SETApp: A machine learning and image analysis based application to automate the sea urchin embryo test
Since countless xenobiotic compounds are being found in the environment, ecotoxicology faces an astounding challenge in identifying toxicants. The combination of high-throughput in vivo/in vitro bioassays with high-resolution chemical analysis is an effective way to elucidate the cause-effect relati...
Saved in:
Published in | Ecotoxicology and environmental safety Vol. 241; p. 113728 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Inc
01.08.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since countless xenobiotic compounds are being found in the environment, ecotoxicology faces an astounding challenge in identifying toxicants. The combination of high-throughput in vivo/in vitro bioassays with high-resolution chemical analysis is an effective way to elucidate the cause-effect relationship. However, these combined strategies imply an enormous workload that can hinder their implementation in routine analysis. The purpose of this study was to develop a new high throughput screening method that could be used as a predictive expert system that automatically quantifies the size increase and malformation of the larvae and, thus, eases the application of the sea urchin embryo test in complex toxicant identification pipelines such as effect-directed analysis. For this task, a training set of 242 images was used to calibrate the size-increase and malformation level of the larvae. Two classification models based on partial least squares discriminant analysis (PLS-DA) were built and compared. Moreover, Hierarchical PLS-DA shows a high proficiency in classifying the larvae, achieving a prediction accuracy of 84 % in validation. The scripts built along the work were compiled in a user-friendly standalone app (SETApp) freely accessible at https://github.com/UPV-EHU-IBeA/SETApp. The SETApp was tested in a real case scenario to fulfill the tedious requirements of a WWTP effect-directed analysis.
[Display omitted]
•A novel predictive system (SETApp) has been developed to automatically quantify the two endpoints of the sea urchin embryo test.•The usefulness of PLS-DA and image parametrization in the automation of the bioassays has been proven.•The SETApp was implemented in a demanding scenario: the effect-directed analysis of Bayonne’s (France) WWTP effluent.•The EDA study concluded that the SETApp is an efficient, fast, cost-effective and reproducible tool that can approach EDA to routine analysis.•The suspect screening identified six contaminants of emerging concern as toxicity contribution candidates. |
---|---|
AbstractList | Since countless xenobiotic compounds are being found in the environment, ecotoxicology faces an astounding challenge in identifying toxicants. The combination of high-throughput in vivo/in vitro bioassays with high-resolution chemical analysis is an effective way to elucidate the cause-effect relationship. However, these combined strategies imply an enormous workload that can hinder their implementation in routine analysis. The purpose of this study was to develop a new high throughput screening method that could be used as a predictive expert system that automatically quantifies the size increase and malformation of the larvae and, thus, eases the application of the sea urchin embryo test in complex toxicant identification pipelines such as effect-directed analysis. For this task, a training set of 242 images was used to calibrate the size-increase and malformation level of the larvae. Two classification models based on partial least squares discriminant analysis (PLS-DA) were built and compared. Moreover, Hierarchical PLS-DA shows a high proficiency in classifying the larvae, achieving a prediction accuracy of 84 % in validation. The scripts built along the work were compiled in a user-friendly standalone app (SETApp) freely accessible at https://github.com/UPV-EHU-IBeA/SETApp. The SETApp was tested in a real case scenario to fulfill the tedious requirements of a WWTP effect-directed analysis. Since countless xenobiotic compounds are being found in the environment, ecotoxicology faces an astounding challenge in identifying toxicants. The combination of high-throughput in vivo/in vitro bioassays with high-resolution chemical analysis is an effective way to elucidate the cause-effect relationship. However, these combined strategies imply an enormous workload that can hinder their implementation in routine analysis. The purpose of this study was to develop a new high throughput screening method that could be used as a predictive expert system that automatically quantifies the size increase and malformation of the larvae and, thus, eases the application of the sea urchin embryo test in complex toxicant identification pipelines such as effect-directed analysis. For this task, a training set of 242 images was used to calibrate the size-increase and malformation level of the larvae. Two classification models based on partial least squares discriminant analysis (PLS-DA) were built and compared. Moreover, Hierarchical PLS-DA shows a high proficiency in classifying the larvae, achieving a prediction accuracy of 84 % in validation. The scripts built along the work were compiled in a user-friendly standalone app (SETApp) freely accessible at https://github.com/UPV-EHU-IBeA/SETApp. The SETApp was tested in a real case scenario to fulfill the tedious requirements of a WWTP effect-directed analysis. [Display omitted] •A novel predictive system (SETApp) has been developed to automatically quantify the two endpoints of the sea urchin embryo test.•The usefulness of PLS-DA and image parametrization in the automation of the bioassays has been proven.•The SETApp was implemented in a demanding scenario: the effect-directed analysis of Bayonne’s (France) WWTP effluent.•The EDA study concluded that the SETApp is an efficient, fast, cost-effective and reproducible tool that can approach EDA to routine analysis.•The suspect screening identified six contaminants of emerging concern as toxicity contribution candidates. |
ArticleNumber | 113728 |
Author | Etxebarria, Nestor Lopez-Herguedas, Naroa Amigo, Jose M. Alvarez-Mora, Iker Monperrus, Mathilde Mijangos, Leire Eguiraun, Harkaitz Salvoch, Maddi |
Author_xml | – sequence: 1 givenname: Iker surname: Alvarez-Mora fullname: Alvarez-Mora, Iker email: iker.alvarez@ehu.eus organization: Department of Analytical Chemistry, University of the Basque Country, Leioa, Biscay, Basque Country 48080, Spain – sequence: 2 givenname: Leire surname: Mijangos fullname: Mijangos, Leire email: leire.mijangos@ehu.eus organization: Department of Analytical Chemistry, University of the Basque Country, Leioa, Biscay, Basque Country 48080, Spain – sequence: 3 givenname: Naroa surname: Lopez-Herguedas fullname: Lopez-Herguedas, Naroa email: Naroa.lopez@ehu.eus organization: Department of Analytical Chemistry, University of the Basque Country, Leioa, Biscay, Basque Country 48080, Spain – sequence: 4 givenname: Jose M. surname: Amigo fullname: Amigo, Jose M. email: josemanuel.amigo@ehu.eus organization: Department of Analytical Chemistry, University of the Basque Country, Leioa, Biscay, Basque Country 48080, Spain – sequence: 5 givenname: Harkaitz surname: Eguiraun fullname: Eguiraun, Harkaitz email: Harkaitz.eguiraun@ehu.eus organization: Plentzia Marine Station, University of the Basque Country, Plentzia, Biscay, Basque Country 48620, Spain – sequence: 6 givenname: Maddi surname: Salvoch fullname: Salvoch, Maddi email: msalvoch001@ikasle.ehu.eus organization: Department of Analytical Chemistry, University of the Basque Country, Leioa, Biscay, Basque Country 48080, Spain – sequence: 7 givenname: Mathilde surname: Monperrus fullname: Monperrus, Mathilde email: mathilde.monperrus@univ-pau.fr organization: Institut des Sciences Analytiques et de Physico-chimie pour l′Environnement et les matériaux, Université de Pau et des Pays de l′Adour, Angelu, Basque Country 64000, France – sequence: 8 givenname: Nestor surname: Etxebarria fullname: Etxebarria, Nestor email: Nestor.etxebarria@ehu.eus organization: Department of Analytical Chemistry, University of the Basque Country, Leioa, Biscay, Basque Country 48080, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35689888$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFv1DAQhS1URLeFf4CQj1yy2I7jeDkgraoClSpxoJytsT3ZepXEwXYq7b8nS0qPnMYavXlvxt8VuRjjiIS852zLGVefjlt0EcenrWBCbDmvW6FfkQ1nO1YJyeUF2TAu20o1vL4kVzkfGWM1a5o35LJulN5prTek-3n7sJ-mz3RPB3CPYUTaI6QxjAcKo6dhgAMuL-hPOWRqIaOnME19cFBCHGmJFOYSByhIyyPSjEDndHaiONh0irRgLm_J6w76jO-e6zX59fX24eZ7df_j293N_r5yspWlEq1UEjtv0SplOdfglfZaglXYCdFpZ7VsOTQOa1vvmBe2hlZJay061E19Te5WXx_haKa0rJ9OJkIwfxsxHQykElyPRkphnZPOc9dIxcUOOUqOznd1s0N29vq4ek0p_p6XI8wQssO-hxHjnI1QbaMYaxVfpHKVuhRzTti9RHNmzrTM0ay0zJmWWWktYx-eE2Y7oH8Z-odnEXxZBbj82VPAZLILODr0IaEry1Hh_wl_APVwqjc |
CitedBy_id | crossref_primary_10_3390_molecules28031212 |
Cites_doi | 10.2166/9781789061987 10.1016/j.marenvres.2012.01.001 10.1016/j.marenvres.2016.03.002 10.1002/etc.4315 10.1093/toxsci/kfv171 10.1080/10937404.2010.483176 10.1039/c3ay40582f 10.1371/journal.pone.0036690 10.1016/j.scitotenv.2015.11.102 10.1016/j.watres.2013.08.024 10.1038/s41467-021-22518-0 10.1002/etc.3880 10.1016/j.mrgentox.2015.07.011 10.1016/j.chemolab.2017.12.004 10.1039/b003805i 10.1016/j.watres.2018.09.033 10.1021/acs.analchem.0c01324 10.1002/tox.22159 10.1002/wer.1438 10.1016/j.watres.2018.09.013 10.1016/j.taap.2019.114876 10.1021/es5002105 10.1021/acs.est.0c01504 10.1016/j.ecoenv.2010.01.018 10.1002/etc.2299 10.1111/vru.12003 10.1016/j.foodchem.2021.130349 10.3390/w13111470 |
ContentType | Journal Article |
Copyright | 2022 The Authors Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2022 The Authors – notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH NPM AAYXX CITATION 7X8 DOA |
DOI | 10.1016/j.ecoenv.2022.113728 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access PubMed CrossRef MEDLINE - Academic Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Ecology |
EISSN | 1090-2414 |
EndPage | 113728 |
ExternalDocumentID | oai_doaj_org_article_442bcc4cd1c546129e1e41ecdf359e05 10_1016_j_ecoenv_2022_113728 35689888 S0147651322005681 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 0SF 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAFTH AAFWJ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AFKWA AFPKN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLECG BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F3I F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HMC HVGLF HZ~ H~9 IHE J1W KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SDP SEN SES SEW SPCBC SSJ SSZ T5K VH1 WUQ XPP ZMT ZU3 ZXP ~G- ~KM AAHBH AAXKI ADVLN AFJKZ AKRWK NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c474t-27464efdbeb66b118ad68d84ab6ef22f8cb8471a5ce3b390d2b3a764bbbece853 |
IEDL.DBID | AIKHN |
ISSN | 0147-6513 |
IngestDate | Tue Oct 22 15:11:28 EDT 2024 Fri Oct 25 23:59:29 EDT 2024 Thu Sep 26 16:52:27 EDT 2024 Sat Sep 28 08:18:43 EDT 2024 Fri Feb 23 02:40:38 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High-throughput screening Image analysis Sea urchin embryo test Ecotoxicology Effect-directed analysis Machine learning |
Language | English |
License | This is an open access article under the CC BY license. Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-27464efdbeb66b118ad68d84ab6ef22f8cb8471a5ce3b390d2b3a764bbbece853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0147651322005681 |
PMID | 35689888 |
PQID | 2675600761 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_442bcc4cd1c546129e1e41ecdf359e05 proquest_miscellaneous_2675600761 crossref_primary_10_1016_j_ecoenv_2022_113728 pubmed_primary_35689888 elsevier_sciencedirect_doi_10_1016_j_ecoenv_2022_113728 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Ecotoxicology and environmental safety |
PublicationTitleAlternate | Ecotoxicol Environ Saf |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Burgess, Ho, Brack, Lamoree (bib6) 2013; 32 Mijangos, Krauss, de Miguel, Ziarrusta, Olivares, Zuloaga, Izagirre, Schulze, Brack, Prieto, Etxebarria (bib18) 2020; 54 Vethaak, Hamers, Martínez-Gómez, Kamstra, de Weert, Leonards, Smedes (bib26) 2017; 124 McEvoy, Amigo (bib16) 2013; 54 Arini, Mittal, Dornbos, Head, Rutkiewicz, Basu (bib1) 2017; 36 da Silva, Murphy, Amigo, Stedmon, Strand (bib9) 2020; 92 Carballeira, Ramos-Gómez, Martín-Díaz, DelValls (bib7) 2012; 77 Nyffeler, Willis, Lougee, Richard, Paul-Friedman, Harrill (bib19) 2020; 389 McCance, Jones, Edwards, Surapaneni, Chadalavada, Currell (bib15) 2018; 146 Mijangos, Ziarrusta, Ros, Kortazar, Fernández, Olivares, Zuloaga, Prieto, Etxebarria (bib17) 2018; 147 Wetmore, Wambaugh, Allen, Ferguson, Sochaski, Setzer, Houck, Strope, Cantwell, Judson, LeCluyse, Clewell, Thomas, Andersen (bib28) 2015; 148 Ramakumar, A., Subramanian, U., Prasanna, P.G.S., 2015. High-throughput sample processing and sample management; the functional evolution of classical cytogenetic assay towards automation. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Insights into formation and consequences of chromosome aberrations: Report on the 11th International Symposium on Chromosomal Aberrations (ISCA 11), Rhodes, Greece, September 12–14, 2014 793, 132–141. Ballabio, Consonni (bib2) 2013; 5 von Chamier, Laine, Jukkala, Spahn, Krentzel, Nehme, Lerche, Hernández-Pérez, Mattila, Karinou, Holden, Solak, Krull, Buchholz, Jones, Royer, Leterrier, Shechtman, Jug, Heilemann, Jacquemet, Henriques (bib8) 2021; 12 Brereton (bib5) 2000; 125 Tang, Zhong, Li, Huang, Guo, Yang, Wu (bib24) 2020; 92 Brack, Ait-Aissa, Burgess, Busch, Creusot, Di Paolo, Escher, Mark Hewitt, Hilscherova, Hollender, Hollert, Jonker, Kool, Lamoree, Muschket, Neumann, Rostkowski, Ruttkies, Schollee, Schymanski, Schulze, Seiler, Tindall, De Aragão Umbuzeiro, Vrana, Krauss (bib4) 2016; 544 Letamendia, Quevedo, Ibarbia, Virto, Holgado, Diez, Izpisua Belmonte, Callol-Massot (bib13) 2012; 7 Krewski, Acosta, Andersen, Anderson, Bailar, Boekelheide, Brent, Charnley, Cheung, Green, Kelsey, Kerkvliet, Li, McCray, Meyer, Patterson, Pennie, Scala, Solomon, Stephens, Yager, Zeise, Staff of Committee on Toxicity Testing and Assessment of Environmental Agents (bib12) 2010; 13 Gambardella, Ferrando, Gatti, Cataldi, Ramoino, Aluigi, Faimali, Diaspro, Falugi (bib11) 2016; 31 Saco-Álvarez, Durán, Ignacio Lorenzo, Beiras (bib22) 2010; 73 . Ballabio, Grisoni, Todeschini (bib3) 2018; 174 Villeneuve, Coady, Escher, Mihaich, Murphy, Schlekat, Garcia-Reyero (bib27) 2019; 38 Loos, Carvalho, António, Comero, Locoro, Tavazzi, Paracchini, Ghiani, Lettieri, Blaha, Jarosova, Voorspoels, Servaes, Haglund, Fick, Lindberg, Schwesig, Gawlik (bib14) 2013; 47 Pontius (bib20) 2021; 13 Tormena, Campos, Marcheafave, Edward Bruns, Scarminio, Pauli (bib25) 2021; 364 Escher, B., Neale, P., Leusch, F., 2021. Bioanalytical Tools in Water Quality Assessment. Schymanski, Jeon, Gulde, Fenner, Ruff, Singer, Hollender (bib23) 2014; 48 Wetmore (10.1016/j.ecoenv.2022.113728_bib28) 2015; 148 von Chamier (10.1016/j.ecoenv.2022.113728_bib8) 2021; 12 Tormena (10.1016/j.ecoenv.2022.113728_bib25) 2021; 364 Schymanski (10.1016/j.ecoenv.2022.113728_bib23) 2014; 48 Burgess (10.1016/j.ecoenv.2022.113728_bib6) 2013; 32 Vethaak (10.1016/j.ecoenv.2022.113728_bib26) 2017; 124 Carballeira (10.1016/j.ecoenv.2022.113728_bib7) 2012; 77 Villeneuve (10.1016/j.ecoenv.2022.113728_bib27) 2019; 38 Ballabio (10.1016/j.ecoenv.2022.113728_bib3) 2018; 174 Mijangos (10.1016/j.ecoenv.2022.113728_bib18) 2020; 54 Arini (10.1016/j.ecoenv.2022.113728_bib1) 2017; 36 Brack (10.1016/j.ecoenv.2022.113728_bib4) 2016; 544 Brereton (10.1016/j.ecoenv.2022.113728_bib5) 2000; 125 cr-split#-10.1016/j.ecoenv.2022.113728_bib21.2 cr-split#-10.1016/j.ecoenv.2022.113728_bib21.1 Tang (10.1016/j.ecoenv.2022.113728_bib24) 2020; 92 Pontius (10.1016/j.ecoenv.2022.113728_bib20) 2021; 13 10.1016/j.ecoenv.2022.113728_bib10 Krewski (10.1016/j.ecoenv.2022.113728_bib12) 2010; 13 Gambardella (10.1016/j.ecoenv.2022.113728_bib11) 2016; 31 Nyffeler (10.1016/j.ecoenv.2022.113728_bib19) 2020; 389 Loos (10.1016/j.ecoenv.2022.113728_bib14) 2013; 47 da Silva (10.1016/j.ecoenv.2022.113728_bib9) 2020; 92 McEvoy (10.1016/j.ecoenv.2022.113728_bib16) 2013; 54 Ballabio (10.1016/j.ecoenv.2022.113728_bib2) 2013; 5 Saco-Álvarez (10.1016/j.ecoenv.2022.113728_bib22) 2010; 73 Letamendia (10.1016/j.ecoenv.2022.113728_bib13) 2012; 7 Mijangos (10.1016/j.ecoenv.2022.113728_bib17) 2018; 147 McCance (10.1016/j.ecoenv.2022.113728_bib15) 2018; 146 |
References_xml | – volume: 54 start-page: 122 year: 2013 end-page: 126 ident: bib16 article-title: Using machine learning to classify image features from canine pelvic radiographs: evaluation of partial least squares discriminant analysis and artificial neural network models publication-title: Vet. Radio. Ultrasound contributor: fullname: Amigo – volume: 364 year: 2021 ident: bib25 article-title: Authentication of carioca common bean cultivars (Phaseolus vulgaris L.) using digital image processing and chemometric tools publication-title: Food Chem. contributor: fullname: Pauli – volume: 147 start-page: 152 year: 2018 end-page: 163 ident: bib17 article-title: Occurrence of emerging pollutants in estuaries of the Basque Country: analysis of sources and distribution, and assessment of the environmental risk publication-title: Water Res. contributor: fullname: Etxebarria – volume: 146 start-page: 118 year: 2018 end-page: 133 ident: bib15 article-title: Contaminants of Emerging Concern as novel groundwater tracers for delineating wastewater impacts in urban and peri-urban areas publication-title: Water Res. contributor: fullname: Currell – volume: 7 year: 2012 ident: bib13 article-title: Development and validation of an automated high-throughput system for zebrafish in vivo screenings publication-title: PLoS One contributor: fullname: Callol-Massot – volume: 77 start-page: 12 year: 2012 end-page: 22 ident: bib7 article-title: Identification of specific malformations of sea urchin larvae for toxicity assessment: application to marine pisciculture effluents publication-title: Mar. Environ. Res. contributor: fullname: DelValls – volume: 31 start-page: 1552 year: 2016 end-page: 1562 ident: bib11 article-title: Review: morphofunctional and biochemical markers of stress in sea urchin life stages exposed to engineered nanoparticles publication-title: Environ. Toxicol. contributor: fullname: Falugi – volume: 12 start-page: 2276 year: 2021 ident: bib8 article-title: Democratising deep learning for microscopy with ZeroCostDL4Mic publication-title: Nat. Commun. contributor: fullname: Henriques – volume: 47 start-page: 6475 year: 2013 end-page: 6487 ident: bib14 article-title: EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents publication-title: Water Res. contributor: fullname: Gawlik – volume: 389 year: 2020 ident: bib19 article-title: Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling publication-title: Toxicol. Appl. Pharmacol. contributor: fullname: Harrill – volume: 48 start-page: 2097 year: 2014 end-page: 2098 ident: bib23 article-title: Identifying small molecules via high resolution mass spectrometry: communicating confidence publication-title: Environ. Sci. Technol. contributor: fullname: Hollender – volume: 544 start-page: 1073 year: 2016 end-page: 1118 ident: bib4 article-title: Effect-directed analysis supporting monitoring of aquatic environments--an in-depth overview publication-title: Sci. Total Environ. contributor: fullname: Krauss – volume: 38 start-page: 12 year: 2019 end-page: 26 ident: bib27 article-title: High throughput screening and environmental risk assessment – state of the science and emerging applications publication-title: Environ. Toxicol. Chem. contributor: fullname: Garcia-Reyero – volume: 174 start-page: 33 year: 2018 end-page: 44 ident: bib3 article-title: Multivariate comparison of classification performance measures publication-title: Chemom. Intell. Lab. Syst. contributor: fullname: Todeschini – volume: 148 start-page: 121 year: 2015 end-page: 136 ident: bib28 article-title: Incorporating high-throughput exposure predictions with dosimetry-adjusted in vitro bioactivity to inform chemical toxicity testing publication-title: Toxicol. Sci. contributor: fullname: Andersen – volume: 125 start-page: 2125 year: 2000 end-page: 2154 ident: bib5 article-title: Introduction to multivariate calibration in analyticalchemistry publication-title: Analyst contributor: fullname: Brereton – volume: 36 start-page: 3081 year: 2017 end-page: 3090 ident: bib1 article-title: A cell-free testing platform to screen chemicals of potential neurotoxic concern across twenty vertebrate species publication-title: Environ. Toxicol. Chem. contributor: fullname: Basu – volume: 73 start-page: 491 year: 2010 end-page: 499 ident: bib22 article-title: Methodological basis for the optimization of a marine sea-urchin embryo test (SET) for the ecological assessment of coastal water quality publication-title: Ecotoxicol. Environ. Saf. contributor: fullname: Beiras – volume: 13 start-page: 51 year: 2010 end-page: 138 ident: bib12 article-title: Toxicity testing in the 21st century: a vision and a strategy publication-title: J. Toxicol. Environ. Health Part B contributor: fullname: Staff of Committee on Toxicity Testing and Assessment of Environmental Agents – volume: 5 start-page: 3790 year: 2013 end-page: 3798 ident: bib2 article-title: Classification tools in chemistry. Part 1: linear models. PLS-DA publication-title: Anal. Methods contributor: fullname: Consonni – volume: 124 start-page: 81 year: 2017 end-page: 91 ident: bib26 article-title: Toxicity profiling of marine surface sediments: a case study using rapid screening bioassays of exhaustive total extracts, elutriates and passive sampler extracts publication-title: Mar. Environ. Res. contributor: fullname: Smedes – volume: 92 start-page: 13724 year: 2020 end-page: 13733 ident: bib9 article-title: Classification and quantification of microplastics (<100 μm) using a focal plane Array–Fourier transform infrared imaging system and machine learning publication-title: Anal. Chem. contributor: fullname: Strand – volume: 32 start-page: 1935 year: 2013 end-page: 1945 ident: bib6 article-title: Effects-directed analysis (EDA) and toxicity identification evaluation (TIE): complementary but different approaches for diagnosing causes of environmental toxicity publication-title: Environ. Toxicol. Chem. contributor: fullname: Lamoree – volume: 13 start-page: 1470 year: 2021 ident: bib20 article-title: Emerging contaminants in water: detection, treatment, and regulation publication-title: Water contributor: fullname: Pontius – volume: 92 start-page: 1811 year: 2020 end-page: 1817 ident: bib24 article-title: Contaminants of emerging concern in aquatic environment: occurrence, monitoring, fate, and risk assessment publication-title: Water Environ. Res. contributor: fullname: Wu – volume: 54 start-page: 8890 year: 2020 end-page: 8899 ident: bib18 article-title: Application of the sea urchin embryo test in toxicity evaluation and effect-directed analysis of wastewater treatment plant effluents publication-title: Environ. Sci. Technol. contributor: fullname: Etxebarria – ident: 10.1016/j.ecoenv.2022.113728_bib10 doi: 10.2166/9781789061987 – volume: 77 start-page: 12 year: 2012 ident: 10.1016/j.ecoenv.2022.113728_bib7 article-title: Identification of specific malformations of sea urchin larvae for toxicity assessment: application to marine pisciculture effluents publication-title: Mar. Environ. Res. doi: 10.1016/j.marenvres.2012.01.001 contributor: fullname: Carballeira – volume: 124 start-page: 81 year: 2017 ident: 10.1016/j.ecoenv.2022.113728_bib26 article-title: Toxicity profiling of marine surface sediments: a case study using rapid screening bioassays of exhaustive total extracts, elutriates and passive sampler extracts publication-title: Mar. Environ. Res. doi: 10.1016/j.marenvres.2016.03.002 contributor: fullname: Vethaak – volume: 38 start-page: 12 year: 2019 ident: 10.1016/j.ecoenv.2022.113728_bib27 article-title: High throughput screening and environmental risk assessment – state of the science and emerging applications publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.4315 contributor: fullname: Villeneuve – volume: 148 start-page: 121 year: 2015 ident: 10.1016/j.ecoenv.2022.113728_bib28 article-title: Incorporating high-throughput exposure predictions with dosimetry-adjusted in vitro bioactivity to inform chemical toxicity testing publication-title: Toxicol. Sci. doi: 10.1093/toxsci/kfv171 contributor: fullname: Wetmore – volume: 13 start-page: 51 year: 2010 ident: 10.1016/j.ecoenv.2022.113728_bib12 article-title: Toxicity testing in the 21st century: a vision and a strategy publication-title: J. Toxicol. Environ. Health Part B doi: 10.1080/10937404.2010.483176 contributor: fullname: Krewski – volume: 5 start-page: 3790 year: 2013 ident: 10.1016/j.ecoenv.2022.113728_bib2 article-title: Classification tools in chemistry. Part 1: linear models. PLS-DA publication-title: Anal. Methods doi: 10.1039/c3ay40582f contributor: fullname: Ballabio – volume: 7 year: 2012 ident: 10.1016/j.ecoenv.2022.113728_bib13 article-title: Development and validation of an automated high-throughput system for zebrafish in vivo screenings publication-title: PLoS One doi: 10.1371/journal.pone.0036690 contributor: fullname: Letamendia – volume: 544 start-page: 1073 year: 2016 ident: 10.1016/j.ecoenv.2022.113728_bib4 article-title: Effect-directed analysis supporting monitoring of aquatic environments--an in-depth overview publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2015.11.102 contributor: fullname: Brack – volume: 47 start-page: 6475 year: 2013 ident: 10.1016/j.ecoenv.2022.113728_bib14 article-title: EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents publication-title: Water Res. doi: 10.1016/j.watres.2013.08.024 contributor: fullname: Loos – volume: 12 start-page: 2276 year: 2021 ident: 10.1016/j.ecoenv.2022.113728_bib8 article-title: Democratising deep learning for microscopy with ZeroCostDL4Mic publication-title: Nat. Commun. doi: 10.1038/s41467-021-22518-0 contributor: fullname: von Chamier – volume: 36 start-page: 3081 year: 2017 ident: 10.1016/j.ecoenv.2022.113728_bib1 article-title: A cell-free testing platform to screen chemicals of potential neurotoxic concern across twenty vertebrate species publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.3880 contributor: fullname: Arini – ident: #cr-split#-10.1016/j.ecoenv.2022.113728_bib21.2 doi: 10.1016/j.mrgentox.2015.07.011 – volume: 174 start-page: 33 year: 2018 ident: 10.1016/j.ecoenv.2022.113728_bib3 article-title: Multivariate comparison of classification performance measures publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2017.12.004 contributor: fullname: Ballabio – volume: 125 start-page: 2125 year: 2000 ident: 10.1016/j.ecoenv.2022.113728_bib5 article-title: Introduction to multivariate calibration in analyticalchemistry publication-title: Analyst doi: 10.1039/b003805i contributor: fullname: Brereton – volume: 147 start-page: 152 year: 2018 ident: 10.1016/j.ecoenv.2022.113728_bib17 article-title: Occurrence of emerging pollutants in estuaries of the Basque Country: analysis of sources and distribution, and assessment of the environmental risk publication-title: Water Res. doi: 10.1016/j.watres.2018.09.033 contributor: fullname: Mijangos – volume: 92 start-page: 13724 year: 2020 ident: 10.1016/j.ecoenv.2022.113728_bib9 article-title: Classification and quantification of microplastics (<100 μm) using a focal plane Array–Fourier transform infrared imaging system and machine learning publication-title: Anal. Chem. doi: 10.1021/acs.analchem.0c01324 contributor: fullname: da Silva – volume: 31 start-page: 1552 year: 2016 ident: 10.1016/j.ecoenv.2022.113728_bib11 article-title: Review: morphofunctional and biochemical markers of stress in sea urchin life stages exposed to engineered nanoparticles publication-title: Environ. Toxicol. doi: 10.1002/tox.22159 contributor: fullname: Gambardella – ident: #cr-split#-10.1016/j.ecoenv.2022.113728_bib21.1 – volume: 92 start-page: 1811 year: 2020 ident: 10.1016/j.ecoenv.2022.113728_bib24 article-title: Contaminants of emerging concern in aquatic environment: occurrence, monitoring, fate, and risk assessment publication-title: Water Environ. Res. doi: 10.1002/wer.1438 contributor: fullname: Tang – volume: 146 start-page: 118 year: 2018 ident: 10.1016/j.ecoenv.2022.113728_bib15 article-title: Contaminants of Emerging Concern as novel groundwater tracers for delineating wastewater impacts in urban and peri-urban areas publication-title: Water Res. doi: 10.1016/j.watres.2018.09.013 contributor: fullname: McCance – volume: 389 year: 2020 ident: 10.1016/j.ecoenv.2022.113728_bib19 article-title: Bioactivity screening of environmental chemicals using imaging-based high-throughput phenotypic profiling publication-title: Toxicol. Appl. Pharmacol. doi: 10.1016/j.taap.2019.114876 contributor: fullname: Nyffeler – volume: 48 start-page: 2097 year: 2014 ident: 10.1016/j.ecoenv.2022.113728_bib23 article-title: Identifying small molecules via high resolution mass spectrometry: communicating confidence publication-title: Environ. Sci. Technol. doi: 10.1021/es5002105 contributor: fullname: Schymanski – volume: 54 start-page: 8890 year: 2020 ident: 10.1016/j.ecoenv.2022.113728_bib18 article-title: Application of the sea urchin embryo test in toxicity evaluation and effect-directed analysis of wastewater treatment plant effluents publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.0c01504 contributor: fullname: Mijangos – volume: 73 start-page: 491 year: 2010 ident: 10.1016/j.ecoenv.2022.113728_bib22 article-title: Methodological basis for the optimization of a marine sea-urchin embryo test (SET) for the ecological assessment of coastal water quality publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2010.01.018 contributor: fullname: Saco-Álvarez – volume: 32 start-page: 1935 year: 2013 ident: 10.1016/j.ecoenv.2022.113728_bib6 article-title: Effects-directed analysis (EDA) and toxicity identification evaluation (TIE): complementary but different approaches for diagnosing causes of environmental toxicity publication-title: Environ. Toxicol. Chem. doi: 10.1002/etc.2299 contributor: fullname: Burgess – volume: 54 start-page: 122 year: 2013 ident: 10.1016/j.ecoenv.2022.113728_bib16 article-title: Using machine learning to classify image features from canine pelvic radiographs: evaluation of partial least squares discriminant analysis and artificial neural network models publication-title: Vet. Radio. Ultrasound doi: 10.1111/vru.12003 contributor: fullname: McEvoy – volume: 364 year: 2021 ident: 10.1016/j.ecoenv.2022.113728_bib25 article-title: Authentication of carioca common bean cultivars (Phaseolus vulgaris L.) using digital image processing and chemometric tools publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.130349 contributor: fullname: Tormena – volume: 13 start-page: 1470 year: 2021 ident: 10.1016/j.ecoenv.2022.113728_bib20 article-title: Emerging contaminants in water: detection, treatment, and regulation publication-title: Water doi: 10.3390/w13111470 contributor: fullname: Pontius |
SSID | ssj0003055 |
Score | 2.4198232 |
Snippet | Since countless xenobiotic compounds are being found in the environment, ecotoxicology faces an astounding challenge in identifying toxicants. The combination... |
SourceID | doaj proquest crossref pubmed elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 113728 |
SubjectTerms | Ecotoxicology Effect-directed analysis High-throughput screening Image analysis Machine learning Sea urchin embryo test |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BatwwEBUhUAiU0iZpu20TJpCrqC3LstxbGjaEQntpArkJjTwuW1i7pN5A_j4jyw7bQ8klN2OMPOiNPG-s0RshTn0eZc9bkp7Zq9S2DtIza5VF1lqTI2Gdx7PD33-Yy2v97aa82Wr1FWvCkjxwmrjPWisMQYcmD6XmcFxTTjqn0LRFWdOkXprVczI1fYOjjlUqXqykKfNiPjQ3VnZxXkfdHeeGSsWWJlXsxL4VlEbt_n9i0_-45xiDLl6LVxN5hLNk9BuxQ92-eLEchafv98XL9A8O0tGiA9H-XF4xy_wCZ7AeayYJpiYRv8B3DazW_DHhqyRLAjGgNbC1ow1DD34z9ExqCZgoAi8LiM2jVh3QGm_ve2CiOhyK64vl1fmlnPoqyKArPUhORI2mtmEkjEHGyDfGNlZ7NNQq1dqAMWb5MlCBRZ01CgtfGY3IgBPH97dit-s7ei8AVYbK2OA1j2yw9MxOUJdFhlSRUmEh5Dyx7k-Sz3BzXdlvl4BwEQiXgFiIr3H2H5-N4tfjDXYJN7mEe8olFqKasXMTj0j8gIdaPfH6kxlqx8ss7p34jvrNX6c4sYpS_iZfiHfJBx6NLEpja2vth-cw_qPYiwalGsNPYne43dAR854Bj0cXfwBcPP5Y priority: 102 providerName: Directory of Open Access Journals |
Title | SETApp: A machine learning and image analysis based application to automate the sea urchin embryo test |
URI | https://dx.doi.org/10.1016/j.ecoenv.2022.113728 https://www.ncbi.nlm.nih.gov/pubmed/35689888 https://search.proquest.com/docview/2675600761 https://doaj.org/article/442bcc4cd1c546129e1e41ecdf359e05 |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB7SDYVCKG362j4WFXp1dy3Lst3bNmzYtjSXJpCbkORxcGHtsPUGculv74xlL8mhFHqzjS0bzWjmG2vmG4APNmba8wojS-g1UnnhI0uoNUoWVa5jh66IuXb4-5leX6ivl-nlAZyMtTCcVjnY_mDTe2s9XJkPszm_rus5pyVlOuVoivksufz6sN8kmsDh8su39dneIDOpVchkzCJ-YKyg69O8KMjD5oYCRSm5v0nGbdnveKieyP-eo_obEO0d0ukTeDwgSbEMH_sUDrA5hoernoX69hiOwg85EeqMnkH1Y3VOkPOTWIpNn0CJYugYcSVsU4p6Q5aFjgJHiWDvVoo729uia4XddS0hXBSEGgWtEcGdpOpG4MZtb1tBqLV7Dhenq_OTdTQ0WYi8ylQXUVSqFVYliUVrRwKzpc7LXFmnsZKyyr1jB2ZTj4lLikUpXWIzrZwj6SM5-xcwadoGX4FwcuGkzr1VNLJ2qSWo4lSaLBxmKKWfQjROrLkOXBpmTDL7aYIgDAvCBEFM4TPP_v5eZsLuL7TbKzOoglFKOu-VL2OfKoJrBcaoYvRllaQFLtIpZKPszD3FoqHqf7z-_ShqQ2uON1Jsg-3ul5EUZTGvv46n8DLowP4jE1LFIs_z1__93jfwiM9CluFbmHTbHb4j5NO5GTz4-DueDfo96_8f_AEx5gJB |
link.rule.ids | 315,783,787,867,2109,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhpbRQSpu-tk8VelXXlmVZ7i0NG7Ztkks3kJuQ5HFwYO2w9RZy6W_vjGWnyaEUejOykIxmpPnGmvmGsQ8uJdrzGoRD9CqUKYNwiFpFltRGpx58mVLu8PGJXp6qr2f52Q47mHJhKKxyPPvjmT6c1mPLfFzN-WXTzCksqdA5eVPEZ0np13cU8WehUn_89SfOgyitYhxjIaj7lD83BHmhiwftT3QTpaTqJgUVZb9hnwYa_1tm6m8wdDBHh4_YwxFH8v34qY_ZDrR77O5i4KC-2mMP4u84HrOMnrD6-2KFgPMT3-frIXwS-Fgv4py7tuLNGs8VfIoMJZxsW8VvXG7zvuNu23eIb4EjZuS4QzjVkWpaDmu_ueo4Ytb-KTs9XKwOlmIssSCCKlQv0CfVCuoKhaK1R3G5SpvKKOc11FLWJngyXy4PkPmsTCrpM1do5T3KHtDUP2O7bdfCC8a9TLzUJjiFI2ufOwQqXuVZ4qEAKcOMiWlh7WVk0rBTiNmFjYKwJAgbBTFjn2n1r_sSD_bQ0G3O7agIVinpQ1ChSkOuEKyVkIJKIVR1lpeQ5DNWTLKzt9QKh2r-Mf37SdQWdxxdo7gWuu0PK9HHIlZ_nc7Y86gD1x-ZoSKWxpiX_z3vO3ZvuTo-skdfTr69YvfpTYw3fM12-80W3iAG6v3bQcd_A5fXAi4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SETApp%3A+A+machine+learning+and+image+analysis+based+application+to+automate+the+sea+urchin+embryo+test&rft.jtitle=Ecotoxicology+and+environmental+safety&rft.au=Alvarez-Mora%2C+Iker&rft.au=Mijangos%2C+Leire&rft.au=Lopez-Herguedas%2C+Naroa&rft.au=Amigo%2C+Jose+M&rft.date=2022-08-01&rft.eissn=1090-2414&rft.volume=241&rft.spage=113728&rft_id=info:doi/10.1016%2Fj.ecoenv.2022.113728&rft_id=info%3Apmid%2F35689888&rft.externalDocID=35689888 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0147-6513&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0147-6513&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0147-6513&client=summon |