Programmable RNA Shredding by the Type III-A CRISPR-Cas System of Streptococcus thermophilus

Immunity against viruses and plasmids provided by CRISPR-Cas systems relies on a ribonucleoprotein effector complex that triggers the degradation of invasive nucleic acids (NA). Effector complexes of type I (Cascade) and II (Cas9-dual RNA) target foreign DNA. Intriguingly, the genetic evidence sugge...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 56; no. 4; pp. 506 - 517
Main Authors Tamulaitis, Gintautas, Kazlauskiene, Migle, Manakova, Elena, Venclovas, Česlovas, Nwokeoji, Alison O., Dickman, Mark J., Horvath, Philippe, Siksnys, Virginijus
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 20.11.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Immunity against viruses and plasmids provided by CRISPR-Cas systems relies on a ribonucleoprotein effector complex that triggers the degradation of invasive nucleic acids (NA). Effector complexes of type I (Cascade) and II (Cas9-dual RNA) target foreign DNA. Intriguingly, the genetic evidence suggests that the type III-A Csm complex targets DNA, whereas biochemical data show that the type III-B Cmr complex cleaves RNA. Here we aimed to investigate NA specificity and mechanism of CRISPR interference for the Streptococcus thermophilus Csm (III-A) complex (StCsm). When expressed in Escherichia coli, two complexes of different stoichiometry copurified with 40 and 72 nt crRNA species, respectively. Both complexes targeted RNA and generated multiple cuts at 6 nt intervals. The Csm3 protein, present in multiple copies in both Csm complexes, acts as endoribonuclease. In the heterologous E. coli host, StCsm restricts MS2 RNA phage in a Csm3 nuclease-dependent manner. Thus, our results demonstrate that the type III-A StCsm complex guided by crRNA targets RNA and not DNA. [Display omitted] •Streptococcus thermophilus type III-A Csm (StCsm) complex targets RNA•Multiple cuts are introduced in the target RNA at 6 nt intervals•Csm3 protein subunits are responsible for endoribonuclease activity of the complex•StCsm complex offers a programmable tool for RNA degradation RNA-protein complexes in CRISPR-Cas systems provide immunity against viruses and plasmids. Type I (Cascade) and II (Cas9) complexes target foreign DNA. Tamulaitis et al. demonstrate that the Csm complex (type III-A) of Streptococcus thermophilus targets RNA and establishes a mechanism for RNA degradation.
AbstractList Immunity against viruses and plasmids provided by CRISPR-Cas systems relies on a ribonucleoprotein effector complex that triggers the degradation of invasive nucleic acids (NA). Effector complexes of type I (Cascade) and II (Cas9-dual RNA) target foreign DNA. Intriguingly, the genetic evidence suggests that the type III-A Csm complex targets DNA, whereas biochemical data show that the type III-B Cmr complex cleaves RNA. Here we aimed to investigate NA specificity and mechanism of CRISPR interference for the Streptococcus thermophilus Csm (III-A) complex (StCsm). When expressed in Escherichia coli, two complexes of different stoichiometry copurified with 40 and 72 nt crRNA species, respectively. Both complexes targeted RNA and generated multiple cuts at 6 nt intervals. The Csm3 protein, present in multiple copies in both Csm complexes, acts as endoribonuclease. In the heterologous E. coli host, StCsm restricts MS2 RNA phage in a Csm3 nuclease-dependent manner. Thus, our results demonstrate that the type III-A StCsm complex guided by crRNA targets RNA and not DNA. [Display omitted] •Streptococcus thermophilus type III-A Csm (StCsm) complex targets RNA•Multiple cuts are introduced in the target RNA at 6 nt intervals•Csm3 protein subunits are responsible for endoribonuclease activity of the complex•StCsm complex offers a programmable tool for RNA degradation RNA-protein complexes in CRISPR-Cas systems provide immunity against viruses and plasmids. Type I (Cascade) and II (Cas9) complexes target foreign DNA. Tamulaitis et al. demonstrate that the Csm complex (type III-A) of Streptococcus thermophilus targets RNA and establishes a mechanism for RNA degradation.
Immunity against viruses and plasmids provided by CRISPR-Cas systems relies on a ribonucleoprotein effector complex that triggers the degradation of invasive nucleic acids (NA). Effector complexes of type I (Cascade) and II (Cas9-dual RNA) target foreign DNA. Intriguingly, the genetic evidence suggests that the type III-A Csm complex targets DNA, whereas biochemical data show that the type III-B Cmr complex cleaves RNA. Here we aimed to investigate NA specificity and mechanism of CRISPR interference for the Streptococcus thermophilus Csm (III-A) complex (StCsm). When expressed in Escherichia coli, two complexes of different stoichiometry copurified with 40 and 72 nt crRNA species, respectively. Both complexes targeted RNA and generated multiple cuts at 6 nt intervals. The Csm3 protein, present in multiple copies in both Csm complexes, acts as endoribonuclease. In the heterologous E. coli host, StCsm restricts MS2 RNA phage in a Csm3 nuclease-dependent manner. Thus, our results demonstrate that the type III-A StCsm complex guided by crRNA targets RNA and not DNA.
Author Nwokeoji, Alison O.
Horvath, Philippe
Tamulaitis, Gintautas
Kazlauskiene, Migle
Siksnys, Virginijus
Manakova, Elena
Venclovas, Česlovas
Dickman, Mark J.
Author_xml – sequence: 1
  givenname: Gintautas
  surname: Tamulaitis
  fullname: Tamulaitis, Gintautas
  organization: Department of Protein–DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania
– sequence: 2
  givenname: Migle
  surname: Kazlauskiene
  fullname: Kazlauskiene, Migle
  organization: Department of Protein–DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania
– sequence: 3
  givenname: Elena
  surname: Manakova
  fullname: Manakova, Elena
  organization: Department of Protein–DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania
– sequence: 4
  givenname: Česlovas
  surname: Venclovas
  fullname: Venclovas, Česlovas
  organization: Department of Bioinformatics, Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania
– sequence: 5
  givenname: Alison O.
  surname: Nwokeoji
  fullname: Nwokeoji, Alison O.
  organization: Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
– sequence: 6
  givenname: Mark J.
  surname: Dickman
  fullname: Dickman, Mark J.
  organization: Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
– sequence: 7
  givenname: Philippe
  surname: Horvath
  fullname: Horvath, Philippe
  organization: DuPont Nutrition and Health, BP10, Dangé-Saint-Romain 86220, France
– sequence: 8
  givenname: Virginijus
  surname: Siksnys
  fullname: Siksnys, Virginijus
  email: siksnys@ibt.lt
  organization: Department of Protein–DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, Vilnius 02241, Lithuania
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25458845$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1r4zAQhkVpadOPf1AWHfdiV1JkyboshLDdNYRtSNJbQSjyuHGwLa9kL-TfVyFpj3ua9_C8M8xziy471wFCj5SklFDxtE9b11hoUkYoT4lKCZMXaEKJkgmngl-eM5Miu0G3IexJBLNcXaMblsWQ82yC3pbevXvTtmbbAF79meH1zkNZ1t073h7wsAO8OfSAi6JIZni-KtbLVTI3Aa8PYYAWuwqvBw_94KyzdgzHhm9dv6ubMdyjq8o0AR7O8w69Pv_czH8ni5dfxXy2SCyXfEhYnhEpDCsrJivJAAilvFLbXJq8UqI0uRCSK0WyqawEy6ZGUJozsJIyUDlM79D3097eu78jhEG3dYhqGtOBG4OmgikVYcUjyk-o9S4ED5Xufd0af9CU6KNXvdcnr_roVROlo9dY-3a-MG5bKL9KnyIj8OMEQPzzXw1eB1tDZ6GsPdhBl67-_4UP4pKK9Q
CitedBy_id crossref_primary_10_1093_nar_gkaa403
crossref_primary_10_1134_S0006297916070026
crossref_primary_10_1016_j_semcdb_2019_05_003
crossref_primary_10_1007_s00792_016_0871_5
crossref_primary_10_1016_j_ijpara_2018_03_009
crossref_primary_10_1146_annurev_virology_100120_010228
crossref_primary_10_1021_acs_analchem_2c00765
crossref_primary_10_1021_jasms_9b00011
crossref_primary_10_1146_annurev_food_072816_024723
crossref_primary_10_1016_j_molcel_2015_01_028
crossref_primary_10_1016_j_biochi_2015_03_025
crossref_primary_10_1093_nar_gkv094
crossref_primary_10_1101_gad_273722_115
crossref_primary_10_1038_s41598_021_83889_4
crossref_primary_10_1093_nar_gkad804
crossref_primary_10_1098_rstb_2015_0496
crossref_primary_10_1093_nar_gkac1151
crossref_primary_10_1126_science_adk5518
crossref_primary_10_7554_eLife_81897
crossref_primary_10_1016_j_jbc_2024_107295
crossref_primary_10_15252_embr_201643700
crossref_primary_10_1093_nar_gkx726
crossref_primary_10_1080_15476286_2018_1502589
crossref_primary_10_1016_j_molcel_2016_03_024
crossref_primary_10_1038_nri3910
crossref_primary_10_1073_pnas_1500107112
crossref_primary_10_1016_j_tibtech_2016_02_004
crossref_primary_10_1093_nar_gkab073
crossref_primary_10_1002_ijch_202300169
crossref_primary_10_1042_BSR20170788
crossref_primary_10_1016_j_chom_2021_03_018
crossref_primary_10_1093_femsre_fuv023
crossref_primary_10_1002_bit_25851
crossref_primary_10_1093_nar_gkaa749
crossref_primary_10_3389_fmicb_2020_01937
crossref_primary_10_1096_fj_201800557RR
crossref_primary_10_1080_15476286_2019_1639310
crossref_primary_10_1093_nar_gkz676
crossref_primary_10_1261_rna_054098_115
crossref_primary_10_1016_j_jsb_2024_108070
crossref_primary_10_1016_j_molcel_2015_05_023
crossref_primary_10_1016_j_cell_2015_05_003
crossref_primary_10_1093_nar_gkaa634
crossref_primary_10_1016_j_molcel_2022_11_006
crossref_primary_10_7554_eLife_81678
crossref_primary_10_1093_nar_gkac016
crossref_primary_10_1093_nar_gkv1140
crossref_primary_10_1080_15476286_2018_1504546
crossref_primary_10_1126_science_adj2107
crossref_primary_10_1016_j_engmic_2023_100102
crossref_primary_10_1371_journal_pone_0287461
crossref_primary_10_3389_fmicb_2019_03078
crossref_primary_10_1126_science_aaq0179
crossref_primary_10_1016_j_tig_2019_03_009
crossref_primary_10_1111_febs_15139
crossref_primary_10_1126_science_aao0100
crossref_primary_10_1261_rna_070417_119
crossref_primary_10_1093_nar_gkaa685
crossref_primary_10_1038_s41421_020_0160_4
crossref_primary_10_1038_s41564_018_0353_x
crossref_primary_10_1016_j_chom_2016_01_015
crossref_primary_10_1042_ETLS20180023
crossref_primary_10_1002_wrna_1804
crossref_primary_10_1093_nar_gky844
crossref_primary_10_3390_ijms24086894
crossref_primary_10_1093_nar_gkw421
crossref_primary_10_1146_annurev_micro_091014_104441
crossref_primary_10_1038_s41579_022_00793_y
crossref_primary_10_1016_j_biotechadv_2022_108047
crossref_primary_10_1016_j_jmb_2018_06_029
crossref_primary_10_3389_fmicb_2022_876174
crossref_primary_10_1016_j_ymeth_2022_06_002
crossref_primary_10_1038_nrmicro3569
crossref_primary_10_1042_BST20220289
crossref_primary_10_3389_fmicb_2019_02916
crossref_primary_10_1128_JVI_01998_18
crossref_primary_10_1134_S0006297921100114
crossref_primary_10_3390_biom10111523
crossref_primary_10_1371_journal_pone_0176221
crossref_primary_10_1093_femsre_fuv019
crossref_primary_10_1016_j_febslet_2015_09_005
crossref_primary_10_1038_s41467_021_25337_5
crossref_primary_10_1080_15476286_2019_1642725
crossref_primary_10_1126_science_aad5147
crossref_primary_10_1261_rna_079206_122
crossref_primary_10_1089_hum_2015_091
crossref_primary_10_3389_fmicb_2022_964848
crossref_primary_10_1146_annurev_genet_022120_112523
crossref_primary_10_1016_j_tim_2016_09_012
crossref_primary_10_1128_mBio_00897_17
crossref_primary_10_1126_science_aaf2851
crossref_primary_10_1016_j_crstbi_2023_100098
crossref_primary_10_3390_ijms23158515
crossref_primary_10_1016_j_biotechadv_2016_08_002
crossref_primary_10_1074_jbc_REV120_007034
crossref_primary_10_1016_j_ymeth_2019_07_015
crossref_primary_10_1073_pnas_1803440115
crossref_primary_10_1038_s41564_022_01256_z
crossref_primary_10_1038_s41564_022_01316_4
crossref_primary_10_3390_ijms18122565
crossref_primary_10_1016_j_cell_2015_04_027
crossref_primary_10_1152_physrev_00046_2017
crossref_primary_10_1126_science_abk2718
crossref_primary_10_1261_rna_078739_121
crossref_primary_10_1093_nar_gkw891
crossref_primary_10_1016_j_chom_2019_01_009
crossref_primary_10_1016_j_str_2015_01_021
crossref_primary_10_1016_j_xcrm_2021_100319
crossref_primary_10_1038_s41586_019_1894_8
crossref_primary_10_7554_eLife_45393
crossref_primary_10_1016_j_molcel_2019_06_014
crossref_primary_10_1016_j_molcel_2019_06_013
crossref_primary_10_7554_eLife_27601
crossref_primary_10_1038_s41422_019_0151_x
crossref_primary_10_1016_j_cell_2015_12_053
crossref_primary_10_1038_s41586_023_06620_5
crossref_primary_10_1007_s00018_019_03252_9
crossref_primary_10_1016_j_biotechadv_2019_03_016
crossref_primary_10_1093_nar_gkab1193
crossref_primary_10_1016_j_jmb_2024_168448
crossref_primary_10_1093_nar_gkab1190
crossref_primary_10_1126_science_aaf5573
crossref_primary_10_1177_1087057115587916
crossref_primary_10_1073_pnas_2114905119
crossref_primary_10_1016_j_molcel_2022_10_028
crossref_primary_10_1371_journal_pone_0170552
crossref_primary_10_1016_j_mib_2017_11_005
crossref_primary_10_1534_g3_116_032482
crossref_primary_10_1128_spectrum_00820_22
crossref_primary_10_1126_sciadv_adj8277
crossref_primary_10_1016_j_pmpp_2018_05_006
crossref_primary_10_1016_j_drudis_2016_08_008
crossref_primary_10_1016_j_biotechadv_2017_11_008
crossref_primary_10_1016_j_cell_2018_10_052
crossref_primary_10_1093_nar_gkab590
crossref_primary_10_1038_s42003_022_03187_1
crossref_primary_10_3389_fmicb_2019_02160
crossref_primary_10_1080_15476286_2019_1618693
crossref_primary_10_7554_eLife_55852
crossref_primary_10_1038_s41580_021_00371_9
crossref_primary_10_1016_j_molcel_2015_03_018
crossref_primary_10_1089_crispr_2020_0032
crossref_primary_10_1016_j_cell_2017_11_032
crossref_primary_10_1002_1873_3468_12179
crossref_primary_10_1016_j_cell_2015_12_035
crossref_primary_10_3892_ijmm_2020_4609
crossref_primary_10_1016_j_drudis_2023_103793
crossref_primary_10_1016_j_celrep_2019_08_033
crossref_primary_10_1042_BCJ20240151
crossref_primary_10_1038_s41579_021_00663_z
crossref_primary_10_1016_j_jmb_2023_167952
crossref_primary_10_3389_fmicb_2019_02934
crossref_primary_10_1038_s41467_019_10780_2
crossref_primary_10_1038_nature15386
crossref_primary_10_1038_s41467_022_35275_5
crossref_primary_10_1089_crispr_2018_0012
crossref_primary_10_1101_gad_272153_115
crossref_primary_10_1038_s41467_017_02557_2
crossref_primary_10_1016_j_chom_2023_10_003
crossref_primary_10_1016_j_gpb_2021_01_008
crossref_primary_10_1186_s13059_024_03326_3
crossref_primary_10_1016_j_jchromb_2018_11_027
crossref_primary_10_1093_nar_gkw1274
crossref_primary_10_1002_biot_201700586
crossref_primary_10_1016_j_molcel_2016_02_031
crossref_primary_10_1128_JB_00261_15
crossref_primary_10_1080_15476286_2018_1493334
crossref_primary_10_1093_nar_gkw020
crossref_primary_10_1016_j_jmb_2015_10_004
crossref_primary_10_1016_j_str_2022_05_013
crossref_primary_10_1074_jbc_RA119_008728
crossref_primary_10_1093_nar_gkaa176
crossref_primary_10_1016_j_mib_2017_08_003
crossref_primary_10_1016_j_celrep_2019_02_029
crossref_primary_10_12998_wjcc_v10_i18_5934
crossref_primary_10_1126_science_aad1067
crossref_primary_10_1038_s41586_021_03886_5
crossref_primary_10_1016_j_molcel_2018_11_007
crossref_primary_10_1016_j_molcel_2018_11_008
crossref_primary_10_31857_S0320972521100134
crossref_primary_10_1186_s13059_015_0816_9
crossref_primary_10_1016_j_molcel_2016_12_023
crossref_primary_10_1038_nature23467
crossref_primary_10_1042_BCJ20220073
crossref_primary_10_3390_life5010783
crossref_primary_10_3390_ijms21031122
crossref_primary_10_1016_j_tibs_2023_10_006
crossref_primary_10_1016_j_scib_2018_03_017
crossref_primary_10_1093_nar_gkz079
crossref_primary_10_1016_j_cbpa_2019_05_009
crossref_primary_10_1038_s41556_019_0454_7
crossref_primary_10_7554_eLife_36734
crossref_primary_10_1107_S2053230X15007104
crossref_primary_10_1261_rna_039842_113
crossref_primary_10_1038_s41467_024_47506_y
crossref_primary_10_1038_s41586_019_1909_5
crossref_primary_10_3389_fmicb_2021_671522
crossref_primary_10_1016_j_jmb_2019_01_009
crossref_primary_10_1016_j_molcel_2018_09_018
crossref_primary_10_1016_j_sbi_2016_11_013
crossref_primary_10_1038_s41467_021_22900_y
crossref_primary_10_1093_femsre_fuaa016
crossref_primary_10_1186_s12859_017_1512_4
crossref_primary_10_1016_j_molcel_2020_07_008
crossref_primary_10_1016_j_celrep_2015_01_067
crossref_primary_10_1126_science_aad4234
crossref_primary_10_1016_j_gene_2021_145615
crossref_primary_10_1093_nar_gkae080
crossref_primary_10_1038_s41587_022_01649_9
crossref_primary_10_1038_s41467_020_15334_5
Cites_doi 10.1128/JB.01130-13
10.1016/j.tig.2014.01.003
10.1073/pnas.1402597111
10.1126/science.1225829
10.1111/mmi.12152
10.1016/j.cell.2009.07.040
10.1101/gad.1742908
10.1371/journal.pone.0051663
10.1016/j.molcel.2013.08.020
10.1016/j.molcel.2013.09.013
10.1073/pnas.1208507109
10.1126/science.1165771
10.1038/nature13011
10.1038/nrmicro2577
10.1016/j.molcel.2012.03.018
10.1099/mic.0.023960-0
10.1016/j.molcel.2013.09.008
10.1074/jbc.M113.499244
10.1126/science.1159689
10.1038/nrg2749
10.4161/rna.26500
10.1038/emboj.2012.352
10.1186/1745-6150-6-38
10.1038/nature10402
10.1073/pnas.1112832108
10.1016/j.molcel.2011.12.013
ContentType Journal Article
Copyright 2014 Elsevier Inc.
Copyright © 2014 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2014 Elsevier Inc.
– notice: Copyright © 2014 Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.molcel.2014.09.027
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1097-4164
EndPage 517
ExternalDocumentID 10_1016_j_molcel_2014_09_027
25458845
S1097276514007849
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1~5
2WC
4.4
457
4G.
5RE
5VS
62-
6I.
7-5
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAQFI
AAUCE
AAVLU
AAXJY
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACNCT
ADBBV
ADEZE
ADJPV
AEFWE
AENEX
AEXQZ
AFFNX
AFTJW
AGHFR
AGKMS
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FEDTE
FIRID
HH5
HVGLF
IH2
IHE
IXB
J1W
JIG
KQ8
L7B
M3Z
M41
N9A
NCXOZ
O-L
O9-
OK1
P2P
RCE
RIG
ROL
RPZ
SDG
SES
SSZ
TR2
WQ6
ZA5
0SF
AAHBH
AAMRU
ADVLN
AKAPO
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
.55
.GJ
29M
3O-
53G
AAIKJ
AAQXK
AAYXX
ACRPL
ADMUD
ADNMO
CITATION
FGOYB
HZ~
OZT
R2-
UHS
X7M
ZGI
ZXP
7X8
ID FETCH-LOGICAL-c474t-285076a2df27f72ee0114f9b87a8f96da86674990537f6253a61182ec712e98e3
IEDL.DBID ABVKL
ISSN 1097-2765
IngestDate Fri Oct 25 11:07:21 EDT 2024
Fri Dec 06 03:24:14 EST 2024
Sat Sep 28 08:06:42 EDT 2024
Fri Feb 23 02:30:36 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
Copyright © 2014 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-285076a2df27f72ee0114f9b87a8f96da86674990537f6253a61182ec712e98e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1097276514007849
PMID 25458845
PQID 1629971294
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1629971294
crossref_primary_10_1016_j_molcel_2014_09_027
pubmed_primary_25458845
elsevier_sciencedirect_doi_10_1016_j_molcel_2014_09_027
PublicationCentury 2000
PublicationDate 2014-11-20
PublicationDateYYYYMMDD 2014-11-20
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Molecular cell
PublicationTitleAlternate Mol Cell
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Staals, Agari, Maki-Yonekura, Zhu, Taylor, van Duijn, Barendregt, Vlot, Koehorst, Sakamoto (bib21) 2013; 52
Zhang, Rouillon, Kerou, Reeks, Brugger, Graham, Reimann, Cannone, Liu, Albers (bib27) 2012; 45
Jinek, Chylinski, Fonfara, Hauer, Doudna, Charpentier (bib10) 2012; 337
Hatoum-Aslan, Samai, Maniv, Jiang, Marraffini (bib7) 2013; 288
Marraffini, Sontheimer (bib13) 2008; 322
Brouns, Jore, Lundgren, Westra, Slijkhuis, Snijders, Dickman, Makarova, Koonin, van der Oost (bib1) 2008; 321
Gasiunas, Barrangou, Horvath, Siksnys (bib4) 2012; 109
Makarova, Haft, Barrangou, Brouns, Charpentier, Horvath, Moineau, Mojica, Wolf, Yakunin (bib12) 2011; 9
Hale, Zhao, Olson, Duff, Graveley, Wells, Terns, Terns (bib5) 2009; 139
Sternberg, Redding, Jinek, Greene, Doudna (bib22) 2014; 507
Szczelkun, Tikhomirova, Sinkunas, Gasiunas, Karvelis, Pschera, Siksnys, Seidel (bib23) 2014; 111
Marraffini, Sontheimer (bib14) 2010; 11
Hrle, Su, Ebert, Benda, Randau, Conti (bib9) 2013; 10
Wiedenheft, Lander, Zhou, Jore, Brouns, van der Oost, Doudna, Nogales (bib26) 2011; 477
Sinkunas, Gasiunas, Waghmare, Dickman, Barrangou, Horvath, Siksnys (bib19) 2013; 32
Carte, Wang, Li, Terns, Terns (bib2) 2008; 22
Mojica, Díez-Villaseñor, García-Martínez, Almendros (bib16) 2009; 155
Hatoum-Aslan, Maniv, Samai, Marraffini (bib8) 2014; 196
Olsthoorn, van Duin (bib17) 2011
Hatoum-Aslan, Maniv, Marraffini (bib6) 2011; 108
Millen, Horvath, Boyaval, Romero (bib15) 2012; 7
Deng, Garrett, Shah, Peng, She (bib3) 2013; 87
Terns, Terns (bib24) 2014; 30
Spilman, Cocozaki, Hale, Shao, Ramia, Terns, Terns, Li, Stagg (bib20) 2013; 52
Makarova, Aravind, Wolf, Koonin (bib11) 2011; 6
Rouillon, Zhou, Zhang, Politis, Beilsten-Edmands, Cannone, Graham, Robinson, Spagnolo, White (bib18) 2013; 52
Westra, van Erp, Künne, Wong, Staals, Seegers, Bollen, Jore, Semenova, Severinov (bib25) 2012; 46
Carte (10.1016/j.molcel.2014.09.027_bib2) 2008; 22
Makarova (10.1016/j.molcel.2014.09.027_bib12) 2011; 9
Olsthoorn (10.1016/j.molcel.2014.09.027_bib17) 2011
Sternberg (10.1016/j.molcel.2014.09.027_bib22) 2014; 507
Terns (10.1016/j.molcel.2014.09.027_bib24) 2014; 30
Hatoum-Aslan (10.1016/j.molcel.2014.09.027_bib6) 2011; 108
Jinek (10.1016/j.molcel.2014.09.027_bib10) 2012; 337
Marraffini (10.1016/j.molcel.2014.09.027_bib14) 2010; 11
Wiedenheft (10.1016/j.molcel.2014.09.027_bib26) 2011; 477
Zhang (10.1016/j.molcel.2014.09.027_bib27) 2012; 45
Hale (10.1016/j.molcel.2014.09.027_bib5) 2009; 139
Deng (10.1016/j.molcel.2014.09.027_bib3) 2013; 87
Mojica (10.1016/j.molcel.2014.09.027_bib16) 2009; 155
Millen (10.1016/j.molcel.2014.09.027_bib15) 2012; 7
Westra (10.1016/j.molcel.2014.09.027_bib25) 2012; 46
Makarova (10.1016/j.molcel.2014.09.027_bib11) 2011; 6
Rouillon (10.1016/j.molcel.2014.09.027_bib18) 2013; 52
Staals (10.1016/j.molcel.2014.09.027_bib21) 2013; 52
Gasiunas (10.1016/j.molcel.2014.09.027_bib4) 2012; 109
Marraffini (10.1016/j.molcel.2014.09.027_bib13) 2008; 322
Spilman (10.1016/j.molcel.2014.09.027_bib20) 2013; 52
Brouns (10.1016/j.molcel.2014.09.027_bib1) 2008; 321
Hatoum-Aslan (10.1016/j.molcel.2014.09.027_bib8) 2014; 196
Szczelkun (10.1016/j.molcel.2014.09.027_bib23) 2014; 111
Sinkunas (10.1016/j.molcel.2014.09.027_bib19) 2013; 32
Hatoum-Aslan (10.1016/j.molcel.2014.09.027_bib7) 2013; 288
Hrle (10.1016/j.molcel.2014.09.027_bib9) 2013; 10
References_xml – volume: 322
  start-page: 1843
  year: 2008
  end-page: 1845
  ident: bib13
  article-title: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
  publication-title: Science
  contributor:
    fullname: Sontheimer
– volume: 109
  start-page: E2579
  year: 2012
  end-page: E2586
  ident: bib4
  article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Siksnys
– volume: 321
  start-page: 960
  year: 2008
  end-page: 964
  ident: bib1
  article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes
  publication-title: Science
  contributor:
    fullname: van der Oost
– volume: 155
  start-page: 733
  year: 2009
  end-page: 740
  ident: bib16
  article-title: Short motif sequences determine the targets of the prokaryotic CRISPR defence system
  publication-title: Microbiology
  contributor:
    fullname: Almendros
– volume: 22
  start-page: 3489
  year: 2008
  end-page: 3496
  ident: bib2
  article-title: Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes
  publication-title: Genes Dev.
  contributor:
    fullname: Terns
– volume: 87
  start-page: 1088
  year: 2013
  end-page: 1099
  ident: bib3
  article-title: A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus
  publication-title: Mol. Microbiol.
  contributor:
    fullname: She
– volume: 337
  start-page: 816
  year: 2012
  end-page: 821
  ident: bib10
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  contributor:
    fullname: Charpentier
– volume: 11
  start-page: 181
  year: 2010
  end-page: 190
  ident: bib14
  article-title: CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea
  publication-title: Nat. Rev. Genet.
  contributor:
    fullname: Sontheimer
– volume: 52
  start-page: 135
  year: 2013
  end-page: 145
  ident: bib21
  article-title: Structure and activity of the RNA-targeting type III-B CRISPR-Cas complex of Thermus thermophilus
  publication-title: Mol. Cell
  contributor:
    fullname: Sakamoto
– volume: 108
  start-page: 21218
  year: 2011
  end-page: 21222
  ident: bib6
  article-title: Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Marraffini
– volume: 139
  start-page: 945
  year: 2009
  end-page: 956
  ident: bib5
  article-title: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
  publication-title: Cell
  contributor:
    fullname: Terns
– volume: 507
  start-page: 62
  year: 2014
  end-page: 67
  ident: bib22
  article-title: DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
  publication-title: Nature
  contributor:
    fullname: Doudna
– year: 2011
  ident: bib17
  article-title: Bacteriophages with ssRNA
  contributor:
    fullname: van Duin
– volume: 52
  start-page: 146
  year: 2013
  end-page: 152
  ident: bib20
  article-title: Structure of an RNA silencing complex of the CRISPR-Cas immune system
  publication-title: Mol. Cell
  contributor:
    fullname: Stagg
– volume: 10
  start-page: 1670
  year: 2013
  end-page: 1678
  ident: bib9
  article-title: Structure and RNA-binding properties of the type III-A CRISPR-associated protein Csm3
  publication-title: RNA Biol.
  contributor:
    fullname: Conti
– volume: 52
  start-page: 124
  year: 2013
  end-page: 134
  ident: bib18
  article-title: Structure of the CRISPR interference complex CSM reveals key similarities with cascade
  publication-title: Mol. Cell
  contributor:
    fullname: White
– volume: 477
  start-page: 486
  year: 2011
  end-page: 489
  ident: bib26
  article-title: Structures of the RNA-guided surveillance complex from a bacterial immune system
  publication-title: Nature
  contributor:
    fullname: Nogales
– volume: 7
  start-page: e51663
  year: 2012
  ident: bib15
  article-title: Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis
  publication-title: PLoS ONE
  contributor:
    fullname: Romero
– volume: 30
  start-page: 111
  year: 2014
  end-page: 118
  ident: bib24
  article-title: CRISPR-based technologies: prokaryotic defense weapons repurposed
  publication-title: Trends Genet.
  contributor:
    fullname: Terns
– volume: 6
  start-page: 38
  year: 2011
  ident: bib11
  article-title: Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems
  publication-title: Biol. Direct
  contributor:
    fullname: Koonin
– volume: 9
  start-page: 467
  year: 2011
  end-page: 477
  ident: bib12
  article-title: Evolution and classification of the CRISPR-Cas systems
  publication-title: Nat. Rev. Microbiol.
  contributor:
    fullname: Yakunin
– volume: 32
  start-page: 385
  year: 2013
  end-page: 394
  ident: bib19
  article-title: In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus
  publication-title: EMBO J.
  contributor:
    fullname: Siksnys
– volume: 288
  start-page: 27888
  year: 2013
  end-page: 27897
  ident: bib7
  article-title: A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs
  publication-title: J. Biol. Chem.
  contributor:
    fullname: Marraffini
– volume: 45
  start-page: 303
  year: 2012
  end-page: 313
  ident: bib27
  article-title: Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity
  publication-title: Mol. Cell
  contributor:
    fullname: Albers
– volume: 196
  start-page: 310
  year: 2014
  end-page: 317
  ident: bib8
  article-title: Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system
  publication-title: J. Bacteriol.
  contributor:
    fullname: Marraffini
– volume: 111
  start-page: 9798
  year: 2014
  end-page: 9803
  ident: bib23
  article-title: Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes
  publication-title: Proc. Natl. Acad. Sci. USA
  contributor:
    fullname: Seidel
– volume: 46
  start-page: 595
  year: 2012
  end-page: 605
  ident: bib25
  article-title: CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
  publication-title: Mol. Cell
  contributor:
    fullname: Severinov
– volume: 196
  start-page: 310
  year: 2014
  ident: 10.1016/j.molcel.2014.09.027_bib8
  article-title: Genetic characterization of antiplasmid immunity through a type III-A CRISPR-Cas system
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01130-13
  contributor:
    fullname: Hatoum-Aslan
– volume: 30
  start-page: 111
  year: 2014
  ident: 10.1016/j.molcel.2014.09.027_bib24
  article-title: CRISPR-based technologies: prokaryotic defense weapons repurposed
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2014.01.003
  contributor:
    fullname: Terns
– volume: 111
  start-page: 9798
  year: 2014
  ident: 10.1016/j.molcel.2014.09.027_bib23
  article-title: Direct observation of R-loop formation by single RNA-guided Cas9 and Cascade effector complexes
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1402597111
  contributor:
    fullname: Szczelkun
– volume: 337
  start-page: 816
  year: 2012
  ident: 10.1016/j.molcel.2014.09.027_bib10
  article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity
  publication-title: Science
  doi: 10.1126/science.1225829
  contributor:
    fullname: Jinek
– volume: 87
  start-page: 1088
  year: 2013
  ident: 10.1016/j.molcel.2014.09.027_bib3
  article-title: A novel interference mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus
  publication-title: Mol. Microbiol.
  doi: 10.1111/mmi.12152
  contributor:
    fullname: Deng
– volume: 139
  start-page: 945
  year: 2009
  ident: 10.1016/j.molcel.2014.09.027_bib5
  article-title: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex
  publication-title: Cell
  doi: 10.1016/j.cell.2009.07.040
  contributor:
    fullname: Hale
– volume: 22
  start-page: 3489
  year: 2008
  ident: 10.1016/j.molcel.2014.09.027_bib2
  article-title: Cas6 is an endoribonuclease that generates guide RNAs for invader defense in prokaryotes
  publication-title: Genes Dev.
  doi: 10.1101/gad.1742908
  contributor:
    fullname: Carte
– volume: 7
  start-page: e51663
  year: 2012
  ident: 10.1016/j.molcel.2014.09.027_bib15
  article-title: Mobile CRISPR/Cas-mediated bacteriophage resistance in Lactococcus lactis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0051663
  contributor:
    fullname: Millen
– volume: 52
  start-page: 124
  year: 2013
  ident: 10.1016/j.molcel.2014.09.027_bib18
  article-title: Structure of the CRISPR interference complex CSM reveals key similarities with cascade
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.08.020
  contributor:
    fullname: Rouillon
– volume: 52
  start-page: 135
  year: 2013
  ident: 10.1016/j.molcel.2014.09.027_bib21
  article-title: Structure and activity of the RNA-targeting type III-B CRISPR-Cas complex of Thermus thermophilus
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.09.013
  contributor:
    fullname: Staals
– volume: 109
  start-page: E2579
  year: 2012
  ident: 10.1016/j.molcel.2014.09.027_bib4
  article-title: Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1208507109
  contributor:
    fullname: Gasiunas
– volume: 322
  start-page: 1843
  year: 2008
  ident: 10.1016/j.molcel.2014.09.027_bib13
  article-title: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA
  publication-title: Science
  doi: 10.1126/science.1165771
  contributor:
    fullname: Marraffini
– volume: 507
  start-page: 62
  year: 2014
  ident: 10.1016/j.molcel.2014.09.027_bib22
  article-title: DNA interrogation by the CRISPR RNA-guided endonuclease Cas9
  publication-title: Nature
  doi: 10.1038/nature13011
  contributor:
    fullname: Sternberg
– volume: 9
  start-page: 467
  year: 2011
  ident: 10.1016/j.molcel.2014.09.027_bib12
  article-title: Evolution and classification of the CRISPR-Cas systems
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro2577
  contributor:
    fullname: Makarova
– volume: 46
  start-page: 595
  year: 2012
  ident: 10.1016/j.molcel.2014.09.027_bib25
  article-title: CRISPR immunity relies on the consecutive binding and degradation of negatively supercoiled invader DNA by Cascade and Cas3
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.03.018
  contributor:
    fullname: Westra
– volume: 155
  start-page: 733
  year: 2009
  ident: 10.1016/j.molcel.2014.09.027_bib16
  article-title: Short motif sequences determine the targets of the prokaryotic CRISPR defence system
  publication-title: Microbiology
  doi: 10.1099/mic.0.023960-0
  contributor:
    fullname: Mojica
– volume: 52
  start-page: 146
  year: 2013
  ident: 10.1016/j.molcel.2014.09.027_bib20
  article-title: Structure of an RNA silencing complex of the CRISPR-Cas immune system
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.09.008
  contributor:
    fullname: Spilman
– volume: 288
  start-page: 27888
  year: 2013
  ident: 10.1016/j.molcel.2014.09.027_bib7
  article-title: A ruler protein in a complex for antiviral defense determines the length of small interfering CRISPR RNAs
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.499244
  contributor:
    fullname: Hatoum-Aslan
– volume: 321
  start-page: 960
  year: 2008
  ident: 10.1016/j.molcel.2014.09.027_bib1
  article-title: Small CRISPR RNAs guide antiviral defense in prokaryotes
  publication-title: Science
  doi: 10.1126/science.1159689
  contributor:
    fullname: Brouns
– year: 2011
  ident: 10.1016/j.molcel.2014.09.027_bib17
  contributor:
    fullname: Olsthoorn
– volume: 11
  start-page: 181
  year: 2010
  ident: 10.1016/j.molcel.2014.09.027_bib14
  article-title: CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2749
  contributor:
    fullname: Marraffini
– volume: 10
  start-page: 1670
  year: 2013
  ident: 10.1016/j.molcel.2014.09.027_bib9
  article-title: Structure and RNA-binding properties of the type III-A CRISPR-associated protein Csm3
  publication-title: RNA Biol.
  doi: 10.4161/rna.26500
  contributor:
    fullname: Hrle
– volume: 32
  start-page: 385
  year: 2013
  ident: 10.1016/j.molcel.2014.09.027_bib19
  article-title: In vitro reconstitution of Cascade-mediated CRISPR immunity in Streptococcus thermophilus
  publication-title: EMBO J.
  doi: 10.1038/emboj.2012.352
  contributor:
    fullname: Sinkunas
– volume: 6
  start-page: 38
  year: 2011
  ident: 10.1016/j.molcel.2014.09.027_bib11
  article-title: Unification of Cas protein families and a simple scenario for the origin and evolution of CRISPR-Cas systems
  publication-title: Biol. Direct
  doi: 10.1186/1745-6150-6-38
  contributor:
    fullname: Makarova
– volume: 477
  start-page: 486
  year: 2011
  ident: 10.1016/j.molcel.2014.09.027_bib26
  article-title: Structures of the RNA-guided surveillance complex from a bacterial immune system
  publication-title: Nature
  doi: 10.1038/nature10402
  contributor:
    fullname: Wiedenheft
– volume: 108
  start-page: 21218
  year: 2011
  ident: 10.1016/j.molcel.2014.09.027_bib6
  article-title: Mature clustered, regularly interspaced, short palindromic repeats RNA (crRNA) length is measured by a ruler mechanism anchored at the precursor processing site
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1112832108
  contributor:
    fullname: Hatoum-Aslan
– volume: 45
  start-page: 303
  year: 2012
  ident: 10.1016/j.molcel.2014.09.027_bib27
  article-title: Structure and mechanism of the CMR complex for CRISPR-mediated antiviral immunity
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2011.12.013
  contributor:
    fullname: Zhang
SSID ssj0014589
Score 2.6153736
Snippet Immunity against viruses and plasmids provided by CRISPR-Cas systems relies on a ribonucleoprotein effector complex that triggers the degradation of invasive...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 506
SubjectTerms Amino Acid Sequence
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Base Sequence
Clustered Regularly Interspaced Short Palindromic Repeats
CRISPR-Associated Proteins - chemistry
CRISPR-Associated Proteins - genetics
CRISPR-Associated Proteins - metabolism
Endoribonucleases - genetics
Endoribonucleases - metabolism
Molecular Sequence Data
Protein Binding
Protein Structure, Quaternary
RNA Cleavage
Scattering, Small Angle
Streptococcus thermophilus - enzymology
Streptococcus thermophilus - genetics
X-Ray Diffraction
Title Programmable RNA Shredding by the Type III-A CRISPR-Cas System of Streptococcus thermophilus
URI https://dx.doi.org/10.1016/j.molcel.2014.09.027
https://www.ncbi.nlm.nih.gov/pubmed/25458845
https://search.proquest.com/docview/1629971294
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ra9swEBd9MNiXse7V7FE02FeRWJb1-JialXqPrCTrCGMgZFuiKU0cmuRD__vdWXZh0DHYRxmfLe6ku_txL0I-pEaGWgXJUpkKACilZ9onkoE-rqqQ6JBmWI38dSLPL8WneTbfI3lfC4NplZ3ujzq91dbdk2HHzeF6sRjOMHbKlQSLj3ZOmH1yiL3M4Wgfjk9_fP5yH0wQWTsJD99nSNBX0LVpXsvmpvIYg0hiw1McL_OwhfqbB9paorOn5EnnQtJx3OUR2fOrZ-RRHCp595z8uogpV0ssiqLTyZjOQF412iha3lFw-CiCT1oUBRvTfFrMLqYsdxsam5fTJlAMVa-3DejKardBittls75a3Ow2L8jl2cfv-TnrZiiwSiixZVyDwycdrwNXQXHvEQAFU2rldDCydlpKBagH27oEwEKpkwg5fKUS7o326UtysGpW_pjQUTBa-HJU69KJSpSGw_e0US6rHU9CMiCs55tdx1YZts8hu7aRzxb5bEfGAp8HRPXMtX-I3II2_wfl-14WFm4Dhjjcyje7jU0kmFfYuhED8ioK6X4vPGurcrPX__3fN-QxrrAUkY_ekoPt7c6_A59kW550Z-6E7BfzU1hN8vm3n78BJATgSQ
link.rule.ids 314,780,784,3506,27569,27924,27925,45663,45874
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEF7ShNJcSvqM09cWel1srVb7OLqmwWocE-yk5FBYVtIudYgtE9uH_PvOaKVAIaXQq6SRhpnVzDfMi5AvqZGhUkGyVKYCApTCM-0TycAel2VIdEgz7EY-n8rxlfh-nV3vkVHXC4Nlla3tjza9sdbtlX4rzf56sejPMXfKlQSPj35OmCfkANCAhMN-MPz642zykEwQWbMJD59nSNB10DVlXsv6tvSYg0jiwFNcL_O4h_obAm080ekRed5CSDqMXL4ge371kjyNSyXvX5GfF7HkaolNUXQ2HdI56KtCH0WLewqAj2LwSfM8Z0M6muXzixkbuQ2Nw8tpHSimqtfbGmxludsgxd2yXv9a3O42r8nV6bfL0Zi1OxRYKZTYMq4B8EnHq8BVUNx7DICCKbRyOhhZOS2lgqgHx7oEiIVSJzHk8KVKuDfap2_I_qpe-WNCB8Fo4YtBpQsnSlEYDu_TRrmscjwJSY-wTm52HUdl2K6G7MZGOVuUsx0YC3LuEdUJ1_6hcgvW_B-UnztdWPgbMMXhVr7ebWwiwb0C60b0yNuopAdeeNZ05WYn__3dT-TZ-PJ8Yif59OwdOcQ72JbIB-_J_vZu5z8APtkWH9vz9xtrquB1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Programmable+RNA+Shredding+by+the+Type+III-A+CRISPR-Cas+System+of+Streptococcus+thermophilus&rft.jtitle=Molecular+cell&rft.au=Tamulaitis%2C+Gintautas&rft.au=Kazlauskiene%2C+Migle&rft.au=Manakova%2C+Elena&rft.au=Venclovas%2C+%C4%8Ceslovas&rft.date=2014-11-20&rft.pub=Elsevier+Inc&rft.issn=1097-2765&rft.eissn=1097-4164&rft.volume=56&rft.issue=4&rft.spage=506&rft.epage=517&rft_id=info:doi/10.1016%2Fj.molcel.2014.09.027&rft.externalDocID=S1097276514007849
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1097-2765&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1097-2765&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1097-2765&client=summon