COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning

One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains abnormalities, such as consolidation, resulting from COVID-19 viral pneumonia. In this study, research is conducted on efficiently detecting imaging...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 81; no. 21; pp. 30615 - 30645
Main Authors Haghanifar, Arman, Majdabadi, Mahdiyar Molahasani, Choi, Younhee, Deivalakshmi, S., Ko, Seokbum
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains abnormalities, such as consolidation, resulting from COVID-19 viral pneumonia. In this study, research is conducted on efficiently detecting imaging features of this type of pneumonia using deep convolutional neural networks in a large dataset. It is demonstrated that simple models, alongside the majority of pretrained networks in the literature, focus on irrelevant features for decision-making. In this paper, numerous chest x-ray images from several sources are collected, and one of the largest publicly accessible datasets is prepared. Finally, using the transfer learning paradigm, the well-known CheXNet model is utilized to develop COVID-CXNet. This powerful model is capable of detecting the novel coronavirus pneumonia based on relevant and meaningful features with precise localization. COVID-CXNet is a step towards a fully automated and robust COVID-19 detection system.
AbstractList One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains abnormalities, such as consolidation, resulting from COVID-19 viral pneumonia. In this study, research is conducted on efficiently detecting imaging features of this type of pneumonia using deep convolutional neural networks in a large dataset. It is demonstrated that simple models, alongside the majority of pretrained networks in the literature, focus on irrelevant features for decision-making. In this paper, numerous chest x-ray images from several sources are collected, and one of the largest publicly accessible datasets is prepared. Finally, using the transfer learning paradigm, the well-known CheXNet model is utilized to develop COVID-CXNet. This powerful model is capable of detecting the novel coronavirus pneumonia based on relevant and meaningful features with precise localization. COVID-CXNet is a step towards a fully automated and robust COVID-19 detection system.
One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains abnormalities, such as consolidation, resulting from COVID-19 viral pneumonia. In this study, research is conducted on efficiently detecting imaging features of this type of pneumonia using deep convolutional neural networks in a large dataset. It is demonstrated that simple models, alongside the majority of pretrained networks in the literature, focus on irrelevant features for decision-making. In this paper, numerous chest x-ray images from several sources are collected, and one of the largest publicly accessible datasets is prepared. Finally, using the transfer learning paradigm, the well-known CheXNet model is utilized to develop COVID-CXNet. This powerful model is capable of detecting the novel coronavirus pneumonia based on relevant and meaningful features with precise localization. COVID-CXNet is a step towards a fully automated and robust COVID-19 detection system.One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains abnormalities, such as consolidation, resulting from COVID-19 viral pneumonia. In this study, research is conducted on efficiently detecting imaging features of this type of pneumonia using deep convolutional neural networks in a large dataset. It is demonstrated that simple models, alongside the majority of pretrained networks in the literature, focus on irrelevant features for decision-making. In this paper, numerous chest x-ray images from several sources are collected, and one of the largest publicly accessible datasets is prepared. Finally, using the transfer learning paradigm, the well-known CheXNet model is utilized to develop COVID-CXNet. This powerful model is capable of detecting the novel coronavirus pneumonia based on relevant and meaningful features with precise localization. COVID-CXNet is a step towards a fully automated and robust COVID-19 detection system.
Author Haghanifar, Arman
Deivalakshmi, S.
Ko, Seokbum
Majdabadi, Mahdiyar Molahasani
Choi, Younhee
Author_xml – sequence: 1
  givenname: Arman
  surname: Haghanifar
  fullname: Haghanifar, Arman
  organization: Division of Biomedical Engineering, University of Saskatchewan
– sequence: 2
  givenname: Mahdiyar Molahasani
  surname: Majdabadi
  fullname: Majdabadi, Mahdiyar Molahasani
  organization: Department of Electrical & Computer EngineeringUniversity of Saskatchewan
– sequence: 3
  givenname: Younhee
  surname: Choi
  fullname: Choi, Younhee
  organization: Department of Electrical & Computer EngineeringUniversity of Saskatchewan
– sequence: 4
  givenname: S.
  surname: Deivalakshmi
  fullname: Deivalakshmi, S.
  organization: National Institute of Technology
– sequence: 5
  givenname: Seokbum
  orcidid: 0000-0002-9287-317X
  surname: Ko
  fullname: Ko, Seokbum
  email: seokbum.ko@usask.ca
  organization: Department of Electrical & Computer EngineeringUniversity of Saskatchewan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35431611$$D View this record in MEDLINE/PubMed
BookMark eNp9kctrFTEYxYNU7EP_ARcScOMmmtckGReC3PooFIug0l3IZL65TZmb3CYzQvvXm-u0PrroKq_fOZwv5xDtxRQBoeeMvmaU6jeFMSo5oZwTxlmjyM0jdMAaLYjWnO3VvTCU6IayfXRYyiWlTDVcPkH7opGCKcYO0NfV2Y-TY7I6_wLTW3wME_gpxDVerlmLQ8RDTnFyI_YXUCZ8TrK7xmHj1lDwXHZwD7DFI7gc6-kpejy4scCz2_UIff_44dvqMzk9-3Syen9KvNRyIrwbWgmdEXqgXHNNBy2oE92gwaledqw3g3NCAOVKCdNL1XmpvBOsq1NoEEfo3eK7nbsN9B7ilN1ot7lGy9c2uWD_f4nhwq7TT2ta00qqqsGrW4OcruY6mt2E4mEcXYQ0F8vrZ1FBqTEVfXkPvUxzjnU8W5ML1ppGiEq9-DfRnyh3v10BswA-p1IyDNaHyU0h7QKG0TJqd8XapVhbi7W_i7U3VcrvSe_cHxSJRVQqHNeQ_8Z-QPULmsuz3A
CitedBy_id crossref_primary_10_3390_s23020634
crossref_primary_10_1007_s00521_024_10053_0
crossref_primary_10_1007_s42979_022_01184_z
crossref_primary_10_3390_app12178668
crossref_primary_10_3390_math12101573
crossref_primary_10_1007_s11042_024_20153_7
crossref_primary_10_1016_j_bspc_2023_105365
crossref_primary_10_4108_eetinis_v12i1_6240
crossref_primary_10_3390_electronics12081860
crossref_primary_10_1007_s44174_024_00212_1
crossref_primary_10_1016_j_cmpb_2022_107141
crossref_primary_10_3390_electronics12051167
crossref_primary_10_1371_journal_pone_0319859
crossref_primary_10_1007_s00500_024_09866_x
crossref_primary_10_4236_jcc_2024_124012
crossref_primary_10_3390_jcm12103446
crossref_primary_10_1016_j_asoc_2024_111806
crossref_primary_10_1007_s00521_024_10854_3
crossref_primary_10_1007_s00354_022_00195_x
crossref_primary_10_3390_jcm12185852
crossref_primary_10_3390_s22197303
crossref_primary_10_1007_s11042_024_19046_6
crossref_primary_10_1007_s10479_022_05151_y
crossref_primary_10_1080_0954898X_2024_2350579
crossref_primary_10_1038_s41598_023_46493_2
crossref_primary_10_1007_s10278_023_00861_6
crossref_primary_10_1007_s42979_023_02573_8
crossref_primary_10_22399_ijcesen_425
crossref_primary_10_1371_journal_pone_0303049
crossref_primary_10_1038_s41598_022_27266_9
crossref_primary_10_3390_computers12050105
crossref_primary_10_1007_s11042_023_16419_1
crossref_primary_10_1016_j_neucom_2024_127317
crossref_primary_10_1007_s00354_023_00213_6
crossref_primary_10_1007_s00500_023_08508_y
crossref_primary_10_1109_ACCESS_2023_3325404
crossref_primary_10_31185_ejuow_Vol11_Iss2_439
crossref_primary_10_1007_s00521_023_08683_x
crossref_primary_10_1007_s11042_024_19755_y
crossref_primary_10_1007_s13198_024_02463_z
crossref_primary_10_1007_s11042_023_17210_y
crossref_primary_10_1515_bmt_2021_0272
crossref_primary_10_1155_2023_6341259
crossref_primary_10_3390_diagnostics13020248
crossref_primary_10_3390_s22103728
crossref_primary_10_1016_j_bbe_2023_06_003
crossref_primary_10_3390_diagnostics12112613
crossref_primary_10_46300_91016_2022_9_7
crossref_primary_10_3390_jimaging10080176
crossref_primary_10_1109_ACCESS_2024_3383781
crossref_primary_10_3390_healthcare11030410
crossref_primary_10_1016_j_eswa_2023_119900
crossref_primary_10_3389_fpubh_2023_1025746
crossref_primary_10_1016_j_ins_2024_120159
crossref_primary_10_1007_s13721_023_00437_y
Cites_doi 10.1109/JBHI.2020.3037127
10.1016/j.ejrad.2020.109272
10.1016/j.ejrad.2020.109236
10.1038/s41598-019-56847-4
10.1109/CONIELECOMP.2014.6808563
10.1183/09059180.00001314
10.1186/s40779-020-0233-6
10.1109/BIBM49941.2020.9313217
10.1016/j.compmedimag.2020.101718
10.1148/radiol.2020201343
10.1109/TII.2021.3057683
10.1145/2939672.2939778
10.1109/ICCV.2017.74
10.1148/radiol.2020200642
10.1109/ACCESS.2020.3003810
10.1016/j.radi.2020.04.017
10.1109/ICICoS48119.2019.8982455
10.1109/WACV.2017.58
10.1109/CVPR.2017.369
10.1101/2020.05.05.20091561
10.1016/j.cmpb.2020.105532
10.1145/3293353.3293408
10.1007/978-3-030-27272-2_28
10.1148/radiol.2020200527
10.1007/s11045-020-00703-6
10.1148/ryct.2020200033
10.1007/978-3-319-24574-4_28
10.1109/TMI.2013.2290491
10.1016/j.clinimag.2020.04.001
10.1148/radiol.2020200823
10.1007/s12559-020-09751-3
10.1016/j.cell.2018.02.010
10.1016/j.asoc.2021.107184
10.1109/ic-ETITE47903.2020.152
10.1109/ELNANO.2018.8477564
10.1016/S0734-189X(87)80186-X
10.1056/NEJMc2001272
10.1016/j.cmpb.2020.105581
10.1148/radiol.2020201365
10.1101/pdb.prot080887
10.1101/2020.05.05.20092346
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
DBID AAYXX
CITATION
NPM
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1007/s11042-022-12156-z
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
MEDLINE - Academic
DatabaseTitleList ABI/INFORM Global (Corporate)


PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 30645
ExternalDocumentID PMC8989406
35431611
10_1007_s11042_022_12156_z
Genre Journal Article
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
ABRTQ
NPM
PQGLB
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c474t-2bf94eb837f027270f730a3bf7ea6d4b1d8faa33e026638d46bc46ca31b1657e3
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Thu Aug 21 18:15:41 EDT 2025
Sun Aug 24 03:46:20 EDT 2025
Fri Jul 25 22:55:20 EDT 2025
Mon Jul 21 06:00:38 EDT 2025
Thu Apr 24 23:14:46 EDT 2025
Tue Jul 01 04:13:14 EDT 2025
Fri Feb 21 02:46:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords COVID-19
Imaging features
CheXNet
Convolutional neural networks
Chest X-ray
Language English
License The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-2bf94eb837f027270f730a3bf7ea6d4b1d8faa33e026638d46bc46ca31b1657e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9287-317X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8989406
PMID 35431611
PQID 2703198533
PQPubID 54626
PageCount 31
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8989406
proquest_miscellaneous_2652030088
proquest_journals_2703198533
pubmed_primary_35431611
crossref_citationtrail_10_1007_s11042_022_12156_z
crossref_primary_10_1007_s11042_022_12156_z
springer_journals_10_1007_s11042_022_12156_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationTitleAlternate Multimed Tools Appl
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References PizerSMAmburnEPAustinJDCromartieRGeselowitzAGreerTter Haar RomenyBZimmermanJBZuiderveldKAdaptive histogram equalization and its variationsComput Vis Graph Image Process198739335536810.1016/S0734-189X(87)80186-X
WangLLinZQWongACovid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray imagesSci Rep202010111210.1038/s41598-019-56847-4
Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E (2020) Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis, arXiv:2003.05037
Gomes JC, Barbosa V A d F, Santana MA, Bandeira J, Valenċa MJS, de Souza RE, Ismael AM, dos Santos WP (2020) Ikonos: an intelligent tool to support diagnosis of covid-19 by texture analysis of x-ray images. Res Biomed Eng:1–14
Ranjan E, Paul S, Kapoor S, Kar A, Sethuraman R, Sheet D (2018) Jointly learning convolutional representations to compress radiological images and classify thoracic diseases in the compressed domain. In: 11th indian conference on computer vision, graphics and image processing (ICVGIP)
Phan LT, Nguyen TV, Luong QC, Nguyen TV, Nguyen HT, Le HQ, Nguyen TT, Cao TM, Pham QD (2020) Importation and human-to-human transmission of a novel coronavirus in vietnam. N Engl J Med 382(9):872–874
Smith LN (2017) Cyclical learning rates for training neural networks. In: 2017 IEEE Winter conference on applications of computer vision (WACV). IEEE, pp 464–472
WangYZhangHChaeKJChoiYJinGYKoS-BNovel convolutional neural network architecture for improved pulmonary nodule classification on computed tomographyMultidim Syst Sign Process20203131163118310.1007/s11045-020-00703-6
Winther HB, Laser H, Gerbel S, Maschke SK, Hinrichs JB, Vogel-Claussen J, Wacker FK, Höper MM, Meyer BC (2020) Covid-19 image repository. [Online] Available: https://github.com/ml-workgroup/covid-19-image-repository
CandemirSJaegerSPalaniappanKMuscoJPSinghRKXueZKarargyrisAAntaniSThomaGMcDonaldCJLung segmentation in chest radiographs using anatomical atlases with nonrigid registrationIEEE Trans Med Imaging201333257759010.1109/TMI.2013.2290491
Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH (2020) Essentials for radiologists on covid-19: an update—radiology scientific expert panel
Sze-To A, Wang Z (2019) Tchexnet Detecting pneumothorax on chest x-ray images using deep transfer learning. In: International conference on image analysis and recognition. Springer, pp 325–332
Bai HX, Hsieh B, Xiong Z, Halsey K, Choi JW, Tran TML, Pan I, Shi L-B, Wang D-C, Mei J et al (2020) Performance of radiologists in differentiating covid-19 from viral pneumonia on chest ct. Radiology:200823
Tang S, Wang C, Nie J, Kumar N, Zhang Y, Xiong Z, Barnawi A (2021) Edl-covid: Ensemble deep learning for covid-19 cases detection from chest x-ray images. IEEE Transactions on Industrial Informatics
Mangal A, Kalia S, Rajgopal H, Rangarajan K, Namboodiri V, Banerjee S, Arora C (2020) Covidaid: Covid-19 detection using chest x-ray, arXiv:2004.09803
Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, Xue Z, Shen D, Shi Y (2020) Lung infection quantification of covid-19 in ct images with deep learning, arXiv:2003.04655
Khan AI, Shah JL, Bhat MM (2020) Coronet: A deep neural network for detection and diagnosis of covid-19 from chest x-ray images. Comput Methods Programs Biomed:105581
RioDCReverse transcription-polymerase chain reactionCold Spring Harbor Protocols2014201411pdbprot080, 88710.1101/pdb.prot080887
Tilve A, Nayak S, Vernekar S, Turi D, Shetgaonkar PR, Aswale S (2020) Pneumonia detection using deep learning approaches. In: 2020 International conference on emerging trends in information technology and engineering (ic-ETITE). IEEE, pp 1–8
Arriaga-Garcia EF, Sanchez-Yanez RE, Garcia-Hernandez M (2014) Image enhancement using bi-histogram equalization with adaptive sigmoid functions. In: 2014 International conference on electronics, communications and computers (CONIELECOMP). IEEE, pp 28–34
Barstugan M, Ozkaya U, Ozturk S (2020) Coronavirus (covid-19) classification using ct images by machine learning methods, arXiv:2003.09424
TabikSGómez-ríosAMartín-rodríguezJLSevillano-garcíaIRey-areaMCharteDGuiradoESuárezJLLuengoJValero-GonzálezMCovidgr dataset and covid-sdnet methodology for predicting covid-19 based on chest x-ray imagesIEEE J Biomed Health Inf202024123595360510.1109/JBHI.2020.3037127
Cozzi A, Schiaffino S, Arpaia F, Della Pepa G, Tritella S, Bertolotti P, Menicagli L, Monaco CG, Carbonaro LA, Spairani R et al (2020) Chest x-ray in the covid-19 pandemic: Radiologists’ real-world reader performance. Eur J Radiol 132:109272
Yao L, Poblenz E, Dagunts D, Covington B, Bernard D, Lyman K (2017) Learning to diagnose from scratch by exploiting dependencies among labels, arXiv:1710.10501
KermanyDSGoldbaumMCaiWValentimCCLiangHBaxterSLMcKeownAYangGWuXYanFIdentifying medical diagnoses and treatable diseases by image-based deep learningCell201817251122113110.1016/j.cell.2018.02.010
Finlayson SG, Chung HW, Kohane IS, Beam AL (2018) Adversarial attacks against medical deep learning systems, arXiv:1804.05296
FurlowBRadiation dose in computed tomographyRadiol Technol2010815437450
JaegerSCandemirSAntaniSWángY-XJLuP-XThomaGTwo public chest x-ray datasets for computer-aided screening of pulmonary diseasesQuant Imaging Med Surg201446475
IttyachenAMVijayanAIsacMThe forgotten view: Chest x-ray-lateral viewRespiratory Med Case Rep201722257259
Qian L, Yu J, Shi H (2020) Severe acute respiratory disease in a huanan seafood market worker: Images of an early casualty. Radiol Cardiothoracic Imaging 2(1):e200033
Godasu R, Zeng D, Sutrave K (2020) Transfer learning in medical image classification: Challenges and opportunities. In: Proceedings of the 15th Annual Conference of the Midwest Association for Information Systems, pp 28–2020
Zhang J, Xie Y, Li Y, Shen C, Xia Y (2020) Covid-19 screening on chest x-ray images using deep learning based anomaly detection, arXiv:2003.12338
RajaramanSSiegelmanJAldersonPOFolioLSFolioLRAntaniSIteratively pruned deep learning ensembles for covid-19 detection in chest x-raysIEEE Access20208115 041115 05010.1109/ACCESS.2020.3003810
Rubin GD, Ryerson CJ, Haramati LB, Sverzellati N, Kanne JP, Raoof S, Schluger NW, Volpi A, Yim J. -J., Martin IB et al (2020) The role of chest imaging in patient management during the covid-19 pandemic: a multinational consensus statement from the fleischner society. CHEST
Ai T et al (2020) Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-19) in china: a report of 1014 cases. Radiology:200642
Jacobi A, Chung M, Bernheim A, Eber C (2020) Portable chest x-ray in coronavirus disease-19 (covid-19): A pictorial review. Clinical Imaging
Castro-Zunti R, Park EH, Choi Y, Jin GY, Ko S-B (2020) Early detection of ankylosing spondylitis using texture features and statistical machine learning, and deep learning, with some patient age analysis. Comput Med Imaging Graph 82:101718
Stirenko S, Kochura Y, Alienin O, Rokovyi O, Gordienko Y, Gang P, Zeng W (2018) Chest x-ray analysis of tuberculosis by deep learning with segmentation and augmentation. In: 2018 IEEE 38Th international conference on electronics and nanotechnology (ELNANO). IEEE, pp 422–428
Almuhayar M, Lu HH-S, Iriawan N (2019) Classification of abnormality in chest x-ray images by transfer learning of chexnet. In: 2019 3Rd international conference on informatics and computational sciences (ICICos). IEEE, pp 1–6
Cellina M, Orsi M, Toluian T, Pittino C, Oliva G (2020) False negative chest x-rays in patients affected by covid-19 pneumonia and corresponding chest ct findings. Radiography
Brueck H (2020) There is only one way to know if you have the coronavirus, and it involves machines full of spit and mucus. [Online]. Available: https://www.businessinsider.com/how-to-know-if-you-have-the-coronavirus-pcr-test-2020-1https://www.businessinsider.com/how-to-know-if-you-have-the-coronavirus-pcr-test-2020-1
KimHHongHYoonSHDiagnostic performance of ct and reverse transcriptase polymerase chain reaction for coronavirus disease 2019: a meta-analysisRadiology20202963E145E15510.1148/radiol.2020201343
Cohen JP, Morrison P, Dao L (2020) Covid-19 image data collection, arXiv:2003.11597. [Online] Available: https://github.com/ieee8023/covid-chestxray-dataset
Zompatori M, Ciccarese F, Fasano L (2014) Overview of current lung imaging in acute respiratory distress syndrome
Pereira RM, Bertolini D, Teixeira LO, Silla Jr CN, Costa YM (2020) Covid-19 identification in chest x-ray images on flat and hierarchical classification scenarios. Comput Methods Programs Biomed:105532
Ribeiro MT, Singh S, Guestrin C (2016) “why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1135–1144
WHO (2020) Coronavirus disease 2019 (covid-19): situation report, 51. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/331475/nCoVsitrep11Mar2020-eng.pdf
Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2097–2106
Al-Karawi D, Al-Zaidi S, Polus N, Jassim S (2020) Ai based chest x-ray (cxr) scan texture analysis algorithm for digital test of covid-19 patients. medRxiv
Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp 618–626
JinYHA rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-ncov) infected pneumonia (standard version)Military Med Res202071410.1186/s40779-020-0233-6
Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional ne
12156_CR7
12156_CR6
12156_CR5
S Tabik (12156_CR49) 2020; 24
12156_CR9
12156_CR30
AM Ittyachen (12156_CR21) 2017; 22
12156_CR31
12156_CR4
12156_CR32
12156_CR3
12156_CR33
12156_CR2
12156_CR1
12156_CR35
12156_CR25
12156_CR26
12156_CR28
SM Pizer (12156_CR34) 1987; 39
N Dey (12156_CR13) 2020; 12
12156_CR60
12156_CR20
12156_CR22
Y Wang (12156_CR55) 2020; 31
12156_CR14
12156_CR58
12156_CR59
12156_CR16
L Wang (12156_CR53) 2020; 10
12156_CR17
12156_CR18
12156_CR19
YH Jin (12156_CR24) 2020; 7
12156_CR50
12156_CR51
DC Rio (12156_CR40) 2014; 2014
12156_CR52
12156_CR10
12156_CR54
12156_CR11
12156_CR12
12156_CR56
S Jaeger (12156_CR23) 2014; 4
12156_CR57
12156_CR47
12156_CR48
S Candemir (12156_CR8) 2013; 33
H Kim (12156_CR29) 2020; 296
S Rajaraman (12156_CR36) 2020; 8
B Furlow (12156_CR15) 2010; 81
DS Kermany (12156_CR27) 2018; 172
12156_CR41
12156_CR42
12156_CR43
12156_CR44
12156_CR45
12156_CR46
12156_CR37
12156_CR38
12156_CR39
References_xml – reference: WHO (2020) Coronavirus disease 2019 (covid-19): situation report, 51. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/331475/nCoVsitrep11Mar2020-eng.pdf
– reference: FurlowBRadiation dose in computed tomographyRadiol Technol2010815437450
– reference: Stirenko S, Kochura Y, Alienin O, Rokovyi O, Gordienko Y, Gang P, Zeng W (2018) Chest x-ray analysis of tuberculosis by deep learning with segmentation and augmentation. In: 2018 IEEE 38Th international conference on electronics and nanotechnology (ELNANO). IEEE, pp 422–428
– reference: Cozzi A, Schiaffino S, Arpaia F, Della Pepa G, Tritella S, Bertolotti P, Menicagli L, Monaco CG, Carbonaro LA, Spairani R et al (2020) Chest x-ray in the covid-19 pandemic: Radiologists’ real-world reader performance. Eur J Radiol 132:109272
– reference: Al-Karawi D, Al-Zaidi S, Polus N, Jassim S (2020) Ai based chest x-ray (cxr) scan texture analysis algorithm for digital test of covid-19 patients. medRxiv
– reference: Pereira RM, Bertolini D, Teixeira LO, Silla Jr CN, Costa YM (2020) Covid-19 identification in chest x-ray images on flat and hierarchical classification scenarios. Comput Methods Programs Biomed:105532
– reference: JaegerSCandemirSAntaniSWángY-XJLuP-XThomaGTwo public chest x-ray datasets for computer-aided screening of pulmonary diseasesQuant Imaging Med Surg201446475
– reference: IttyachenAMVijayanAIsacMThe forgotten view: Chest x-ray-lateral viewRespiratory Med Case Rep201722257259
– reference: Jacobi A, Chung M, Bernheim A, Eber C (2020) Portable chest x-ray in coronavirus disease-19 (covid-19): A pictorial review. Clinical Imaging
– reference: Barstugan M, Ozkaya U, Ozturk S (2020) Coronavirus (covid-19) classification using ct images by machine learning methods, arXiv:2003.09424
– reference: Mangal A, Kalia S, Rajgopal H, Rangarajan K, Namboodiri V, Banerjee S, Arora C (2020) Covidaid: Covid-19 detection using chest x-ray, arXiv:2004.09803
– reference: Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E (2020) Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis, arXiv:2003.05037
– reference: Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp 618–626
– reference: Zech JR, Forde JZ, Littman ML (2019) Individual predictions matter: Assessing the effect of data ordering in training fine-tuned cnns for medical imaging, arXiv:1912.03606
– reference: Castro-Zunti R, Park EH, Choi Y, Jin GY, Ko S-B (2020) Early detection of ankylosing spondylitis using texture features and statistical machine learning, and deep learning, with some patient age analysis. Comput Med Imaging Graph 82:101718
– reference: RajaramanSSiegelmanJAldersonPOFolioLSFolioLRAntaniSIteratively pruned deep learning ensembles for covid-19 detection in chest x-raysIEEE Access20208115 041115 05010.1109/ACCESS.2020.3003810
– reference: WangYZhangHChaeKJChoiYJinGYKoS-BNovel convolutional neural network architecture for improved pulmonary nodule classification on computed tomographyMultidim Syst Sign Process20203131163118310.1007/s11045-020-00703-6
– reference: Li X, Li C, Zhu D (2020) Covid-mobilexpert: On-device covid-19 screening using snapshots of chest x-ray
– reference: Gomes JC, Barbosa V A d F, Santana MA, Bandeira J, Valenċa MJS, de Souza RE, Ismael AM, dos Santos WP (2020) Ikonos: an intelligent tool to support diagnosis of covid-19 by texture analysis of x-ray images. Res Biomed Eng:1–14
– reference: Qian L, Yu J, Shi H (2020) Severe acute respiratory disease in a huanan seafood market worker: Images of an early casualty. Radiol Cardiothoracic Imaging 2(1):e200033
– reference: DeyNRajinikanthVFongSJKaiserMSMahmudMSocial group optimization–assisted kapur’s entropy and morphological segmentation for automated detection of covid-19 infection from computed tomography imagesCogn Comput20201251011102310.1007/s12559-020-09751-3
– reference: Hassanien AE, Mahdy LN, Ezzat KA, Elmousalami HH, Ella HA (2020) Automatic x-ray covid-19 lung image classification system based on multi-level thresholding and support vector machine. medRxiv
– reference: Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH (2020) Essentials for radiologists on covid-19: an update—radiology scientific expert panel
– reference: Cohen JP, Morrison P, Dao L (2020) Covid-19 image data collection, arXiv:2003.11597. [Online] Available: https://github.com/ieee8023/covid-chestxray-dataset
– reference: Godasu R, Zeng D, Sutrave K (2020) Transfer learning in medical image classification: Challenges and opportunities. In: Proceedings of the 15th Annual Conference of the Midwest Association for Information Systems, pp 28–2020
– reference: Zhang J, Xie Y, Li Y, Shen C, Xia Y (2020) Covid-19 screening on chest x-ray images using deep learning based anomaly detection, arXiv:2003.12338
– reference: Ranjan E, Paul S, Kapoor S, Kar A, Sethuraman R, Sheet D (2018) Jointly learning convolutional representations to compress radiological images and classify thoracic diseases in the compressed domain. In: 11th indian conference on computer vision, graphics and image processing (ICVGIP)
– reference: CandemirSJaegerSPalaniappanKMuscoJPSinghRKXueZKarargyrisAAntaniSThomaGMcDonaldCJLung segmentation in chest radiographs using anatomical atlases with nonrigid registrationIEEE Trans Med Imaging201333257759010.1109/TMI.2013.2290491
– reference: Yao L, Poblenz E, Dagunts D, Covington B, Bernard D, Lyman K (2017) Learning to diagnose from scratch by exploiting dependencies among labels, arXiv:1710.10501
– reference: Brueck H (2020) There is only one way to know if you have the coronavirus, and it involves machines full of spit and mucus. [Online]. Available: https://www.businessinsider.com/how-to-know-if-you-have-the-coronavirus-pcr-test-2020-1https://www.businessinsider.com/how-to-know-if-you-have-the-coronavirus-pcr-test-2020-1
– reference: Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2097–2106
– reference: Geffen D (2020) Covid-19 chest x-ray guideline. [Online] Available: https://www.uclahealth.org/radiology/covid-19-chest-x-ray-guideline
– reference: Smith LN (2017) Cyclical learning rates for training neural networks. In: 2017 IEEE Winter conference on applications of computer vision (WACV). IEEE, pp 464–472
– reference: RioDCReverse transcription-polymerase chain reactionCold Spring Harbor Protocols2014201411pdbprot080, 88710.1101/pdb.prot080887
– reference: Tang S, Wang C, Nie J, Kumar N, Zhang Y, Xiong Z, Barnawi A (2021) Edl-covid: Ensemble deep learning for covid-19 cases detection from chest x-ray images. IEEE Transactions on Industrial Informatics
– reference: Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241
– reference: KermanyDSGoldbaumMCaiWValentimCCLiangHBaxterSLMcKeownAYangGWuXYanFIdentifying medical diagnoses and treatable diseases by image-based deep learningCell201817251122113110.1016/j.cell.2018.02.010
– reference: Rubin GD, Ryerson CJ, Haramati LB, Sverzellati N, Kanne JP, Raoof S, Schluger NW, Volpi A, Yim J. -J., Martin IB et al (2020) The role of chest imaging in patient management during the covid-19 pandemic: a multinational consensus statement from the fleischner society. CHEST
– reference: Almuhayar M, Lu HH-S, Iriawan N (2019) Classification of abnormality in chest x-ray images by transfer learning of chexnet. In: 2019 3Rd international conference on informatics and computational sciences (ICICos). IEEE, pp 1–6
– reference: Bai HX, Hsieh B, Xiong Z, Halsey K, Choi JW, Tran TML, Pan I, Shi L-B, Wang D-C, Mei J et al (2020) Performance of radiologists in differentiating covid-19 from viral pneumonia on chest ct. Radiology:200823
– reference: Finlayson SG, Chung HW, Kohane IS, Beam AL (2018) Adversarial attacks against medical deep learning systems, arXiv:1804.05296
– reference: JinYHA rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-ncov) infected pneumonia (standard version)Military Med Res202071410.1186/s40779-020-0233-6
– reference: Phan LT, Nguyen TV, Luong QC, Nguyen TV, Nguyen HT, Le HQ, Nguyen TT, Cao TM, Pham QD (2020) Importation and human-to-human transmission of a novel coronavirus in vietnam. N Engl J Med 382(9):872–874
– reference: Kedia P, Katarya R et al (2021) Covnet-19: A deep learning model for the detection and analysis of covid-19 patients. Appl Soft Comput 104:107184
– reference: Ai T et al (2020) Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-19) in china: a report of 1014 cases. Radiology:200642
– reference: Serrano CO, Alonso E, Andrés M, Buitrago N, Vigara AP, Pajares MP, López EC, Moll GG, Espin IM, Barriocanal MB et al (2020) Pediatric chest x-ray in covid-19 infection. Eur J Radiol 131:109236
– reference: Khan AI, Shah JL, Bhat MM (2020) Coronet: A deep neural network for detection and diagnosis of covid-19 from chest x-ray images. Comput Methods Programs Biomed:105581
– reference: Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K et al (2017) Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning, arXiv:1711.05225
– reference: Zompatori M, Ciccarese F, Fasano L (2014) Overview of current lung imaging in acute respiratory distress syndrome
– reference: Ribeiro MT, Singh S, Guestrin C (2016) “why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1135–1144
– reference: Sze-To A, Wang Z (2019) Tchexnet Detecting pneumothorax on chest x-ray images using deep transfer learning. In: International conference on image analysis and recognition. Springer, pp 325–332
– reference: Arriaga-Garcia EF, Sanchez-Yanez RE, Garcia-Hernandez M (2014) Image enhancement using bi-histogram equalization with adaptive sigmoid functions. In: 2014 International conference on electronics, communications and computers (CONIELECOMP). IEEE, pp 28–34
– reference: Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, Xue Z, Shen D, Shi Y (2020) Lung infection quantification of covid-19 in ct images with deep learning, arXiv:2003.04655
– reference: TabikSGómez-ríosAMartín-rodríguezJLSevillano-garcíaIRey-areaMCharteDGuiradoESuárezJLLuengoJValero-GonzálezMCovidgr dataset and covid-sdnet methodology for predicting covid-19 based on chest x-ray imagesIEEE J Biomed Health Inf202024123595360510.1109/JBHI.2020.3037127
– reference: PizerSMAmburnEPAustinJDCromartieRGeselowitzAGreerTter Haar RomenyBZimmermanJBZuiderveldKAdaptive histogram equalization and its variationsComput Vis Graph Image Process198739335536810.1016/S0734-189X(87)80186-X
– reference: Winther HB, Laser H, Gerbel S, Maschke SK, Hinrichs JB, Vogel-Claussen J, Wacker FK, Höper MM, Meyer BC (2020) Covid-19 image repository. [Online] Available: https://github.com/ml-workgroup/covid-19-image-repository
– reference: Cellina M, Orsi M, Toluian T, Pittino C, Oliva G (2020) False negative chest x-rays in patients affected by covid-19 pneumonia and corresponding chest ct findings. Radiography
– reference: Tilve A, Nayak S, Vernekar S, Turi D, Shetgaonkar PR, Aswale S (2020) Pneumonia detection using deep learning approaches. In: 2020 International conference on emerging trends in information technology and engineering (ic-ETITE). IEEE, pp 1–8
– reference: KimHHongHYoonSHDiagnostic performance of ct and reverse transcriptase polymerase chain reaction for coronavirus disease 2019: a meta-analysisRadiology20202963E145E15510.1148/radiol.2020201343
– reference: WangLLinZQWongACovid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray imagesSci Rep202010111210.1038/s41598-019-56847-4
– ident: 12156_CR45
– volume: 24
  start-page: 3595
  issue: 12
  year: 2020
  ident: 12156_CR49
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2020.3037127
– ident: 12156_CR12
  doi: 10.1016/j.ejrad.2020.109272
– ident: 12156_CR17
– ident: 12156_CR44
  doi: 10.1016/j.ejrad.2020.109236
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 12156_CR53
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-56847-4
– ident: 12156_CR4
  doi: 10.1109/CONIELECOMP.2014.6808563
– ident: 12156_CR60
  doi: 10.1183/09059180.00001314
– volume: 7
  start-page: 4
  issue: 1
  year: 2020
  ident: 12156_CR24
  publication-title: Military Med Res
  doi: 10.1186/s40779-020-0233-6
– ident: 12156_CR59
– ident: 12156_CR30
  doi: 10.1109/BIBM49941.2020.9313217
– ident: 12156_CR9
  doi: 10.1016/j.compmedimag.2020.101718
– volume: 296
  start-page: E145
  issue: 3
  year: 2020
  ident: 12156_CR29
  publication-title: Radiology
  doi: 10.1148/radiol.2020201343
– ident: 12156_CR50
  doi: 10.1109/TII.2021.3057683
– ident: 12156_CR7
– ident: 12156_CR16
– ident: 12156_CR39
  doi: 10.1145/2939672.2939778
– ident: 12156_CR43
  doi: 10.1109/ICCV.2017.74
– ident: 12156_CR1
  doi: 10.1148/radiol.2020200642
– volume: 8
  start-page: 115 041
  year: 2020
  ident: 12156_CR36
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3003810
– ident: 12156_CR37
– volume: 81
  start-page: 437
  issue: 5
  year: 2010
  ident: 12156_CR15
  publication-title: Radiol Technol
– ident: 12156_CR10
  doi: 10.1016/j.radi.2020.04.017
– ident: 12156_CR58
– ident: 12156_CR3
  doi: 10.1109/ICICoS48119.2019.8982455
– ident: 12156_CR46
  doi: 10.1109/WACV.2017.58
– ident: 12156_CR54
  doi: 10.1109/CVPR.2017.369
– ident: 12156_CR2
  doi: 10.1101/2020.05.05.20091561
– ident: 12156_CR32
  doi: 10.1016/j.cmpb.2020.105532
– ident: 12156_CR11
– ident: 12156_CR38
  doi: 10.1145/3293353.3293408
– ident: 12156_CR48
  doi: 10.1007/978-3-030-27272-2_28
– ident: 12156_CR25
  doi: 10.1148/radiol.2020200527
– volume: 31
  start-page: 1163
  issue: 3
  year: 2020
  ident: 12156_CR55
  publication-title: Multidim Syst Sign Process
  doi: 10.1007/s11045-020-00703-6
– ident: 12156_CR35
  doi: 10.1148/ryct.2020200033
– ident: 12156_CR19
– ident: 12156_CR20
– volume: 22
  start-page: 257
  year: 2017
  ident: 12156_CR21
  publication-title: Respiratory Med Case Rep
– ident: 12156_CR41
  doi: 10.1007/978-3-319-24574-4_28
– ident: 12156_CR6
– volume: 33
  start-page: 577
  issue: 2
  year: 2013
  ident: 12156_CR8
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2013.2290491
– volume: 4
  start-page: 475
  issue: 6
  year: 2014
  ident: 12156_CR23
  publication-title: Quant Imaging Med Surg
– ident: 12156_CR22
  doi: 10.1016/j.clinimag.2020.04.001
– ident: 12156_CR57
– ident: 12156_CR31
– ident: 12156_CR5
  doi: 10.1148/radiol.2020200823
– volume: 12
  start-page: 1011
  issue: 5
  year: 2020
  ident: 12156_CR13
  publication-title: Cogn Comput
  doi: 10.1007/s12559-020-09751-3
– volume: 172
  start-page: 1122
  issue: 5
  year: 2018
  ident: 12156_CR27
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.010
– ident: 12156_CR26
  doi: 10.1016/j.asoc.2021.107184
– ident: 12156_CR51
  doi: 10.1109/ic-ETITE47903.2020.152
– ident: 12156_CR47
  doi: 10.1109/ELNANO.2018.8477564
– volume: 39
  start-page: 355
  issue: 3
  year: 1987
  ident: 12156_CR34
  publication-title: Comput Vis Graph Image Process
  doi: 10.1016/S0734-189X(87)80186-X
– ident: 12156_CR33
  doi: 10.1056/NEJMc2001272
– ident: 12156_CR28
  doi: 10.1016/j.cmpb.2020.105581
– ident: 12156_CR14
– ident: 12156_CR42
  doi: 10.1148/radiol.2020201365
– ident: 12156_CR52
– volume: 2014
  start-page: pdb
  issue: 11
  year: 2014
  ident: 12156_CR40
  publication-title: Cold Spring Harbor Protocols
  doi: 10.1101/pdb.prot080887
– ident: 12156_CR18
  doi: 10.1101/2020.05.05.20092346
– ident: 12156_CR56
SSID ssj0016524
Score 2.5613246
Snippet One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 30615
SubjectTerms Abnormalities
Artificial neural networks
Computer Communication Networks
Computer Science
Coronaviruses
COVID-19
Data Structures and Information Theory
Datasets
Decision making
Deep learning
Multimedia Information Systems
Neural networks
Pneumonia
Special Purpose and Application-Based Systems
Viral diseases
X-rays
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xeGEP42OMhS95Em_DUh27ccsbKlQFaUyTKOpbZMcXqARpRcvD-Ot3Tp2U8iXtLYovTuLzne90d78DOGzkmRaZE5yM9wZXRjje1jldkTPikhaSXvbFyb8uk15fXQyag1AUNqmy3auQZKmp58VuwpeS-Oxzj4iQ8KdPsNL0vjvt4n58UscOkmZoZdtqcDoPRSiVeXuOxePolY35OlXyRby0PIa66_Al2I_sZMbwDVjCYhPWqt4MLIjqJnx-BjT4Ff50fl-fn_LO4BKnx-wUfeSABtjstmizYcFyD2VAU5cdtNiAP5i_bHhP6mbCfHL8DXOIYxa6TNxsQb97dtXp8dBMgWdKqymPbd5WaMkfzWnJYt3ISbaNtLlGkzhlhWvlxkiJ5JSRTDqV2EwlmZHC0opqlN9guRgV-B2YJScHSU-gzIwyzmO4O9Raywxdq2mTCES1pmkWkMZ9w4u7dI6R7PmQEh_Skg_pUwQ_62fGM5yND6n3KlalQeYmaeyh-NtkfsgIftTDJC0-BGIKHD0SDW0OUmukWiPYnnG2fp0sYQGEiEAv8Lwm8EjciyPF8LZE5PY9OMkyiuCo2h3zz3r_L3b-j3wXVmO_c8sEtz1Ynj484j5ZRFN7UArAPwzYALs
  priority: 102
  providerName: Springer Nature
Title COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning
URI https://link.springer.com/article/10.1007/s11042-022-12156-z
https://www.ncbi.nlm.nih.gov/pubmed/35431611
https://www.proquest.com/docview/2703198533
https://www.proquest.com/docview/2652030088
https://pubmed.ncbi.nlm.nih.gov/PMC8989406
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6x2wsceCyvwFIZiRtY1LUbp1xQ2213AVEeoqicIjt2lkqQlm33wP56ZhInpazYU6rYbRqPZzzjGX8fwLNOnmmROcHRee9wZYTjfZ3jJwxGXJx4tMt0OPn9ND6Zqbfz3jxsuK1DWWVtE0tD7ZYZ7ZG_7BLQeh8XF_l69YsTaxRlVwOFxh600AQnGHy1huPpx89NHiHuBVrbpMNxbRTh2Ex1eE7Q0RSqZieEhZhf7C5Nl_zNy2WT_-ROyyVpchtuBl-SDSrh34FrvjiAWzVPAwtqewA3_gIdvAufRh--vjnio_nUb16xI09ZBGxg1W3RZ4uC5QRrgD9dsmmxOT8zv9niJ5qeNaNC-VPmvF-xwDhxeg9mk_GX0QkPxAo8U1pteNfmfeUtxqY5RqU4sjnquZE2197ETlnhktwYKT0GaKifTsU2U3FmpLA4otrL-7BfLAv_EJjFgMejzfAyM8o4wnN3XmstM--Sno0jEPWYpllAHSfyix_pFi-Z5JCiHNJSDulFBM-b76wqzI0rex_WokqD_q3T7WyJ4GnTjJpD6RBT-OU59sHJgSYOzWwEDyrJNo-TJUSAEBHoHZk3HQiVe7elWHwv0bmJjxO9pAhe1LNj-7f-_xaPrn6Lx3C9SzO1LG47hP3N2bl_gt7QxrZhL5kct6E1mAyHU7oef3s3bgdFwNZZd_AHvsQJow
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8QA88DG-AgOMBE9gUceukyAhhFpKy7YipA31LdixMypBWtZOaPuj-Bu5y1cpE3vbWxU7bpM7n-96d78fwLNOnkUic4Kj897hygjHkyjHTxiMOB17tMvUnLw31sMD9XHSnWzA76YXhsoqG5tYGmo3y-g_8lchAa0neLjIt_OfnFijKLvaUGhUarHjT35hyLZ4M-qjfJ-H4eD9fm_Ia1YBnqlILXlo80R5i4FZjiEZLpujkhtp88gb7ZQVLs6NkdJjdILK6ZS2mdKZkcIK3Y28xHUvwWUlZUI7Kh58aLMWuluT6MYdjiexqJt0qlY9QY0wVDtPeA6an64fhGe827NFmv9kassDcHATrteeK3tXqdot2PDFFtxoWCFYbSS24NpfEIe34XPv05dRn_cmY798zfqechY4wKrLImHTguUEooBLl9xdbMKPzAmb_kBDt2BUln_InPdzVvNbHN6Bgwt54Xdhs5gV_j4wi-GVRwvlZWaUcYQe73wURTLzLu5aHYBo3mma1RjnRLXxPV2hM5McUpRDWsohPQ3gRXvPvEL4OHf2diOqtN7ti3SlmwE8bYdxn1LyxRR-doxzUDnQoKJRD-BeJdn262QJSCBEANGazNsJhAG-PlJMv5VY4MT-iT5ZAC8b7Vj9rP8_xYPzn-IJXBnu7-2mu6PxzkO4GpLWlmV127C5PDr2j9APW9rHpfIz-HrRu-0PZfxAWA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwMGB8ZQwwEjyBtTpO4xYJIWhXrQzKQBvqW7BjZ1Riabd2Qtufxl_HXeKklIm97S2K3Xzd-XzXu_v9AJ43s1SJ1AqOznuTR1pY3lEZHmEwYuO2Q7tMzcmfhvHOQfRh1BqtwO-qF4bKKiubWBhqO0npP_KtkIDWO7i5yK3Ml0Xs9fpvp8ecGKQo01rRaZQqsuvOfmH4Nnsz6KGsX4Rhf3u_u8M9wwBPIxXNeWiyTuQMBmkZhmd4iwwVXkuTKadjGxlh25nWUjqMVFBRbRSbNIpTLYURcUs5ide9BqsKo6JmA1bfbw_3vtY5jLjlKXXbTY77svAtO2XjnqC2GKqkJ3SHmJ8vb4sXfN2LJZv_5G2L7bB_G9a8H8velYp3B1Zcvg63Ko4I5k3GOtz8C_DwLnzpfv426PHuaOjmr1nPUQYDB1h5WnTYOGcZQSrgpQsmLzbiJ_qMjY_Q7M0YFekfMuvclHm2i8N7cHAln_w-NPJJ7h4CMxhsObRXTqY60paw5K1TSsnU2XbLxAGI6psmqUc8J-KNn8kCq5nkkKAckkIOyXkAL-vfTEu8j0tnb1aiSvzanyULTQ3gWT2Mq5ZSMTp3k1Ocg8qB5hVNfAAPSsnWt5MFPIEQAaglmdcTCBF8eSQf_yiQwYkLFD20AF5V2rF4rP-_xcblb_EUruNKSz4OhruP4EZISlvU2G1CY35y6h6jUzY3T7z2M_h-1QvuD-s9Reo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-CXNet%3A+Detecting+COVID-19+in+frontal+chest+X-ray+images+using+deep+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Haghanifar%2C+Arman&rft.au=Majdabadi%2C+Mahdiyar+Molahasani&rft.au=Choi%2C+Younhee&rft.au=Deivalakshmi%2C+S.&rft.date=2022-09-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=21&rft.spage=30615&rft.epage=30645&rft_id=info:doi/10.1007%2Fs11042-022-12156-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_022_12156_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon