Iterative consensus spectral clustering improves detection of subject and group level brain functional modules

Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from function...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 10; no. 1; p. 7590
Main Authors Gupta, Sukrit, Rajapakse, Jagath C.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 05.05.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans. The ICSC algorithm derives group-level modules from modules of multiple individuals by iteratively minimizing the consensus-cost between the two. We demonstrate that the ICSC algorithm can be used to derive biologically plausible group-level (for multiple subjects) and subject-level (for multiple subject scans) brain modules, using resting-state fMRI scans of 589 subjects from the Human Connectome Project. We employed a multipronged strategy to show the validity of the modularizations obtained from the ICSC algorithm. We show a heterogeneous variability in the modular structure across subjects where modules involved in visual and motor processing were highly stable across subjects. Conversely, we found a lower variability across scans of the same subject. The performance of our algorithm was compared with existing functional brain modularization methods and we show that our method detects group-level modules that are more representative of the modules of multiple individuals. Finally, the experiments on synthetic images quantitatively demonstrate that the ICSC algorithm detects group-level and subject-level modules accurately under varied conditions. Therefore, besides identifying functional modules for a population of subjects, the proposed method can be used for applications in personalized neuroscience. The ICSC implementation is available at https://github.com/SCSE-Biomedical-Computing-Group/ICSC .
AbstractList Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans. The ICSC algorithm derives group-level modules from modules of multiple individuals by iteratively minimizing the consensus-cost between the two. We demonstrate that the ICSC algorithm can be used to derive biologically plausible group-level (for multiple subjects) and subject-level (for multiple subject scans) brain modules, using resting-state fMRI scans of 589 subjects from the Human Connectome Project. We employed a multipronged strategy to show the validity of the modularizations obtained from the ICSC algorithm. We show a heterogeneous variability in the modular structure across subjects where modules involved in visual and motor processing were highly stable across subjects. Conversely, we found a lower variability across scans of the same subject. The performance of our algorithm was compared with existing functional brain modularization methods and we show that our method detects group-level modules that are more representative of the modules of multiple individuals. Finally, the experiments on synthetic images quantitatively demonstrate that the ICSC algorithm detects group-level and subject-level modules accurately under varied conditions. Therefore, besides identifying functional modules for a population of subjects, the proposed method can be used for applications in personalized neuroscience. The ICSC implementation is available at https://github.com/SCSE-Biomedical-Computing-Group/ICSC.
Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans. The ICSC algorithm derives group-level modules from modules of multiple individuals by iteratively minimizing the consensus-cost between the two. We demonstrate that the ICSC algorithm can be used to derive biologically plausible group-level (for multiple subjects) and subject-level (for multiple subject scans) brain modules, using resting-state fMRI scans of 589 subjects from the Human Connectome Project. We employed a multipronged strategy to show the validity of the modularizations obtained from the ICSC algorithm. We show a heterogeneous variability in the modular structure across subjects where modules involved in visual and motor processing were highly stable across subjects. Conversely, we found a lower variability across scans of the same subject. The performance of our algorithm was compared with existing functional brain modularization methods and we show that our method detects group-level modules that are more representative of the modules of multiple individuals. Finally, the experiments on synthetic images quantitatively demonstrate that the ICSC algorithm detects group-level and subject-level modules accurately under varied conditions. Therefore, besides identifying functional modules for a population of subjects, the proposed method can be used for applications in personalized neuroscience. The ICSC implementation is available at https://github.com/SCSE-Biomedical-Computing-Group/ICSC.Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans. The ICSC algorithm derives group-level modules from modules of multiple individuals by iteratively minimizing the consensus-cost between the two. We demonstrate that the ICSC algorithm can be used to derive biologically plausible group-level (for multiple subjects) and subject-level (for multiple subject scans) brain modules, using resting-state fMRI scans of 589 subjects from the Human Connectome Project. We employed a multipronged strategy to show the validity of the modularizations obtained from the ICSC algorithm. We show a heterogeneous variability in the modular structure across subjects where modules involved in visual and motor processing were highly stable across subjects. Conversely, we found a lower variability across scans of the same subject. The performance of our algorithm was compared with existing functional brain modularization methods and we show that our method detects group-level modules that are more representative of the modules of multiple individuals. Finally, the experiments on synthetic images quantitatively demonstrate that the ICSC algorithm detects group-level and subject-level modules accurately under varied conditions. Therefore, besides identifying functional modules for a population of subjects, the proposed method can be used for applications in personalized neuroscience. The ICSC implementation is available at https://github.com/SCSE-Biomedical-Computing-Group/ICSC.
Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans. The ICSC algorithm derives group-level modules from modules of multiple individuals by iteratively minimizing the consensus-cost between the two. We demonstrate that the ICSC algorithm can be used to derive biologically plausible group-level (for multiple subjects) and subject-level (for multiple subject scans) brain modules, using resting-state fMRI scans of 589 subjects from the Human Connectome Project. We employed a multipronged strategy to show the validity of the modularizations obtained from the ICSC algorithm. We show a heterogeneous variability in the modular structure across subjects where modules involved in visual and motor processing were highly stable across subjects. Conversely, we found a lower variability across scans of the same subject. The performance of our algorithm was compared with existing functional brain modularization methods and we show that our method detects group-level modules that are more representative of the modules of multiple individuals. Finally, the experiments on synthetic images quantitatively demonstrate that the ICSC algorithm detects group-level and subject-level modules accurately under varied conditions. Therefore, besides identifying functional modules for a population of subjects, the proposed method can be used for applications in personalized neuroscience. The ICSC implementation is available at https://github.com/SCSE-Biomedical-Computing-Group/ICSC .
ArticleNumber 7590
Author Gupta, Sukrit
Rajapakse, Jagath C.
Author_xml – sequence: 1
  givenname: Sukrit
  orcidid: 0000-0002-8974-8482
  surname: Gupta
  fullname: Gupta, Sukrit
  organization: School of Computer Science and Engineering, Nanyang Technological University
– sequence: 2
  givenname: Jagath C.
  orcidid: 0000-0001-7944-1658
  surname: Rajapakse
  fullname: Rajapakse, Jagath C.
  email: asjagath@ntu.edu.sg
  organization: School of Computer Science and Engineering, Nanyang Technological University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32371990$$D View this record in MEDLINE/PubMed
BookMark eNp9Uctu3CAURVGqJp3mB7qokLrpxg1c8NhsKlVRH5EiZdOuEYOvJ4xscMGMlL8vnknTNIuwgavz0LmcN-TUB4-EvOPsE2eivUyS16qtGLBqLeoaKnZCzoHJugIBcPrkfUYuUtqxcmpQkqvX5EyAaLhS7Jz46xmjmd0eqQ0-oU850TShnaMZqB1yKrjzW-rGKYY9JtrhXFAXPA09TXmzKxM1vqPbGPJEB9zjQDfROE_77A_M4jSGLg-Y3pJXvRkSXjzcK_Lr29efVz-qm9vv11dfbiorGzmX2EI0hvdszRrT99j0reJGrssMginVyMZ2hgvgai0R-87Y2kor2xqAb4CJFfl89J3yZsTOol_20VN0o4n3Ohin_0e8u9PbsNcNMNYCFIOPDwYx_M6YZj26ZHEYjMeQkwahFMiGl6Qr8uEZdRdyLEsfWG3dgqh5Yb1_mugxyt8qCgGOBBtDShH7RwpneqlcHyvXpXJ9qFwvovaZyLrZLH9etnLDy1JxlKZpKRjjv9gvqP4AzDDBlQ
CitedBy_id crossref_primary_10_1049_ipr2_12266
crossref_primary_10_1016_j_neucom_2020_04_152
crossref_primary_10_1002_hbm_25817
crossref_primary_10_1029_2021JC017614
crossref_primary_10_1002_pssa_202100539
crossref_primary_10_1109_ACCESS_2021_3126854
crossref_primary_10_1029_2022EF002787
crossref_primary_10_1089_brain_2022_0007
crossref_primary_10_1002_ecm_1504
crossref_primary_10_1111_1758_2229_13049
Cites_doi 10.1038/nn.4361
10.3389/fpsyg.2012.00295
10.1016/j.neuron.2014.05.014
10.1088/1742-5468/2008/10/P10008
10.1016/j.neuroimage.2013.04.081
10.1038/nn.4135
10.1016/j.neuroimage.2013.05.108
10.1002/hbm.20080
10.1152/jn.00338.2011
10.1103/PhysRevE.78.046110
10.1073/pnas.0905267106
10.1103/PhysRevE.80.016118
10.1016/j.neuron.2010.02.005
10.1016/j.neuroimage.2016.11.026
10.1371/journal.pone.0068910
10.1016/j.neuroimage.2013.05.041
10.3389/fninf.2010.00116
10.1016/j.neuroimage.2011.11.055
10.1371/journal.pcbi.1000808
10.1002/hbm.24385
10.1016/j.neuroimage.2011.10.002
10.1016/j.neuroimage.2017.02.066
10.1016/j.neuroimage.2011.08.035
10.1016/j.neuroimage.2016.08.032
10.1016/j.tics.2016.03.014
10.3171/2016.6.JNS1662
10.1016/j.neuroimage.2011.11.035
10.1093/brain/aww255
10.1016/j.tics.2013.09.012
10.1016/j.neuron.2012.12.028
10.1093/schbul/sbu059
10.1523/JNEUROSCI.0536-12.2012
10.1038/nn.4164
10.1523/JNEUROSCI.1492-16.2016
10.1089/brain.2015.0345
10.1073/pnas.1105108108
10.1016/j.neuron.2011.09.006
10.1073/pnas.0706851105
10.1017/S0140525X01003958
10.1016/j.neurobiolaging.2013.02.020
10.1016/j.neuroimage.2018.05.005
10.3171/jns.1989.71.3.0316
10.1002/hbm.22495
10.1073/pnas.1106612109
10.1103/PhysRevE.83.046114
10.1016/j.neuroimage.2013.08.048
10.1103/PhysRevE.84.066122
10.1103/PhysRevE.87.012812
10.1016/j.neuroimage.2017.06.006
10.1016/j.neuron.2013.07.035
10.1016/j.nicl.2020.102186
10.1146/annurev-psych-122414-033634
10.1016/j.neuron.2017.07.011
10.1073/pnas.0601602103
10.1371/journal.pone.0144963
10.1016/j.neuroimage.2018.10.006
10.1523/JNEUROSCI.5309-07.2008
10.1016/j.neuroimage.2013.04.127
10.1103/PhysRevE.91.012809
10.1101/213041
10.1371/journal.pone.0002001
10.1145/1298126.1298166
10.1109/ICDM.2010.35
10.1073/pnas.1018985108
10.1109/ISBI.2018.8363799
10.1038/srep19250
10.1109/ISBI.2017.7950573
10.1101/333930
10.1093/cercor/1.1.1
10.1145/2808797.2809344
10.1109/ICDCSW.2011.20
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s41598-020-63552-0
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
ExternalDocumentID PMC7200822
32371990
10_1038_s41598_020_63552_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Education - Singapore (MOE)
  grantid: RG 149/17
  funderid: https://doi.org/10.13039/501100001459
– fundername: ;
  grantid: RG 149/17
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c474t-23337a1f0607affe7f891a4606023099747cda1321964eefdac5c4c485221b203
IEDL.DBID M48
ISSN 2045-2322
IngestDate Thu Aug 21 14:33:19 EDT 2025
Fri Jul 11 11:18:34 EDT 2025
Wed Aug 13 09:16:48 EDT 2025
Thu Jan 02 22:57:26 EST 2025
Tue Jul 01 03:24:19 EDT 2025
Thu Apr 24 22:55:33 EDT 2025
Fri Feb 21 02:38:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-23337a1f0607affe7f891a4606023099747cda1321964eefdac5c4c485221b203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8974-8482
0000-0001-7944-1658
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-020-63552-0
PMID 32371990
PQID 2398582351
PQPubID 2041939
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7200822
proquest_miscellaneous_2399247123
proquest_journals_2398582351
pubmed_primary_32371990
crossref_primary_10_1038_s41598_020_63552_0
crossref_citationtrail_10_1038_s41598_020_63552_0
springer_journals_10_1038_s41598_020_63552_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-05
PublicationDateYYYYMMDD 2020-05-05
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Mueller (CR16) 2013; 77
Cole, Yarkoni, Repovš, Anticevic, Braver (CR19) 2012; 32
Frost, Goebel (CR40) 2012; 59
Yan, Zang (CR56) 2010; 4
Smith (CR53) 2009; 106
Hacker, Laumann, Szrama (CR28) 2013; 82
Vinh, Epps, Bailey (CR32) 2010; 11
de Haan (CR42) 2012; 59
CR38
CR36
CR35
Cole, Bassett, Power, Braver, Petersen (CR3) 2014; 83
Sepulcre (CR60) 2010; 6
Akiki (CR8) 2018; 176
CR33
Sarkar, Dong (CR37) 2011; 83
Kim (CR43) 2014; 40
CR74
Power, Schlaggar, Lessov-Schlaggar, Petersen (CR5) 2013; 79
Sun (CR50) 2016; 36
Wang (CR75) 2015; 18
Lancichinetti, Fortunato, Radicchi (CR62) 2008; 78
Smith (CR30) 2005; 24
Yeo (CR48) 2011; 106
Power (CR57) 2014; 84
Petanjek (CR68) 2011; 108
Shaw (CR67) 2008; 28
Nicolini, Bordier, Bifone (CR10) 2017; 146
Newman (CR24) 2006; 103
CR44
Finlay, Darlington, Nicastro (CR41) 2001; 24
Ji (CR12) 2019; 185
Gupta, Rajapakse, Welsch (CR55) 2020; 25
Gallos, Makse, Sigman (CR61) 2012; 109
Power (CR2) 2011; 72
Liao, Cao, Xia, He (CR73) 2017; 152
Glasser (CR46) 2016; 19
Tijms (CR6) 2013; 34
Kawamoto, Rosvall (CR77) 2015; 91
Balenzuela (CR9) 2010; 4
Andrews-Hanna, Reidler, Sepulcre, Poulin, Buckner (CR51) 2010; 65
CR18
Lancichinetti, Fortunato (CR76) 2011; 84
Lancichinetti, Fortunato (CR17) 2012; 2
Archer, Lee, Qiu, Chen (CR70) 2016; 6
CR59
Pannunzi (CR31) 2017; 157
Ojemann, Ojemann, Lettich, Berger (CR39) 1989; 71
Van Essen (CR45) 2013; 80
Cheng (CR58) 2016; 139
CR11
Dubois, Adolphs (CR14) 2016; 20
CR52
Yan, Craddock, Zuo, Zang, Milham (CR72) 2013; 80
Blondel, Guillaume, Lambiotte, Lefebvre (CR22) 2008; 2008
Chen (CR29) 2015; 10
Gordon (CR13) 2017; 95
van den Heuvel, Sporns (CR4) 2013; 17
Alexander-Bloch (CR7) 2012; 59
Lancichinetti, Fortunato (CR63) 2009; 80
Hart, Price, Suckling (CR71) 2016; 126
Rosvall, Bergstrom (CR23) 2008; 105
Santarnecchi, Galli, Polizzotto, Rossi, Rossi (CR20) 2014; 35
Bassett, Nelson, Mueller, Camchong, Lim (CR21) 2012; 59
Glasser (CR47) 2013; 80
Finn (CR15) 2015; 18
Xia (CR69) 2019; 40
CR25
Sporns, Betzel (CR1) 2016; 67
Heine (CR49) 2012; 3
CR66
CR65
Romano, Vinh, Bailey, Verspoor (CR34) 2016; 17
CR64
van Laarhoven, Marchiori (CR26) 2013; 87
Xia, Wang, He (CR54) 2013; 8
Gordon (CR27) 2017; 146
O Sporns (63552_CR1) 2016; 67
M Xia (63552_CR54) 2013; 8
C Yan (63552_CR56) 2010; 4
63552_CR52
EM Gordon (63552_CR27) 2017; 146
63552_CR59
A Lancichinetti (63552_CR62) 2008; 78
63552_CR11
DS Bassett (63552_CR21) 2012; 59
D Wang (63552_CR75) 2015; 18
DC Van Essen (63552_CR45) 2013; 80
E Santarnecchi (63552_CR20) 2014; 35
SM Smith (63552_CR30) 2005; 24
X Liao (63552_CR73) 2017; 152
A Lancichinetti (63552_CR63) 2009; 80
S Gupta (63552_CR55) 2020; 25
D-J Kim (63552_CR43) 2014; 40
63552_CR64
C-G Yan (63552_CR72) 2013; 80
MF Glasser (63552_CR46) 2016; 19
MP van den Heuvel (63552_CR4) 2013; 17
MW Cole (63552_CR19) 2012; 32
VD Blondel (63552_CR22) 2008; 2008
JD Power (63552_CR2) 2011; 72
S Mueller (63552_CR16) 2013; 77
P Balenzuela (63552_CR9) 2010; 4
63552_CR25
JR Andrews-Hanna (63552_CR51) 2010; 65
63552_CR66
63552_CR65
ME Newman (63552_CR24) 2006; 103
M Pannunzi (63552_CR31) 2017; 157
M Rosvall (63552_CR23) 2008; 105
Y Xia (63552_CR69) 2019; 40
63552_CR18
BL Finlay (63552_CR41) 2001; 24
LK Gallos (63552_CR61) 2012; 109
JD Power (63552_CR5) 2013; 79
G Ojemann (63552_CR39) 1989; 71
MA Frost (63552_CR40) 2012; 59
P Shaw (63552_CR67) 2008; 28
BM Tijms (63552_CR6) 2013; 34
TJ Akiki (63552_CR8) 2018; 176
A Lancichinetti (63552_CR17) 2012; 2
63552_CR74
ES Finn (63552_CR15) 2015; 18
NX Vinh (63552_CR32) 2010; 11
FW Sun (63552_CR50) 2016; 36
JL Ji (63552_CR12) 2019; 185
63552_CR36
C Nicolini (63552_CR10) 2017; 146
63552_CR38
W Cheng (63552_CR58) 2016; 139
63552_CR33
63552_CR35
BT Yeo (63552_CR48) 2011; 106
W de Haan (63552_CR42) 2012; 59
Z Petanjek (63552_CR68) 2011; 108
MG Hart (63552_CR71) 2016; 126
B Chen (63552_CR29) 2015; 10
S Sarkar (63552_CR37) 2011; 83
EM Gordon (63552_CR13) 2017; 95
T Kawamoto (63552_CR77) 2015; 91
T van Laarhoven (63552_CR26) 2013; 87
CD Hacker (63552_CR28) 2013; 82
L Heine (63552_CR49) 2012; 3
63552_CR44
SM Smith (63552_CR53) 2009; 106
J Sepulcre (63552_CR60) 2010; 6
A Alexander-Bloch (63552_CR7) 2012; 59
S Romano (63552_CR34) 2016; 17
MF Glasser (63552_CR47) 2013; 80
JD Power (63552_CR57) 2014; 84
A Lancichinetti (63552_CR76) 2011; 84
MW Cole (63552_CR3) 2014; 83
J Dubois (63552_CR14) 2016; 20
JA Archer (63552_CR70) 2016; 6
References_xml – volume: 19
  start-page: 1175
  year: 2016
  ident: CR46
  article-title: The human connectome project’s neuroimaging approach
  publication-title: Nat. neuroscience
  doi: 10.1038/nn.4361
– volume: 3
  start-page: 295
  year: 2012
  ident: CR49
  article-title: Resting state networks and consciousness
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2012.00295
– volume: 83
  start-page: 238
  year: 2014
  end-page: 251
  ident: CR3
  article-title: Intrinsic and task-evoked network architectures of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.014
– ident: CR74
– volume: 2
  start-page: 336
  year: 2012
  ident: CR17
  article-title: Consensus clustering in complex networks
  publication-title: Sci. Reports
– volume: 2008
  start-page: P10008
  year: 2008
  ident: CR22
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 80
  start-page: 246
  year: 2013
  end-page: 262
  ident: CR72
  article-title: Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.081
– volume: 18
  start-page: 1664
  year: 2015
  ident: CR15
  article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– volume: 82
  start-page: 616
  year: 2013
  end-page: 633
  ident: CR28
  article-title: e. a. Resting state network estimation in individual subjects
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.108
– volume: 24
  start-page: 248
  year: 2005
  end-page: 257
  ident: CR30
  article-title: Variability in fmri: a re-examination of inter-session differences
  publication-title: Hum. brain mapping
  doi: 10.1002/hbm.20080
– volume: 106
  start-page: 1125
  year: 2011
  end-page: 1165
  ident: CR48
  article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– volume: 78
  start-page: 046110
  year: 2008
  ident: CR62
  article-title: Benchmark graphs for testing community detection algorithms
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.046110
– ident: CR35
– volume: 106
  start-page: 13040
  year: 2009
  end-page: 13045
  ident: CR53
  article-title: Correspondence of the brain’s functional architecture during activation and rest
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0905267106
– volume: 80
  start-page: 016118
  year: 2009
  ident: CR63
  article-title: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.016118
– volume: 65
  start-page: 550
  year: 2010
  end-page: 562
  ident: CR51
  article-title: Functional-anatomic fractionation of the brain’s default network
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.02.005
– volume: 146
  start-page: 28
  year: 2017
  end-page: 39
  ident: CR10
  article-title: Community detection in weighted brain connectivity networks beyond the resolution limit
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.026
– volume: 17
  start-page: 4635
  year: 2016
  end-page: 4666
  ident: CR34
  article-title: Adjusting for chance clustering comparison measures
  publication-title: The J. Mach. Learn. Res.
– ident: CR25
– volume: 8
  start-page: e68910
  year: 2013
  ident: CR54
  article-title: Brainnet viewer: a network visualization tool for human brain connectomics
  publication-title: PloS one
  doi: 10.1371/journal.pone.0068910
– volume: 80
  start-page: 62
  year: 2013
  end-page: 79
  ident: CR45
  article-title: The WU-Minn human connectome project: an overview
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 4
  start-page: 116
  year: 2010
  ident: CR9
  article-title: Modular organization of brain resting state networks in chronic back pain patients
  publication-title: Front. Neuroinformatics
  doi: 10.3389/fninf.2010.00116
– volume: 59
  start-page: 3085
  year: 2012
  end-page: 3093
  ident: CR42
  article-title: Disrupted modular brain dynamics reflect cognitive dysfunction in alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.055
– volume: 6
  start-page: e1000808
  year: 2010
  ident: CR60
  article-title: The organization of local and distant functional connectivity in the human brain
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000808
– volume: 40
  start-page: 717
  year: 2019
  end-page: 728
  ident: CR69
  article-title: Tracking the dynamic functional connectivity structure of the human brain across the adult lifespan
  publication-title: Hum. brain mapping
  doi: 10.1002/hbm.24385
– volume: 59
  start-page: 2196
  year: 2012
  end-page: 2207
  ident: CR21
  article-title: Altered resting state complexity in schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.002
– volume: 152
  start-page: 94
  year: 2017
  end-page: 107
  ident: CR73
  article-title: Individual differences and time-varying features of modular brain architecture
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.02.066
– volume: 59
  start-page: 1369
  year: 2012
  end-page: 1381
  ident: CR40
  article-title: Measuring structural–functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.035
– volume: 146
  start-page: 918
  year: 2017
  end-page: 939
  ident: CR27
  article-title: Individual-specific features of brain systems identified with resting state functional correlations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.08.032
– volume: 20
  start-page: 425
  year: 2016
  end-page: 443
  ident: CR14
  article-title: Building a science of individual differences from fmri
  publication-title: Trends Cogn. sciences
  doi: 10.1016/j.tics.2016.03.014
– volume: 126
  start-page: 1941
  year: 2016
  end-page: 1950
  ident: CR71
  article-title: Functional connectivity networks for preoperative brain mapping in neurosurgery
  publication-title: J. neurosurgery
  doi: 10.3171/2016.6.JNS1662
– volume: 59
  start-page: 3889
  year: 2012
  end-page: 3900
  ident: CR7
  article-title: The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.035
– ident: CR11
– volume: 139
  start-page: 3296
  year: 2016
  end-page: 3309
  ident: CR58
  article-title: Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression
  publication-title: Brain
  doi: 10.1093/brain/aww255
– volume: 17
  start-page: 683
  year: 2013
  end-page: 696
  ident: CR4
  article-title: Network hubs in the human brain
  publication-title: Trends Cogn. sciences
  doi: 10.1016/j.tics.2013.09.012
– volume: 77
  start-page: 586
  year: 2013
  end-page: 595
  ident: CR16
  article-title: Individual variability in functional connectivity architecture of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.12.028
– volume: 40
  start-page: 1216
  year: 2014
  end-page: 1226
  ident: CR43
  article-title: Disrupted modular architecture of cerebellum in schizophrenia: a graph theoretic analysis
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbu059
– ident: CR36
– volume: 32
  start-page: 8988
  year: 2012
  end-page: 8999
  ident: CR19
  article-title: Global connectivity of prefrontal cortex predicts cognitive control and intelligence
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0536-12.2012
– volume: 18
  start-page: 1853
  year: 2015
  ident: CR75
  article-title: Parcellating cortical functional networks in individuals
  publication-title: Nat. neuroscience
  doi: 10.1038/nn.4164
– volume: 36
  start-page: 9659
  year: 2016
  end-page: 9668
  ident: CR50
  article-title: Youthful brains in older adults: Preserved neuroanatomy in the default mode and salience networks contributes to youthful memory in superaging
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1492-16.2016
– ident: CR64
– volume: 6
  start-page: 169
  year: 2016
  end-page: 185
  ident: CR70
  article-title: A comprehensive analysis of connectivity and aging over the adult life span
  publication-title: Brain connectivity
  doi: 10.1089/brain.2015.0345
– volume: 108
  start-page: 13281
  year: 2011
  end-page: 13286
  ident: CR68
  article-title: Extraordinary neoteny of synaptic spines in the human prefrontal cortex
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1105108108
– volume: 72
  start-page: 665
  year: 2011
  end-page: 678
  ident: CR2
  article-title: Functional network organization of the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– volume: 11
  start-page: 2837
  year: 2010
  end-page: 2854
  ident: CR32
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: J. Mach. Learn. Res.
– ident: CR18
– volume: 105
  start-page: 1118
  year: 2008
  end-page: 1123
  ident: CR23
  article-title: Maps of random walks on complex networks reveal community structure
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0706851105
– volume: 24
  start-page: 263
  year: 2001
  end-page: 278
  ident: CR41
  article-title: Developmental structure in brain evolution
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X01003958
– ident: CR66
– volume: 34
  start-page: 2023
  year: 2013
  end-page: 2036
  ident: CR6
  article-title: Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2013.02.020
– volume: 176
  start-page: 489
  year: 2018
  end-page: 498
  ident: CR8
  article-title: Default mode network abnormalities in posttraumatic stress disorder: A novel network-restricted topology approach
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.05.005
– volume: 71
  start-page: 316
  year: 1989
  end-page: 326
  ident: CR39
  article-title: Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.1989.71.3.0316
– ident: CR33
– volume: 35
  start-page: 4566
  year: 2014
  end-page: 4582
  ident: CR20
  article-title: Efficiency of weak brain connections support general cognitive functioning
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22495
– volume: 109
  start-page: 2825
  year: 2012
  end-page: 2830
  ident: CR61
  article-title: A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1106612109
– volume: 83
  start-page: 046114
  year: 2011
  ident: CR37
  article-title: Community detection in graphs using singular value decomposition
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.046114
– volume: 84
  start-page: 320
  year: 2014
  end-page: 341
  ident: CR57
  article-title: Methods to detect, characterize, and remove motion artifact in resting state fmri
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 84
  start-page: 066122
  year: 2011
  ident: CR76
  article-title: Limits of modularity maximization in community detection
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.066122
– volume: 87
  start-page: 012812
  year: 2013
  ident: CR26
  article-title: Graph clustering with local search optimization: The resolution bias of the objective function matters most
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.012812
– volume: 157
  start-page: 250
  year: 2017
  end-page: 262
  ident: CR31
  article-title: Resting-state fmri correlations: from link-wise unreliability to whole brain stability
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.06.006
– volume: 79
  start-page: 798
  year: 2013
  end-page: 813
  ident: CR5
  article-title: Evidence for hubs in human functional brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.07.035
– volume: 4
  start-page: 13
  year: 2010
  ident: CR56
  article-title: Dparsf: a matlab toolbox for" pipeline" data analysis of resting-state fmri
  publication-title: Front. systems neuroscience
– ident: CR44
– ident: CR65
– volume: 25
  start-page: 102186
  year: 2020
  ident: CR55
  article-title: Ambivert degree identifies crucial brain functional hubs and improves detection of alzheimer’s disease and autism spectrum disorder
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2020.102186
– ident: CR38
– ident: CR52
– volume: 67
  start-page: 613
  year: 2016
  end-page: 640
  ident: CR1
  article-title: Modular brain networks
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev-psych-122414-033634
– volume: 95
  start-page: 791
  year: 2017
  end-page: 807
  ident: CR13
  article-title: Precision functional mapping of individual human brains
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.07.011
– volume: 103
  start-page: 8577
  year: 2006
  end-page: 8582
  ident: CR24
  article-title: Modularity and community structure in networks
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0601602103
– volume: 10
  start-page: e0144963
  year: 2015
  ident: CR29
  article-title: Individual variability and test-retest reliability revealed by ten repeated resting-state brain scans over one month
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0144963
– volume: 185
  start-page: 35
  year: 2019
  end-page: 57
  ident: CR12
  article-title: Mapping the human brain’s cortical-subcortical functional network organization
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.10.006
– volume: 28
  start-page: 3586
  year: 2008
  end-page: 3594
  ident: CR67
  article-title: Neurodevelopmental trajectories of the human cerebral cortex
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5309-07.2008
– ident: CR59
– volume: 80
  start-page: 105
  year: 2013
  end-page: 124
  ident: CR47
  article-title: The minimal preprocessing pipelines for the human connectome project
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 91
  start-page: 012809
  year: 2015
  ident: CR77
  article-title: Estimating the resolution limit of the map equation in community detection
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.91.012809
– volume: 4
  start-page: 116
  year: 2010
  ident: 63552_CR9
  publication-title: Front. Neuroinformatics
  doi: 10.3389/fninf.2010.00116
– volume: 84
  start-page: 066122
  year: 2011
  ident: 63552_CR76
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.066122
– volume: 40
  start-page: 1216
  year: 2014
  ident: 63552_CR43
  publication-title: Schizophr. Bull.
  doi: 10.1093/schbul/sbu059
– ident: 63552_CR74
  doi: 10.1101/213041
– volume: 2008
  start-page: P10008
  year: 2008
  ident: 63552_CR22
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 67
  start-page: 613
  year: 2016
  ident: 63552_CR1
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev-psych-122414-033634
– volume: 146
  start-page: 28
  year: 2017
  ident: 63552_CR10
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.026
– volume: 3
  start-page: 295
  year: 2012
  ident: 63552_CR49
  publication-title: Front. Psychol.
  doi: 10.3389/fpsyg.2012.00295
– ident: 63552_CR65
  doi: 10.1371/journal.pone.0002001
– volume: 4
  start-page: 13
  year: 2010
  ident: 63552_CR56
  publication-title: Front. systems neuroscience
– volume: 91
  start-page: 012809
  year: 2015
  ident: 63552_CR77
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.91.012809
– volume: 87
  start-page: 012812
  year: 2013
  ident: 63552_CR26
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.87.012812
– volume: 17
  start-page: 4635
  year: 2016
  ident: 63552_CR34
  publication-title: The J. Mach. Learn. Res.
– volume: 84
  start-page: 320
  year: 2014
  ident: 63552_CR57
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.08.048
– volume: 139
  start-page: 3296
  year: 2016
  ident: 63552_CR58
  publication-title: Brain
  doi: 10.1093/brain/aww255
– volume: 95
  start-page: 791
  year: 2017
  ident: 63552_CR13
  publication-title: Neuron
  doi: 10.1016/j.neuron.2017.07.011
– ident: 63552_CR18
– ident: 63552_CR64
  doi: 10.1145/1298126.1298166
– volume: 8
  start-page: e68910
  year: 2013
  ident: 63552_CR54
  publication-title: PloS one
  doi: 10.1371/journal.pone.0068910
– volume: 20
  start-page: 425
  year: 2016
  ident: 63552_CR14
  publication-title: Trends Cogn. sciences
  doi: 10.1016/j.tics.2016.03.014
– volume: 80
  start-page: 105
  year: 2013
  ident: 63552_CR47
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.127
– volume: 82
  start-page: 616
  year: 2013
  ident: 63552_CR28
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.108
– volume: 24
  start-page: 248
  year: 2005
  ident: 63552_CR30
  publication-title: Hum. brain mapping
  doi: 10.1002/hbm.20080
– volume: 108
  start-page: 13281
  year: 2011
  ident: 63552_CR68
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1105108108
– volume: 157
  start-page: 250
  year: 2017
  ident: 63552_CR31
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.06.006
– ident: 63552_CR36
  doi: 10.1109/ICDM.2010.35
– volume: 79
  start-page: 798
  year: 2013
  ident: 63552_CR5
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.07.035
– volume: 19
  start-page: 1175
  year: 2016
  ident: 63552_CR46
  publication-title: Nat. neuroscience
  doi: 10.1038/nn.4361
– ident: 63552_CR44
  doi: 10.1073/pnas.1018985108
– volume: 59
  start-page: 2196
  year: 2012
  ident: 63552_CR21
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.10.002
– ident: 63552_CR35
  doi: 10.1109/ISBI.2018.8363799
– volume: 78
  start-page: 046110
  year: 2008
  ident: 63552_CR62
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.78.046110
– volume: 2
  start-page: 336
  year: 2012
  ident: 63552_CR17
  publication-title: Sci. Reports
– volume: 146
  start-page: 918
  year: 2017
  ident: 63552_CR27
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.08.032
– volume: 106
  start-page: 13040
  year: 2009
  ident: 63552_CR53
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0905267106
– volume: 83
  start-page: 046114
  year: 2011
  ident: 63552_CR37
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.83.046114
– volume: 80
  start-page: 016118
  year: 2009
  ident: 63552_CR63
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.016118
– ident: 63552_CR11
  doi: 10.1038/srep19250
– ident: 63552_CR66
  doi: 10.1109/ISBI.2017.7950573
– volume: 83
  start-page: 238
  year: 2014
  ident: 63552_CR3
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.05.014
– volume: 25
  start-page: 102186
  year: 2020
  ident: 63552_CR55
  publication-title: NeuroImage: Clin.
  doi: 10.1016/j.nicl.2020.102186
– volume: 6
  start-page: 169
  year: 2016
  ident: 63552_CR70
  publication-title: Brain connectivity
  doi: 10.1089/brain.2015.0345
– volume: 152
  start-page: 94
  year: 2017
  ident: 63552_CR73
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.02.066
– volume: 71
  start-page: 316
  year: 1989
  ident: 63552_CR39
  publication-title: J. Neurosurg.
  doi: 10.3171/jns.1989.71.3.0316
– volume: 80
  start-page: 246
  year: 2013
  ident: 63552_CR72
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.04.081
– volume: 11
  start-page: 2837
  year: 2010
  ident: 63552_CR32
  publication-title: J. Mach. Learn. Res.
– volume: 28
  start-page: 3586
  year: 2008
  ident: 63552_CR67
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5309-07.2008
– volume: 59
  start-page: 3889
  year: 2012
  ident: 63552_CR7
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.035
– volume: 176
  start-page: 489
  year: 2018
  ident: 63552_CR8
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.05.005
– volume: 59
  start-page: 1369
  year: 2012
  ident: 63552_CR40
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.08.035
– ident: 63552_CR59
  doi: 10.1101/333930
– ident: 63552_CR25
– volume: 24
  start-page: 263
  year: 2001
  ident: 63552_CR41
  publication-title: Behav. Brain Sci.
  doi: 10.1017/S0140525X01003958
– volume: 59
  start-page: 3085
  year: 2012
  ident: 63552_CR42
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.11.055
– volume: 36
  start-page: 9659
  year: 2016
  ident: 63552_CR50
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1492-16.2016
– volume: 32
  start-page: 8988
  year: 2012
  ident: 63552_CR19
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0536-12.2012
– volume: 80
  start-page: 62
  year: 2013
  ident: 63552_CR45
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.041
– volume: 109
  start-page: 2825
  year: 2012
  ident: 63552_CR61
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1106612109
– volume: 105
  start-page: 1118
  year: 2008
  ident: 63552_CR23
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0706851105
– volume: 77
  start-page: 586
  year: 2013
  ident: 63552_CR16
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.12.028
– volume: 18
  start-page: 1853
  year: 2015
  ident: 63552_CR75
  publication-title: Nat. neuroscience
  doi: 10.1038/nn.4164
– volume: 72
  start-page: 665
  year: 2011
  ident: 63552_CR2
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.09.006
– ident: 63552_CR52
  doi: 10.1093/cercor/1.1.1
– volume: 18
  start-page: 1664
  year: 2015
  ident: 63552_CR15
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4135
– ident: 63552_CR33
  doi: 10.1145/2808797.2809344
– volume: 106
  start-page: 1125
  year: 2011
  ident: 63552_CR48
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00338.2011
– volume: 103
  start-page: 8577
  year: 2006
  ident: 63552_CR24
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0601602103
– volume: 65
  start-page: 550
  year: 2010
  ident: 63552_CR51
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.02.005
– volume: 185
  start-page: 35
  year: 2019
  ident: 63552_CR12
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.10.006
– ident: 63552_CR38
  doi: 10.1109/ICDCSW.2011.20
– volume: 6
  start-page: e1000808
  year: 2010
  ident: 63552_CR60
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1000808
– volume: 35
  start-page: 4566
  year: 2014
  ident: 63552_CR20
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.22495
– volume: 126
  start-page: 1941
  year: 2016
  ident: 63552_CR71
  publication-title: J. neurosurgery
  doi: 10.3171/2016.6.JNS1662
– volume: 10
  start-page: e0144963
  year: 2015
  ident: 63552_CR29
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0144963
– volume: 17
  start-page: 683
  year: 2013
  ident: 63552_CR4
  publication-title: Trends Cogn. sciences
  doi: 10.1016/j.tics.2013.09.012
– volume: 34
  start-page: 2023
  year: 2013
  ident: 63552_CR6
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2013.02.020
– volume: 40
  start-page: 717
  year: 2019
  ident: 63552_CR69
  publication-title: Hum. brain mapping
  doi: 10.1002/hbm.24385
SSID ssj0000529419
Score 2.3321424
Snippet Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain...
Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7590
SubjectTerms 59/36
631/378/116/1925
631/378/3920
Algorithms
Brain
Brain architecture
Brain mapping
Functional magnetic resonance imaging
Humanities and Social Sciences
Information processing
multidisciplinary
Nervous system
Neural networks
Neuroimaging
Science
Science (multidisciplinary)
Sensorimotor integration
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VIiQuCCjQQEFG4lasxo_U3hOqKqqCVE5U2lvkp6i0OG2zOfDv8TjZVEtFz3acODP2vL8B-GRq7lTWU6mPhlPpraZGO04XtomaOx2Exdrhix_H55fy-7JZTg63fkqr3NyJ5aL2nUMf-RHi1DWai4Z9ub6h2DUKo6tTC41H8Bihy5Cr1VLNPhaMYkm2mGplaqGP-iyvsKYMbaYsaTmtt-XRPSXzfq7kPwHTIofOnsOzSYEkJyPFX8BOSC_hydhS8s8epG8FJjnfYcRhonTqh56Ucsq8LHGrAYER8sLkqngTQk98WJd0rES6SPrBomOGmORJKfggK8wqIhY7SRAUgqPvkPzu_LAK_Su4PPv68_ScTj0VqJNKrikXQijDYn1cKxNjUFEvmJHZjEFjZIHWhfMmm6gI1BVC9MY1Tjqps57GLK_Fa9hNXQr7QFhULDamUT4Yme0SLWUtorWZukJZpSpgmz_buglwHPterNoS-Ba6HanRZmq0hRptXcHh_Mz1CLfx4OyDDcHa6ej17R2jVPBxHs6HBiMhJoVuKHOy3amy1K7gzUjf-XWCC8WyjK5AbVF-noCA3Nsj6epXAeZWvADoV_B5wyN3n_X_Xbx9eBfv4ClHfsUky-YAdte3Q3ifFaG1_VC4_S-USgej
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9Ki-BF6vfaWiJ408XNxzZ5x4dY6oP2ooXeliSbYOGZV9y3B_97Z7If8qwKPWeSzWaSzEdmfgPw1lbCa9RTyzZaUarWmdIaL8qFq6MR3gTpKHf44vL0_EqtruvrPRBTLkwO2s-QlvmanqLDPnQoaCgZjIwdFJGiRDP9gKDacW8fLJerL6vZs0JvV4ovxgyZSpq_dN6VQndUy7sRkn88k2bpc3YIj0a1kS2HiT6GvZCewIOhkOTPp5A-Z3BkvLmYp_Do1PUdy0mUOCzz657gEHBgdpN9CKFjbdjmIKzENpF1vSN3DLOpZTnNg60plog5qh_BSPQNHkP2fdP2uE7P4Ors09eP5-VYSaH0SqttKaSU2vJYnVbaxhh0NAtuFRovZIIsyKbwrUXDlOC5Qoit9bVXXhnUzrgTlXwO-2mTwktgPGoea1vrNliF1ohRqpLROeSp1E7rAvi0so0fYcap2sW6yc_d0jQDNxrkRpO50VQFvJv73A4gG_-lPp4Y1owHrmsIxrA2Qta8gDdzMx4Vev-wKWz6TIPWpkZZXcCLgb_z56SQmqNkLkDvcH4mIBju3ZZ08y3DcWuRYfMLeD_tkd_T-vdfvLof-RE8FLR_KdSyPob97Y8-vEZ1aOtOxv3_C2-XBro
  priority: 102
  providerName: Springer Nature
Title Iterative consensus spectral clustering improves detection of subject and group level brain functional modules
URI https://link.springer.com/article/10.1038/s41598-020-63552-0
https://www.ncbi.nlm.nih.gov/pubmed/32371990
https://www.proquest.com/docview/2398582351
https://www.proquest.com/docview/2399247123
https://pubmed.ncbi.nlm.nih.gov/PMC7200822
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OOwRfxG-r5xLBN622SbpJH0TW5Y5z4Q5RF_atpGmCB7Wr1y14_70zabuy3in4VGg-2maSzvySmd8AvDAJtwrt1LjyhseyKnVstOVxXmZec6udKCl2-PRserKUi1W22oMx3dEwgO210I7ySS0v6tc_f1y-wwX_tg8Z129aVEIUKEZACNUnjxHCH6BmUpTR4HQw93uub57LNB9iZ65vuqufrhidV30n_zhADXrp-A7cHgxKNutnwF3Yc809uNmnmLy8D82HQJuM_zRmyXG6abuWhfBK7JbZuiOiBOyYnYfdBdeyym2Ce1bD1p61XUkbNcw0FQsBIKwmLyNWUmYJRkqx30tk39ZVV7v2ASyPj77MT-Ihx0JspZKbmAshlEl9Mk2U8d4pr_PUSIQ1BE5yQhu2MghZibjLOV8Zm1lppUa7LS15Ih7CfrNu3GNgqVepz0ymKmck4hQtZSJ8WaK0hSqViiAdR7awAwE55cGoi3AQLnTRS6NAaRRBGkUSwcttm-89_cY_ax-OAivGmVQQwWGmucjSCJ5vi3ER0cmIady6C3UQhyrU4hE86uW7fZzgQqWosyNQO5LfViCC7t2S5vxrIOpWPBDqR_BqnCO_X-vvX_Hk_6o_hVuc5i85YWaHsL-56NwzNJQ25QRuqJWawMFstvi8wOv7o7OPn_DufDqfhM2HSVgfvwD9hxTc
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThA1sZ3ae0AIAdUufZxaaW_BdmxRaUkK2Qj1T_EbmXE2qZaK3nq24ySeseebN8Brk3GnEKemVTA8lZXVqdGOpxNbBM2d9sJS7vDh0e70RH6dF_MN-DPkwlBY5XAnxou6ahzZyHeoTl2huSjyD2c_U-oaRd7VoYVGzxb7_vw3qmzt-9lnpO8bzve-HH-apquuAqmTSi5TLoRQJg_ZbqZMCF4FPcmNRCBPcHxC-NpVBpU0KlXlfaiMK5x0UiNSyS3PBK57A26i4M1I2VNzNdp0yGsm88kqNycTeqdF-Ug5bKSjoWTnabYu_y6B2suxmf84aKPc27sHd1eAlX3sOew-bPj6AdzqW1ieP4R6Fssy453JHAVm123Xspi-icsyt-ioEAMuzE6j9cK3rPLLGP5VsyawtrNkCGKmrlhMMGELimJiljpXMBK6va2S_WiqbuHbR3ByLbv9GDbrpvZPgOVB5aEwhaq8kagHaSkzEaxFbhLKKpVAPuxs6VYFzqnPxqKMjnahy54aJVKjjNQoswTejs-c9eU9rpy9PRCsXB31trxgzARejcN4SMnzYmrfdHEO6rkKUUICWz19x9cJLlSOmCABtUb5cQIVAF8fqU-_x0LgiseC_Qm8G3jk4rP-_xdPr_6Ll3B7enx4UB7MjvafwR1OvEsBnsU2bC5_df45grClfRE5n8G36z5qfwFIm0Ko
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ4g2sZ06e0AIaFddCqsKUam31HZsUWlJCtkI9a_x65hxkq2Wit56tuMknrHnmzfAS51wqxCnxqXXPJalyWOdWx5PTOZzbnMnDOUOf5lv7x3KT0fZ0Qb8GXJhKKxyuBPDRV3WlmzkY6pTl-VcZOnY92ERBzvTd6c_Y-ogRZ7WoZ1GxyL77uw3qm_N29kO0voV59Pdbx_34r7DQGylksuYCyGUTn2ynSjtvVM-n6RaIqgnaD4hrG1LjQobla1yzpfaZlZamSNqSQ1PBK57DTYVaUUj2PywOz_4urLwkA9NppM-UycR-bhBaUkZbaSxoZzncbIuDS9A3IuRmv-4a4MUnN6GWz18Ze87frsDG666C9e7hpZn96CahSLNeIMyS2HaVdM2LCRz4rLMLloqy4ALs5Ngy3ANK90yBINVrPasaQ2ZhZiuShbSTdiCYpqYoT4WjERwZ7lkP-qyXbjmPhxeyX4_gFFVV-4RsNSr1Gc6U6XTErWiXMpEeGOQt4QySkWQDjtb2L7cOXXdWBTB7S7yoqNGgdQoAjWKJILXq2dOu2Ifl87eGghW9Ae_Kc7ZNIIXq2E8suSH0ZWr2zAHtV6FmCGChx19V68TXKgUEUIEao3yqwlUDnx9pDr5HsqCKx7K90fwZuCR88_6_188vvwvnsMNPGbF59l8_wnc5MS6FO2ZbcFo-at1TxGRLc2znvUZHF_1afsL53BIQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+consensus+spectral+clustering+improves+detection+of+subject+and+group+level+brain+functional+modules&rft.jtitle=Scientific+reports&rft.au=Gupta%2C+Sukrit&rft.au=Rajapakse%2C+Jagath+C.&rft.date=2020-05-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-63552-0&rft.externalDocID=10_1038_s41598_020_63552_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon