-title: Nitrene Chemistry in Organic Synthesis: Still in Its Infancy?
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201201945
– volume: 318
  start-page: 783
  year: 2007
  ident: WOS:000250583900037
  article-title: A predictably selective aliphatic C-H oxidation reaction for complex molecule synthesis
  publication-title: SCIENCE
  doi: 10.1126/science.1148597
– volume: 130
  start-page: 9220
  year: 2008
  ident: WOS:000257796500021
  article-title: A chiral rhodium carboxamidate catalyst for enantioselective C-H amination
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja8031955
– volume: 118
  start-page: 6133
  year: 2014
  ident: WOS:000340439800001
  article-title: Toward a More Complete Understanding of Noncovalent Interactions Involving Aromatic Rings
  publication-title: JOURNAL OF PHYSICAL CHEMISTRY A
  doi: 10.1021/jp504415p
– volume: 6
  start-page: 2024
  year: 2020
  ident: WOS:000558679600017
  article-title: Enantioselective Ring-Closing C-H Amination of Urea Derivatives
  publication-title: CHEM
  doi: 10.1016/j.chempr.2020.05.017
– volume: 115
  start-page: 3170
  year: 2015
  ident: WOS:000354906800005
  article-title: Iron Catalysis in Organic Synthesis
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr500425u
– volume: 58
  start-page: 8192
  year: 2019
  ident: WOS:000474117600048
  article-title: Catalytic Enantioselective Intermolecular Benzylic C(sp3)-H Amination
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201902882
– volume: 135
  start-page: 1338
  year: 2013
  ident: WOS:000314492500035
  article-title: A General Mechanism for the Copper- and Silver-Catalyzed Olefin Aziridination Reactions: Concomitant Involvement of the Singlet and Triplet Pathways
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja307229e
– volume: 42
  start-page: 3339
  year: 2001
  ident: WOS:000168404000025
  article-title: Mn(salen)-catalyzed enantioselective C-H amination
  publication-title: TETRAHEDRON LETTERS
– start-page: 2377
  year: 1999
  ident: WOS:000083844900025
  article-title: Asymmetric amidation of saturated C-H bonds catalysed by chiral ruthenium and manganese porphyrins
  publication-title: CHEMICAL COMMUNICATIONS
– volume: 46
  start-page: 1029
  year: 2013
  ident: WOS:000318060000017
  article-title: Understanding Substituent Effects in Noncovalent Interactions Involving Aromatic Rings
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar300109n
– volume: 107
  start-page: 4584
  year: 2007
  ident: WOS:000250970400004
  article-title: Catalytic asymmetric synthesis of α-amino acids
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr050580o
– volume: 49
  start-page: 8009
  year: 2013
  ident: WOS:000323195600006
  article-title: Hydrogen-bond mediated regio- and enantioselectivity in a C-H amination reaction catalysed by a supramolecular Rh(II) complex
  publication-title: CHEMICAL COMMUNICATIONS
  doi: 10.1039/c3cc44197k
– volume: 130
  start-page: 10187
  year: 2008
  ident: WOS:000258080600039
  article-title: Theory of 1,3-dipolar cycloadditions: Distortion/interaction and frontier molecular orbital models
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja800009z
– volume: 142
  start-page: 5811
  year: 2020
  ident: WOS:000526393100044
  article-title: Tuning Triplet Energy Transfer of Hydroxamates as the Nitrene Precursor for Intramolecular C(sp3)-H Amidation
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c00868
– volume: 38
  start-page: 5820
  year: 1999
  ident: WOS:000084245200028
  article-title: Spatial extensions of excited states of metal complexes. Tunability by chemical variation
  publication-title: INORGANIC CHEMISTRY
– volume: 3
  start-page: 2088
  year: 2012
  ident: WOS:000304365000048
  article-title: Catalytic asymmetric α-amination of carboxylic acids using isothioureas
  publication-title: CHEMICAL SCIENCE
  doi: 10.1039/c2sc20171b
– volume: 49
  start-page: 5310
  year: 2020
  ident: WOS:000555535500004
  article-title: Iron- and cobalt-catalyzed C(sp3)-H bond functionalization reactions and their application in organic synthesis
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/d0cs00340a
– volume: 141
  start-page: 4569
  year: 2019
  ident: WOS:000462260400014
  article-title: Chiral-at-Iron Catalyst: Expanding the Chemical Space for Asymmetric Earth-Abundant Metal Catalysis
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b01352
– volume: 139
  start-page: 4322
  year: 2017
  ident: WOS:000398247100022
  article-title: Octahedral Ruthenium Complex with Exclusive Metal-Centered Chirality for Highly Effective Asymmetric Catalysis
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b01098
– volume: 5
  start-page: 580
  year: 2021
  ident: WOS:000667590300001
  article-title: Nitrene transfer catalysts for enantioselective C-N bond formation
  publication-title: NATURE REVIEWS CHEMISTRY
  doi: 10.1038/s41570-021-00291-4
– volume: 47
  start-page: 6825
  year: 2008
  ident: WOS:000258835300016
  article-title: Enantioselective C-H amination using cationic ruthenium(II)-pybox catalysts
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200801445
– volume: 124
  start-page: 6254
  year: 2002
  ident: WOS:000175954800012
  article-title: Direct L-proline-catalyzed asymmetric α-amination of ketones
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja026412k
– volume: 29
  start-page: 450
  year: 1973
  ident: WOS:A1973P480900043
  article-title: SODIUM [ORTHO-(2,6-DICHLOROPHENYL)-AMINO]-ACETATE (GP45840), - NEW NONSTEROIDAL ANTIINFLAMMATORY AGENT
  publication-title: EXPERIENTIA
– volume: 10
  start-page: 4751
  year: 2020
  ident: WOS:000543700400029
  article-title: Dioxazolones: Stable Substrates for the Catalytic Transfer of Acyl Nitrenes
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.0c00961
– volume: 109
  start-page: 2455
  year: 2009
  ident: WOS:000266929800008
  article-title: Amino Acid-Protecting Groups
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr800323s
– volume: 80
  start-page: 1087
  year: 1997
  ident: WOS:A1997XL00900006
  article-title: Rhodium(II)-catalyzed CH insertions with {[(4-nitrophenyl)sulfonyl]imino}phenyl-lambda(3)-iodane
  publication-title: HELVETICA CHIMICA ACTA
– volume: 43
  start-page: 2403
  year: 2002
  ident: WOS:000174765600021
  article-title: An intriguing effect of Yb(OTf)3-TMSCl in the halogenation of 1,1-disubstituted alkenes by NXS:: selective synthesis of allyl halides
  publication-title: TETRAHEDRON LETTERS
– volume: 52
  start-page: 1739
  year: 2013
  ident: WOS:000314650600023
  article-title: Enantio- and Regioselective Intermolecular Benzylic and Allylic C-H Bond Amination
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201208906
– volume: 238
  start-page: 347
  year: 2003
  ident: WOS:000182957600019
  article-title: Understanding the reactivity of transition metal complexes involving multiple spin states
  publication-title: COORDINATION CHEMISTRY REVIEWS
– volume: 142
  start-page: 20828
  year: 2020
  ident: WOS:000599506900042
  article-title: Enantioselective Intermolecular Radical C-H Amination
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.0c10415
– volume: 117
  start-page: 9247
  year: 2017
  ident: WOS:000405642800019
  article-title: Transition Metal-Catalyzed C-H Amination: Scope, Mechanism, and Applications
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.6b00644
– volume: 45
  start-page: 4641
  year: 2006
  ident: WOS:000239079900021
  article-title: Efficient diastereoselective intermolecular rhodium-catalyzed C-H amination
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200601248
– volume: 3
  start-page: 193
  year: 2020
  ident: WOS:000507787600005
  article-title: Expanding the enzyme universe with genetically encoded unnatural amino acids
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-019-0410-8
– volume: 46
  start-page: 979
  year: 2013
  ident: WOS:000318060000012
  article-title: Aromatic Interactions as Control Elements in Stereoselective Organic Reactions
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/ar3000794
– volume: 48
  start-page: 6123
  year: 2019
  ident: WOS:000472449300041
  article-title: Highly enantioselective epoxidation of olefins by H2O2 catalyzed by a non-heme Fe(II) catalyst of a chiral tetradentate ligand
  publication-title: DALTON TRANSACTIONS
  doi: 10.1039/c8dt04449j
– volume: 58
  start-page: 1088
  year: 2019
  ident: WOS:000456260200022
  article-title: Catalytic Enantioselective Intramolecular C(sp3)-H Amination of 2-Azidoacetamides
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201811927
– volume: 32
  start-page: 1
  year: 2003
  ident: WOS:000180628100001
  article-title: Spin forbidden chemical reactions of transition metal compounds. New ideas and new computational challenges
  publication-title: CHEMICAL SOCIETY REVIEWS
  doi: 10.1039/b200675h
– volume: 50
  start-page: 9884
  year: 2011
  ident: WOS:000296207100018
  article-title: Enantioselective Intramolecular Benzylic C-H Bond Amination: Efficient Synthesis of Optically Active Benzosultams
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201101801
– volume: 19
  start-page: 941
  year: 1976
  ident: WOS:A1976BV26300017
  article-title: 6,11-DIHYDRO-11-OXODIBENZ[B,E]OXEPINACETIC ACIDS WITH POTENT ANTIINFLAMMATORY ACTIVITY
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
– volume: 2
  start-page: 219
  year: 2019
  ident: WOS:000461099900012
  article-title: Asymmetric formation of γ-lactams via C-H amidation enabled by chiral hydrogen-bond-donor catalysts
  publication-title: NATURE CATALYSIS
  doi: 10.1038/s41929-019-0230-x
– volume: 41
  start-page: 1790
  year: 2002
  ident: WOS:000175900500036
  article-title: Direct organo-catalytic asymmetric α-amination of aldehydes -: A simple approach to optically active α-amino aldehydes, α-amino alcohols, and α-amino acids
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
– volume: 44
  start-page: 4292
  year: 2005
  ident: WOS:000230521800006
  article-title: Recent advances in catalytic, enantioselective α aminations and α oxygenations of carbonyl compounds
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.200462314
– volume: 59
  start-page: 10807
  year: 2016
  ident: WOS:000390735500001
  article-title: Unusual Amino Acids in Medicinal Chemistry
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/acs.jmedchem.6b00319
– volume: 41
  start-page: 3465
  year: 2002
  ident: WOS:000178177700040
  article-title: Highly diastereo- and enantioselective intramolecular amidation of saturated C-H bonds catalyzed by ruthenium porphyrins
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
– volume: 124
  start-page: 5656
  year: 2002
  ident: WOS:000175648500026
  article-title: Direct catalytic asymmetric α-amination of aldehydes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja0261325
– volume: 135
  start-page: 14052
  year: 2013
  ident: WOS:000330162900014
  article-title: Catalyst-Controlled Aliphatic C-H Oxidations with a Predictive Model for Site-Selectivity
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/ja407388y
– volume: 113
  start-page: 4905
  year: 2013
  ident: WOS:000321810600010
  article-title: Click Chemistry for Drug Development and Diverse Chemical-Biology Applications
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/cr200409f
– volume: 141
  start-page: 12388
  year: 2019
  ident: WOS:000480497100032
  article-title: Asymmetric Induction and Enantiodivergence in Catalytic Radical C-H Amination via Enantiodifferentiative H-Atom Abstraction and Stereoretentive Radical Substitution
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b05850
– year: 2016
  ident: 000777874200002.1
  publication-title: Asymmetric Synthesis of Non-proteinogenic Amino Acids
SSID ssj0065316
Score 2.5890076
Snippet α-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the...
alpha-Amino acids are essential for life as building blocks of proteins and components of diverse natural molecules. In both industry and academia, the...
Source Web of Science
SourceID pubmedcentral
proquest
pubmed
webofscience
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 566
SubjectTerms 639/638/403/933
639/638/549/933
639/638/549/972
639/638/77/883
Amination
Amines - chemistry
Amino acids
Amino Acids - chemistry
Analytical Chemistry
Aromatic compounds
Biochemistry
Carboxylic acids
Catalysis
Chains
Chemistry
Chemistry and Materials Science
Chemistry, Multidisciplinary
Chemistry/Food Science
Drugs
Enantiomers
Inorganic Chemistry
Natural products
Nitrogen
Nitrogen - chemistry
Nitrogenation
Optical activity
Organic Chemistry
Physical Chemistry
Physical Sciences
Reagents
Ruthenium
Science & Technology
Stereoisomerism
Title Stereocontrolled 1,3-nitrogen migration to access chiral α-amino acids
URI https://link.springer.com/article/10.1038/s41557-022-00895-3
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000777874200002
https://www.ncbi.nlm.nih.gov/pubmed/35379900
https://www.proquest.com/docview/2659404421
https://www.proquest.com/docview/2647211322
https://pubmed.ncbi.nlm.nih.gov/PMC7612692
Volume 14
WOS 000777874200002
WOSCitedRecordID wos000777874200002
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwELZaOLSXCvqbFlAqcSsRcWzHyQmxKxZUqauqLdLeIsd2IBIklA0PxovwTJ1xnNAV1aqXREoc2xl_nhnb80PIfkYrJQTG046NirjQOsoEenJppjKVVCBB0FH42zw9O-dfF2LhN9yW3qxy4ImOUZtW4x75YZKKnMecJ_To5neEWaPwdNWn0HhONjF0GZp0ycW44EoBX867SAqBnkGxd5qJWXa4REEqI7RlBymYi4itCqYn2uZTo8nx5PSfMsvJp9kWeeUVy_C4R8I2eWab1-TFdMjn9oac_gQS2tbbpl9ZE9IDFsGMvm0BROF1fdGDIezaULk0iqG-rKEP4cN9pK7rBh_XZvmWnM9Ofk3PIp9GIdJc8g64LONJhQk2JNca1idcpWlFTZIbbqipDEhsXXFdZVYktiwpDB8oXbIEioF6Qtk7stG0jf1AQtx0soJqlVc557IEAECdRihQE6CBMiB0oGGhfYxxTHVxVbizbpYVPd0LoHvh6F6wgHwZv7npI2ysLb0zDE3hZ9uyeMRGQD6Pr4G8ePihGtveYRmOi13gXwF534_k2BwTTIJUjgMiV8Z4LIAxuFffNPWli8UtQUNMc6jzYEDDY7fW_cX-34gZ20GNTQIL5ehAFUOt9H-KTT2lMYpB93E9gT6Rl4kDPZps7pCN7vbO7oJa1ZV7bu7ANZud7pHN49lkMof75GT-_ccf3xwf5g
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4q5VAuqKwNLRCkcqJR49iOkwNCaGA6pcuFVuotOLZDI7VJ6UyF-FNI_BF-E-9lK6OiEZdeE8dO3vo5fgvAZsIKLSXV0w6tDoQ0JkgkZXIZrhMdFehBKFH44DCeHItPJ_JkCX72uTAUVtnbxMZQ29rQP_LtKJapCIWI2LuLbwF1jaLT1b6FRisWe-7Hd9yyTd_ufkD-vo6i8cej0STougoERigxQ6PDRVRQvwkljEG4LnQcF8xGqRWW2cKiAzOFMEXiZOTynOHXIAZROe780VszjvPegbuC85Q0Khnv9JY_RnluspmUlJSJFHZJOiFPtqfkuFVAsfPodVMZ8HlHeAPd3gzSHE5q_-kjG384XoX7HZD137eS9wCWXPUQVkZ9_7hHsPMZWebqLhb-zFmfbfEALchljULrn5dfW-HzZ7Wvm7aNvjkt8R38378CfV5WdLm008dwfCsEfgLLVV25NfDpJ5eTzOi0SIVQOQoczmmlRliCC-QesJ6GmelqmlNrjbOsOVvnSdbSPUO6Zw3dM-7Bm-GZi7aix8LRGz1rsk67p9m1LHrwariN5KXDFl25-orGCNpco7304GnLyWE5LrlCFBB6oOZ4PAygmt_zd6rytKn9rRCRxinOudVLw_VrLfqKzb8lZliHEKJCky0oYSvEWdn_DBt1lKaqCbNniwn0ElYmRwf72f7u4d463IsaBaBw0Q1Ynl1euecI6Wb5i0aPfPhy24r7B9RhV9Y
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgEXxJuUAkEqJxptHNtxckAIbVlaChUSVNpb6tgOjdQmbXcrxM_iyo_gNzGTV1kVrbj0mjh2MvPNw_E8ADYSVmgpqZ52aHUgpDFBIimTy3Cd6KhAC0KJwp_24u198WEqpyvwq8-FobDKXic2itrWhv6Rj6JYpiIUImKjoguL-Lw1eXNyGlAHKTpp7dtptBDZdT--4_Zt9npnC3n9Moom776Ot4Ouw0BghBJzVEBcRAX1nlDCGHTdhY7jgtkotcIyW1g0ZqYQpkicjFyeM_wy9EdUzlFMEtT_OO81uK64ZCRjajps9mLEdpPZpKSkrKSwS9gJeTKakRFXAcXRowVOZcAXjeIlT_dywOZwavtPe9nYxskduN05tf7bFoV3YcVV9-DmuO8ldx_ef0H2ubqLiz9y1mebPEBtclYjgP3j8lsLRH9e-7pp4eibwxLfwf_9M9DHZUWXSzt7APtXQuCHsFrVlXsMPv3wcpIZnRapECpH8OGcVmp0UXCB3APW0zAzXX1zarNxlDXn7DzJWrpnSPesoXvGPXg1PHPSVvdYOnq9Z03WSfosu8ClBy-G20heOnjRlavPaYygjTbqTg8etZwcluOSK_QIQg_UAo-HAVT_e_FOVR42dcAVeqdxinNu9mi4eK1lX7HxN2KGdchbVKi-BSVvhTgr-59h447SVEFhvracQM_hBops9nFnb_cJ3Ioa_FPk6Dqszs_O3VP07ub5s0aMfDi4arn9AwhFXAM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stereocontrolled+1%2C3-nitrogen+migration+to+access+chiral+%CE%B1-amino+acids&rft.jtitle=Nature+chemistry&rft.au=Ye%2C+Chen-Xi&rft.au=Shen%2C+Xiang&rft.au=Chen%2C+Shuming&rft.au=Meggers%2C+Eric&rft.date=2022-05-01&rft.pub=Nature+Publishing+Group+UK&rft.issn=1755-4330&rft.eissn=1755-4349&rft.volume=14&rft.issue=5&rft.spage=566&rft.epage=573&rft_id=info:doi/10.1038%2Fs41557-022-00895-3&rft.externalDocID=10_1038_s41557_022_00895_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon