Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks

Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 9; no. 1; p. 3358
Main Authors Wei, Jason W., Tafe, Laura J., Linnik, Yevgeniy A., Vaickus, Louis J., Tomita, Naofumi, Hassanpour, Saeed
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 04.03.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at https://github.com/BMIRDS/deepslide .
AbstractList Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at https://github.com/BMIRDS/deepslide .
Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at https://github.com/BMIRDS/deepslide .Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at https://github.com/BMIRDS/deepslide .
Abstract Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at https://github.com/BMIRDS/deepslide .
Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at https://github.com/BMIRDS/deepslide .
ArticleNumber 3358
Author Tomita, Naofumi
Wei, Jason W.
Tafe, Laura J.
Linnik, Yevgeniy A.
Vaickus, Louis J.
Hassanpour, Saeed
Author_xml – sequence: 1
  givenname: Jason W.
  surname: Wei
  fullname: Wei, Jason W.
  organization: Department of Biomedical Data Science, Dartmouth College, Department of Computer Science, Dartmouth College
– sequence: 2
  givenname: Laura J.
  surname: Tafe
  fullname: Tafe, Laura J.
  organization: Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center
– sequence: 3
  givenname: Yevgeniy A.
  surname: Linnik
  fullname: Linnik, Yevgeniy A.
  organization: Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center
– sequence: 4
  givenname: Louis J.
  surname: Vaickus
  fullname: Vaickus, Louis J.
  organization: Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center
– sequence: 5
  givenname: Naofumi
  surname: Tomita
  fullname: Tomita, Naofumi
  organization: Department of Biomedical Data Science, Dartmouth College
– sequence: 6
  givenname: Saeed
  orcidid: 0000-0001-9460-6414
  surname: Hassanpour
  fullname: Hassanpour, Saeed
  email: Saeed.Hassanpour@dartmouth.edu
  organization: Department of Biomedical Data Science, Dartmouth College, Department of Computer Science, Dartmouth College, Department of Epidemiology, Dartmouth College
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30833650$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vFSEUholpY2vtH3BhSNx0M5avYWBjYhq_kia60DVhmDP3UrlwBaa1_15ub63VhWwO4X14zzl5n6GDmCIg9IKS15RwdV4E7bXqCNWdIETQbniCjhkRfcc4YweP7kfotJQr0k7PtKD6KTriRHEue3KMfn6xdZ1CWvlSuwDXELALthQ_e2erTxGnGa-beMc4vLW1Qo4FNyVDAVdhwmGJK2wniMnZ7HxMG4tL8BMUfOPrGk8AWxxhyTa0Um9S_l6eo8PZhgKn9_UEfXv_7uvFx-7y84dPF28vOycGUTum-2EmIKQgcpQ9jMD4xDWZnZRqnK0aqVZ8nua-vQk5CueEHhVhI5kUB8VP0Ju973YZNzA5iLWNYbbZb2y-Ncl687cS_dqs0rWRXGshhmZwdm-Q048FSjUbXxyEYCOkpRhGlWJk0MOu16t_0Ku05NjW21GD5i0A2Si2p1xOpWSYH4ahxOyyNftsTcvW3GVrdlO8fLzGw5ffSTaA74HSpLiC_Kf3f2x_ATsatG0
CitedBy_id crossref_primary_10_1038_s41467_024_49153_9
crossref_primary_10_1038_s41598_021_89352_8
crossref_primary_10_1007_s11517_020_02147_3
crossref_primary_10_1016_j_isci_2023_108175
crossref_primary_10_1016_j_lungcan_2022_01_005
crossref_primary_10_1002_path_5966
crossref_primary_10_1007_s10047_021_01282_4
crossref_primary_10_1177_14604582221102314
crossref_primary_10_1109_ACCESS_2023_3251220
crossref_primary_10_3390_cancers14051159
crossref_primary_10_3390_diagnostics12092234
crossref_primary_10_1177_15330338211027901
crossref_primary_10_1002_widm_1410
crossref_primary_10_3390_jpm10040141
crossref_primary_10_1038_s41598_020_58467_9
crossref_primary_10_3390_jpm12020166
crossref_primary_10_1038_s41598_021_87748_0
crossref_primary_10_1007_s11517_021_02473_0
crossref_primary_10_3390_math8111863
crossref_primary_10_5858_arpa_2020_0579_OA
crossref_primary_10_3390_cancers11111673
crossref_primary_10_1016_j_ymeth_2020_05_012
crossref_primary_10_3390_cancers15041321
crossref_primary_10_1111_his_13991
crossref_primary_10_1007_s11042_021_10707_4
crossref_primary_10_3390_cells10040787
crossref_primary_10_1007_s00521_021_05947_2
crossref_primary_10_3390_bioengineering9090423
crossref_primary_10_1186_s12575_023_00207_0
crossref_primary_10_3389_fgene_2022_1037011
crossref_primary_10_3390_cancers14194744
crossref_primary_10_3389_fbinf_2022_912809
crossref_primary_10_5858_arpa_2022_0035_OA
crossref_primary_10_1186_s12916_021_01953_2
crossref_primary_10_1016_j_artmed_2020_101918
crossref_primary_10_1016_j_yamp_2021_07_005
crossref_primary_10_1097_CCO_0000000000000796
crossref_primary_10_1093_jjco_hyae066
crossref_primary_10_1016_j_ebiom_2020_103029
crossref_primary_10_1109_TMI_2022_3188326
crossref_primary_10_1136_bmjopen_2022_069181
crossref_primary_10_1038_s41598_019_50313_x
crossref_primary_10_3390_diagnostics13203289
crossref_primary_10_1001_jamanetworkopen_2021_35271
crossref_primary_10_1002_cac2_12012
crossref_primary_10_1016_j_labinv_2024_102094
crossref_primary_10_1016_j_cmpb_2020_105815
crossref_primary_10_1016_j_media_2020_101813
crossref_primary_10_1109_TMI_2022_3176598
crossref_primary_10_1007_s10439_020_02547_4
crossref_primary_10_3390_cancers13061192
crossref_primary_10_1002_cam4_4471
crossref_primary_10_12998_wjcc_v9_i31_9376
crossref_primary_10_3390_diagnostics11112074
crossref_primary_10_1016_j_artmed_2020_101923
crossref_primary_10_1093_ajcp_aqae053
crossref_primary_10_2482_haigan_60_81
crossref_primary_10_1101_cshperspect_a037812
crossref_primary_10_3390_cancers15051535
crossref_primary_10_3389_fonc_2023_1260374
crossref_primary_10_1038_s41591_024_02856_4
crossref_primary_10_1016_j_tranon_2022_101494
crossref_primary_10_3390_cancers16081506
crossref_primary_10_1038_s41598_023_46472_7
crossref_primary_10_3390_cancers13102419
crossref_primary_10_1038_s41598_024_58151_2
crossref_primary_10_1093_ajcp_aqaa001
crossref_primary_10_3390_cancers15153981
crossref_primary_10_5858_arpa_2020_0541_CP
crossref_primary_10_31590_ejosat_888836
crossref_primary_10_1148_ryai_220028
crossref_primary_10_1088_1361_6560_ac910a
crossref_primary_10_1111_his_14918
crossref_primary_10_1038_s41746_024_01106_8
crossref_primary_10_3390_diagnostics12061480
crossref_primary_10_3390_diagnostics13193115
crossref_primary_10_1038_s41598_021_03206_x
crossref_primary_10_1038_s41467_020_20030_5
crossref_primary_10_1016_j_jmst_2024_05_039
crossref_primary_10_3390_cancers14215264
crossref_primary_10_1016_j_compbiomed_2021_104827
crossref_primary_10_1016_j_ccr_2022_214486
crossref_primary_10_1016_j_imed_2021_08_003
crossref_primary_10_1038_s43018_023_00694_w
crossref_primary_10_1055_s_0040_1701983
crossref_primary_10_1515_dx_2024_0012
crossref_primary_10_3389_fpubh_2022_892658
crossref_primary_10_1007_s40747_024_01398_z
crossref_primary_10_1002_cncy_22443
crossref_primary_10_1109_JBHI_2021_3099817
crossref_primary_10_1109_ACCESS_2022_3204000
crossref_primary_10_3390_cancers13133308
crossref_primary_10_3390_ijms24054773
crossref_primary_10_1007_s40142_019_00177_4
crossref_primary_10_1158_0008_5472_CAN_23_1698
crossref_primary_10_1038_s41598_021_86540_4
crossref_primary_10_1007_s11760_024_03100_9
crossref_primary_10_1001_jamanetworkopen_2020_3398
crossref_primary_10_1016_j_semcancer_2023_01_006
crossref_primary_10_3390_jcm10225326
crossref_primary_10_1016_j_ajpath_2022_12_003
crossref_primary_10_1016_j_labinv_2024_102060
crossref_primary_10_1016_j_bspc_2022_104374
crossref_primary_10_1002_gcc_23177
crossref_primary_10_1038_s41591_021_01343_4
crossref_primary_10_1080_21681163_2022_2058415
crossref_primary_10_1016_j_job_2022_03_003
crossref_primary_10_3389_fpubh_2022_902445
crossref_primary_10_1021_acs_analchem_2c03020
crossref_primary_10_1016_j_ajpath_2024_05_003
crossref_primary_10_3390_cancers14061370
crossref_primary_10_1016_j_ajpath_2024_05_007
crossref_primary_10_1016_j_jpi_2023_100320
crossref_primary_10_1016_j_media_2021_102032
crossref_primary_10_1111_his_15180
crossref_primary_10_1038_d41586_019_02870_4
crossref_primary_10_1016_j_compmedimag_2021_101923
crossref_primary_10_3390_diagnostics12030768
crossref_primary_10_3389_fradi_2022_810731
crossref_primary_10_1016_j_heliyon_2022_e11981
crossref_primary_10_1155_2023_7282944
crossref_primary_10_1001_jamanetworkopen_2019_14645
crossref_primary_10_5858_arpa_2022_0051_OA
crossref_primary_10_1016_j_jpi_2022_100138
crossref_primary_10_1016_j_compbiomed_2020_104065
crossref_primary_10_1016_j_jhep_2019_06_001
Cites_doi 10.1097/PAS.0000000000000246
10.11613/BM.2012.031
10.1371/journal.pone.0121323
10.4103/jpi.jpi_34_17
10.1200/JCO.2014.58.8335
10.1097/PAS.0b013e3181b8cf03
10.1016/j.jtho.2016.10.017
10.1016/j.jtcvs.2013.08.058
10.1093/jnci/djt166
10.1111/pin.12016
10.5858/arpa.2010-0493-OA
10.1097/JTO.0b013e318206a221
10.1097/00000478-200301000-00011
10.1016/j.compbiomed.2018.05.011
10.1097/JTO.0b013e318221f701
10.1016/j.media.2017.07.005
10.1183/09031936.00219211
10.1007/s11263-015-0816-y
10.1038/modpathol.2010.232
10.1097/JTO.0000000000000630
10.1200/JCO.2011.37.2185
10.1007/s00428-012-1263-6
10.1038/modpathol.2012.106
10.3414/ME17-01-0039
10.1097/PAS.0000000000000134
10.1016/j.ejso.2013.08.026
10.1016/j.jtcvs.2013.09.045
10.1038/s41591-018-0177-5
10.1038/ncomms12474
10.1109/CVPR.2016.90
10.1109/ICCV.2015.123
10.1101/274332
10.1109/ICCV.2017.322
10.3390/medsci5040034
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOI 10.1038/s41598-019-40041-7
DatabaseName Springer_OA刊
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
ProQuest Science Journals
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

CrossRef
MEDLINE
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID 10_1038_s41598_019_40041_7
30833650
Genre Journal Article
GrantInformation_xml – fundername: Kaminsky Research Fund from Dartmouth College
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
EJD
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-2957f0e46406b65ebe23d390fc668bfa8b1983fdf590f46b4cc49b802b0d83e83
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Sep 17 21:29:08 EDT 2024
Sat Oct 26 04:42:11 EDT 2024
Thu Oct 10 19:09:14 EDT 2024
Fri Aug 23 00:39:05 EDT 2024
Tue Oct 29 09:22:05 EDT 2024
Fri Oct 11 20:46:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-2957f0e46406b65ebe23d390fc668bfa8b1983fdf590f46b4cc49b802b0d83e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9460-6414
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399447/
PMID 30833650
PQID 2187935296
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6399447
proquest_miscellaneous_2188207978
proquest_journals_2187935296
crossref_primary_10_1038_s41598_019_40041_7
pubmed_primary_30833650
springer_journals_10_1038_s41598_019_40041_7
PublicationCentury 2000
PublicationDate 2019-03-04
PublicationDateYYYYMMDD 2019-03-04
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-04
  day: 04
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Song (CR6) 2013; 39
Kadota (CR36) 2014; 38
Warth (CR8) 2012; 30
Lou (CR29) 2017; 12
Torre, Siegel, Jemal (CR1) 2015; 893
Kadota (CR5) 2014; 38
CR15
CR37
Girard (CR17) 2009; 33
CR34
Takahashi (CR9) 2014; 147
Coudray (CR24) 2018; 24
CR32
CR31
Yu (CR30) 2016; 7
Tomita, Cheung, Hassanpour (CR22) 2018; 98
Lin (CR39) 2014; 8693
Travis (CR3) 2015; 9
Kumar (CR35) 2018; 57
Thunnissen (CR20) 2012; 25
Cha (CR12) 2014; 147
Woo (CR13) 2012; 62
Russakovsky (CR38) 2015; 115
CR28
CR27
Tsao (CR14) 2015; 33
CR26
Miyoshi (CR18) 2003; 27
CR25
Yoshizawa (CR7) 2011; 24
Travis (CR4) 2011; 6
Warth (CR16) 2012; 461
Korbar (CR21) 2017; 8
Litjens (CR23) 2017; 42
Meza, Meernik, Jeon, Cote (CR2) 2015; 10
Shim, Lee, Park, Kim (CR33) 2011; 135
CR40
Russell (CR10) 2011; 6
McHugh (CR41) 2012; 22
Nitadori (CR11) 2013; 105
Warth (CR19) 2012; 40
WD Travis (40041_CR3) 2015; 9
A Warth (40041_CR8) 2012; 30
E Thunnissen (40041_CR20) 2012; 25
T Woo (40041_CR13) 2012; 62
JI Nitadori (40041_CR11) 2013; 105
40041_CR40
T Miyoshi (40041_CR18) 2003; 27
B Korbar (40041_CR21) 2017; 8
A Yoshizawa (40041_CR7) 2011; 24
G Litjens (40041_CR23) 2017; 42
40041_CR15
A Warth (40041_CR16) 2012; 461
40041_CR37
WD Travis (40041_CR4) 2011; 6
K Kadota (40041_CR36) 2014; 38
K Kadota (40041_CR5) 2014; 38
PA Russell (40041_CR10) 2011; 6
LA Torre (40041_CR1) 2015; 893
X Lou (40041_CR29) 2017; 12
M McHugh (40041_CR41) 2012; 22
40041_CR32
Z Song (40041_CR6) 2013; 39
40041_CR34
N Tomita (40041_CR22) 2018; 98
O Russakovsky (40041_CR38) 2015; 115
A Warth (40041_CR19) 2012; 40
R Meza (40041_CR2) 2015; 10
40041_CR31
HS Shim (40041_CR33) 2011; 135
MS Tsao (40041_CR14) 2015; 33
M Takahashi (40041_CR9) 2014; 147
40041_CR25
KH Yu (40041_CR30) 2016; 7
40041_CR26
40041_CR27
40041_CR28
N Girard (40041_CR17) 2009; 33
N Coudray (40041_CR24) 2018; 24
N Kumar (40041_CR35) 2018; 57
TY Lin (40041_CR39) 2014; 8693
MJ Cha (40041_CR12) 2014; 147
References_xml – volume: 38
  start-page: 1118
  year: 2014
  end-page: 1127
  ident: CR36
  article-title: Associations between mutations and histologic patterns of mucin in lung adenocarcinoma: invasive mucinous pattern and extracellular mucin are associated with KRAS mutation
  publication-title: Am J Surg Pathol.
  doi: 10.1097/PAS.0000000000000246
  contributor:
    fullname: Kadota
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  end-page: 82
  ident: CR41
  article-title: Interrater reliability: the kappa statistic
  publication-title: Biochem Med.
  doi: 10.11613/BM.2012.031
  contributor:
    fullname: McHugh
– volume: 10
  start-page: 3
  year: 2015
  ident: CR2
  article-title: Lung cancer incidence trends by gender, race, and histology in the United States
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0121323
  contributor:
    fullname: Cote
– volume: 8
  start-page: 30
  year: 2017
  ident: CR21
  article-title: Deep learning for classification of colorectal polyps on whole-slide images
  publication-title: J Pathol Inform.
  doi: 10.4103/jpi.jpi_34_17
  contributor:
    fullname: Korbar
– volume: 33
  start-page: 3439
  year: 2015
  end-page: 3436
  ident: CR14
  article-title: Subtype classification of lung adenocarcinoma predicts benefit from adjuvant chemotherapy in patients undergoing complete resection
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2014.58.8335
  contributor:
    fullname: Tsao
– volume: 33
  start-page: 1752
  year: 2009
  end-page: 1764
  ident: CR17
  article-title: Comprehensive histologic assessment helps to differentiate multiple lung primary non–small cell carcinomas from metastases
  publication-title: Am J Surg Pathol.
  doi: 10.1097/PAS.0b013e3181b8cf03
  contributor:
    fullname: Girard
– volume: 12
  start-page: 501
  year: 2017
  end-page: 509
  ident: CR29
  article-title: Comprehensive computational pathological image analysis predicts lung cancer prognosis
  publication-title: J Thorac Oncol.
  doi: 10.1016/j.jtho.2016.10.017
  contributor:
    fullname: Lou
– volume: 147
  start-page: 54
  year: 2014
  end-page: 59
  ident: CR9
  article-title: Tumor invasiveness as defined by the newly proposed IASLC/ATS/ERS classification has prognostic significant for pathologic stage IA lung adenocarcinoma and can be predicted by radiologic parameters
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1016/j.jtcvs.2013.08.058
  contributor:
    fullname: Takahashi
– volume: 105
  start-page: 1212
  year: 2013
  end-page: 1220
  ident: CR11
  article-title: Impact of micropapillary histologic subtype in selecting limited resection vs lobectomy for lung adenocarcinoma of 2 cm or smaller
  publication-title: J Natl Cancer Inst.
  doi: 10.1093/jnci/djt166
  contributor:
    fullname: Nitadori
– ident: CR37
– volume: 8693
  start-page: 740
  year: 2014
  end-page: 755
  ident: CR39
  article-title: Microsoft COCO: common objects in context
  publication-title: ECCV.
  contributor:
    fullname: Lin
– volume: 62
  start-page: 785
  year: 2012
  end-page: 791
  ident: CR13
  article-title: Prognostic value of the IASLC/ATS/ERS classification of lung adenocarcinoma in stage I disease of Japanese cases
  publication-title: Patho Int.
  doi: 10.1111/pin.12016
  contributor:
    fullname: Woo
– volume: 135
  start-page: 1329
  year: 2011
  end-page: 1334
  ident: CR33
  article-title: Histopathologic characteristics of lung adenocarcinomas with epidermal growth factor receptor mutations in the international association for the study of lung cancer/American thoracic society/European respiratory society lung adenocarcinoma classification
  publication-title: Arch Pathol Lab Med.
  doi: 10.5858/arpa.2010-0493-OA
  contributor:
    fullname: Kim
– volume: 6
  start-page: 244
  year: 2011
  end-page: 285
  ident: CR4
  article-title: International association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary classification of lung adenocarcinoma
  publication-title: J Thorac Oncol.
  doi: 10.1097/JTO.0b013e318206a221
  contributor:
    fullname: Travis
– ident: CR40
– volume: 27
  start-page: 101
  year: 2003
  end-page: 109
  ident: CR18
  article-title: Early–stage lung adenocarcinomas with a micropapillary pattern, a distinct pathologic marker for a significantly poor prognosis
  publication-title: Am J Surg Pathol.
  doi: 10.1097/00000478-200301000-00011
  contributor:
    fullname: Miyoshi
– volume: 98
  start-page: 8
  year: 2018
  end-page: 15
  ident: CR22
  article-title: Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans
  publication-title: Comp Biol Med.
  doi: 10.1016/j.compbiomed.2018.05.011
  contributor:
    fullname: Hassanpour
– ident: CR25
– volume: 6
  start-page: 1496
  year: 2011
  end-page: 1504
  ident: CR10
  article-title: Does lung adenocarcinoma subtype predict patient survival? A clinicopathologic study based on the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary lung adenocarcinoma classification
  publication-title: J Thorac Oncol.
  doi: 10.1097/JTO.0b013e318221f701
  contributor:
    fullname: Russell
– volume: 42
  start-page: 60
  year: 2017
  end-page: 88
  ident: CR23
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2017.07.005
  contributor:
    fullname: Litjens
– ident: CR27
– volume: 40
  start-page: 1221
  year: 2012
  end-page: 1227
  ident: CR19
  article-title: Interobserver variability in the application of the novel IASLC/ATS/ERS classification for pulmonary adenocarcinomas
  publication-title: Eur Respir J.
  doi: 10.1183/09031936.00219211
  contributor:
    fullname: Warth
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: CR38
  article-title: ImageNet large scale visual recognition challenge
  publication-title: IJCV.
  doi: 10.1007/s11263-015-0816-y
  contributor:
    fullname: Russakovsky
– volume: 24
  start-page: 653
  year: 2011
  end-page: 664
  ident: CR7
  article-title: Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases
  publication-title: Mod Pathol.
  doi: 10.1038/modpathol.2010.232
  contributor:
    fullname: Yoshizawa
– volume: 9
  start-page: 1243
  year: 2015
  end-page: 1260
  ident: CR3
  article-title: The 2015 World Health Organization classification of lung tumors
  publication-title: J Thorac Oncol.
  doi: 10.1097/JTO.0000000000000630
  contributor:
    fullname: Travis
– volume: 30
  start-page: 1438
  year: 2012
  end-page: 1446
  ident: CR8
  article-title: The novel histologic International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification system of lung adenocarcinoma is a stage–independent predict of survival
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2011.37.2185
  contributor:
    fullname: Warth
– ident: CR15
– volume: 461
  start-page: 185
  year: 2012
  end-page: 193
  ident: CR16
  article-title: Training increases concordance in classifying pulmonary adenocarcinomas according to the novel IASLC/ATS/ERS classification
  publication-title: Virchows Arch.
  doi: 10.1007/s00428-012-1263-6
  contributor:
    fullname: Warth
– volume: 25
  start-page: 1574
  year: 2012
  end-page: 1583
  ident: CR20
  article-title: Reproducibility of histopathological subtypes and invasion in pulmonary adenocarcinoma
  publication-title: Mod Pathol.
  doi: 10.1038/modpathol.2012.106
  contributor:
    fullname: Thunnissen
– volume: 57
  start-page: 63
  year: 2018
  end-page: 73
  ident: CR35
  article-title: Identifying associations between somatic mutations and clinicopathologic findings in Lung Cancer Pathology Reports
  publication-title: Methods Inf Med.
  doi: 10.3414/ME17-01-0039
  contributor:
    fullname: Kumar
– ident: CR31
– volume: 38
  start-page: 448
  year: 2014
  end-page: 460
  ident: CR5
  article-title: Prognostic significance of adenocarcinoma , minimally invasive adenocarcinoma, and nonmucinous lepidic predominant invasive adenocarcinoma of the lung in patients with stage I disease
  publication-title: Am J Surg Pathol.
  doi: 10.1097/PAS.0000000000000134
  contributor:
    fullname: Kadota
– volume: 39
  start-page: 1262
  year: 2013
  end-page: 1268
  ident: CR6
  article-title: Prognostic value of the IASLC/ATS/ERS classification in stage I lung adenocarcinoma patients–based on a hospital study in China
  publication-title: Eur J Surg Oncol.
  doi: 10.1016/j.ejso.2013.08.026
  contributor:
    fullname: Song
– volume: 147
  start-page: 921
  year: 2014
  end-page: 928
  ident: CR12
  article-title: Micropapillary and solid subtypes of invasive lung adenocarcinoma: clinical predictors of histopathology and outcome
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1016/j.jtcvs.2013.09.045
  contributor:
    fullname: Cha
– ident: CR32
– ident: CR34
– volume: 24
  start-page: 1559
  year: 2018
  end-page: 1567
  ident: CR24
  article-title: Classification and mutation prediction from non–small cell lung cancer histopathology images with deep learning
  publication-title: Nat Med.
  doi: 10.1038/s41591-018-0177-5
  contributor:
    fullname: Coudray
– ident: CR28
– volume: 7
  year: 2016
  ident: CR30
  article-title: Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features
  publication-title: Nat Commun.
  doi: 10.1038/ncomms12474
  contributor:
    fullname: Yu
– volume: 893
  start-page: 1
  year: 2015
  end-page: 19
  ident: CR1
  article-title: Lung cancer statistics
  publication-title: Adv Exp Med Biol.
  contributor:
    fullname: Jemal
– ident: CR26
– volume: 39
  start-page: 1262
  year: 2013
  ident: 40041_CR6
  publication-title: Eur J Surg Oncol.
  doi: 10.1016/j.ejso.2013.08.026
  contributor:
    fullname: Z Song
– volume: 25
  start-page: 1574
  year: 2012
  ident: 40041_CR20
  publication-title: Mod Pathol.
  doi: 10.1038/modpathol.2012.106
  contributor:
    fullname: E Thunnissen
– volume: 57
  start-page: 63
  year: 2018
  ident: 40041_CR35
  publication-title: Methods Inf Med.
  doi: 10.3414/ME17-01-0039
  contributor:
    fullname: N Kumar
– volume: 10
  start-page: 3
  year: 2015
  ident: 40041_CR2
  publication-title: PLoS ONE.
  doi: 10.1371/journal.pone.0121323
  contributor:
    fullname: R Meza
– volume: 33
  start-page: 1752
  year: 2009
  ident: 40041_CR17
  publication-title: Am J Surg Pathol.
  doi: 10.1097/PAS.0b013e3181b8cf03
  contributor:
    fullname: N Girard
– ident: 40041_CR26
– ident: 40041_CR37
  doi: 10.1109/CVPR.2016.90
– volume: 24
  start-page: 1559
  year: 2018
  ident: 40041_CR24
  publication-title: Nat Med.
  doi: 10.1038/s41591-018-0177-5
  contributor:
    fullname: N Coudray
– ident: 40041_CR40
  doi: 10.1109/ICCV.2015.123
– volume: 33
  start-page: 3439
  year: 2015
  ident: 40041_CR14
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2014.58.8335
  contributor:
    fullname: MS Tsao
– volume: 461
  start-page: 185
  year: 2012
  ident: 40041_CR16
  publication-title: Virchows Arch.
  doi: 10.1007/s00428-012-1263-6
  contributor:
    fullname: A Warth
– volume: 893
  start-page: 1
  year: 2015
  ident: 40041_CR1
  publication-title: Adv Exp Med Biol.
  contributor:
    fullname: LA Torre
– volume: 38
  start-page: 1118
  year: 2014
  ident: 40041_CR36
  publication-title: Am J Surg Pathol.
  doi: 10.1097/PAS.0000000000000246
  contributor:
    fullname: K Kadota
– ident: 40041_CR28
  doi: 10.1101/274332
– volume: 22
  start-page: 276
  issue: 3
  year: 2012
  ident: 40041_CR41
  publication-title: Biochem Med.
  doi: 10.11613/BM.2012.031
  contributor:
    fullname: M McHugh
– volume: 98
  start-page: 8
  year: 2018
  ident: 40041_CR22
  publication-title: Comp Biol Med.
  doi: 10.1016/j.compbiomed.2018.05.011
  contributor:
    fullname: N Tomita
– ident: 40041_CR15
– ident: 40041_CR32
  doi: 10.1109/ICCV.2017.322
– volume: 27
  start-page: 101
  year: 2003
  ident: 40041_CR18
  publication-title: Am J Surg Pathol.
  doi: 10.1097/00000478-200301000-00011
  contributor:
    fullname: T Miyoshi
– ident: 40041_CR34
  doi: 10.3390/medsci5040034
– volume: 40
  start-page: 1221
  year: 2012
  ident: 40041_CR19
  publication-title: Eur Respir J.
  doi: 10.1183/09031936.00219211
  contributor:
    fullname: A Warth
– volume: 12
  start-page: 501
  year: 2017
  ident: 40041_CR29
  publication-title: J Thorac Oncol.
  doi: 10.1016/j.jtho.2016.10.017
  contributor:
    fullname: X Lou
– volume: 42
  start-page: 60
  year: 2017
  ident: 40041_CR23
  publication-title: Med Image Anal.
  doi: 10.1016/j.media.2017.07.005
  contributor:
    fullname: G Litjens
– ident: 40041_CR31
– ident: 40041_CR27
– volume: 115
  start-page: 211
  year: 2015
  ident: 40041_CR38
  publication-title: IJCV.
  doi: 10.1007/s11263-015-0816-y
  contributor:
    fullname: O Russakovsky
– volume: 8
  start-page: 30
  year: 2017
  ident: 40041_CR21
  publication-title: J Pathol Inform.
  doi: 10.4103/jpi.jpi_34_17
  contributor:
    fullname: B Korbar
– volume: 30
  start-page: 1438
  year: 2012
  ident: 40041_CR8
  publication-title: J Clin Oncol.
  doi: 10.1200/JCO.2011.37.2185
  contributor:
    fullname: A Warth
– volume: 6
  start-page: 1496
  year: 2011
  ident: 40041_CR10
  publication-title: J Thorac Oncol.
  doi: 10.1097/JTO.0b013e318221f701
  contributor:
    fullname: PA Russell
– volume: 62
  start-page: 785
  year: 2012
  ident: 40041_CR13
  publication-title: Patho Int.
  doi: 10.1111/pin.12016
  contributor:
    fullname: T Woo
– ident: 40041_CR25
– volume: 147
  start-page: 54
  year: 2014
  ident: 40041_CR9
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1016/j.jtcvs.2013.08.058
  contributor:
    fullname: M Takahashi
– volume: 105
  start-page: 1212
  year: 2013
  ident: 40041_CR11
  publication-title: J Natl Cancer Inst.
  doi: 10.1093/jnci/djt166
  contributor:
    fullname: JI Nitadori
– volume: 24
  start-page: 653
  year: 2011
  ident: 40041_CR7
  publication-title: Mod Pathol.
  doi: 10.1038/modpathol.2010.232
  contributor:
    fullname: A Yoshizawa
– volume: 6
  start-page: 244
  year: 2011
  ident: 40041_CR4
  publication-title: J Thorac Oncol.
  doi: 10.1097/JTO.0b013e318206a221
  contributor:
    fullname: WD Travis
– volume: 135
  start-page: 1329
  year: 2011
  ident: 40041_CR33
  publication-title: Arch Pathol Lab Med.
  doi: 10.5858/arpa.2010-0493-OA
  contributor:
    fullname: HS Shim
– volume: 9
  start-page: 1243
  year: 2015
  ident: 40041_CR3
  publication-title: J Thorac Oncol.
  doi: 10.1097/JTO.0000000000000630
  contributor:
    fullname: WD Travis
– volume: 7
  year: 2016
  ident: 40041_CR30
  publication-title: Nat Commun.
  doi: 10.1038/ncomms12474
  contributor:
    fullname: KH Yu
– volume: 38
  start-page: 448
  year: 2014
  ident: 40041_CR5
  publication-title: Am J Surg Pathol.
  doi: 10.1097/PAS.0000000000000134
  contributor:
    fullname: K Kadota
– volume: 147
  start-page: 921
  year: 2014
  ident: 40041_CR12
  publication-title: J Thorac Cardiovasc Surg.
  doi: 10.1016/j.jtcvs.2013.09.045
  contributor:
    fullname: MJ Cha
– volume: 8693
  start-page: 740
  year: 2014
  ident: 40041_CR39
  publication-title: ECCV.
  contributor:
    fullname: TY Lin
SSID ssj0000529419
Score 2.6780205
Snippet Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often...
Abstract Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is...
SourceID pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 3358
SubjectTerms 14/63
631/114/1305
631/114/1564
692/4028/67/1612/1350
Adenocarcinoma
Adenocarcinoma of Lung - classification
Adenocarcinoma of Lung - pathology
Adenocarcinoma of Lung - surgery
Automation
Classification
Deep Learning
Histological Techniques - methods
Humanities and Social Sciences
Humans
Lung cancer
Lung Neoplasms - classification
Lung Neoplasms - pathology
Lungs
multidisciplinary
Neural networks
Neural Networks, Computer
Pathologists
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFA96h-CLzO9uUyL4pmFtkubjSVQ2huAY4mBvJV_FwWyvawfbf79z0t47rkNfm5Qm_SXn_HLOyTmEvHeh9clGy3gKikkeFfMVD0yEUmjBnTY52v37sTo6ld_O6rPZ4DbMYZUrmZgFdewD2sj3OZbFFugl_LT8w7BqFHpX5xIaD8kWh5MCX5CtLwfHJz_WVhb0Y8nKzrdlSmH2B9BYeKussgyXb8X0pka6RzPvR0v-5TLNmuhwmzyZKST9PGH-lDxI3TPyaCoqefOcXJ-4cRJpw8guMCaIBqTIGBOUYaB9S3Oa4Sz26DJn2OwGCi14FykAB6UXIAOoA5kEqu4ynHf9b0eBkcY0ULTc0pjSkmIuTBhIN0WSDy_I6eHBz69HbK6vwILUcmTc1rotk1Sg1L2qAU4uorBlG5QyvnXGV9aINrY1PJPKyxCk9abkvoxGJCNekkXXd-k1oU5LxT13ydhS6hgtvM-lcbXQcGSpTUE-rP5xs5zSaDTZ_S1MMyHSACJNRqTRBdlbwdDMW2po7hZAQd6tm2EzoIfDdam_yn2A0Wg4GRfk1YTa-nMCyKYAPloQvYHnugMm2t5s6c5_5YTbyOKkhGF9XCF_N6x_z2Ln_7PYJY85rkKMZ5N7ZDFeXqU3QHBG_3Zexbdhnvy7
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9UwFD_MieCL-G3dlAi-abRN0nw8iIg4hqD44IW9lSRNcXDXe73tYPvvd5K0V66bvjYNTfI7yfml5wvgtfWdC6Y1lAUvqWCtpK5innJfcsWZVTp5u3_7Lo8X4utJfbIHc7mjaQGHG692sZ7UYrN8d_H78iNu-A85ZFy_H1AJxUCxytAokRVVt-A2i4m5oivfRPdzrm9mRGWm2Jmbu-7qp2uk87rv5F8G1KSXju7DvYlQkk9ZAh7AXugfwp1cYvLyEVz8sGM-4IaRLqOHEPGRMEcPoQQKWXUkJR1OhyBZp3yb_UCwJUYmeWSkZIknArF4QqHi2_jTfnVmCfLTNgwk_sclbQhrEjNj4kD67Fc-PIbF0Zefn4_pVG2BeqHESJmpVVcGIVHFO1kjuIy33JSdl1K7zmpXGc27tqvxmZBOeC-M0yVzZat50PwJ7PerPjwDYpWQzDEbtCmFaluD_ZnQtuYKLzC1LuDNvMbNOifVaJIxnOsmI9IgIk1CpFEFHM4wNLN8NCxWSefRaFzAq20zbo1o77B9WJ2nd5DfKLwnF_A0o7b9HEfqyZGdFqB28Ny-ENNu77b0p79S-u3I6YTAYb2dkf8zrH_P4vn_Z3EAd1mUwujdJg5hf9ychxdId0b3MsnwFcri_oQ
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer_OA刊
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9UwFD7oiOBGfNtxlAjuNNgmaR5LuTgMguLCgdmVvIoDY-9l2gH993NO2nvlOrpwnYSm-U5yvuS8AN742IfskuMiR82VSJqHRkQuYy2NFN7Y4u3--Ys-OVWfztqzJU0OxcLs2e-lfT-igqEgsMZxkraGm9twh3QwlWlY6dXuPYUsVqpxS1zM34fu654bhPKmX-QfxtGic44fwP2FLLIPM7oP4VYeHsHduXzkr8fw86uf5sNrnPgFef-wSGSYvH_KgrN1z0pC4XLAsU3JpTmMDFso6igi22QXuNuZx9MHldplPB_WPzxD7pnyyOiNlqWcN4yyXuJEhtlnfHwCp8cfv61O-FJJgUdl1MSFa01fZ6VRfQfdInBCJunqPmptQ-9taJyVfepxXXulg4pRuWBrEepkZbbyKRwM6yE_B-aN0iIIn62rlUnJ4XihrG-lwctJayt4u13jbjMnzOiKoVvabkakQ0S6gkhnKjjawtAtm2fsBFVAl2QQruD1rhnFnmwZfsjrq9IHuYvBO3AFz2bUdp-TSCslMs8KzB6euw6UUnu_ZTj_XlJrE19TCqf1bov872n9-y8O_6_7C7gnSCrJk00dwcF0eZVfIrWZwqsi09fePvQw
  priority: 102
  providerName: Springer Nature
Title Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks
URI https://link.springer.com/article/10.1038/s41598-019-40041-7
https://www.ncbi.nlm.nih.gov/pubmed/30833650
https://www.proquest.com/docview/2187935296
https://www.proquest.com/docview/2188207978
https://pubmed.ncbi.nlm.nih.gov/PMC6399447
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ajsFexr7nrgsa7G1zY0uyPh630FIGKWGskDcjyTILJE6oXdj--55kO2tX9rIXgy0Zyf6ddCfd704AH42rrdeVTql3IuW0EqnNqUuZy5hk1EgV2e7zS3Fxxb8ti-UBFGMsTCTtO7s6bdab02b1M3Irdxs3HXli08V8FrQq53J6CIcooHeW6H1Cb6p5rocAmYypaYtKKgSS5ToNEpun4eQ9hrYHEyHc_q4-emBkPuRK_uUwjXro_Bk8HQxI8qXv6HM48M0LeNwfKfn7JfxamK6f0NouXQdGEHHBQA6MoAgC2dYkJhmOkx7ZxfyaTUuwJEQiObRAyRpnAGJwRkJFd-1WzXZjCNqjlW9J2Lcllfc7EjJhYkeankfevoKr87Mfs4t0OF0hdVzyLqW6kHXmuUCVbkWBYFJWMZ3VTghla6NsrhWrq7rAZ1xY7hzXVmXUZpViXrHXcNRsG_8WiJFcUEuNVzrjsqo0vk-5MgWTuGApVAKfxn9c7vokGmV0fjNV9uCUCE4ZwSllAicjDOUwoNqShlPRWXASJ_BhX4xDIfg3TOO3N7EO2jMS18UJvOlR2zc3wp2AvIfnvkJIs32_BKUvptsepC2BzyPyf7r17684_u-G3sETGmQ1EN34CRx11zf-PVo-nZ2gvC_lBB59PbtcfMe7mZhN4i4CXudcTeJIuAXukQmK
link.rule.ids 230,315,730,783,787,867,888,2228,12070,21402,24332,27938,27939,31733,31734,33758,33759,41134,42203,43324,43819,51590,53806,53808,74081,74638
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCMEF8SZQwEjcwGpiO7F9QghRLdBWHFppb5ZfUSuVZGlSCf49M052q6WCa-wodj575vPMeIaQty60PploGE-hYZLHhvmKByZCKZTgTukc7X541CxO5NdlvZwNbsMcVrmWiVlQxz6gjXyPY1lsgV7CD6ufDKtGoXd1LqFxk9zCPFyYO18t1cbGgl4sWZn5rkwp9N4A-grvlFWG4eKtmNrWR9dI5vVYyb8cplkP7d8n92YCST9OiD8gN1L3kNyeSkr-fkR-fXfjJNCGkZ1jRBANSJAxIiiDQPuW5iTDWejRVc6v2Q0UWvAmUgAGSs9BAlAHEgkU3UU46_ofjgIfjWmgaLelMaUVxUyYMJBuiiMfHpOT_c_HnxZsrq7AglRyZNzUqi2TbECl-6YGMLmIwpRtaBrtW6d9ZbRoY1vDM9l4GYI0Xpfcl1GLpMUTstP1XXpGqFOy4Z67pE0pVYwG3udSu1ooOLDUuiDv1v_YrqYkGjY7v4W2EyIWELEZEasKsruGwc4barBX8BfkzaYZtgL6N1yX-svcB_iMgnNxQZ5OqG0-J4BqCmCjBVFbeG46YJrt7Zbu7DSn20YOJyUM6_0a-ath_XsWz_8_i9fkzuL48MAefDn69oLc5bgiMbJN7pKd8eIyvQSqM_pXeT3_ASxX_kY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7BViAuiDeBAkbiBtYmthPbJ8Sjq_JarRCVeov8iqhUkqVJJfj3jJ3sVksF1zhRnHyTmS-ezzMAL4xrbNBeUxZcRQXzFbUFc5S7nEvOjFRJ7f5lWR0eiY_H5fGkf-onWeXGJyZH7TsX18jnLLbF5jFLOG8mWcTq_eL1-ieNHaRipnVqp3EV9qRAq5rB3tuD5errdsUl5rREoaedMzlX8x6jV9xhVmgaTbmgcjc6XaKcl5WTf6VPU1Ra3IKbE50kb0b8b8OV0N6Ba2ODyd934dfKDKN76wd6GvVBxEW6HPVBCRLSNSSVHE4ukKxTtc22JzgS9yU55KPkFP0BMeifMOyduZO2-2EIslMfehJXcYkPYU1iXUycSDuqyvt7cLQ4-PbukE69FqgTUgyU6VI2eRAVBnhblQgt457rvHFVpWxjlC204o1vSjwmKiucE9qqnNncKx4Uvw-ztmvDQyAGXz-zzASlcyG913g9E8qUXOLvS6kyeLl5x_V6LKlRp1Q4V_WISI2I1AmRWmawv4Ghnj6vvr4whgyeb4fxw4jZDtOG7jydg-xG4l9yBg9G1La340g8OXLTDOQOntsTYtHt3ZH25Hsqvh0ZnRA4rVcb5C-m9e-nePT_p3gG19GY688flp8eww0WDTLK3MQ-zIaz8_AEec9gn04G_QdoBAP4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pathologist-level+classification+of+histologic+patterns+on+resected+lung+adenocarcinoma+slides+with+deep+neural+networks&rft.jtitle=Scientific+reports&rft.au=Wei%2C+Jason+W&rft.au=Tafe%2C+Laura+J&rft.au=Linnik%2C+Yevgeniy+A&rft.au=Vaickus%2C+Louis+J&rft.date=2019-03-04&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=9&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-019-40041-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon