Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks
Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep...
Saved in:
Published in | Scientific reports Vol. 9; no. 1; p. 3358 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.03.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at
https://github.com/BMIRDS/deepslide
. |
---|---|
AbstractList | Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at
https://github.com/BMIRDS/deepslide
. Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at https://github.com/BMIRDS/deepslide .Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at https://github.com/BMIRDS/deepslide . Abstract Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at https://github.com/BMIRDS/deepslide . Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at https://github.com/BMIRDS/deepslide . |
ArticleNumber | 3358 |
Author | Tomita, Naofumi Wei, Jason W. Tafe, Laura J. Linnik, Yevgeniy A. Vaickus, Louis J. Hassanpour, Saeed |
Author_xml | – sequence: 1 givenname: Jason W. surname: Wei fullname: Wei, Jason W. organization: Department of Biomedical Data Science, Dartmouth College, Department of Computer Science, Dartmouth College – sequence: 2 givenname: Laura J. surname: Tafe fullname: Tafe, Laura J. organization: Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center – sequence: 3 givenname: Yevgeniy A. surname: Linnik fullname: Linnik, Yevgeniy A. organization: Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center – sequence: 4 givenname: Louis J. surname: Vaickus fullname: Vaickus, Louis J. organization: Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center – sequence: 5 givenname: Naofumi surname: Tomita fullname: Tomita, Naofumi organization: Department of Biomedical Data Science, Dartmouth College – sequence: 6 givenname: Saeed orcidid: 0000-0001-9460-6414 surname: Hassanpour fullname: Hassanpour, Saeed email: Saeed.Hassanpour@dartmouth.edu organization: Department of Biomedical Data Science, Dartmouth College, Department of Computer Science, Dartmouth College, Department of Epidemiology, Dartmouth College |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30833650$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1vFSEUholpY2vtH3BhSNx0M5avYWBjYhq_kia60DVhmDP3UrlwBaa1_15ub63VhWwO4X14zzl5n6GDmCIg9IKS15RwdV4E7bXqCNWdIETQbniCjhkRfcc4YweP7kfotJQr0k7PtKD6KTriRHEue3KMfn6xdZ1CWvlSuwDXELALthQ_e2erTxGnGa-beMc4vLW1Qo4FNyVDAVdhwmGJK2wniMnZ7HxMG4tL8BMUfOPrGk8AWxxhyTa0Um9S_l6eo8PZhgKn9_UEfXv_7uvFx-7y84dPF28vOycGUTum-2EmIKQgcpQ9jMD4xDWZnZRqnK0aqVZ8nua-vQk5CueEHhVhI5kUB8VP0Ju973YZNzA5iLWNYbbZb2y-Ncl687cS_dqs0rWRXGshhmZwdm-Q048FSjUbXxyEYCOkpRhGlWJk0MOu16t_0Ku05NjW21GD5i0A2Si2p1xOpWSYH4ahxOyyNftsTcvW3GVrdlO8fLzGw5ffSTaA74HSpLiC_Kf3f2x_ATsatG0 |
CitedBy_id | crossref_primary_10_1038_s41467_024_49153_9 crossref_primary_10_1038_s41598_021_89352_8 crossref_primary_10_1007_s11517_020_02147_3 crossref_primary_10_1016_j_isci_2023_108175 crossref_primary_10_1016_j_lungcan_2022_01_005 crossref_primary_10_1002_path_5966 crossref_primary_10_1007_s10047_021_01282_4 crossref_primary_10_1177_14604582221102314 crossref_primary_10_1109_ACCESS_2023_3251220 crossref_primary_10_3390_cancers14051159 crossref_primary_10_3390_diagnostics12092234 crossref_primary_10_1177_15330338211027901 crossref_primary_10_1002_widm_1410 crossref_primary_10_3390_jpm10040141 crossref_primary_10_1038_s41598_020_58467_9 crossref_primary_10_3390_jpm12020166 crossref_primary_10_1038_s41598_021_87748_0 crossref_primary_10_1007_s11517_021_02473_0 crossref_primary_10_3390_math8111863 crossref_primary_10_5858_arpa_2020_0579_OA crossref_primary_10_3390_cancers11111673 crossref_primary_10_1016_j_ymeth_2020_05_012 crossref_primary_10_3390_cancers15041321 crossref_primary_10_1111_his_13991 crossref_primary_10_1007_s11042_021_10707_4 crossref_primary_10_3390_cells10040787 crossref_primary_10_1007_s00521_021_05947_2 crossref_primary_10_3390_bioengineering9090423 crossref_primary_10_1186_s12575_023_00207_0 crossref_primary_10_3389_fgene_2022_1037011 crossref_primary_10_3390_cancers14194744 crossref_primary_10_3389_fbinf_2022_912809 crossref_primary_10_5858_arpa_2022_0035_OA crossref_primary_10_1186_s12916_021_01953_2 crossref_primary_10_1016_j_artmed_2020_101918 crossref_primary_10_1016_j_yamp_2021_07_005 crossref_primary_10_1097_CCO_0000000000000796 crossref_primary_10_1093_jjco_hyae066 crossref_primary_10_1016_j_ebiom_2020_103029 crossref_primary_10_1109_TMI_2022_3188326 crossref_primary_10_1136_bmjopen_2022_069181 crossref_primary_10_1038_s41598_019_50313_x crossref_primary_10_3390_diagnostics13203289 crossref_primary_10_1001_jamanetworkopen_2021_35271 crossref_primary_10_1002_cac2_12012 crossref_primary_10_1016_j_labinv_2024_102094 crossref_primary_10_1016_j_cmpb_2020_105815 crossref_primary_10_1016_j_media_2020_101813 crossref_primary_10_1109_TMI_2022_3176598 crossref_primary_10_1007_s10439_020_02547_4 crossref_primary_10_3390_cancers13061192 crossref_primary_10_1002_cam4_4471 crossref_primary_10_12998_wjcc_v9_i31_9376 crossref_primary_10_3390_diagnostics11112074 crossref_primary_10_1016_j_artmed_2020_101923 crossref_primary_10_1093_ajcp_aqae053 crossref_primary_10_2482_haigan_60_81 crossref_primary_10_1101_cshperspect_a037812 crossref_primary_10_3390_cancers15051535 crossref_primary_10_3389_fonc_2023_1260374 crossref_primary_10_1038_s41591_024_02856_4 crossref_primary_10_1016_j_tranon_2022_101494 crossref_primary_10_3390_cancers16081506 crossref_primary_10_1038_s41598_023_46472_7 crossref_primary_10_3390_cancers13102419 crossref_primary_10_1038_s41598_024_58151_2 crossref_primary_10_1093_ajcp_aqaa001 crossref_primary_10_3390_cancers15153981 crossref_primary_10_5858_arpa_2020_0541_CP crossref_primary_10_31590_ejosat_888836 crossref_primary_10_1148_ryai_220028 crossref_primary_10_1088_1361_6560_ac910a crossref_primary_10_1111_his_14918 crossref_primary_10_1038_s41746_024_01106_8 crossref_primary_10_3390_diagnostics12061480 crossref_primary_10_3390_diagnostics13193115 crossref_primary_10_1038_s41598_021_03206_x crossref_primary_10_1038_s41467_020_20030_5 crossref_primary_10_1016_j_jmst_2024_05_039 crossref_primary_10_3390_cancers14215264 crossref_primary_10_1016_j_compbiomed_2021_104827 crossref_primary_10_1016_j_ccr_2022_214486 crossref_primary_10_1016_j_imed_2021_08_003 crossref_primary_10_1038_s43018_023_00694_w crossref_primary_10_1055_s_0040_1701983 crossref_primary_10_1515_dx_2024_0012 crossref_primary_10_3389_fpubh_2022_892658 crossref_primary_10_1007_s40747_024_01398_z crossref_primary_10_1002_cncy_22443 crossref_primary_10_1109_JBHI_2021_3099817 crossref_primary_10_1109_ACCESS_2022_3204000 crossref_primary_10_3390_cancers13133308 crossref_primary_10_3390_ijms24054773 crossref_primary_10_1007_s40142_019_00177_4 crossref_primary_10_1158_0008_5472_CAN_23_1698 crossref_primary_10_1038_s41598_021_86540_4 crossref_primary_10_1007_s11760_024_03100_9 crossref_primary_10_1001_jamanetworkopen_2020_3398 crossref_primary_10_1016_j_semcancer_2023_01_006 crossref_primary_10_3390_jcm10225326 crossref_primary_10_1016_j_ajpath_2022_12_003 crossref_primary_10_1016_j_labinv_2024_102060 crossref_primary_10_1016_j_bspc_2022_104374 crossref_primary_10_1002_gcc_23177 crossref_primary_10_1038_s41591_021_01343_4 crossref_primary_10_1080_21681163_2022_2058415 crossref_primary_10_1016_j_job_2022_03_003 crossref_primary_10_3389_fpubh_2022_902445 crossref_primary_10_1021_acs_analchem_2c03020 crossref_primary_10_1016_j_ajpath_2024_05_003 crossref_primary_10_3390_cancers14061370 crossref_primary_10_1016_j_ajpath_2024_05_007 crossref_primary_10_1016_j_jpi_2023_100320 crossref_primary_10_1016_j_media_2021_102032 crossref_primary_10_1111_his_15180 crossref_primary_10_1038_d41586_019_02870_4 crossref_primary_10_1016_j_compmedimag_2021_101923 crossref_primary_10_3390_diagnostics12030768 crossref_primary_10_3389_fradi_2022_810731 crossref_primary_10_1016_j_heliyon_2022_e11981 crossref_primary_10_1155_2023_7282944 crossref_primary_10_1001_jamanetworkopen_2019_14645 crossref_primary_10_5858_arpa_2022_0051_OA crossref_primary_10_1016_j_jpi_2022_100138 crossref_primary_10_1016_j_compbiomed_2020_104065 crossref_primary_10_1016_j_jhep_2019_06_001 |
Cites_doi | 10.1097/PAS.0000000000000246 10.11613/BM.2012.031 10.1371/journal.pone.0121323 10.4103/jpi.jpi_34_17 10.1200/JCO.2014.58.8335 10.1097/PAS.0b013e3181b8cf03 10.1016/j.jtho.2016.10.017 10.1016/j.jtcvs.2013.08.058 10.1093/jnci/djt166 10.1111/pin.12016 10.5858/arpa.2010-0493-OA 10.1097/JTO.0b013e318206a221 10.1097/00000478-200301000-00011 10.1016/j.compbiomed.2018.05.011 10.1097/JTO.0b013e318221f701 10.1016/j.media.2017.07.005 10.1183/09031936.00219211 10.1007/s11263-015-0816-y 10.1038/modpathol.2010.232 10.1097/JTO.0000000000000630 10.1200/JCO.2011.37.2185 10.1007/s00428-012-1263-6 10.1038/modpathol.2012.106 10.3414/ME17-01-0039 10.1097/PAS.0000000000000134 10.1016/j.ejso.2013.08.026 10.1016/j.jtcvs.2013.09.045 10.1038/s41591-018-0177-5 10.1038/ncomms12474 10.1109/CVPR.2016.90 10.1109/ICCV.2015.123 10.1101/274332 10.1109/ICCV.2017.322 10.3390/medsci5040034 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI PRINS Q9U 7X8 5PM |
DOI | 10.1038/s41598-019-40041-7 |
DatabaseName | Springer_OA刊 Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) ProQuest Science Journals Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | 10_1038_s41598_019_40041_7 30833650 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Kaminsky Research Fund from Dartmouth College – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP CGR CUY CVF ECM EIF NPM AAYXX AFPKN CITATION 7XB 8FK K9. PQEST PQUKI PRINS Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c474t-2957f0e46406b65ebe23d390fc668bfa8b1983fdf590f46b4cc49b802b0d83e83 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Sep 17 21:29:08 EDT 2024 Sat Oct 26 04:42:11 EDT 2024 Thu Oct 10 19:09:14 EDT 2024 Fri Aug 23 00:39:05 EDT 2024 Tue Oct 29 09:22:05 EDT 2024 Fri Oct 11 20:46:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-2957f0e46406b65ebe23d390fc668bfa8b1983fdf590f46b4cc49b802b0d83e83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9460-6414 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399447/ |
PMID | 30833650 |
PQID | 2187935296 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6399447 proquest_miscellaneous_2188207978 proquest_journals_2187935296 crossref_primary_10_1038_s41598_019_40041_7 pubmed_primary_30833650 springer_journals_10_1038_s41598_019_40041_7 |
PublicationCentury | 2000 |
PublicationDate | 2019-03-04 |
PublicationDateYYYYMMDD | 2019-03-04 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-04 day: 04 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Song (CR6) 2013; 39 Kadota (CR36) 2014; 38 Warth (CR8) 2012; 30 Lou (CR29) 2017; 12 Torre, Siegel, Jemal (CR1) 2015; 893 Kadota (CR5) 2014; 38 CR15 CR37 Girard (CR17) 2009; 33 CR34 Takahashi (CR9) 2014; 147 Coudray (CR24) 2018; 24 CR32 CR31 Yu (CR30) 2016; 7 Tomita, Cheung, Hassanpour (CR22) 2018; 98 Lin (CR39) 2014; 8693 Travis (CR3) 2015; 9 Kumar (CR35) 2018; 57 Thunnissen (CR20) 2012; 25 Cha (CR12) 2014; 147 Woo (CR13) 2012; 62 Russakovsky (CR38) 2015; 115 CR28 CR27 Tsao (CR14) 2015; 33 CR26 Miyoshi (CR18) 2003; 27 CR25 Yoshizawa (CR7) 2011; 24 Travis (CR4) 2011; 6 Warth (CR16) 2012; 461 Korbar (CR21) 2017; 8 Litjens (CR23) 2017; 42 Meza, Meernik, Jeon, Cote (CR2) 2015; 10 Shim, Lee, Park, Kim (CR33) 2011; 135 CR40 Russell (CR10) 2011; 6 McHugh (CR41) 2012; 22 Nitadori (CR11) 2013; 105 Warth (CR19) 2012; 40 WD Travis (40041_CR3) 2015; 9 A Warth (40041_CR8) 2012; 30 E Thunnissen (40041_CR20) 2012; 25 T Woo (40041_CR13) 2012; 62 JI Nitadori (40041_CR11) 2013; 105 40041_CR40 T Miyoshi (40041_CR18) 2003; 27 B Korbar (40041_CR21) 2017; 8 A Yoshizawa (40041_CR7) 2011; 24 G Litjens (40041_CR23) 2017; 42 40041_CR15 A Warth (40041_CR16) 2012; 461 40041_CR37 WD Travis (40041_CR4) 2011; 6 K Kadota (40041_CR36) 2014; 38 K Kadota (40041_CR5) 2014; 38 PA Russell (40041_CR10) 2011; 6 LA Torre (40041_CR1) 2015; 893 X Lou (40041_CR29) 2017; 12 M McHugh (40041_CR41) 2012; 22 40041_CR32 Z Song (40041_CR6) 2013; 39 40041_CR34 N Tomita (40041_CR22) 2018; 98 O Russakovsky (40041_CR38) 2015; 115 A Warth (40041_CR19) 2012; 40 R Meza (40041_CR2) 2015; 10 40041_CR31 HS Shim (40041_CR33) 2011; 135 MS Tsao (40041_CR14) 2015; 33 M Takahashi (40041_CR9) 2014; 147 40041_CR25 KH Yu (40041_CR30) 2016; 7 40041_CR26 40041_CR27 40041_CR28 N Girard (40041_CR17) 2009; 33 N Coudray (40041_CR24) 2018; 24 N Kumar (40041_CR35) 2018; 57 TY Lin (40041_CR39) 2014; 8693 MJ Cha (40041_CR12) 2014; 147 |
References_xml | – volume: 38 start-page: 1118 year: 2014 end-page: 1127 ident: CR36 article-title: Associations between mutations and histologic patterns of mucin in lung adenocarcinoma: invasive mucinous pattern and extracellular mucin are associated with KRAS mutation publication-title: Am J Surg Pathol. doi: 10.1097/PAS.0000000000000246 contributor: fullname: Kadota – volume: 22 start-page: 276 issue: 3 year: 2012 end-page: 82 ident: CR41 article-title: Interrater reliability: the kappa statistic publication-title: Biochem Med. doi: 10.11613/BM.2012.031 contributor: fullname: McHugh – volume: 10 start-page: 3 year: 2015 ident: CR2 article-title: Lung cancer incidence trends by gender, race, and histology in the United States publication-title: PLoS ONE. doi: 10.1371/journal.pone.0121323 contributor: fullname: Cote – volume: 8 start-page: 30 year: 2017 ident: CR21 article-title: Deep learning for classification of colorectal polyps on whole-slide images publication-title: J Pathol Inform. doi: 10.4103/jpi.jpi_34_17 contributor: fullname: Korbar – volume: 33 start-page: 3439 year: 2015 end-page: 3436 ident: CR14 article-title: Subtype classification of lung adenocarcinoma predicts benefit from adjuvant chemotherapy in patients undergoing complete resection publication-title: J Clin Oncol. doi: 10.1200/JCO.2014.58.8335 contributor: fullname: Tsao – volume: 33 start-page: 1752 year: 2009 end-page: 1764 ident: CR17 article-title: Comprehensive histologic assessment helps to differentiate multiple lung primary non–small cell carcinomas from metastases publication-title: Am J Surg Pathol. doi: 10.1097/PAS.0b013e3181b8cf03 contributor: fullname: Girard – volume: 12 start-page: 501 year: 2017 end-page: 509 ident: CR29 article-title: Comprehensive computational pathological image analysis predicts lung cancer prognosis publication-title: J Thorac Oncol. doi: 10.1016/j.jtho.2016.10.017 contributor: fullname: Lou – volume: 147 start-page: 54 year: 2014 end-page: 59 ident: CR9 article-title: Tumor invasiveness as defined by the newly proposed IASLC/ATS/ERS classification has prognostic significant for pathologic stage IA lung adenocarcinoma and can be predicted by radiologic parameters publication-title: J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2013.08.058 contributor: fullname: Takahashi – volume: 105 start-page: 1212 year: 2013 end-page: 1220 ident: CR11 article-title: Impact of micropapillary histologic subtype in selecting limited resection vs lobectomy for lung adenocarcinoma of 2 cm or smaller publication-title: J Natl Cancer Inst. doi: 10.1093/jnci/djt166 contributor: fullname: Nitadori – ident: CR37 – volume: 8693 start-page: 740 year: 2014 end-page: 755 ident: CR39 article-title: Microsoft COCO: common objects in context publication-title: ECCV. contributor: fullname: Lin – volume: 62 start-page: 785 year: 2012 end-page: 791 ident: CR13 article-title: Prognostic value of the IASLC/ATS/ERS classification of lung adenocarcinoma in stage I disease of Japanese cases publication-title: Patho Int. doi: 10.1111/pin.12016 contributor: fullname: Woo – volume: 135 start-page: 1329 year: 2011 end-page: 1334 ident: CR33 article-title: Histopathologic characteristics of lung adenocarcinomas with epidermal growth factor receptor mutations in the international association for the study of lung cancer/American thoracic society/European respiratory society lung adenocarcinoma classification publication-title: Arch Pathol Lab Med. doi: 10.5858/arpa.2010-0493-OA contributor: fullname: Kim – volume: 6 start-page: 244 year: 2011 end-page: 285 ident: CR4 article-title: International association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma publication-title: J Thorac Oncol. doi: 10.1097/JTO.0b013e318206a221 contributor: fullname: Travis – ident: CR40 – volume: 27 start-page: 101 year: 2003 end-page: 109 ident: CR18 article-title: Early–stage lung adenocarcinomas with a micropapillary pattern, a distinct pathologic marker for a significantly poor prognosis publication-title: Am J Surg Pathol. doi: 10.1097/00000478-200301000-00011 contributor: fullname: Miyoshi – volume: 98 start-page: 8 year: 2018 end-page: 15 ident: CR22 article-title: Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans publication-title: Comp Biol Med. doi: 10.1016/j.compbiomed.2018.05.011 contributor: fullname: Hassanpour – ident: CR25 – volume: 6 start-page: 1496 year: 2011 end-page: 1504 ident: CR10 article-title: Does lung adenocarcinoma subtype predict patient survival? A clinicopathologic study based on the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary lung adenocarcinoma classification publication-title: J Thorac Oncol. doi: 10.1097/JTO.0b013e318221f701 contributor: fullname: Russell – volume: 42 start-page: 60 year: 2017 end-page: 88 ident: CR23 article-title: A survey on deep learning in medical image analysis publication-title: Med Image Anal. doi: 10.1016/j.media.2017.07.005 contributor: fullname: Litjens – ident: CR27 – volume: 40 start-page: 1221 year: 2012 end-page: 1227 ident: CR19 article-title: Interobserver variability in the application of the novel IASLC/ATS/ERS classification for pulmonary adenocarcinomas publication-title: Eur Respir J. doi: 10.1183/09031936.00219211 contributor: fullname: Warth – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: CR38 article-title: ImageNet large scale visual recognition challenge publication-title: IJCV. doi: 10.1007/s11263-015-0816-y contributor: fullname: Russakovsky – volume: 24 start-page: 653 year: 2011 end-page: 664 ident: CR7 article-title: Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases publication-title: Mod Pathol. doi: 10.1038/modpathol.2010.232 contributor: fullname: Yoshizawa – volume: 9 start-page: 1243 year: 2015 end-page: 1260 ident: CR3 article-title: The 2015 World Health Organization classification of lung tumors publication-title: J Thorac Oncol. doi: 10.1097/JTO.0000000000000630 contributor: fullname: Travis – volume: 30 start-page: 1438 year: 2012 end-page: 1446 ident: CR8 article-title: The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage–independent predict of survival publication-title: J Clin Oncol. doi: 10.1200/JCO.2011.37.2185 contributor: fullname: Warth – ident: CR15 – volume: 461 start-page: 185 year: 2012 end-page: 193 ident: CR16 article-title: Training increases concordance in classifying pulmonary adenocarcinomas according to the novel IASLC/ATS/ERS classification publication-title: Virchows Arch. doi: 10.1007/s00428-012-1263-6 contributor: fullname: Warth – volume: 25 start-page: 1574 year: 2012 end-page: 1583 ident: CR20 article-title: Reproducibility of histopathological subtypes and invasion in pulmonary adenocarcinoma publication-title: Mod Pathol. doi: 10.1038/modpathol.2012.106 contributor: fullname: Thunnissen – volume: 57 start-page: 63 year: 2018 end-page: 73 ident: CR35 article-title: Identifying associations between somatic mutations and clinicopathologic findings in Lung Cancer Pathology Reports publication-title: Methods Inf Med. doi: 10.3414/ME17-01-0039 contributor: fullname: Kumar – ident: CR31 – volume: 38 start-page: 448 year: 2014 end-page: 460 ident: CR5 article-title: Prognostic significance of adenocarcinoma , minimally invasive adenocarcinoma, and nonmucinous lepidic predominant invasive adenocarcinoma of the lung in patients with stage I disease publication-title: Am J Surg Pathol. doi: 10.1097/PAS.0000000000000134 contributor: fullname: Kadota – volume: 39 start-page: 1262 year: 2013 end-page: 1268 ident: CR6 article-title: Prognostic value of the IASLC/ATS/ERS classification in stage I lung adenocarcinoma patients–based on a hospital study in China publication-title: Eur J Surg Oncol. doi: 10.1016/j.ejso.2013.08.026 contributor: fullname: Song – volume: 147 start-page: 921 year: 2014 end-page: 928 ident: CR12 article-title: Micropapillary and solid subtypes of invasive lung adenocarcinoma: clinical predictors of histopathology and outcome publication-title: J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2013.09.045 contributor: fullname: Cha – ident: CR32 – ident: CR34 – volume: 24 start-page: 1559 year: 2018 end-page: 1567 ident: CR24 article-title: Classification and mutation prediction from non–small cell lung cancer histopathology images with deep learning publication-title: Nat Med. doi: 10.1038/s41591-018-0177-5 contributor: fullname: Coudray – ident: CR28 – volume: 7 year: 2016 ident: CR30 article-title: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features publication-title: Nat Commun. doi: 10.1038/ncomms12474 contributor: fullname: Yu – volume: 893 start-page: 1 year: 2015 end-page: 19 ident: CR1 article-title: Lung cancer statistics publication-title: Adv Exp Med Biol. contributor: fullname: Jemal – ident: CR26 – volume: 39 start-page: 1262 year: 2013 ident: 40041_CR6 publication-title: Eur J Surg Oncol. doi: 10.1016/j.ejso.2013.08.026 contributor: fullname: Z Song – volume: 25 start-page: 1574 year: 2012 ident: 40041_CR20 publication-title: Mod Pathol. doi: 10.1038/modpathol.2012.106 contributor: fullname: E Thunnissen – volume: 57 start-page: 63 year: 2018 ident: 40041_CR35 publication-title: Methods Inf Med. doi: 10.3414/ME17-01-0039 contributor: fullname: N Kumar – volume: 10 start-page: 3 year: 2015 ident: 40041_CR2 publication-title: PLoS ONE. doi: 10.1371/journal.pone.0121323 contributor: fullname: R Meza – volume: 33 start-page: 1752 year: 2009 ident: 40041_CR17 publication-title: Am J Surg Pathol. doi: 10.1097/PAS.0b013e3181b8cf03 contributor: fullname: N Girard – ident: 40041_CR26 – ident: 40041_CR37 doi: 10.1109/CVPR.2016.90 – volume: 24 start-page: 1559 year: 2018 ident: 40041_CR24 publication-title: Nat Med. doi: 10.1038/s41591-018-0177-5 contributor: fullname: N Coudray – ident: 40041_CR40 doi: 10.1109/ICCV.2015.123 – volume: 33 start-page: 3439 year: 2015 ident: 40041_CR14 publication-title: J Clin Oncol. doi: 10.1200/JCO.2014.58.8335 contributor: fullname: MS Tsao – volume: 461 start-page: 185 year: 2012 ident: 40041_CR16 publication-title: Virchows Arch. doi: 10.1007/s00428-012-1263-6 contributor: fullname: A Warth – volume: 893 start-page: 1 year: 2015 ident: 40041_CR1 publication-title: Adv Exp Med Biol. contributor: fullname: LA Torre – volume: 38 start-page: 1118 year: 2014 ident: 40041_CR36 publication-title: Am J Surg Pathol. doi: 10.1097/PAS.0000000000000246 contributor: fullname: K Kadota – ident: 40041_CR28 doi: 10.1101/274332 – volume: 22 start-page: 276 issue: 3 year: 2012 ident: 40041_CR41 publication-title: Biochem Med. doi: 10.11613/BM.2012.031 contributor: fullname: M McHugh – volume: 98 start-page: 8 year: 2018 ident: 40041_CR22 publication-title: Comp Biol Med. doi: 10.1016/j.compbiomed.2018.05.011 contributor: fullname: N Tomita – ident: 40041_CR15 – ident: 40041_CR32 doi: 10.1109/ICCV.2017.322 – volume: 27 start-page: 101 year: 2003 ident: 40041_CR18 publication-title: Am J Surg Pathol. doi: 10.1097/00000478-200301000-00011 contributor: fullname: T Miyoshi – ident: 40041_CR34 doi: 10.3390/medsci5040034 – volume: 40 start-page: 1221 year: 2012 ident: 40041_CR19 publication-title: Eur Respir J. doi: 10.1183/09031936.00219211 contributor: fullname: A Warth – volume: 12 start-page: 501 year: 2017 ident: 40041_CR29 publication-title: J Thorac Oncol. doi: 10.1016/j.jtho.2016.10.017 contributor: fullname: X Lou – volume: 42 start-page: 60 year: 2017 ident: 40041_CR23 publication-title: Med Image Anal. doi: 10.1016/j.media.2017.07.005 contributor: fullname: G Litjens – ident: 40041_CR31 – ident: 40041_CR27 – volume: 115 start-page: 211 year: 2015 ident: 40041_CR38 publication-title: IJCV. doi: 10.1007/s11263-015-0816-y contributor: fullname: O Russakovsky – volume: 8 start-page: 30 year: 2017 ident: 40041_CR21 publication-title: J Pathol Inform. doi: 10.4103/jpi.jpi_34_17 contributor: fullname: B Korbar – volume: 30 start-page: 1438 year: 2012 ident: 40041_CR8 publication-title: J Clin Oncol. doi: 10.1200/JCO.2011.37.2185 contributor: fullname: A Warth – volume: 6 start-page: 1496 year: 2011 ident: 40041_CR10 publication-title: J Thorac Oncol. doi: 10.1097/JTO.0b013e318221f701 contributor: fullname: PA Russell – volume: 62 start-page: 785 year: 2012 ident: 40041_CR13 publication-title: Patho Int. doi: 10.1111/pin.12016 contributor: fullname: T Woo – ident: 40041_CR25 – volume: 147 start-page: 54 year: 2014 ident: 40041_CR9 publication-title: J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2013.08.058 contributor: fullname: M Takahashi – volume: 105 start-page: 1212 year: 2013 ident: 40041_CR11 publication-title: J Natl Cancer Inst. doi: 10.1093/jnci/djt166 contributor: fullname: JI Nitadori – volume: 24 start-page: 653 year: 2011 ident: 40041_CR7 publication-title: Mod Pathol. doi: 10.1038/modpathol.2010.232 contributor: fullname: A Yoshizawa – volume: 6 start-page: 244 year: 2011 ident: 40041_CR4 publication-title: J Thorac Oncol. doi: 10.1097/JTO.0b013e318206a221 contributor: fullname: WD Travis – volume: 135 start-page: 1329 year: 2011 ident: 40041_CR33 publication-title: Arch Pathol Lab Med. doi: 10.5858/arpa.2010-0493-OA contributor: fullname: HS Shim – volume: 9 start-page: 1243 year: 2015 ident: 40041_CR3 publication-title: J Thorac Oncol. doi: 10.1097/JTO.0000000000000630 contributor: fullname: WD Travis – volume: 7 year: 2016 ident: 40041_CR30 publication-title: Nat Commun. doi: 10.1038/ncomms12474 contributor: fullname: KH Yu – volume: 38 start-page: 448 year: 2014 ident: 40041_CR5 publication-title: Am J Surg Pathol. doi: 10.1097/PAS.0000000000000134 contributor: fullname: K Kadota – volume: 147 start-page: 921 year: 2014 ident: 40041_CR12 publication-title: J Thorac Cardiovasc Surg. doi: 10.1016/j.jtcvs.2013.09.045 contributor: fullname: MJ Cha – volume: 8693 start-page: 740 year: 2014 ident: 40041_CR39 publication-title: ECCV. contributor: fullname: TY Lin |
SSID | ssj0000529419 |
Score | 2.6780205 |
Snippet | Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often... Abstract Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is... |
SourceID | pubmedcentral proquest crossref pubmed springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 3358 |
SubjectTerms | 14/63 631/114/1305 631/114/1564 692/4028/67/1612/1350 Adenocarcinoma Adenocarcinoma of Lung - classification Adenocarcinoma of Lung - pathology Adenocarcinoma of Lung - surgery Automation Classification Deep Learning Histological Techniques - methods Humanities and Social Sciences Humans Lung cancer Lung Neoplasms - classification Lung Neoplasms - pathology Lungs multidisciplinary Neural networks Neural Networks, Computer Pathologists Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA96h-CLzO9uUyL4pmFtkubjSVQ2huAY4mBvJV_FwWyvawfbf79z0t47rkNfm5Qm_SXn_HLOyTmEvHeh9clGy3gKikkeFfMVD0yEUmjBnTY52v37sTo6ld_O6rPZ4DbMYZUrmZgFdewD2sj3OZbFFugl_LT8w7BqFHpX5xIaD8kWh5MCX5CtLwfHJz_WVhb0Y8nKzrdlSmH2B9BYeKussgyXb8X0pka6RzPvR0v-5TLNmuhwmzyZKST9PGH-lDxI3TPyaCoqefOcXJ-4cRJpw8guMCaIBqTIGBOUYaB9S3Oa4Sz26DJn2OwGCi14FykAB6UXIAOoA5kEqu4ynHf9b0eBkcY0ULTc0pjSkmIuTBhIN0WSDy_I6eHBz69HbK6vwILUcmTc1rotk1Sg1L2qAU4uorBlG5QyvnXGV9aINrY1PJPKyxCk9abkvoxGJCNekkXXd-k1oU5LxT13ydhS6hgtvM-lcbXQcGSpTUE-rP5xs5zSaDTZ_S1MMyHSACJNRqTRBdlbwdDMW2po7hZAQd6tm2EzoIfDdam_yn2A0Wg4GRfk1YTa-nMCyKYAPloQvYHnugMm2t5s6c5_5YTbyOKkhGF9XCF_N6x_z2Ln_7PYJY85rkKMZ5N7ZDFeXqU3QHBG_3Zexbdhnvy7 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_MieCL-G3dlAi-abRN0nw8iIg4hqD44IW9lSRNcXDXe73tYPvvd5K0V66bvjYNTfI7yfml5wvgtfWdC6Y1lAUvqWCtpK5innJfcsWZVTp5u3_7Lo8X4utJfbIHc7mjaQGHG692sZ7UYrN8d_H78iNu-A85ZFy_H1AJxUCxytAokRVVt-A2i4m5oivfRPdzrm9mRGWm2Jmbu-7qp2uk87rv5F8G1KSXju7DvYlQkk9ZAh7AXugfwp1cYvLyEVz8sGM-4IaRLqOHEPGRMEcPoQQKWXUkJR1OhyBZp3yb_UCwJUYmeWSkZIknArF4QqHi2_jTfnVmCfLTNgwk_sclbQhrEjNj4kD67Fc-PIbF0Zefn4_pVG2BeqHESJmpVVcGIVHFO1kjuIy33JSdl1K7zmpXGc27tqvxmZBOeC-M0yVzZat50PwJ7PerPjwDYpWQzDEbtCmFaluD_ZnQtuYKLzC1LuDNvMbNOifVaJIxnOsmI9IgIk1CpFEFHM4wNLN8NCxWSefRaFzAq20zbo1o77B9WJ2nd5DfKLwnF_A0o7b9HEfqyZGdFqB28Ny-ENNu77b0p79S-u3I6YTAYb2dkf8zrH_P4vn_Z3EAd1mUwujdJg5hf9ychxdId0b3MsnwFcri_oQ priority: 102 providerName: Scholars Portal – databaseName: Springer_OA刊 dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9UwFD7oiOBGfNtxlAjuNNgmaR5LuTgMguLCgdmVvIoDY-9l2gH993NO2nvlOrpwnYSm-U5yvuS8AN742IfskuMiR82VSJqHRkQuYy2NFN7Y4u3--Ys-OVWfztqzJU0OxcLs2e-lfT-igqEgsMZxkraGm9twh3QwlWlY6dXuPYUsVqpxS1zM34fu654bhPKmX-QfxtGic44fwP2FLLIPM7oP4VYeHsHduXzkr8fw86uf5sNrnPgFef-wSGSYvH_KgrN1z0pC4XLAsU3JpTmMDFso6igi22QXuNuZx9MHldplPB_WPzxD7pnyyOiNlqWcN4yyXuJEhtlnfHwCp8cfv61O-FJJgUdl1MSFa01fZ6VRfQfdInBCJunqPmptQ-9taJyVfepxXXulg4pRuWBrEepkZbbyKRwM6yE_B-aN0iIIn62rlUnJ4XihrG-lwctJayt4u13jbjMnzOiKoVvabkakQ0S6gkhnKjjawtAtm2fsBFVAl2QQruD1rhnFnmwZfsjrq9IHuYvBO3AFz2bUdp-TSCslMs8KzB6euw6UUnu_ZTj_XlJrE19TCqf1bov872n9-y8O_6_7C7gnSCrJk00dwcF0eZVfIrWZwqsi09fePvQw priority: 102 providerName: Springer Nature |
Title | Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks |
URI | https://link.springer.com/article/10.1038/s41598-019-40041-7 https://www.ncbi.nlm.nih.gov/pubmed/30833650 https://www.proquest.com/docview/2187935296 https://www.proquest.com/docview/2188207978 https://pubmed.ncbi.nlm.nih.gov/PMC6399447 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ajsFexr7nrgsa7G1zY0uyPh630FIGKWGskDcjyTILJE6oXdj--55kO2tX9rIXgy0Zyf6ddCfd704AH42rrdeVTql3IuW0EqnNqUuZy5hk1EgV2e7zS3Fxxb8ti-UBFGMsTCTtO7s6bdab02b1M3Irdxs3HXli08V8FrQq53J6CIcooHeW6H1Cb6p5rocAmYypaYtKKgSS5ToNEpun4eQ9hrYHEyHc_q4-emBkPuRK_uUwjXro_Bk8HQxI8qXv6HM48M0LeNwfKfn7JfxamK6f0NouXQdGEHHBQA6MoAgC2dYkJhmOkx7ZxfyaTUuwJEQiObRAyRpnAGJwRkJFd-1WzXZjCNqjlW9J2Lcllfc7EjJhYkeankfevoKr87Mfs4t0OF0hdVzyLqW6kHXmuUCVbkWBYFJWMZ3VTghla6NsrhWrq7rAZ1xY7hzXVmXUZpViXrHXcNRsG_8WiJFcUEuNVzrjsqo0vk-5MgWTuGApVAKfxn9c7vokGmV0fjNV9uCUCE4ZwSllAicjDOUwoNqShlPRWXASJ_BhX4xDIfg3TOO3N7EO2jMS18UJvOlR2zc3wp2AvIfnvkJIs32_BKUvptsepC2BzyPyf7r17684_u-G3sETGmQ1EN34CRx11zf-PVo-nZ2gvC_lBB59PbtcfMe7mZhN4i4CXudcTeJIuAXukQmK |
link.rule.ids | 230,315,730,783,787,867,888,2228,12070,21402,24332,27938,27939,31733,31734,33758,33759,41134,42203,43324,43819,51590,53806,53808,74081,74638 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8SZQwEjcwGpiO7F9QghRLdBWHFppb5ZfUSuVZGlSCf49M052q6WCa-wodj575vPMeIaQty60PploGE-hYZLHhvmKByZCKZTgTukc7X541CxO5NdlvZwNbsMcVrmWiVlQxz6gjXyPY1lsgV7CD6ufDKtGoXd1LqFxk9zCPFyYO18t1cbGgl4sWZn5rkwp9N4A-grvlFWG4eKtmNrWR9dI5vVYyb8cplkP7d8n92YCST9OiD8gN1L3kNyeSkr-fkR-fXfjJNCGkZ1jRBANSJAxIiiDQPuW5iTDWejRVc6v2Q0UWvAmUgAGSs9BAlAHEgkU3UU46_ofjgIfjWmgaLelMaUVxUyYMJBuiiMfHpOT_c_HnxZsrq7AglRyZNzUqi2TbECl-6YGMLmIwpRtaBrtW6d9ZbRoY1vDM9l4GYI0Xpfcl1GLpMUTstP1XXpGqFOy4Z67pE0pVYwG3udSu1ooOLDUuiDv1v_YrqYkGjY7v4W2EyIWELEZEasKsruGwc4barBX8BfkzaYZtgL6N1yX-svcB_iMgnNxQZ5OqG0-J4BqCmCjBVFbeG46YJrt7Zbu7DSn20YOJyUM6_0a-ath_XsWz_8_i9fkzuL48MAefDn69oLc5bgiMbJN7pKd8eIyvQSqM_pXeT3_ASxX_kY |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BViAuiDeBAkbiBtYmthPbJ8Sjq_JarRCVeov8iqhUkqVJJfj3jJ3sVksF1zhRnHyTmS-ezzMAL4xrbNBeUxZcRQXzFbUFc5S7nEvOjFRJ7f5lWR0eiY_H5fGkf-onWeXGJyZH7TsX18jnLLbF5jFLOG8mWcTq_eL1-ieNHaRipnVqp3EV9qRAq5rB3tuD5errdsUl5rREoaedMzlX8x6jV9xhVmgaTbmgcjc6XaKcl5WTf6VPU1Ra3IKbE50kb0b8b8OV0N6Ba2ODyd934dfKDKN76wd6GvVBxEW6HPVBCRLSNSSVHE4ukKxTtc22JzgS9yU55KPkFP0BMeifMOyduZO2-2EIslMfehJXcYkPYU1iXUycSDuqyvt7cLQ4-PbukE69FqgTUgyU6VI2eRAVBnhblQgt457rvHFVpWxjlC204o1vSjwmKiucE9qqnNncKx4Uvw-ztmvDQyAGXz-zzASlcyG913g9E8qUXOLvS6kyeLl5x_V6LKlRp1Q4V_WISI2I1AmRWmawv4Ghnj6vvr4whgyeb4fxw4jZDtOG7jydg-xG4l9yBg9G1La340g8OXLTDOQOntsTYtHt3ZH25Hsqvh0ZnRA4rVcb5C-m9e-nePT_p3gG19GY688flp8eww0WDTLK3MQ-zIaz8_AEec9gn04G_QdoBAP4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathologist-level+classification+of+histologic+patterns+on+resected+lung+adenocarcinoma+slides+with+deep+neural+networks&rft.jtitle=Scientific+reports&rft.au=Wei%2C+Jason+W&rft.au=Tafe%2C+Laura+J&rft.au=Linnik%2C+Yevgeniy+A&rft.au=Vaickus%2C+Louis+J&rft.date=2019-03-04&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-019-40041-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |