COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning
One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains abnormalities, such as consolidation, resulting from COVID-19 viral pneumonia. In this study, research is conducted on efficiently detecting imaging...
Saved in:
Published in | Multimedia tools and applications Vol. 81; no. 21; pp. 30615 - 30645 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains abnormalities, such as consolidation, resulting from COVID-19 viral pneumonia. In this study, research is conducted on efficiently detecting imaging features of this type of pneumonia using deep convolutional neural networks in a large dataset. It is demonstrated that simple models, alongside the majority of pretrained networks in the literature, focus on irrelevant features for decision-making. In this paper, numerous chest x-ray images from several sources are collected, and one of the largest publicly accessible datasets is prepared. Finally, using the transfer learning paradigm, the well-known CheXNet model is utilized to develop COVID-CXNet. This powerful model is capable of detecting the novel coronavirus pneumonia based on relevant and meaningful features with precise localization. COVID-CXNet is a step towards a fully automated and robust COVID-19 detection system. |
---|---|
AbstractList | One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains abnormalities, such as consolidation, resulting from COVID-19 viral pneumonia. In this study, research is conducted on efficiently detecting imaging features of this type of pneumonia using deep convolutional neural networks in a large dataset. It is demonstrated that simple models, alongside the majority of pretrained networks in the literature, focus on irrelevant features for decision-making. In this paper, numerous chest x-ray images from several sources are collected, and one of the largest publicly accessible datasets is prepared. Finally, using the transfer learning paradigm, the well-known CheXNet model is utilized to develop COVID-CXNet. This powerful model is capable of detecting the novel coronavirus pneumonia based on relevant and meaningful features with precise localization. COVID-CXNet is a step towards a fully automated and robust COVID-19 detection system. One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains abnormalities, such as consolidation, resulting from COVID-19 viral pneumonia. In this study, research is conducted on efficiently detecting imaging features of this type of pneumonia using deep convolutional neural networks in a large dataset. It is demonstrated that simple models, alongside the majority of pretrained networks in the literature, focus on irrelevant features for decision-making. In this paper, numerous chest x-ray images from several sources are collected, and one of the largest publicly accessible datasets is prepared. Finally, using the transfer learning paradigm, the well-known CheXNet model is utilized to develop COVID-CXNet. This powerful model is capable of detecting the novel coronavirus pneumonia based on relevant and meaningful features with precise localization. COVID-CXNet is a step towards a fully automated and robust COVID-19 detection system.One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains abnormalities, such as consolidation, resulting from COVID-19 viral pneumonia. In this study, research is conducted on efficiently detecting imaging features of this type of pneumonia using deep convolutional neural networks in a large dataset. It is demonstrated that simple models, alongside the majority of pretrained networks in the literature, focus on irrelevant features for decision-making. In this paper, numerous chest x-ray images from several sources are collected, and one of the largest publicly accessible datasets is prepared. Finally, using the transfer learning paradigm, the well-known CheXNet model is utilized to develop COVID-CXNet. This powerful model is capable of detecting the novel coronavirus pneumonia based on relevant and meaningful features with precise localization. COVID-CXNet is a step towards a fully automated and robust COVID-19 detection system. |
Author | Haghanifar, Arman Deivalakshmi, S. Ko, Seokbum Majdabadi, Mahdiyar Molahasani Choi, Younhee |
Author_xml | – sequence: 1 givenname: Arman surname: Haghanifar fullname: Haghanifar, Arman organization: Division of Biomedical Engineering, University of Saskatchewan – sequence: 2 givenname: Mahdiyar Molahasani surname: Majdabadi fullname: Majdabadi, Mahdiyar Molahasani organization: Department of Electrical & Computer EngineeringUniversity of Saskatchewan – sequence: 3 givenname: Younhee surname: Choi fullname: Choi, Younhee organization: Department of Electrical & Computer EngineeringUniversity of Saskatchewan – sequence: 4 givenname: S. surname: Deivalakshmi fullname: Deivalakshmi, S. organization: National Institute of Technology – sequence: 5 givenname: Seokbum orcidid: 0000-0002-9287-317X surname: Ko fullname: Ko, Seokbum email: seokbum.ko@usask.ca organization: Department of Electrical & Computer EngineeringUniversity of Saskatchewan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35431611$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kctrFTEYxYNU7EP_ARcScOMmmtckGReC3PooFIug0l3IZL65TZmb3CYzQvvXm-u0PrroKq_fOZwv5xDtxRQBoeeMvmaU6jeFMSo5oZwTxlmjyM0jdMAaLYjWnO3VvTCU6IayfXRYyiWlTDVcPkH7opGCKcYO0NfV2Y-TY7I6_wLTW3wME_gpxDVerlmLQ8RDTnFyI_YXUCZ8TrK7xmHj1lDwXHZwD7DFI7gc6-kpejy4scCz2_UIff_44dvqMzk9-3Syen9KvNRyIrwbWgmdEXqgXHNNBy2oE92gwaledqw3g3NCAOVKCdNL1XmpvBOsq1NoEEfo3eK7nbsN9B7ilN1ot7lGy9c2uWD_f4nhwq7TT2ta00qqqsGrW4OcruY6mt2E4mEcXYQ0F8vrZ1FBqTEVfXkPvUxzjnU8W5ML1ppGiEq9-DfRnyh3v10BswA-p1IyDNaHyU0h7QKG0TJqd8XapVhbi7W_i7U3VcrvSe_cHxSJRVQqHNeQ_8Z-QPULmsuz3A |
CitedBy_id | crossref_primary_10_3390_s23020634 crossref_primary_10_1007_s00521_024_10053_0 crossref_primary_10_1007_s42979_022_01184_z crossref_primary_10_3390_app12178668 crossref_primary_10_3390_math12101573 crossref_primary_10_1007_s11042_024_20153_7 crossref_primary_10_1016_j_bspc_2023_105365 crossref_primary_10_4108_eetinis_v12i1_6240 crossref_primary_10_3390_electronics12081860 crossref_primary_10_1007_s44174_024_00212_1 crossref_primary_10_1016_j_cmpb_2022_107141 crossref_primary_10_3390_electronics12051167 crossref_primary_10_1371_journal_pone_0319859 crossref_primary_10_1007_s00500_024_09866_x crossref_primary_10_4236_jcc_2024_124012 crossref_primary_10_3390_jcm12103446 crossref_primary_10_1016_j_asoc_2024_111806 crossref_primary_10_1007_s00521_024_10854_3 crossref_primary_10_1007_s00354_022_00195_x crossref_primary_10_3390_jcm12185852 crossref_primary_10_3390_s22197303 crossref_primary_10_1007_s11042_024_19046_6 crossref_primary_10_1007_s10479_022_05151_y crossref_primary_10_1080_0954898X_2024_2350579 crossref_primary_10_1038_s41598_023_46493_2 crossref_primary_10_1007_s10278_023_00861_6 crossref_primary_10_1007_s42979_023_02573_8 crossref_primary_10_22399_ijcesen_425 crossref_primary_10_1371_journal_pone_0303049 crossref_primary_10_1038_s41598_022_27266_9 crossref_primary_10_3390_computers12050105 crossref_primary_10_1007_s11042_023_16419_1 crossref_primary_10_1016_j_neucom_2024_127317 crossref_primary_10_1007_s00354_023_00213_6 crossref_primary_10_1007_s00500_023_08508_y crossref_primary_10_1109_ACCESS_2023_3325404 crossref_primary_10_31185_ejuow_Vol11_Iss2_439 crossref_primary_10_1007_s00521_023_08683_x crossref_primary_10_1007_s11042_024_19755_y crossref_primary_10_1007_s13198_024_02463_z crossref_primary_10_1007_s11042_023_17210_y crossref_primary_10_1515_bmt_2021_0272 crossref_primary_10_1155_2023_6341259 crossref_primary_10_3390_diagnostics13020248 crossref_primary_10_3390_s22103728 crossref_primary_10_1016_j_bbe_2023_06_003 crossref_primary_10_3390_diagnostics12112613 crossref_primary_10_46300_91016_2022_9_7 crossref_primary_10_3390_jimaging10080176 crossref_primary_10_1109_ACCESS_2024_3383781 crossref_primary_10_3390_healthcare11030410 crossref_primary_10_1016_j_eswa_2023_119900 crossref_primary_10_3389_fpubh_2023_1025746 crossref_primary_10_1016_j_ins_2024_120159 crossref_primary_10_1007_s13721_023_00437_y |
Cites_doi | 10.1109/JBHI.2020.3037127 10.1016/j.ejrad.2020.109272 10.1016/j.ejrad.2020.109236 10.1038/s41598-019-56847-4 10.1109/CONIELECOMP.2014.6808563 10.1183/09059180.00001314 10.1186/s40779-020-0233-6 10.1109/BIBM49941.2020.9313217 10.1016/j.compmedimag.2020.101718 10.1148/radiol.2020201343 10.1109/TII.2021.3057683 10.1145/2939672.2939778 10.1109/ICCV.2017.74 10.1148/radiol.2020200642 10.1109/ACCESS.2020.3003810 10.1016/j.radi.2020.04.017 10.1109/ICICoS48119.2019.8982455 10.1109/WACV.2017.58 10.1109/CVPR.2017.369 10.1101/2020.05.05.20091561 10.1016/j.cmpb.2020.105532 10.1145/3293353.3293408 10.1007/978-3-030-27272-2_28 10.1148/radiol.2020200527 10.1007/s11045-020-00703-6 10.1148/ryct.2020200033 10.1007/978-3-319-24574-4_28 10.1109/TMI.2013.2290491 10.1016/j.clinimag.2020.04.001 10.1148/radiol.2020200823 10.1007/s12559-020-09751-3 10.1016/j.cell.2018.02.010 10.1016/j.asoc.2021.107184 10.1109/ic-ETITE47903.2020.152 10.1109/ELNANO.2018.8477564 10.1016/S0734-189X(87)80186-X 10.1056/NEJMc2001272 10.1016/j.cmpb.2020.105581 10.1148/radiol.2020201365 10.1101/pdb.prot080887 10.1101/2020.05.05.20092346 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. |
DBID | AAYXX CITATION NPM 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1007/s11042-022-12156-z |
DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) MEDLINE - Academic |
DatabaseTitleList | ABI/INFORM Global (Corporate) PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 30645 |
ExternalDocumentID | PMC8989406 35431611 10_1007_s11042_022_12156_z |
Genre | Journal Article |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT ABRTQ NPM PQGLB 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c474t-2bf94eb837f027270f730a3bf7ea6d4b1d8faa33e026638d46bc46ca31b1657e3 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Thu Aug 21 18:15:41 EDT 2025 Sun Aug 24 03:46:20 EDT 2025 Fri Jul 25 22:55:20 EDT 2025 Mon Jul 21 06:00:38 EDT 2025 Thu Apr 24 23:14:46 EDT 2025 Tue Jul 01 04:13:14 EDT 2025 Fri Feb 21 02:46:02 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | COVID-19 Imaging features CheXNet Convolutional neural networks Chest X-ray |
Language | English |
License | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-2bf94eb837f027270f730a3bf7ea6d4b1d8faa33e026638d46bc46ca31b1657e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9287-317X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8989406 |
PMID | 35431611 |
PQID | 2703198533 |
PQPubID | 54626 |
PageCount | 31 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8989406 proquest_miscellaneous_2652030088 proquest_journals_2703198533 pubmed_primary_35431611 crossref_citationtrail_10_1007_s11042_022_12156_z crossref_primary_10_1007_s11042_022_12156_z springer_journals_10_1007_s11042_022_12156_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationTitleAlternate | Multimed Tools Appl |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | PizerSMAmburnEPAustinJDCromartieRGeselowitzAGreerTter Haar RomenyBZimmermanJBZuiderveldKAdaptive histogram equalization and its variationsComput Vis Graph Image Process198739335536810.1016/S0734-189X(87)80186-X WangLLinZQWongACovid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray imagesSci Rep202010111210.1038/s41598-019-56847-4 Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E (2020) Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis, arXiv:2003.05037 Gomes JC, Barbosa V A d F, Santana MA, Bandeira J, Valenċa MJS, de Souza RE, Ismael AM, dos Santos WP (2020) Ikonos: an intelligent tool to support diagnosis of covid-19 by texture analysis of x-ray images. Res Biomed Eng:1–14 Ranjan E, Paul S, Kapoor S, Kar A, Sethuraman R, Sheet D (2018) Jointly learning convolutional representations to compress radiological images and classify thoracic diseases in the compressed domain. In: 11th indian conference on computer vision, graphics and image processing (ICVGIP) Phan LT, Nguyen TV, Luong QC, Nguyen TV, Nguyen HT, Le HQ, Nguyen TT, Cao TM, Pham QD (2020) Importation and human-to-human transmission of a novel coronavirus in vietnam. N Engl J Med 382(9):872–874 Smith LN (2017) Cyclical learning rates for training neural networks. In: 2017 IEEE Winter conference on applications of computer vision (WACV). IEEE, pp 464–472 WangYZhangHChaeKJChoiYJinGYKoS-BNovel convolutional neural network architecture for improved pulmonary nodule classification on computed tomographyMultidim Syst Sign Process20203131163118310.1007/s11045-020-00703-6 Winther HB, Laser H, Gerbel S, Maschke SK, Hinrichs JB, Vogel-Claussen J, Wacker FK, Höper MM, Meyer BC (2020) Covid-19 image repository. [Online] Available: https://github.com/ml-workgroup/covid-19-image-repository CandemirSJaegerSPalaniappanKMuscoJPSinghRKXueZKarargyrisAAntaniSThomaGMcDonaldCJLung segmentation in chest radiographs using anatomical atlases with nonrigid registrationIEEE Trans Med Imaging201333257759010.1109/TMI.2013.2290491 Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH (2020) Essentials for radiologists on covid-19: an update—radiology scientific expert panel Sze-To A, Wang Z (2019) Tchexnet Detecting pneumothorax on chest x-ray images using deep transfer learning. In: International conference on image analysis and recognition. Springer, pp 325–332 Bai HX, Hsieh B, Xiong Z, Halsey K, Choi JW, Tran TML, Pan I, Shi L-B, Wang D-C, Mei J et al (2020) Performance of radiologists in differentiating covid-19 from viral pneumonia on chest ct. Radiology:200823 Tang S, Wang C, Nie J, Kumar N, Zhang Y, Xiong Z, Barnawi A (2021) Edl-covid: Ensemble deep learning for covid-19 cases detection from chest x-ray images. IEEE Transactions on Industrial Informatics Mangal A, Kalia S, Rajgopal H, Rangarajan K, Namboodiri V, Banerjee S, Arora C (2020) Covidaid: Covid-19 detection using chest x-ray, arXiv:2004.09803 Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, Xue Z, Shen D, Shi Y (2020) Lung infection quantification of covid-19 in ct images with deep learning, arXiv:2003.04655 Khan AI, Shah JL, Bhat MM (2020) Coronet: A deep neural network for detection and diagnosis of covid-19 from chest x-ray images. Comput Methods Programs Biomed:105581 RioDCReverse transcription-polymerase chain reactionCold Spring Harbor Protocols2014201411pdbprot080, 88710.1101/pdb.prot080887 Tilve A, Nayak S, Vernekar S, Turi D, Shetgaonkar PR, Aswale S (2020) Pneumonia detection using deep learning approaches. In: 2020 International conference on emerging trends in information technology and engineering (ic-ETITE). IEEE, pp 1–8 Arriaga-Garcia EF, Sanchez-Yanez RE, Garcia-Hernandez M (2014) Image enhancement using bi-histogram equalization with adaptive sigmoid functions. In: 2014 International conference on electronics, communications and computers (CONIELECOMP). IEEE, pp 28–34 Barstugan M, Ozkaya U, Ozturk S (2020) Coronavirus (covid-19) classification using ct images by machine learning methods, arXiv:2003.09424 TabikSGómez-ríosAMartín-rodríguezJLSevillano-garcíaIRey-areaMCharteDGuiradoESuárezJLLuengoJValero-GonzálezMCovidgr dataset and covid-sdnet methodology for predicting covid-19 based on chest x-ray imagesIEEE J Biomed Health Inf202024123595360510.1109/JBHI.2020.3037127 Cozzi A, Schiaffino S, Arpaia F, Della Pepa G, Tritella S, Bertolotti P, Menicagli L, Monaco CG, Carbonaro LA, Spairani R et al (2020) Chest x-ray in the covid-19 pandemic: Radiologists’ real-world reader performance. Eur J Radiol 132:109272 Yao L, Poblenz E, Dagunts D, Covington B, Bernard D, Lyman K (2017) Learning to diagnose from scratch by exploiting dependencies among labels, arXiv:1710.10501 KermanyDSGoldbaumMCaiWValentimCCLiangHBaxterSLMcKeownAYangGWuXYanFIdentifying medical diagnoses and treatable diseases by image-based deep learningCell201817251122113110.1016/j.cell.2018.02.010 Finlayson SG, Chung HW, Kohane IS, Beam AL (2018) Adversarial attacks against medical deep learning systems, arXiv:1804.05296 FurlowBRadiation dose in computed tomographyRadiol Technol2010815437450 JaegerSCandemirSAntaniSWángY-XJLuP-XThomaGTwo public chest x-ray datasets for computer-aided screening of pulmonary diseasesQuant Imaging Med Surg201446475 IttyachenAMVijayanAIsacMThe forgotten view: Chest x-ray-lateral viewRespiratory Med Case Rep201722257259 Qian L, Yu J, Shi H (2020) Severe acute respiratory disease in a huanan seafood market worker: Images of an early casualty. Radiol Cardiothoracic Imaging 2(1):e200033 Godasu R, Zeng D, Sutrave K (2020) Transfer learning in medical image classification: Challenges and opportunities. In: Proceedings of the 15th Annual Conference of the Midwest Association for Information Systems, pp 28–2020 Zhang J, Xie Y, Li Y, Shen C, Xia Y (2020) Covid-19 screening on chest x-ray images using deep learning based anomaly detection, arXiv:2003.12338 RajaramanSSiegelmanJAldersonPOFolioLSFolioLRAntaniSIteratively pruned deep learning ensembles for covid-19 detection in chest x-raysIEEE Access20208115 041115 05010.1109/ACCESS.2020.3003810 Rubin GD, Ryerson CJ, Haramati LB, Sverzellati N, Kanne JP, Raoof S, Schluger NW, Volpi A, Yim J. -J., Martin IB et al (2020) The role of chest imaging in patient management during the covid-19 pandemic: a multinational consensus statement from the fleischner society. CHEST Ai T et al (2020) Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-19) in china: a report of 1014 cases. Radiology:200642 Jacobi A, Chung M, Bernheim A, Eber C (2020) Portable chest x-ray in coronavirus disease-19 (covid-19): A pictorial review. Clinical Imaging Castro-Zunti R, Park EH, Choi Y, Jin GY, Ko S-B (2020) Early detection of ankylosing spondylitis using texture features and statistical machine learning, and deep learning, with some patient age analysis. Comput Med Imaging Graph 82:101718 Stirenko S, Kochura Y, Alienin O, Rokovyi O, Gordienko Y, Gang P, Zeng W (2018) Chest x-ray analysis of tuberculosis by deep learning with segmentation and augmentation. In: 2018 IEEE 38Th international conference on electronics and nanotechnology (ELNANO). IEEE, pp 422–428 Almuhayar M, Lu HH-S, Iriawan N (2019) Classification of abnormality in chest x-ray images by transfer learning of chexnet. In: 2019 3Rd international conference on informatics and computational sciences (ICICos). IEEE, pp 1–6 Cellina M, Orsi M, Toluian T, Pittino C, Oliva G (2020) False negative chest x-rays in patients affected by covid-19 pneumonia and corresponding chest ct findings. Radiography Brueck H (2020) There is only one way to know if you have the coronavirus, and it involves machines full of spit and mucus. [Online]. Available: https://www.businessinsider.com/how-to-know-if-you-have-the-coronavirus-pcr-test-2020-1https://www.businessinsider.com/how-to-know-if-you-have-the-coronavirus-pcr-test-2020-1 KimHHongHYoonSHDiagnostic performance of ct and reverse transcriptase polymerase chain reaction for coronavirus disease 2019: a meta-analysisRadiology20202963E145E15510.1148/radiol.2020201343 Cohen JP, Morrison P, Dao L (2020) Covid-19 image data collection, arXiv:2003.11597. [Online] Available: https://github.com/ieee8023/covid-chestxray-dataset Zompatori M, Ciccarese F, Fasano L (2014) Overview of current lung imaging in acute respiratory distress syndrome Pereira RM, Bertolini D, Teixeira LO, Silla Jr CN, Costa YM (2020) Covid-19 identification in chest x-ray images on flat and hierarchical classification scenarios. Comput Methods Programs Biomed:105532 Ribeiro MT, Singh S, Guestrin C (2016) “why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1135–1144 WHO (2020) Coronavirus disease 2019 (covid-19): situation report, 51. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/331475/nCoVsitrep11Mar2020-eng.pdf Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2097–2106 Al-Karawi D, Al-Zaidi S, Polus N, Jassim S (2020) Ai based chest x-ray (cxr) scan texture analysis algorithm for digital test of covid-19 patients. medRxiv Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp 618–626 JinYHA rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-ncov) infected pneumonia (standard version)Military Med Res202071410.1186/s40779-020-0233-6 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional ne 12156_CR7 12156_CR6 12156_CR5 S Tabik (12156_CR49) 2020; 24 12156_CR9 12156_CR30 AM Ittyachen (12156_CR21) 2017; 22 12156_CR31 12156_CR4 12156_CR32 12156_CR3 12156_CR33 12156_CR2 12156_CR1 12156_CR35 12156_CR25 12156_CR26 12156_CR28 SM Pizer (12156_CR34) 1987; 39 N Dey (12156_CR13) 2020; 12 12156_CR60 12156_CR20 12156_CR22 Y Wang (12156_CR55) 2020; 31 12156_CR14 12156_CR58 12156_CR59 12156_CR16 L Wang (12156_CR53) 2020; 10 12156_CR17 12156_CR18 12156_CR19 YH Jin (12156_CR24) 2020; 7 12156_CR50 12156_CR51 DC Rio (12156_CR40) 2014; 2014 12156_CR52 12156_CR10 12156_CR54 12156_CR11 12156_CR12 12156_CR56 S Jaeger (12156_CR23) 2014; 4 12156_CR57 12156_CR47 12156_CR48 S Candemir (12156_CR8) 2013; 33 H Kim (12156_CR29) 2020; 296 S Rajaraman (12156_CR36) 2020; 8 B Furlow (12156_CR15) 2010; 81 DS Kermany (12156_CR27) 2018; 172 12156_CR41 12156_CR42 12156_CR43 12156_CR44 12156_CR45 12156_CR46 12156_CR37 12156_CR38 12156_CR39 |
References_xml | – reference: WHO (2020) Coronavirus disease 2019 (covid-19): situation report, 51. [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/331475/nCoVsitrep11Mar2020-eng.pdf – reference: FurlowBRadiation dose in computed tomographyRadiol Technol2010815437450 – reference: Stirenko S, Kochura Y, Alienin O, Rokovyi O, Gordienko Y, Gang P, Zeng W (2018) Chest x-ray analysis of tuberculosis by deep learning with segmentation and augmentation. In: 2018 IEEE 38Th international conference on electronics and nanotechnology (ELNANO). IEEE, pp 422–428 – reference: Cozzi A, Schiaffino S, Arpaia F, Della Pepa G, Tritella S, Bertolotti P, Menicagli L, Monaco CG, Carbonaro LA, Spairani R et al (2020) Chest x-ray in the covid-19 pandemic: Radiologists’ real-world reader performance. Eur J Radiol 132:109272 – reference: Al-Karawi D, Al-Zaidi S, Polus N, Jassim S (2020) Ai based chest x-ray (cxr) scan texture analysis algorithm for digital test of covid-19 patients. medRxiv – reference: Pereira RM, Bertolini D, Teixeira LO, Silla Jr CN, Costa YM (2020) Covid-19 identification in chest x-ray images on flat and hierarchical classification scenarios. Comput Methods Programs Biomed:105532 – reference: JaegerSCandemirSAntaniSWángY-XJLuP-XThomaGTwo public chest x-ray datasets for computer-aided screening of pulmonary diseasesQuant Imaging Med Surg201446475 – reference: IttyachenAMVijayanAIsacMThe forgotten view: Chest x-ray-lateral viewRespiratory Med Case Rep201722257259 – reference: Jacobi A, Chung M, Bernheim A, Eber C (2020) Portable chest x-ray in coronavirus disease-19 (covid-19): A pictorial review. Clinical Imaging – reference: Barstugan M, Ozkaya U, Ozturk S (2020) Coronavirus (covid-19) classification using ct images by machine learning methods, arXiv:2003.09424 – reference: Mangal A, Kalia S, Rajgopal H, Rangarajan K, Namboodiri V, Banerjee S, Arora C (2020) Covidaid: Covid-19 detection using chest x-ray, arXiv:2004.09803 – reference: Gozes O, Frid-Adar M, Greenspan H, Browning PD, Zhang H, Ji W, Bernheim A, Siegel E (2020) Rapid ai development cycle for the coronavirus (covid-19) pandemic: Initial results for automated detection & patient monitoring using deep learning ct image analysis, arXiv:2003.05037 – reference: Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2017) Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp 618–626 – reference: Zech JR, Forde JZ, Littman ML (2019) Individual predictions matter: Assessing the effect of data ordering in training fine-tuned cnns for medical imaging, arXiv:1912.03606 – reference: Castro-Zunti R, Park EH, Choi Y, Jin GY, Ko S-B (2020) Early detection of ankylosing spondylitis using texture features and statistical machine learning, and deep learning, with some patient age analysis. Comput Med Imaging Graph 82:101718 – reference: RajaramanSSiegelmanJAldersonPOFolioLSFolioLRAntaniSIteratively pruned deep learning ensembles for covid-19 detection in chest x-raysIEEE Access20208115 041115 05010.1109/ACCESS.2020.3003810 – reference: WangYZhangHChaeKJChoiYJinGYKoS-BNovel convolutional neural network architecture for improved pulmonary nodule classification on computed tomographyMultidim Syst Sign Process20203131163118310.1007/s11045-020-00703-6 – reference: Li X, Li C, Zhu D (2020) Covid-mobilexpert: On-device covid-19 screening using snapshots of chest x-ray – reference: Gomes JC, Barbosa V A d F, Santana MA, Bandeira J, Valenċa MJS, de Souza RE, Ismael AM, dos Santos WP (2020) Ikonos: an intelligent tool to support diagnosis of covid-19 by texture analysis of x-ray images. Res Biomed Eng:1–14 – reference: Qian L, Yu J, Shi H (2020) Severe acute respiratory disease in a huanan seafood market worker: Images of an early casualty. Radiol Cardiothoracic Imaging 2(1):e200033 – reference: DeyNRajinikanthVFongSJKaiserMSMahmudMSocial group optimization–assisted kapur’s entropy and morphological segmentation for automated detection of covid-19 infection from computed tomography imagesCogn Comput20201251011102310.1007/s12559-020-09751-3 – reference: Hassanien AE, Mahdy LN, Ezzat KA, Elmousalami HH, Ella HA (2020) Automatic x-ray covid-19 lung image classification system based on multi-level thresholding and support vector machine. medRxiv – reference: Kanne JP, Little BP, Chung JH, Elicker BM, Ketai LH (2020) Essentials for radiologists on covid-19: an update—radiology scientific expert panel – reference: Cohen JP, Morrison P, Dao L (2020) Covid-19 image data collection, arXiv:2003.11597. [Online] Available: https://github.com/ieee8023/covid-chestxray-dataset – reference: Godasu R, Zeng D, Sutrave K (2020) Transfer learning in medical image classification: Challenges and opportunities. In: Proceedings of the 15th Annual Conference of the Midwest Association for Information Systems, pp 28–2020 – reference: Zhang J, Xie Y, Li Y, Shen C, Xia Y (2020) Covid-19 screening on chest x-ray images using deep learning based anomaly detection, arXiv:2003.12338 – reference: Ranjan E, Paul S, Kapoor S, Kar A, Sethuraman R, Sheet D (2018) Jointly learning convolutional representations to compress radiological images and classify thoracic diseases in the compressed domain. In: 11th indian conference on computer vision, graphics and image processing (ICVGIP) – reference: CandemirSJaegerSPalaniappanKMuscoJPSinghRKXueZKarargyrisAAntaniSThomaGMcDonaldCJLung segmentation in chest radiographs using anatomical atlases with nonrigid registrationIEEE Trans Med Imaging201333257759010.1109/TMI.2013.2290491 – reference: Yao L, Poblenz E, Dagunts D, Covington B, Bernard D, Lyman K (2017) Learning to diagnose from scratch by exploiting dependencies among labels, arXiv:1710.10501 – reference: Brueck H (2020) There is only one way to know if you have the coronavirus, and it involves machines full of spit and mucus. [Online]. Available: https://www.businessinsider.com/how-to-know-if-you-have-the-coronavirus-pcr-test-2020-1https://www.businessinsider.com/how-to-know-if-you-have-the-coronavirus-pcr-test-2020-1 – reference: Wang X, Peng Y, Lu L, Lu Z, Bagheri M, Summers RM (2017) Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2097–2106 – reference: Geffen D (2020) Covid-19 chest x-ray guideline. [Online] Available: https://www.uclahealth.org/radiology/covid-19-chest-x-ray-guideline – reference: Smith LN (2017) Cyclical learning rates for training neural networks. In: 2017 IEEE Winter conference on applications of computer vision (WACV). IEEE, pp 464–472 – reference: RioDCReverse transcription-polymerase chain reactionCold Spring Harbor Protocols2014201411pdbprot080, 88710.1101/pdb.prot080887 – reference: Tang S, Wang C, Nie J, Kumar N, Zhang Y, Xiong Z, Barnawi A (2021) Edl-covid: Ensemble deep learning for covid-19 cases detection from chest x-ray images. IEEE Transactions on Industrial Informatics – reference: Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. Springer, pp 234–241 – reference: KermanyDSGoldbaumMCaiWValentimCCLiangHBaxterSLMcKeownAYangGWuXYanFIdentifying medical diagnoses and treatable diseases by image-based deep learningCell201817251122113110.1016/j.cell.2018.02.010 – reference: Rubin GD, Ryerson CJ, Haramati LB, Sverzellati N, Kanne JP, Raoof S, Schluger NW, Volpi A, Yim J. -J., Martin IB et al (2020) The role of chest imaging in patient management during the covid-19 pandemic: a multinational consensus statement from the fleischner society. CHEST – reference: Almuhayar M, Lu HH-S, Iriawan N (2019) Classification of abnormality in chest x-ray images by transfer learning of chexnet. In: 2019 3Rd international conference on informatics and computational sciences (ICICos). IEEE, pp 1–6 – reference: Bai HX, Hsieh B, Xiong Z, Halsey K, Choi JW, Tran TML, Pan I, Shi L-B, Wang D-C, Mei J et al (2020) Performance of radiologists in differentiating covid-19 from viral pneumonia on chest ct. Radiology:200823 – reference: Finlayson SG, Chung HW, Kohane IS, Beam AL (2018) Adversarial attacks against medical deep learning systems, arXiv:1804.05296 – reference: JinYHA rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-ncov) infected pneumonia (standard version)Military Med Res202071410.1186/s40779-020-0233-6 – reference: Phan LT, Nguyen TV, Luong QC, Nguyen TV, Nguyen HT, Le HQ, Nguyen TT, Cao TM, Pham QD (2020) Importation and human-to-human transmission of a novel coronavirus in vietnam. N Engl J Med 382(9):872–874 – reference: Kedia P, Katarya R et al (2021) Covnet-19: A deep learning model for the detection and analysis of covid-19 patients. Appl Soft Comput 104:107184 – reference: Ai T et al (2020) Correlation of chest ct and rt-pcr testing in coronavirus disease 2019 (covid-19) in china: a report of 1014 cases. Radiology:200642 – reference: Serrano CO, Alonso E, Andrés M, Buitrago N, Vigara AP, Pajares MP, López EC, Moll GG, Espin IM, Barriocanal MB et al (2020) Pediatric chest x-ray in covid-19 infection. Eur J Radiol 131:109236 – reference: Khan AI, Shah JL, Bhat MM (2020) Coronet: A deep neural network for detection and diagnosis of covid-19 from chest x-ray images. Comput Methods Programs Biomed:105581 – reference: Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz C, Shpanskaya K et al (2017) Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning, arXiv:1711.05225 – reference: Zompatori M, Ciccarese F, Fasano L (2014) Overview of current lung imaging in acute respiratory distress syndrome – reference: Ribeiro MT, Singh S, Guestrin C (2016) “why should i trust you?” explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1135–1144 – reference: Sze-To A, Wang Z (2019) Tchexnet Detecting pneumothorax on chest x-ray images using deep transfer learning. In: International conference on image analysis and recognition. Springer, pp 325–332 – reference: Arriaga-Garcia EF, Sanchez-Yanez RE, Garcia-Hernandez M (2014) Image enhancement using bi-histogram equalization with adaptive sigmoid functions. In: 2014 International conference on electronics, communications and computers (CONIELECOMP). IEEE, pp 28–34 – reference: Shan F, Gao Y, Wang J, Shi W, Shi N, Han M, Xue Z, Shen D, Shi Y (2020) Lung infection quantification of covid-19 in ct images with deep learning, arXiv:2003.04655 – reference: TabikSGómez-ríosAMartín-rodríguezJLSevillano-garcíaIRey-areaMCharteDGuiradoESuárezJLLuengoJValero-GonzálezMCovidgr dataset and covid-sdnet methodology for predicting covid-19 based on chest x-ray imagesIEEE J Biomed Health Inf202024123595360510.1109/JBHI.2020.3037127 – reference: PizerSMAmburnEPAustinJDCromartieRGeselowitzAGreerTter Haar RomenyBZimmermanJBZuiderveldKAdaptive histogram equalization and its variationsComput Vis Graph Image Process198739335536810.1016/S0734-189X(87)80186-X – reference: Winther HB, Laser H, Gerbel S, Maschke SK, Hinrichs JB, Vogel-Claussen J, Wacker FK, Höper MM, Meyer BC (2020) Covid-19 image repository. [Online] Available: https://github.com/ml-workgroup/covid-19-image-repository – reference: Cellina M, Orsi M, Toluian T, Pittino C, Oliva G (2020) False negative chest x-rays in patients affected by covid-19 pneumonia and corresponding chest ct findings. Radiography – reference: Tilve A, Nayak S, Vernekar S, Turi D, Shetgaonkar PR, Aswale S (2020) Pneumonia detection using deep learning approaches. In: 2020 International conference on emerging trends in information technology and engineering (ic-ETITE). IEEE, pp 1–8 – reference: KimHHongHYoonSHDiagnostic performance of ct and reverse transcriptase polymerase chain reaction for coronavirus disease 2019: a meta-analysisRadiology20202963E145E15510.1148/radiol.2020201343 – reference: WangLLinZQWongACovid-net: a tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray imagesSci Rep202010111210.1038/s41598-019-56847-4 – ident: 12156_CR45 – volume: 24 start-page: 3595 issue: 12 year: 2020 ident: 12156_CR49 publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2020.3037127 – ident: 12156_CR12 doi: 10.1016/j.ejrad.2020.109272 – ident: 12156_CR17 – ident: 12156_CR44 doi: 10.1016/j.ejrad.2020.109236 – volume: 10 start-page: 1 issue: 1 year: 2020 ident: 12156_CR53 publication-title: Sci Rep doi: 10.1038/s41598-019-56847-4 – ident: 12156_CR4 doi: 10.1109/CONIELECOMP.2014.6808563 – ident: 12156_CR60 doi: 10.1183/09059180.00001314 – volume: 7 start-page: 4 issue: 1 year: 2020 ident: 12156_CR24 publication-title: Military Med Res doi: 10.1186/s40779-020-0233-6 – ident: 12156_CR59 – ident: 12156_CR30 doi: 10.1109/BIBM49941.2020.9313217 – ident: 12156_CR9 doi: 10.1016/j.compmedimag.2020.101718 – volume: 296 start-page: E145 issue: 3 year: 2020 ident: 12156_CR29 publication-title: Radiology doi: 10.1148/radiol.2020201343 – ident: 12156_CR50 doi: 10.1109/TII.2021.3057683 – ident: 12156_CR7 – ident: 12156_CR16 – ident: 12156_CR39 doi: 10.1145/2939672.2939778 – ident: 12156_CR43 doi: 10.1109/ICCV.2017.74 – ident: 12156_CR1 doi: 10.1148/radiol.2020200642 – volume: 8 start-page: 115 041 year: 2020 ident: 12156_CR36 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3003810 – ident: 12156_CR37 – volume: 81 start-page: 437 issue: 5 year: 2010 ident: 12156_CR15 publication-title: Radiol Technol – ident: 12156_CR10 doi: 10.1016/j.radi.2020.04.017 – ident: 12156_CR58 – ident: 12156_CR3 doi: 10.1109/ICICoS48119.2019.8982455 – ident: 12156_CR46 doi: 10.1109/WACV.2017.58 – ident: 12156_CR54 doi: 10.1109/CVPR.2017.369 – ident: 12156_CR2 doi: 10.1101/2020.05.05.20091561 – ident: 12156_CR32 doi: 10.1016/j.cmpb.2020.105532 – ident: 12156_CR11 – ident: 12156_CR38 doi: 10.1145/3293353.3293408 – ident: 12156_CR48 doi: 10.1007/978-3-030-27272-2_28 – ident: 12156_CR25 doi: 10.1148/radiol.2020200527 – volume: 31 start-page: 1163 issue: 3 year: 2020 ident: 12156_CR55 publication-title: Multidim Syst Sign Process doi: 10.1007/s11045-020-00703-6 – ident: 12156_CR35 doi: 10.1148/ryct.2020200033 – ident: 12156_CR19 – ident: 12156_CR20 – volume: 22 start-page: 257 year: 2017 ident: 12156_CR21 publication-title: Respiratory Med Case Rep – ident: 12156_CR41 doi: 10.1007/978-3-319-24574-4_28 – ident: 12156_CR6 – volume: 33 start-page: 577 issue: 2 year: 2013 ident: 12156_CR8 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2013.2290491 – volume: 4 start-page: 475 issue: 6 year: 2014 ident: 12156_CR23 publication-title: Quant Imaging Med Surg – ident: 12156_CR22 doi: 10.1016/j.clinimag.2020.04.001 – ident: 12156_CR57 – ident: 12156_CR31 – ident: 12156_CR5 doi: 10.1148/radiol.2020200823 – volume: 12 start-page: 1011 issue: 5 year: 2020 ident: 12156_CR13 publication-title: Cogn Comput doi: 10.1007/s12559-020-09751-3 – volume: 172 start-page: 1122 issue: 5 year: 2018 ident: 12156_CR27 publication-title: Cell doi: 10.1016/j.cell.2018.02.010 – ident: 12156_CR26 doi: 10.1016/j.asoc.2021.107184 – ident: 12156_CR51 doi: 10.1109/ic-ETITE47903.2020.152 – ident: 12156_CR47 doi: 10.1109/ELNANO.2018.8477564 – volume: 39 start-page: 355 issue: 3 year: 1987 ident: 12156_CR34 publication-title: Comput Vis Graph Image Process doi: 10.1016/S0734-189X(87)80186-X – ident: 12156_CR33 doi: 10.1056/NEJMc2001272 – ident: 12156_CR28 doi: 10.1016/j.cmpb.2020.105581 – ident: 12156_CR14 – ident: 12156_CR42 doi: 10.1148/radiol.2020201365 – ident: 12156_CR52 – volume: 2014 start-page: pdb issue: 11 year: 2014 ident: 12156_CR40 publication-title: Cold Spring Harbor Protocols doi: 10.1101/pdb.prot080887 – ident: 12156_CR18 doi: 10.1101/2020.05.05.20092346 – ident: 12156_CR56 |
SSID | ssj0016524 |
Score | 2.5613246 |
Snippet | One of the primary clinical observations for screening the novel coronavirus is capturing a chest x-ray image. In most patients, a chest x-ray contains... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 30615 |
SubjectTerms | Abnormalities Artificial neural networks Computer Communication Networks Computer Science Coronaviruses COVID-19 Data Structures and Information Theory Datasets Decision making Deep learning Multimedia Information Systems Neural networks Pneumonia Special Purpose and Application-Based Systems Viral diseases X-rays |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8xeGEP42OMhS95Em_DUh27ccsbKlQFaUyTKOpbZMcXqARpRcvD-Ot3Tp2U8iXtLYovTuLzne90d78DOGzkmRaZE5yM9wZXRjje1jldkTPikhaSXvbFyb8uk15fXQyag1AUNqmy3auQZKmp58VuwpeS-Oxzj4iQ8KdPsNL0vjvt4n58UscOkmZoZdtqcDoPRSiVeXuOxePolY35OlXyRby0PIa66_Al2I_sZMbwDVjCYhPWqt4MLIjqJnx-BjT4Ff50fl-fn_LO4BKnx-wUfeSABtjstmizYcFyD2VAU5cdtNiAP5i_bHhP6mbCfHL8DXOIYxa6TNxsQb97dtXp8dBMgWdKqymPbd5WaMkfzWnJYt3ISbaNtLlGkzhlhWvlxkiJ5JSRTDqV2EwlmZHC0opqlN9guRgV-B2YJScHSU-gzIwyzmO4O9Raywxdq2mTCES1pmkWkMZ9w4u7dI6R7PmQEh_Skg_pUwQ_62fGM5yND6n3KlalQeYmaeyh-NtkfsgIftTDJC0-BGIKHD0SDW0OUmukWiPYnnG2fp0sYQGEiEAv8Lwm8EjciyPF8LZE5PY9OMkyiuCo2h3zz3r_L3b-j3wXVmO_c8sEtz1Ynj484j5ZRFN7UArAPwzYALs priority: 102 providerName: Springer Nature |
Title | COVID-CXNet: Detecting COVID-19 in frontal chest X-ray images using deep learning |
URI | https://link.springer.com/article/10.1007/s11042-022-12156-z https://www.ncbi.nlm.nih.gov/pubmed/35431611 https://www.proquest.com/docview/2703198533 https://www.proquest.com/docview/2652030088 https://pubmed.ncbi.nlm.nih.gov/PMC8989406 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB6x2wsceCyvwFIZiRtY1LUbp1xQ2213AVEeoqicIjt2lkqQlm33wP56ZhInpazYU6rYbRqPZzzjGX8fwLNOnmmROcHRee9wZYTjfZ3jJwxGXJx4tMt0OPn9ND6Zqbfz3jxsuK1DWWVtE0tD7ZYZ7ZG_7BLQeh8XF_l69YsTaxRlVwOFxh600AQnGHy1huPpx89NHiHuBVrbpMNxbRTh2Ex1eE7Q0RSqZieEhZhf7C5Nl_zNy2WT_-ROyyVpchtuBl-SDSrh34FrvjiAWzVPAwtqewA3_gIdvAufRh--vjnio_nUb16xI09ZBGxg1W3RZ4uC5QRrgD9dsmmxOT8zv9niJ5qeNaNC-VPmvF-xwDhxeg9mk_GX0QkPxAo8U1pteNfmfeUtxqY5RqU4sjnquZE2197ETlnhktwYKT0GaKifTsU2U3FmpLA4otrL-7BfLAv_EJjFgMejzfAyM8o4wnN3XmstM--Sno0jEPWYpllAHSfyix_pFi-Z5JCiHNJSDulFBM-b76wqzI0rex_WokqD_q3T7WyJ4GnTjJpD6RBT-OU59sHJgSYOzWwEDyrJNo-TJUSAEBHoHZk3HQiVe7elWHwv0bmJjxO9pAhe1LNj-7f-_xaPrn6Lx3C9SzO1LG47hP3N2bl_gt7QxrZhL5kct6E1mAyHU7oef3s3bgdFwNZZd_AHvsQJow |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-N8QA88DG-AgOMBE9gUceukyAhhFpKy7YipA31LdixMypBWtZOaPuj-Bu5y1cpE3vbWxU7bpM7n-96d78fwLNOnkUic4Kj897hygjHkyjHTxiMOB17tMvUnLw31sMD9XHSnWzA76YXhsoqG5tYGmo3y-g_8lchAa0neLjIt_OfnFijKLvaUGhUarHjT35hyLZ4M-qjfJ-H4eD9fm_Ia1YBnqlILXlo80R5i4FZjiEZLpujkhtp88gb7ZQVLs6NkdJjdILK6ZS2mdKZkcIK3Y28xHUvwWUlZUI7Kh58aLMWuluT6MYdjiexqJt0qlY9QY0wVDtPeA6an64fhGe827NFmv9kassDcHATrteeK3tXqdot2PDFFtxoWCFYbSS24NpfEIe34XPv05dRn_cmY798zfqechY4wKrLImHTguUEooBLl9xdbMKPzAmb_kBDt2BUln_InPdzVvNbHN6Bgwt54Xdhs5gV_j4wi-GVRwvlZWaUcYQe73wURTLzLu5aHYBo3mma1RjnRLXxPV2hM5McUpRDWsohPQ3gRXvPvEL4OHf2diOqtN7ti3SlmwE8bYdxn1LyxRR-doxzUDnQoKJRD-BeJdn262QJSCBEANGazNsJhAG-PlJMv5VY4MT-iT5ZAC8b7Vj9rP8_xYPzn-IJXBnu7-2mu6PxzkO4GpLWlmV127C5PDr2j9APW9rHpfIz-HrRu-0PZfxAWA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTkLwMGB8ZQwwEjyBtTpO4xYJIWhXrQzKQBvqW7BjZ1Riabd2Qtufxl_HXeKklIm97S2K3Xzd-XzXu_v9AJ43s1SJ1AqOznuTR1pY3lEZHmEwYuO2Q7tMzcmfhvHOQfRh1BqtwO-qF4bKKiubWBhqO0npP_KtkIDWO7i5yK3Ml0Xs9fpvp8ecGKQo01rRaZQqsuvOfmH4Nnsz6KGsX4Rhf3u_u8M9wwBPIxXNeWiyTuQMBmkZhmd4iwwVXkuTKadjGxlh25nWUjqMVFBRbRSbNIpTLYURcUs5ide9BqsKo6JmA1bfbw_3vtY5jLjlKXXbTY77svAtO2XjnqC2GKqkJ3SHmJ8vb4sXfN2LJZv_5G2L7bB_G9a8H8velYp3B1Zcvg63Ko4I5k3GOtz8C_DwLnzpfv426PHuaOjmr1nPUQYDB1h5WnTYOGcZQSrgpQsmLzbiJ_qMjY_Q7M0YFekfMuvclHm2i8N7cHAln_w-NPJJ7h4CMxhsObRXTqY60paw5K1TSsnU2XbLxAGI6psmqUc8J-KNn8kCq5nkkKAckkIOyXkAL-vfTEu8j0tnb1aiSvzanyULTQ3gWT2Mq5ZSMTp3k1Ocg8qB5hVNfAAPSsnWt5MFPIEQAaglmdcTCBF8eSQf_yiQwYkLFD20AF5V2rF4rP-_xcblb_EUruNKSz4OhruP4EZISlvU2G1CY35y6h6jUzY3T7z2M_h-1QvuD-s9Reo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=COVID-CXNet%3A+Detecting+COVID-19+in+frontal+chest+X-ray+images+using+deep+learning&rft.jtitle=Multimedia+tools+and+applications&rft.au=Haghanifar%2C+Arman&rft.au=Majdabadi%2C+Mahdiyar+Molahasani&rft.au=Choi%2C+Younhee&rft.au=Deivalakshmi%2C+S.&rft.date=2022-09-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=81&rft.issue=21&rft.spage=30615&rft.epage=30645&rft_id=info:doi/10.1007%2Fs11042-022-12156-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_022_12156_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |