Isoform Switching as a Mechanism of Acquired Resistance to Mutant Isocitrate Dehydrogenase Inhibition

Somatic mutations in cytosolic or mitochondrial isoforms of isocitrate dehydrogenase ( or , respectively) contribute to oncogenesis via production of the metabolite 2-hydroxyglutarate (2HG). Isoform-selective IDH inhibitors suppress 2HG production and induce clinical responses in patients with - and...

Full description

Saved in:
Bibliographic Details
Published inCancer discovery Vol. 8; no. 12; pp. 1540 - 1547
Main Authors Harding, James J., Lowery, Maeve A., Shih, Alan H., Schvartzman, Juan M., Hou, Shengqi, Famulare, Christopher, Patel, Minal, Roshal, Mikhail, Do, Richard K., Zehir, Ahmet, You, Daoqi, Selcuklu, S. Duygu, Viale, Agnes, Tallman, Martin S., Hyman, David M., Reznik, Ed, Finley, Lydia W.S., Papaemmanuil, Elli, Tosolini, Alessandra, Frattini, Mark G., MacBeth, Kyle J., Liu, Guowen, Fan, Bin, Choe, Sung, Wu, Bin, Janjigian, Yelena Y., Mellinghoff, Ingo K., Diaz, Luis A., Levine, Ross L., Abou-Alfa, Ghassan K., Stein, Eytan M., Intlekofer, Andrew M.
Format Journal Article
LanguageEnglish
Published United States 01.12.2018
Subjects
Online AccessGet full text
ISSN2159-8274
2159-8290
2159-8290
DOI10.1158/2159-8290.CD-18-0877

Cover

Loading…
Abstract Somatic mutations in cytosolic or mitochondrial isoforms of isocitrate dehydrogenase ( or , respectively) contribute to oncogenesis via production of the metabolite 2-hydroxyglutarate (2HG). Isoform-selective IDH inhibitors suppress 2HG production and induce clinical responses in patients with - and -mutant malignancies. Despite the promising activity of IDH inhibitors, the mechanisms that mediate resistance to IDH inhibition are poorly understood. Here, we describe four clinical cases that identify mutant IDH isoform switching, either from mutant IDH1 to mutant IDH2 or vice versa, as a mechanism of acquired clinical resistance to IDH inhibition in solid and liquid tumors. SIGNIFICANCE: IDH-mutant cancers can develop resistance to isoform-selective IDH inhibition by "isoform switching" from mutant IDH1 to mutant IDH2 or vice versa, thereby restoring 2HG production by the tumor. These findings underscore a role for continued 2HG production in tumor progression and suggest therapeutic strategies to prevent or overcome resistance. .
AbstractList Somatic mutations in cytosolic or mitochondrial isoforms of isocitrate dehydrogenase ( or , respectively) contribute to oncogenesis via production of the metabolite 2-hydroxyglutarate (2HG). Isoform-selective IDH inhibitors suppress 2HG production and induce clinical responses in patients with - and -mutant malignancies. Despite the promising activity of IDH inhibitors, the mechanisms that mediate resistance to IDH inhibition are poorly understood. Here, we describe four clinical cases that identify mutant IDH isoform switching, either from mutant IDH1 to mutant IDH2 or vice versa, as a mechanism of acquired clinical resistance to IDH inhibition in solid and liquid tumors. SIGNIFICANCE: IDH-mutant cancers can develop resistance to isoform-selective IDH inhibition by "isoform switching" from mutant IDH1 to mutant IDH2 or vice versa, thereby restoring 2HG production by the tumor. These findings underscore a role for continued 2HG production in tumor progression and suggest therapeutic strategies to prevent or overcome resistance. .
Somatic mutations in cytosolic or mitochondrial isoforms of isocitrate dehydrogenase (IDH1 or IDH2, respectively) contribute to oncogenesis via production of the metabolite 2-hydroxyglutarate (2HG). Isoform-selective IDH inhibitors suppress 2HG production and induce clinical responses in patients with IDH1- and IDH2-mutant malignancies. Despite the promising activity of IDH inhibitors, the mechanisms that mediate resistance to IDH inhibition are poorly understood. Here, we describe four clinical cases that identify mutant IDH isoform switching, either from mutant IDH1 to mutant IDH2 or vice versa, as a mechanism of acquired clinical resistance to IDH inhibition in solid and liquid tumors. SIGNIFICANCE: IDH-mutant cancers can develop resistance to isoform-selective IDH inhibition by "isoform switching" from mutant IDH1 to mutant IDH2 or vice versa, thereby restoring 2HG production by the tumor. These findings underscore a role for continued 2HG production in tumor progression and suggest therapeutic strategies to prevent or overcome resistance.This article is highlighted in the In This Issue feature, p. 1494.Somatic mutations in cytosolic or mitochondrial isoforms of isocitrate dehydrogenase (IDH1 or IDH2, respectively) contribute to oncogenesis via production of the metabolite 2-hydroxyglutarate (2HG). Isoform-selective IDH inhibitors suppress 2HG production and induce clinical responses in patients with IDH1- and IDH2-mutant malignancies. Despite the promising activity of IDH inhibitors, the mechanisms that mediate resistance to IDH inhibition are poorly understood. Here, we describe four clinical cases that identify mutant IDH isoform switching, either from mutant IDH1 to mutant IDH2 or vice versa, as a mechanism of acquired clinical resistance to IDH inhibition in solid and liquid tumors. SIGNIFICANCE: IDH-mutant cancers can develop resistance to isoform-selective IDH inhibition by "isoform switching" from mutant IDH1 to mutant IDH2 or vice versa, thereby restoring 2HG production by the tumor. These findings underscore a role for continued 2HG production in tumor progression and suggest therapeutic strategies to prevent or overcome resistance.This article is highlighted in the In This Issue feature, p. 1494.
Somatic mutations in cytosolic or mitochondrial isoforms of isocitrate dehydrogenase ( IDH1 or IDH2 , respectively) contribute to oncogenesis via production of the metabolite 2-hydroxyglutarate (2HG). Isoform-selective IDH inhibitors suppress 2HG production and induce clinical responses in patients with IDH1 - and IDH2 -mutant malignancies. Despite the promising activity of IDH inhibitors, the mechanisms that mediate resistance to IDH inhibition are poorly understood. Here, we describe four clinical cases that identify mutant IDH isoform switching, either from mutant IDH1 to mutant IDH2 or vice versa, as a mechanism of acquired clinical resistance to IDH inhibition in solid and liquid tumors.
Author You, Daoqi
Hou, Shengqi
Selcuklu, S. Duygu
Tallman, Martin S.
Do, Richard K.
Zehir, Ahmet
Wu, Bin
Liu, Guowen
Janjigian, Yelena Y.
Finley, Lydia W.S.
Roshal, Mikhail
Fan, Bin
Diaz, Luis A.
Lowery, Maeve A.
Tosolini, Alessandra
Schvartzman, Juan M.
Frattini, Mark G.
Famulare, Christopher
Papaemmanuil, Elli
Mellinghoff, Ingo K.
Viale, Agnes
MacBeth, Kyle J.
Levine, Ross L.
Patel, Minal
Stein, Eytan M.
Harding, James J.
Reznik, Ed
Abou-Alfa, Ghassan K.
Choe, Sung
Intlekofer, Andrew M.
Hyman, David M.
Shih, Alan H.
AuthorAffiliation 4 Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
9 Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
16 Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
17 Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
7 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
5 Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
14 Celgene Corporation, Summit, New Jersey
3 Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
6 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
15 Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
12 Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
10 Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, New York
8
AuthorAffiliation_xml – name: 5 Center for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 7 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 13 Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 4 Leukemia Service, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 11 Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 18 Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 2 Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 9 Gynecologic Medical Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 6 Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 17 Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 10 Early Drug Development Service, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 12 Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 3 Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 15 Agios Pharmaceuticals, Inc., Cambridge, Massachusetts
– name: 16 Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 1 Gastrointestinal Oncology Service, Memorial Sloan Kettering Cancer Center, New York, New York
– name: 14 Celgene Corporation, Summit, New Jersey
– name: 8 Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
Author_xml – sequence: 1
  givenname: James J.
  surname: Harding
  fullname: Harding, James J.
– sequence: 2
  givenname: Maeve A.
  surname: Lowery
  fullname: Lowery, Maeve A.
– sequence: 3
  givenname: Alan H.
  surname: Shih
  fullname: Shih, Alan H.
– sequence: 4
  givenname: Juan M.
  orcidid: 0000-0002-8036-1361
  surname: Schvartzman
  fullname: Schvartzman, Juan M.
– sequence: 5
  givenname: Shengqi
  surname: Hou
  fullname: Hou, Shengqi
– sequence: 6
  givenname: Christopher
  surname: Famulare
  fullname: Famulare, Christopher
– sequence: 7
  givenname: Minal
  surname: Patel
  fullname: Patel, Minal
– sequence: 8
  givenname: Mikhail
  surname: Roshal
  fullname: Roshal, Mikhail
– sequence: 9
  givenname: Richard K.
  orcidid: 0000-0002-6554-0310
  surname: Do
  fullname: Do, Richard K.
– sequence: 10
  givenname: Ahmet
  orcidid: 0000-0001-5406-4104
  surname: Zehir
  fullname: Zehir, Ahmet
– sequence: 11
  givenname: Daoqi
  surname: You
  fullname: You, Daoqi
– sequence: 12
  givenname: S. Duygu
  surname: Selcuklu
  fullname: Selcuklu, S. Duygu
– sequence: 13
  givenname: Agnes
  surname: Viale
  fullname: Viale, Agnes
– sequence: 14
  givenname: Martin S.
  surname: Tallman
  fullname: Tallman, Martin S.
– sequence: 15
  givenname: David M.
  surname: Hyman
  fullname: Hyman, David M.
– sequence: 16
  givenname: Ed
  orcidid: 0000-0002-6511-5947
  surname: Reznik
  fullname: Reznik, Ed
– sequence: 17
  givenname: Lydia W.S.
  orcidid: 0000-0003-4023-7574
  surname: Finley
  fullname: Finley, Lydia W.S.
– sequence: 18
  givenname: Elli
  surname: Papaemmanuil
  fullname: Papaemmanuil, Elli
– sequence: 19
  givenname: Alessandra
  surname: Tosolini
  fullname: Tosolini, Alessandra
– sequence: 20
  givenname: Mark G.
  surname: Frattini
  fullname: Frattini, Mark G.
– sequence: 21
  givenname: Kyle J.
  surname: MacBeth
  fullname: MacBeth, Kyle J.
– sequence: 22
  givenname: Guowen
  surname: Liu
  fullname: Liu, Guowen
– sequence: 23
  givenname: Bin
  surname: Fan
  fullname: Fan, Bin
– sequence: 24
  givenname: Sung
  surname: Choe
  fullname: Choe, Sung
– sequence: 25
  givenname: Bin
  surname: Wu
  fullname: Wu, Bin
– sequence: 26
  givenname: Yelena Y.
  surname: Janjigian
  fullname: Janjigian, Yelena Y.
– sequence: 27
  givenname: Ingo K.
  surname: Mellinghoff
  fullname: Mellinghoff, Ingo K.
– sequence: 28
  givenname: Luis A.
  surname: Diaz
  fullname: Diaz, Luis A.
– sequence: 29
  givenname: Ross L.
  surname: Levine
  fullname: Levine, Ross L.
– sequence: 30
  givenname: Ghassan K.
  orcidid: 0000-0002-1522-8054
  surname: Abou-Alfa
  fullname: Abou-Alfa, Ghassan K.
– sequence: 31
  givenname: Eytan M.
  surname: Stein
  fullname: Stein, Eytan M.
– sequence: 32
  givenname: Andrew M.
  surname: Intlekofer
  fullname: Intlekofer, Andrew M.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30355724$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtvFSEYJabGPuw_MIalm6kMwwzgwqS51-pN2pj4WBMGPu5gZqAdGE3_vUza3qgL2fDl4zzIOafoKMQACL2qyUVdt-ItrVtZCSrJxWZb1aIigvNn6OSwPjrMnB2j85R-kHKYZC3hL9BxQ5q25ZSdINil6OI84a-_fDaDD3usE9b4Bsygg08Tjg5fmrvFz2DxF0g-ZR0M4BzxzVLGjIuC8XnWGfAWhns7xz0EnQDvwuB7n30ML9Fzp8cE54_3Gfp-9eHb5lN1_fnjbnN5XRnGWa6oMz2hrneUQtOTpjHGWSGBid4S3QhrhTMdZ7V2zmorpQPGNbOi5a7jmjZn6P2D7u3ST2ANhPKvUd3OftLzvYraq79fgh_UPv5UXSdl13RF4M2jwBzvFkhZTT4ZGEcdIC5J0Zq2TcmRygJ9_afXweQp2wJ49wAwc0xpBqdKTHqNo1j7UdVErV2qtSi1lqY2W1ULtXZZyOwf8pP-f2m_AQGzpRY
CitedBy_id crossref_primary_10_1182_blood_2022018092
crossref_primary_10_3390_cancers15184573
crossref_primary_10_1016_j_pharmthera_2022_108170
crossref_primary_10_3390_cancers11020252
crossref_primary_10_1021_acsmedchemlett_4c00625
crossref_primary_10_1080_17474124_2024_2416230
crossref_primary_10_3390_curroncol32010044
crossref_primary_10_1080_10428194_2019_1602260
crossref_primary_10_1172_JCI154943
crossref_primary_10_1038_s41392_021_00572_w
crossref_primary_10_1016_S2468_1253_21_00171_0
crossref_primary_10_1016_j_clml_2021_05_004
crossref_primary_10_3390_ijms20081983
crossref_primary_10_3390_hemato2010008
crossref_primary_10_1042_BST20210277
crossref_primary_10_3390_cancers12020357
crossref_primary_10_3390_ijms25179226
crossref_primary_10_1080_14737140_2021_1982699
crossref_primary_10_1101_cshperspect_a041537
crossref_primary_10_1016_j_celrep_2022_111182
crossref_primary_10_1097_HS9_0000000000000583
crossref_primary_10_1158_0008_5472_CAN_21_3695
crossref_primary_10_3390_cancers14071689
crossref_primary_10_1016_j_patol_2022_06_004
crossref_primary_10_1016_j_lanepe_2024_101170
crossref_primary_10_12677_ACM_2023_1361289
crossref_primary_10_1182_blood_2022016867
crossref_primary_10_1158_2643_3230_BCD_20_0219
crossref_primary_10_1007_s10585_022_10189_0
crossref_primary_10_1007_s12094_022_02776_0
crossref_primary_10_1007_s00535_020_01712_9
crossref_primary_10_1038_s41419_021_03424_1
crossref_primary_10_1200_EDBK_280871
crossref_primary_10_3389_fonc_2022_931462
crossref_primary_10_3390_ijms22115574
crossref_primary_10_1016_S2468_1253_19_30189_X
crossref_primary_10_1055_s_0042_1748188
crossref_primary_10_1038_s41375_022_01536_x
crossref_primary_10_1101_cshperspect_a034959
crossref_primary_10_3390_ijms25147916
crossref_primary_10_1016_j_xcrm_2021_100469
crossref_primary_10_1093_neuonc_noae259
crossref_primary_10_1111_cas_15994
crossref_primary_10_3390_ijms22063135
crossref_primary_10_1038_s41698_022_00304_5
crossref_primary_10_1200_PO_21_00197
crossref_primary_10_3389_fonc_2019_00417
crossref_primary_10_3390_cancers13205243
crossref_primary_10_3390_cancers15143603
crossref_primary_10_1016_j_canlet_2022_215603
crossref_primary_10_1182_blood_2019001982
crossref_primary_10_1021_acsmedchemlett_9b00509
crossref_primary_10_1021_acs_chemrev_0c00383
crossref_primary_10_1002_cpt_1538
crossref_primary_10_1146_annurev_cancerbio_062822_025055
crossref_primary_10_1016_j_critrevonc_2024_104388
crossref_primary_10_1080_17474086_2022_2140137
crossref_primary_10_3390_molecules28072890
crossref_primary_10_1002_hep_32424
crossref_primary_10_1007_s40495_024_00378_8
crossref_primary_10_1097_HS9_0000000000000914
crossref_primary_10_3389_fonc_2025_1530144
crossref_primary_10_1016_j_drup_2020_100703
crossref_primary_10_1186_s40364_019_0173_z
crossref_primary_10_1016_j_semcancer_2021_03_034
crossref_primary_10_1126_sciadv_aaw4543
crossref_primary_10_1158_2159_8290_CD_21_1661
crossref_primary_10_1038_s41571_021_00521_0
crossref_primary_10_1016_j_esmoop_2024_103706
crossref_primary_10_1016_j_ctrv_2020_101998
crossref_primary_10_1016_j_bioorg_2024_107483
crossref_primary_10_1038_s41698_024_00646_2
crossref_primary_10_1111_cas_13990
crossref_primary_10_1080_23808993_2020_1792286
crossref_primary_10_1038_s41408_021_00497_1
crossref_primary_10_2147_CMAR_S326060
crossref_primary_10_1016_j_stem_2020_12_005
crossref_primary_10_1016_j_cellsig_2022_110279
crossref_primary_10_1016_j_hoc_2024_01_005
crossref_primary_10_1016_j_ctrv_2021_102334
crossref_primary_10_1089_ars_2019_7902
crossref_primary_10_1002_lci2_43
crossref_primary_10_1080_23808993_2020_1831909
crossref_primary_10_1182_bloodadvances_2020001503
crossref_primary_10_1016_j_apsb_2022_12_019
crossref_primary_10_1016_j_biosystems_2023_104984
crossref_primary_10_3390_cancers14071800
crossref_primary_10_1002_ajh_27005
crossref_primary_10_1073_pnas_2208176120
crossref_primary_10_1182_blood_2019003262
crossref_primary_10_1200_PO_23_00544
crossref_primary_10_1016_j_medj_2025_100575
crossref_primary_10_1158_2159_8290_CD_19_1011
crossref_primary_10_1016_j_jhep_2022_09_004
crossref_primary_10_1016_j_jhep_2022_04_038
crossref_primary_10_1093_clinchem_hvad171
crossref_primary_10_3390_biomedicines10061359
crossref_primary_10_3390_pharmaceutics13050762
crossref_primary_10_1016_j_drup_2019_100646
crossref_primary_10_1007_s12185_024_03827_8
crossref_primary_10_3390_cancers12092427
crossref_primary_10_15252_emmm_202012670
crossref_primary_10_1002_mc_23793
crossref_primary_10_1080_13543784_2021_1900115
crossref_primary_10_1084_jem_20200924
crossref_primary_10_7759_cureus_44802
crossref_primary_10_1007_s40278_019_56328_7
crossref_primary_10_3390_cancers13102358
crossref_primary_10_1007_s11899_021_00619_3
crossref_primary_10_1038_s41582_024_00967_7
crossref_primary_10_1158_0008_5472_CAN_22_1293
crossref_primary_10_1016_j_ajpath_2024_11_005
crossref_primary_10_1080_14728222_2022_2029412
crossref_primary_10_1097_PPO_0000000000000570
crossref_primary_10_1182_blood_2020006868
crossref_primary_10_3390_cancers14030712
crossref_primary_10_1016_S2152_2650_21_01230_1
crossref_primary_10_1016_j_jhep_2020_03_007
crossref_primary_10_1038_s41375_020_0996_5
crossref_primary_10_2147_BLCTT_S236446
crossref_primary_10_3389_fonc_2024_1515538
crossref_primary_10_1038_s41467_021_26849_w
crossref_primary_10_1016_j_esmoop_2022_100505
crossref_primary_10_3390_cancers11020260
crossref_primary_10_1186_s13045_021_01062_w
crossref_primary_10_1007_s11864_020_00767_3
crossref_primary_10_1080_23808993_2021_1915126
crossref_primary_10_1172_jci_insight_173646
crossref_primary_10_1038_s41467_021_22874_x
crossref_primary_10_1146_annurev_cancerbio_062822_120857
crossref_primary_10_1159_000520346
crossref_primary_10_1007_s12094_022_02873_0
crossref_primary_10_1038_s41571_021_00509_w
crossref_primary_10_1080_14656566_2020_1806822
crossref_primary_10_1007_s11864_023_01090_3
crossref_primary_10_1042_BST20230017
crossref_primary_10_3390_cancers13205055
crossref_primary_10_1101_mcs_a006007
crossref_primary_10_3390_cancers15051617
crossref_primary_10_1016_j_drup_2022_100821
crossref_primary_10_1016_j_jhep_2019_10_009
crossref_primary_10_1158_1078_0432_CCR_21_0611
Cites_doi 10.1016/j.jmoldx.2014.05.006
10.1016/j.cmet.2017.10.001
10.1038/nature13441
10.1056/NEJMoa0808710
10.1056/NEJMoa1716984
10.1016/j.ccr.2010.11.015
10.1002/path.2913
10.1038/s41586-018-0251-7
10.1101/gad.217406.113
10.1126/science.1164382
10.1038/nature10860
10.1038/nature08617
10.1038/nm.3788
10.1182/blood-2017-04-779447
10.1016/j.ccr.2010.01.020
10.1056/NEJMoa0903840
10.1021/acsmedchemlett.7b00421
10.1074/jbc.M112.435495
10.1016/j.ccell.2018.04.011
10.1038/s41591-018-0115-6
10.1001/jamaoncol.2017.4695
10.1016/j.celrep.2017.02.033
10.1182/blood-2017-04-779405
10.1126/science.1231677
10.1038/nm.4333
ContentType Journal Article
Copyright 2018 American Association for Cancer Research.
Copyright_xml – notice: 2018 American Association for Cancer Research.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1158/2159-8290.CD-18-0877
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2159-8290
EndPage 1547
ExternalDocumentID PMC6699636
30355724
10_1158_2159_8290_CD_18_0877
Genre Research Support, Non-U.S. Gov't
Journal Article
Case Reports
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: K08 CA181507
– fundername: NCI NIH HHS
  grantid: K08 CA201483
– fundername: NIH HHS
  grantid: U54 OD020355
– fundername: NINDS NIH HHS
  grantid: R35 NS105109
– fundername: NCI NIH HHS
  grantid: P30 CA008748
– fundername: NCI NIH HHS
  grantid: R35 CA197594
GroupedDBID ---
53G
5VS
AAYXX
ADBBV
ADCOW
AENEX
AFHIN
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BR6
BTFSW
CITATION
EBS
EJD
H13
KQ8
OK1
RCR
RHI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c474t-2fcb02fbf22e3b033ccfd89e48bd0a38dd8fc6741affdad99fe47a4d857f67a23
ISSN 2159-8274
2159-8290
IngestDate Thu Aug 21 14:07:11 EDT 2025
Fri Jul 11 05:44:52 EDT 2025
Thu Apr 03 06:56:27 EDT 2025
Thu Apr 24 22:51:12 EDT 2025
Tue Jul 01 00:56:24 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License 2018 American Association for Cancer Research.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-2fcb02fbf22e3b033ccfd89e48bd0a38dd8fc6741affdad99fe47a4d857f67a23
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
ObjectType-Feature-4
content type line 23
ObjectType-Report-1
ObjectType-Article-3
Authors’ Contributions
Conception and design: J.J. Harding, M.A. Lowery, A.H. Shih, Y.Y. Janjigian, L.A. Diaz, R.L. Levine, G.K. Abou-Alfa, E.M. Stein, A.M. Intlekofer
Writing, review, and/or revision of the manuscript: J.J. Harding, M.A. Lowery, A.H. Shih, J.M. Schvartzman, S. Hou, R.K. Do, A. Zehir
S.D. Selcuklu, M.S. Tallman, D.M. Hyman, E. Reznik, L.W.S. Finley, M.G. Frattini, K.J. MacBeth, G. Liu, B. Fan, B. Wu, Y.Y. Janjigian
I.K. Mellinghoff, L.A. Diaz, R.L. Levine, G.K. Abou-Alfa, E.M. Stein, A.M. Intlekofer
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J.J. Harding, MA. Lowery, A.H. Shih, J.M. Schvartzman, S. Hou, C. Famulare, M. Patel, M. Roshal, R.K. Do
Present address for M.A. Lowery: Trinity St. James Cancer Institute, Trinity College, Dublin, Ireland.
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J.J. Harding, M.A. Lowery, J.M. Schvartzman, S. Hou, A. Zehir, D. You, E. Reznik, E. Papaemmanuil, K.J. MacBeth, B. Fan, S. Choe, B. Wu, Y.Y. Janjigian, I.K. Mellinghoff, L.A. Diaz, G.K. Abou-Alfa, E.M. Stein, A.M. Intlekofer
Study supervision: M.A. Lowery, A. Tosolini, M.G. Frattini, Y.Y. Janjigian, G.K. Abou-Alfa, E.M. Stein, A.M. Intlekofer
A. Zehir, D. You, A. Viale, A. Tosolini, M.G. Frattini, K.J. MacBeth, G. Liu, B. Wu, I.K. Mellinghoff, G.K. Abou-Alfa, E.M. Stein, A.M. Indekofer
Development of methodology: A.H. Shih, D. You, G.K. Abou-Alfa, E.M. Stein, A.M. Intlekofer
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J.J. Harding, C. Famulare, M. Patel, M. Roshal, S.D. Selcuklu, D.M. Hyman, Y.Y. Janjigian, A.M. Intlekofer
E.M. Stein and A.M. Intlekofer jointly supervised this work.
ORCID 0000-0002-1522-8054
0000-0002-8036-1361
0000-0003-4023-7574
0000-0001-5406-4104
0000-0002-6511-5947
0000-0002-6554-0310
OpenAccessLink https://cancerdiscovery.aacrjournals.org/content/candisc/8/12/1540.full.pdf
PMID 30355724
PQID 2125304929
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6699636
proquest_miscellaneous_2125304929
pubmed_primary_30355724
crossref_citationtrail_10_1158_2159_8290_CD_18_0877
crossref_primary_10_1158_2159_8290_CD_18_0877
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Cancer discovery
PublicationTitleAlternate Cancer Discov
PublicationYear 2018
References Waitkus (2022060705151203000_bib13) 2018; 34
Yan (2022060705151203000_bib2) 2009; 360
Ward (2022060705151203000_bib23) 2013; 288
Losman (2022060705151203000_bib6) 2013; 27
Cheng (2022060705151203000_bib20) 2014; 16
Chan (2022060705151203000_bib22) 2015; 21
Parsons (2022060705151203000_bib1) 2008; 321
Saha (2022060705151203000_bib10) 2014; 513
Amatangelo (2022060705151203000_bib17) 2017; 130
Quek (2022060705151203000_bib19) 2018; 24
Salamanca-Cardona (2022060705151203000_bib25) 2017; 26
Intlekofer (2022060705151203000_bib18) 2018; 559
DiNardo (2022060705151203000_bib15) 2018; 378
Mardis (2022060705151203000_bib3) 2009; 361
Figueroa (2022060705151203000_bib12) 2010; 18
Popovici-Muller (2022060705151203000_bib16) 2018; 9
Losman (2022060705151203000_bib11) 2013; 339
Ward (2022060705151203000_bib8) 2010; 17
Lu (2022060705151203000_bib9) 2012; 483
Fathi (2022060705151203000_bib21) 2018; 4
Dang (2022060705151203000_bib7) 2009; 462
Amary (2022060705151203000_bib4) 2011; 224
Farshidfar (2022060705151203000_bib5) 2017; 18
Stein (2022060705151203000_bib14) 2017; 130
Zehir (2022060705151203000_bib24) 2017; 23
References_xml – volume: 16
  start-page: 504
  year: 2014
  ident: 2022060705151203000_bib20
  article-title: Detection of mutations in myeloid malignancies through paired-sample analysis of microdroplet-PCR deep sequencing data
  publication-title: J Mol Diagn
  doi: 10.1016/j.jmoldx.2014.05.006
– volume: 26
  start-page: 830
  year: 2017
  ident: 2022060705151203000_bib25
  article-title: In vivo imaging of glutamine metabolism to the oncometabolite 2-hydroxyglutarate in IDH1/2 mutant tumors
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2017.10.001
– volume: 513
  start-page: 110
  year: 2014
  ident: 2022060705151203000_bib10
  article-title: Mutant IDH inhibits HNF-4alpha to block hepatocyte differentiation and promote biliary cancer
  publication-title: Nature
  doi: 10.1038/nature13441
– volume: 360
  start-page: 765
  year: 2009
  ident: 2022060705151203000_bib2
  article-title: IDH1 and IDH2 mutations in gliomas
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0808710
– volume: 378
  start-page: 2386
  year: 2018
  ident: 2022060705151203000_bib15
  article-title: Durable remissions with ivosidenib in IDH1-mutated relapsed or refractory AML
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1716984
– volume: 18
  start-page: 553
  year: 2010
  ident: 2022060705151203000_bib12
  article-title: Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.11.015
– volume: 224
  start-page: 334
  year: 2011
  ident: 2022060705151203000_bib4
  article-title: IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours
  publication-title: J Pathol
  doi: 10.1002/path.2913
– volume: 559
  start-page: 125
  year: 2018
  ident: 2022060705151203000_bib18
  article-title: Acquired resistance to IDH inhibition through trans or cis dimer-interface mutations
  publication-title: Nature
  doi: 10.1038/s41586-018-0251-7
– volume: 27
  start-page: 836
  year: 2013
  ident: 2022060705151203000_bib6
  article-title: What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer
  publication-title: Genes Dev
  doi: 10.1101/gad.217406.113
– volume: 321
  start-page: 1807
  year: 2008
  ident: 2022060705151203000_bib1
  article-title: An integrated genomic analysis of human glioblastoma multiforme
  publication-title: Science
  doi: 10.1126/science.1164382
– volume: 483
  start-page: 474
  year: 2012
  ident: 2022060705151203000_bib9
  article-title: IDH mutation impairs histone demethylation and results in a block to cell differentiation
  publication-title: Nature
  doi: 10.1038/nature10860
– volume: 462
  start-page: 739
  year: 2009
  ident: 2022060705151203000_bib7
  article-title: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate
  publication-title: Nature
  doi: 10.1038/nature08617
– volume: 21
  start-page: 178
  year: 2015
  ident: 2022060705151203000_bib22
  article-title: Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia
  publication-title: Nat Med
  doi: 10.1038/nm.3788
– volume: 130
  start-page: 732
  year: 2017
  ident: 2022060705151203000_bib17
  article-title: Enasidenib induces acute myeloid leukemia cell differentiation to promote clinical response
  publication-title: Blood
  doi: 10.1182/blood-2017-04-779447
– volume: 17
  start-page: 225
  year: 2010
  ident: 2022060705151203000_bib8
  article-title: The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.01.020
– volume: 361
  start-page: 1058
  year: 2009
  ident: 2022060705151203000_bib3
  article-title: Recurring mutations found by sequencing an acute myeloid leukemia genome
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa0903840
– volume: 9
  start-page: 300
  year: 2018
  ident: 2022060705151203000_bib16
  article-title: Discovery of AG-120 (Ivosidenib): a first-in-class mutant IDH1 inhibitor for the treatment of IDH1 mutant cancers
  publication-title: ACS Med Chem Lett
  doi: 10.1021/acsmedchemlett.7b00421
– volume: 288
  start-page: 3804
  year: 2013
  ident: 2022060705151203000_bib23
  article-title: The potential for isocitrate dehydrogenase mutations to produce 2-hydroxyglutarate depends on allele specificity and subcellular compartmentalization
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M112.435495
– volume: 34
  start-page: 186
  year: 2018
  ident: 2022060705151203000_bib13
  article-title: Biological role and therapeutic potential of IDH mutations in cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.04.011
– volume: 24
  start-page: 1167
  year: 2018
  ident: 2022060705151203000_bib19
  article-title: Clonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenib
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0115-6
– volume: 4
  start-page: 1106
  year: 2018
  ident: 2022060705151203000_bib21
  article-title: Differentiation syndrome associated with enasidenib, a selective inhibitor of mutant isocitrate dehydrogenase 2: analysis of a phase 1/2 study
  publication-title: JAMA Oncol
  doi: 10.1001/jamaoncol.2017.4695
– volume: 18
  start-page: 2780
  year: 2017
  ident: 2022060705151203000_bib5
  article-title: Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.02.033
– volume: 130
  start-page: 722
  year: 2017
  ident: 2022060705151203000_bib14
  article-title: Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia
  publication-title: Blood
  doi: 10.1182/blood-2017-04-779405
– volume: 339
  start-page: 1621
  year: 2013
  ident: 2022060705151203000_bib11
  article-title: (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible
  publication-title: Science
  doi: 10.1126/science.1231677
– volume: 23
  start-page: 703
  year: 2017
  ident: 2022060705151203000_bib24
  article-title: Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients
  publication-title: Nat Med
  doi: 10.1038/nm.4333
SSID ssj0000494507
Score 2.582236
Snippet Somatic mutations in cytosolic or mitochondrial isoforms of isocitrate dehydrogenase ( or , respectively) contribute to oncogenesis via production of the...
Somatic mutations in cytosolic or mitochondrial isoforms of isocitrate dehydrogenase (IDH1 or IDH2, respectively) contribute to oncogenesis via production of...
Somatic mutations in cytosolic or mitochondrial isoforms of isocitrate dehydrogenase ( IDH1 or IDH2 , respectively) contribute to oncogenesis via production of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1540
SubjectTerms Acute Disease
Adenocarcinoma - drug therapy
Adenocarcinoma - enzymology
Adenocarcinoma - genetics
Aged
Drug Resistance - genetics
Enzyme Inhibitors - pharmacology
Female
Humans
Isocitrate Dehydrogenase - antagonists & inhibitors
Isocitrate Dehydrogenase - genetics
Isocitrate Dehydrogenase - metabolism
Isoenzymes - antagonists & inhibitors
Isoenzymes - genetics
Isoenzymes - metabolism
Leukemia, Myeloid - drug therapy
Leukemia, Myeloid - enzymology
Leukemia, Myeloid - genetics
Liver Neoplasms - drug therapy
Liver Neoplasms - enzymology
Liver Neoplasms - genetics
Male
Middle Aged
Mutation
Myelodysplastic Syndromes - drug therapy
Myelodysplastic Syndromes - enzymology
Myelodysplastic Syndromes - genetics
Title Isoform Switching as a Mechanism of Acquired Resistance to Mutant Isocitrate Dehydrogenase Inhibition
URI https://www.ncbi.nlm.nih.gov/pubmed/30355724
https://www.proquest.com/docview/2125304929
https://pubmed.ncbi.nlm.nih.gov/PMC6699636
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZbB6UvY_dlNzTYW3DnSL5IjyPdaLtlMNJC34wsS9jQ2SV2OtJfv3N8T5exy4sJliORfMdH39G5EfIuMNIPZzPpsMAqx0u4cZSvucON5woNO0QYo6G4-Bocn3unF_7FEDpUZ5dU8aG-2ZlX8j-owj3AFbNk_wHZflK4AZ8BX7gCwnD9K4xPygI553T5I6uamEhVTtV0YTCdF7tfIM3UGOtrMAuxRK6ILzLwzcUa2wdPTxCcukAtaJ50k6wKWAw2NtAbaRZnPWpDLQONLcWzUmPo52bQX6ukbY5Sh90OzqYv2IVt02QFmWszHJ0u0yxtMmxAw_T-qqVOr-GH3rTnsqdr9CWNTyZmYhTlYWoNBnRCOuipHatbMZYqNtKdQObc3Urdx0SFfrLD-ZEzw7LaTf-XEc5X32ugYVf2_bBJzb5VTLsbukvuMbArUJN__ib6QzkslgMEuU2xhHXf71r1gOx382yzmV9MlNuRtiPqcvaA3G9tDvqhEaCH5I7JH5H9RRtV8ZiYVo5oL0dUlVTRXo5oYWknR3SQI1oVtJEjOsgR3ZIjOsjRE3L-6ePZ_Nhp22842gu9ymFWxy6zsWXM8NjlXGubCGk8ESeu4iJJhNUBMFJlbaISKa3xQuUlwg9tECrGn5K9vMjNc0JhPAw1kyr2XE8BxTSudCXTnIMFDLvAhPDub4x0W5seW6RcRrWN6osIcYgQh2h-FM1EhDhMiNN_66qpzfKH5992CEWgRNEzpnJTrEt4mvnob2ZyQp41iPUzdlBPSLiFZf8AFmjfHsmztC7UHgQS9rfgxW_nfEkOhhfnFdmrVmvzGkhuFb-pBfMnqnel0w
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Isoform+Switching+as+a+Mechanism+of+Acquired+Resistance+to+Mutant+Isocitrate+Dehydrogenase+Inhibition&rft.jtitle=Cancer+discovery&rft.au=Harding%2C+James+J&rft.au=Lowery%2C+Maeve+A&rft.au=Shih%2C+Alan+H&rft.au=Schvartzman%2C+Juan+M&rft.date=2018-12-01&rft.eissn=2159-8290&rft.volume=8&rft.issue=12&rft.spage=1540&rft_id=info:doi/10.1158%2F2159-8290.CD-18-0877&rft_id=info%3Apmid%2F30355724&rft.externalDocID=30355724
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2159-8274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2159-8274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2159-8274&client=summon