Iterative consensus spectral clustering improves detection of subject and group level brain functional modules
Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from function...
Saved in:
Published in | Scientific reports Vol. 10; no. 1; p. 7590 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.05.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although,
in vivo
studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans. The ICSC algorithm derives group-level modules from modules of multiple individuals by iteratively minimizing the consensus-cost between the two. We demonstrate that the ICSC algorithm can be used to derive biologically plausible group-level (for multiple subjects) and subject-level (for multiple subject scans) brain modules, using resting-state fMRI scans of 589 subjects from the Human Connectome Project. We employed a multipronged strategy to show the validity of the modularizations obtained from the ICSC algorithm. We show a heterogeneous variability in the modular structure across subjects where modules involved in visual and motor processing were highly stable across subjects. Conversely, we found a lower variability across scans of the same subject. The performance of our algorithm was compared with existing functional brain modularization methods and we show that our method detects group-level modules that are more representative of the modules of multiple individuals. Finally, the experiments on synthetic images quantitatively demonstrate that the ICSC algorithm detects group-level and subject-level modules accurately under varied conditions. Therefore, besides identifying functional modules for a population of subjects, the proposed method can be used for applications in personalized neuroscience. The ICSC implementation is available at
https://github.com/SCSE-Biomedical-Computing-Group/ICSC
. |
---|---|
AbstractList | Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans. The ICSC algorithm derives group-level modules from modules of multiple individuals by iteratively minimizing the consensus-cost between the two. We demonstrate that the ICSC algorithm can be used to derive biologically plausible group-level (for multiple subjects) and subject-level (for multiple subject scans) brain modules, using resting-state fMRI scans of 589 subjects from the Human Connectome Project. We employed a multipronged strategy to show the validity of the modularizations obtained from the ICSC algorithm. We show a heterogeneous variability in the modular structure across subjects where modules involved in visual and motor processing were highly stable across subjects. Conversely, we found a lower variability across scans of the same subject. The performance of our algorithm was compared with existing functional brain modularization methods and we show that our method detects group-level modules that are more representative of the modules of multiple individuals. Finally, the experiments on synthetic images quantitatively demonstrate that the ICSC algorithm detects group-level and subject-level modules accurately under varied conditions. Therefore, besides identifying functional modules for a population of subjects, the proposed method can be used for applications in personalized neuroscience. The ICSC implementation is available at https://github.com/SCSE-Biomedical-Computing-Group/ICSC. Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans. The ICSC algorithm derives group-level modules from modules of multiple individuals by iteratively minimizing the consensus-cost between the two. We demonstrate that the ICSC algorithm can be used to derive biologically plausible group-level (for multiple subjects) and subject-level (for multiple subject scans) brain modules, using resting-state fMRI scans of 589 subjects from the Human Connectome Project. We employed a multipronged strategy to show the validity of the modularizations obtained from the ICSC algorithm. We show a heterogeneous variability in the modular structure across subjects where modules involved in visual and motor processing were highly stable across subjects. Conversely, we found a lower variability across scans of the same subject. The performance of our algorithm was compared with existing functional brain modularization methods and we show that our method detects group-level modules that are more representative of the modules of multiple individuals. Finally, the experiments on synthetic images quantitatively demonstrate that the ICSC algorithm detects group-level and subject-level modules accurately under varied conditions. Therefore, besides identifying functional modules for a population of subjects, the proposed method can be used for applications in personalized neuroscience. The ICSC implementation is available at https://github.com/SCSE-Biomedical-Computing-Group/ICSC.Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans. The ICSC algorithm derives group-level modules from modules of multiple individuals by iteratively minimizing the consensus-cost between the two. We demonstrate that the ICSC algorithm can be used to derive biologically plausible group-level (for multiple subjects) and subject-level (for multiple subject scans) brain modules, using resting-state fMRI scans of 589 subjects from the Human Connectome Project. We employed a multipronged strategy to show the validity of the modularizations obtained from the ICSC algorithm. We show a heterogeneous variability in the modular structure across subjects where modules involved in visual and motor processing were highly stable across subjects. Conversely, we found a lower variability across scans of the same subject. The performance of our algorithm was compared with existing functional brain modularization methods and we show that our method detects group-level modules that are more representative of the modules of multiple individuals. Finally, the experiments on synthetic images quantitatively demonstrate that the ICSC algorithm detects group-level and subject-level modules accurately under varied conditions. Therefore, besides identifying functional modules for a population of subjects, the proposed method can be used for applications in personalized neuroscience. The ICSC implementation is available at https://github.com/SCSE-Biomedical-Computing-Group/ICSC. Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain functional modules involve multiple functional Magnetic Resonance Imaging (fMRI) scans, the methods used to derive functional modules from functional networks of the brain ignore individual differences in the functional architecture and use incomplete functional connectivity information. To correct this, we propose an Iterative Consensus Spectral Clustering (ICSC) algorithm that detects the most representative modules from individual dense weighted connectivity matrices derived from multiple scans. The ICSC algorithm derives group-level modules from modules of multiple individuals by iteratively minimizing the consensus-cost between the two. We demonstrate that the ICSC algorithm can be used to derive biologically plausible group-level (for multiple subjects) and subject-level (for multiple subject scans) brain modules, using resting-state fMRI scans of 589 subjects from the Human Connectome Project. We employed a multipronged strategy to show the validity of the modularizations obtained from the ICSC algorithm. We show a heterogeneous variability in the modular structure across subjects where modules involved in visual and motor processing were highly stable across subjects. Conversely, we found a lower variability across scans of the same subject. The performance of our algorithm was compared with existing functional brain modularization methods and we show that our method detects group-level modules that are more representative of the modules of multiple individuals. Finally, the experiments on synthetic images quantitatively demonstrate that the ICSC algorithm detects group-level and subject-level modules accurately under varied conditions. Therefore, besides identifying functional modules for a population of subjects, the proposed method can be used for applications in personalized neuroscience. The ICSC implementation is available at https://github.com/SCSE-Biomedical-Computing-Group/ICSC . |
ArticleNumber | 7590 |
Author | Gupta, Sukrit Rajapakse, Jagath C. |
Author_xml | – sequence: 1 givenname: Sukrit orcidid: 0000-0002-8974-8482 surname: Gupta fullname: Gupta, Sukrit organization: School of Computer Science and Engineering, Nanyang Technological University – sequence: 2 givenname: Jagath C. orcidid: 0000-0001-7944-1658 surname: Rajapakse fullname: Rajapakse, Jagath C. email: asjagath@ntu.edu.sg organization: School of Computer Science and Engineering, Nanyang Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32371990$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uctu3CAURVGqJp3mB7qokLrpxg1c8NhsKlVRH5EiZdOuEYOvJ4xscMGMlL8vnknTNIuwgavz0LmcN-TUB4-EvOPsE2eivUyS16qtGLBqLeoaKnZCzoHJugIBcPrkfUYuUtqxcmpQkqvX5EyAaLhS7Jz46xmjmd0eqQ0-oU850TShnaMZqB1yKrjzW-rGKYY9JtrhXFAXPA09TXmzKxM1vqPbGPJEB9zjQDfROE_77A_M4jSGLg-Y3pJXvRkSXjzcK_Lr29efVz-qm9vv11dfbiorGzmX2EI0hvdszRrT99j0reJGrssMginVyMZ2hgvgai0R-87Y2kor2xqAb4CJFfl89J3yZsTOol_20VN0o4n3Ohin_0e8u9PbsNcNMNYCFIOPDwYx_M6YZj26ZHEYjMeQkwahFMiGl6Qr8uEZdRdyLEsfWG3dgqh5Yb1_mugxyt8qCgGOBBtDShH7RwpneqlcHyvXpXJ9qFwvovaZyLrZLH9etnLDy1JxlKZpKRjjv9gvqP4AzDDBlQ |
CitedBy_id | crossref_primary_10_1049_ipr2_12266 crossref_primary_10_1016_j_neucom_2020_04_152 crossref_primary_10_1002_hbm_25817 crossref_primary_10_1029_2021JC017614 crossref_primary_10_1002_pssa_202100539 crossref_primary_10_1109_ACCESS_2021_3126854 crossref_primary_10_1029_2022EF002787 crossref_primary_10_1089_brain_2022_0007 crossref_primary_10_1002_ecm_1504 crossref_primary_10_1111_1758_2229_13049 |
Cites_doi | 10.1038/nn.4361 10.3389/fpsyg.2012.00295 10.1016/j.neuron.2014.05.014 10.1088/1742-5468/2008/10/P10008 10.1016/j.neuroimage.2013.04.081 10.1038/nn.4135 10.1016/j.neuroimage.2013.05.108 10.1002/hbm.20080 10.1152/jn.00338.2011 10.1103/PhysRevE.78.046110 10.1073/pnas.0905267106 10.1103/PhysRevE.80.016118 10.1016/j.neuron.2010.02.005 10.1016/j.neuroimage.2016.11.026 10.1371/journal.pone.0068910 10.1016/j.neuroimage.2013.05.041 10.3389/fninf.2010.00116 10.1016/j.neuroimage.2011.11.055 10.1371/journal.pcbi.1000808 10.1002/hbm.24385 10.1016/j.neuroimage.2011.10.002 10.1016/j.neuroimage.2017.02.066 10.1016/j.neuroimage.2011.08.035 10.1016/j.neuroimage.2016.08.032 10.1016/j.tics.2016.03.014 10.3171/2016.6.JNS1662 10.1016/j.neuroimage.2011.11.035 10.1093/brain/aww255 10.1016/j.tics.2013.09.012 10.1016/j.neuron.2012.12.028 10.1093/schbul/sbu059 10.1523/JNEUROSCI.0536-12.2012 10.1038/nn.4164 10.1523/JNEUROSCI.1492-16.2016 10.1089/brain.2015.0345 10.1073/pnas.1105108108 10.1016/j.neuron.2011.09.006 10.1073/pnas.0706851105 10.1017/S0140525X01003958 10.1016/j.neurobiolaging.2013.02.020 10.1016/j.neuroimage.2018.05.005 10.3171/jns.1989.71.3.0316 10.1002/hbm.22495 10.1073/pnas.1106612109 10.1103/PhysRevE.83.046114 10.1016/j.neuroimage.2013.08.048 10.1103/PhysRevE.84.066122 10.1103/PhysRevE.87.012812 10.1016/j.neuroimage.2017.06.006 10.1016/j.neuron.2013.07.035 10.1016/j.nicl.2020.102186 10.1146/annurev-psych-122414-033634 10.1016/j.neuron.2017.07.011 10.1073/pnas.0601602103 10.1371/journal.pone.0144963 10.1016/j.neuroimage.2018.10.006 10.1523/JNEUROSCI.5309-07.2008 10.1016/j.neuroimage.2013.04.127 10.1103/PhysRevE.91.012809 10.1101/213041 10.1371/journal.pone.0002001 10.1145/1298126.1298166 10.1109/ICDM.2010.35 10.1073/pnas.1018985108 10.1109/ISBI.2018.8363799 10.1038/srep19250 10.1109/ISBI.2017.7950573 10.1101/333930 10.1093/cercor/1.1.1 10.1145/2808797.2809344 10.1109/ICDCSW.2011.20 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1038/s41598-020-63552-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
ExternalDocumentID | PMC7200822 32371990 10_1038_s41598_020_63552_0 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Education - Singapore (MOE) grantid: RG 149/17 funderid: https://doi.org/10.13039/501100001459 – fundername: ; grantid: RG 149/17 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c474t-23337a1f0607affe7f891a4606023099747cda1321964eefdac5c4c485221b203 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Thu Aug 21 14:33:19 EDT 2025 Fri Jul 11 11:18:34 EDT 2025 Wed Aug 13 09:16:48 EDT 2025 Thu Jan 02 22:57:26 EST 2025 Tue Jul 01 03:24:19 EDT 2025 Thu Apr 24 22:55:33 EDT 2025 Fri Feb 21 02:38:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-23337a1f0607affe7f891a4606023099747cda1321964eefdac5c4c485221b203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8974-8482 0000-0001-7944-1658 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-020-63552-0 |
PMID | 32371990 |
PQID | 2398582351 |
PQPubID | 2041939 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7200822 proquest_miscellaneous_2399247123 proquest_journals_2398582351 pubmed_primary_32371990 crossref_primary_10_1038_s41598_020_63552_0 crossref_citationtrail_10_1038_s41598_020_63552_0 springer_journals_10_1038_s41598_020_63552_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-05 |
PublicationDateYYYYMMDD | 2020-05-05 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Mueller (CR16) 2013; 77 Cole, Yarkoni, Repovš, Anticevic, Braver (CR19) 2012; 32 Frost, Goebel (CR40) 2012; 59 Yan, Zang (CR56) 2010; 4 Smith (CR53) 2009; 106 Hacker, Laumann, Szrama (CR28) 2013; 82 Vinh, Epps, Bailey (CR32) 2010; 11 de Haan (CR42) 2012; 59 CR38 CR36 CR35 Cole, Bassett, Power, Braver, Petersen (CR3) 2014; 83 Sepulcre (CR60) 2010; 6 Akiki (CR8) 2018; 176 CR33 Sarkar, Dong (CR37) 2011; 83 Kim (CR43) 2014; 40 CR74 Power, Schlaggar, Lessov-Schlaggar, Petersen (CR5) 2013; 79 Sun (CR50) 2016; 36 Wang (CR75) 2015; 18 Lancichinetti, Fortunato, Radicchi (CR62) 2008; 78 Smith (CR30) 2005; 24 Yeo (CR48) 2011; 106 Power (CR57) 2014; 84 Petanjek (CR68) 2011; 108 Shaw (CR67) 2008; 28 Nicolini, Bordier, Bifone (CR10) 2017; 146 Newman (CR24) 2006; 103 CR44 Finlay, Darlington, Nicastro (CR41) 2001; 24 Ji (CR12) 2019; 185 Gupta, Rajapakse, Welsch (CR55) 2020; 25 Gallos, Makse, Sigman (CR61) 2012; 109 Power (CR2) 2011; 72 Liao, Cao, Xia, He (CR73) 2017; 152 Glasser (CR46) 2016; 19 Tijms (CR6) 2013; 34 Kawamoto, Rosvall (CR77) 2015; 91 Balenzuela (CR9) 2010; 4 Andrews-Hanna, Reidler, Sepulcre, Poulin, Buckner (CR51) 2010; 65 CR18 Lancichinetti, Fortunato (CR76) 2011; 84 Lancichinetti, Fortunato (CR17) 2012; 2 Archer, Lee, Qiu, Chen (CR70) 2016; 6 CR59 Pannunzi (CR31) 2017; 157 Ojemann, Ojemann, Lettich, Berger (CR39) 1989; 71 Van Essen (CR45) 2013; 80 Cheng (CR58) 2016; 139 CR11 Dubois, Adolphs (CR14) 2016; 20 CR52 Yan, Craddock, Zuo, Zang, Milham (CR72) 2013; 80 Blondel, Guillaume, Lambiotte, Lefebvre (CR22) 2008; 2008 Chen (CR29) 2015; 10 Gordon (CR13) 2017; 95 van den Heuvel, Sporns (CR4) 2013; 17 Alexander-Bloch (CR7) 2012; 59 Lancichinetti, Fortunato (CR63) 2009; 80 Hart, Price, Suckling (CR71) 2016; 126 Rosvall, Bergstrom (CR23) 2008; 105 Santarnecchi, Galli, Polizzotto, Rossi, Rossi (CR20) 2014; 35 Bassett, Nelson, Mueller, Camchong, Lim (CR21) 2012; 59 Glasser (CR47) 2013; 80 Finn (CR15) 2015; 18 Xia (CR69) 2019; 40 CR25 Sporns, Betzel (CR1) 2016; 67 Heine (CR49) 2012; 3 CR66 CR65 Romano, Vinh, Bailey, Verspoor (CR34) 2016; 17 CR64 van Laarhoven, Marchiori (CR26) 2013; 87 Xia, Wang, He (CR54) 2013; 8 Gordon (CR27) 2017; 146 O Sporns (63552_CR1) 2016; 67 M Xia (63552_CR54) 2013; 8 C Yan (63552_CR56) 2010; 4 63552_CR52 EM Gordon (63552_CR27) 2017; 146 63552_CR59 A Lancichinetti (63552_CR62) 2008; 78 63552_CR11 DS Bassett (63552_CR21) 2012; 59 D Wang (63552_CR75) 2015; 18 DC Van Essen (63552_CR45) 2013; 80 E Santarnecchi (63552_CR20) 2014; 35 SM Smith (63552_CR30) 2005; 24 X Liao (63552_CR73) 2017; 152 A Lancichinetti (63552_CR63) 2009; 80 S Gupta (63552_CR55) 2020; 25 D-J Kim (63552_CR43) 2014; 40 63552_CR64 C-G Yan (63552_CR72) 2013; 80 MF Glasser (63552_CR46) 2016; 19 MP van den Heuvel (63552_CR4) 2013; 17 MW Cole (63552_CR19) 2012; 32 VD Blondel (63552_CR22) 2008; 2008 JD Power (63552_CR2) 2011; 72 S Mueller (63552_CR16) 2013; 77 P Balenzuela (63552_CR9) 2010; 4 63552_CR25 JR Andrews-Hanna (63552_CR51) 2010; 65 63552_CR66 63552_CR65 ME Newman (63552_CR24) 2006; 103 M Pannunzi (63552_CR31) 2017; 157 M Rosvall (63552_CR23) 2008; 105 Y Xia (63552_CR69) 2019; 40 63552_CR18 BL Finlay (63552_CR41) 2001; 24 LK Gallos (63552_CR61) 2012; 109 JD Power (63552_CR5) 2013; 79 G Ojemann (63552_CR39) 1989; 71 MA Frost (63552_CR40) 2012; 59 P Shaw (63552_CR67) 2008; 28 BM Tijms (63552_CR6) 2013; 34 TJ Akiki (63552_CR8) 2018; 176 A Lancichinetti (63552_CR17) 2012; 2 63552_CR74 ES Finn (63552_CR15) 2015; 18 NX Vinh (63552_CR32) 2010; 11 FW Sun (63552_CR50) 2016; 36 JL Ji (63552_CR12) 2019; 185 63552_CR36 C Nicolini (63552_CR10) 2017; 146 63552_CR38 W Cheng (63552_CR58) 2016; 139 63552_CR33 63552_CR35 BT Yeo (63552_CR48) 2011; 106 W de Haan (63552_CR42) 2012; 59 Z Petanjek (63552_CR68) 2011; 108 MG Hart (63552_CR71) 2016; 126 B Chen (63552_CR29) 2015; 10 S Sarkar (63552_CR37) 2011; 83 EM Gordon (63552_CR13) 2017; 95 T Kawamoto (63552_CR77) 2015; 91 T van Laarhoven (63552_CR26) 2013; 87 CD Hacker (63552_CR28) 2013; 82 L Heine (63552_CR49) 2012; 3 63552_CR44 SM Smith (63552_CR53) 2009; 106 J Sepulcre (63552_CR60) 2010; 6 A Alexander-Bloch (63552_CR7) 2012; 59 S Romano (63552_CR34) 2016; 17 MF Glasser (63552_CR47) 2013; 80 JD Power (63552_CR57) 2014; 84 A Lancichinetti (63552_CR76) 2011; 84 MW Cole (63552_CR3) 2014; 83 J Dubois (63552_CR14) 2016; 20 JA Archer (63552_CR70) 2016; 6 |
References_xml | – volume: 19 start-page: 1175 year: 2016 ident: CR46 article-title: The human connectome project’s neuroimaging approach publication-title: Nat. neuroscience doi: 10.1038/nn.4361 – volume: 3 start-page: 295 year: 2012 ident: CR49 article-title: Resting state networks and consciousness publication-title: Front. Psychol. doi: 10.3389/fpsyg.2012.00295 – volume: 83 start-page: 238 year: 2014 end-page: 251 ident: CR3 article-title: Intrinsic and task-evoked network architectures of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2014.05.014 – ident: CR74 – volume: 2 start-page: 336 year: 2012 ident: CR17 article-title: Consensus clustering in complex networks publication-title: Sci. Reports – volume: 2008 start-page: P10008 year: 2008 ident: CR22 article-title: Fast unfolding of communities in large networks publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2008/10/P10008 – volume: 80 start-page: 246 year: 2013 end-page: 262 ident: CR72 article-title: Standardizing the intrinsic brain: towards robust measurement of inter-individual variation in 1000 functional connectomes publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.081 – volume: 18 start-page: 1664 year: 2015 ident: CR15 article-title: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – volume: 82 start-page: 616 year: 2013 end-page: 633 ident: CR28 article-title: e. a. Resting state network estimation in individual subjects publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.108 – volume: 24 start-page: 248 year: 2005 end-page: 257 ident: CR30 article-title: Variability in fmri: a re-examination of inter-session differences publication-title: Hum. brain mapping doi: 10.1002/hbm.20080 – volume: 106 start-page: 1125 year: 2011 end-page: 1165 ident: CR48 article-title: The organization of the human cerebral cortex estimated by intrinsic functional connectivity publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – volume: 78 start-page: 046110 year: 2008 ident: CR62 article-title: Benchmark graphs for testing community detection algorithms publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.046110 – ident: CR35 – volume: 106 start-page: 13040 year: 2009 end-page: 13045 ident: CR53 article-title: Correspondence of the brain’s functional architecture during activation and rest publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0905267106 – volume: 80 start-page: 016118 year: 2009 ident: CR63 article-title: Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.016118 – volume: 65 start-page: 550 year: 2010 end-page: 562 ident: CR51 article-title: Functional-anatomic fractionation of the brain’s default network publication-title: Neuron doi: 10.1016/j.neuron.2010.02.005 – volume: 146 start-page: 28 year: 2017 end-page: 39 ident: CR10 article-title: Community detection in weighted brain connectivity networks beyond the resolution limit publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.026 – volume: 17 start-page: 4635 year: 2016 end-page: 4666 ident: CR34 article-title: Adjusting for chance clustering comparison measures publication-title: The J. Mach. Learn. Res. – ident: CR25 – volume: 8 start-page: e68910 year: 2013 ident: CR54 article-title: Brainnet viewer: a network visualization tool for human brain connectomics publication-title: PloS one doi: 10.1371/journal.pone.0068910 – volume: 80 start-page: 62 year: 2013 end-page: 79 ident: CR45 article-title: The WU-Minn human connectome project: an overview publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 4 start-page: 116 year: 2010 ident: CR9 article-title: Modular organization of brain resting state networks in chronic back pain patients publication-title: Front. Neuroinformatics doi: 10.3389/fninf.2010.00116 – volume: 59 start-page: 3085 year: 2012 end-page: 3093 ident: CR42 article-title: Disrupted modular brain dynamics reflect cognitive dysfunction in alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.055 – volume: 6 start-page: e1000808 year: 2010 ident: CR60 article-title: The organization of local and distant functional connectivity in the human brain publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000808 – volume: 40 start-page: 717 year: 2019 end-page: 728 ident: CR69 article-title: Tracking the dynamic functional connectivity structure of the human brain across the adult lifespan publication-title: Hum. brain mapping doi: 10.1002/hbm.24385 – volume: 59 start-page: 2196 year: 2012 end-page: 2207 ident: CR21 article-title: Altered resting state complexity in schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.002 – volume: 152 start-page: 94 year: 2017 end-page: 107 ident: CR73 article-title: Individual differences and time-varying features of modular brain architecture publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.02.066 – volume: 59 start-page: 1369 year: 2012 end-page: 1381 ident: CR40 article-title: Measuring structural–functional correspondence: spatial variability of specialised brain regions after macro-anatomical alignment publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.035 – volume: 146 start-page: 918 year: 2017 end-page: 939 ident: CR27 article-title: Individual-specific features of brain systems identified with resting state functional correlations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.08.032 – volume: 20 start-page: 425 year: 2016 end-page: 443 ident: CR14 article-title: Building a science of individual differences from fmri publication-title: Trends Cogn. sciences doi: 10.1016/j.tics.2016.03.014 – volume: 126 start-page: 1941 year: 2016 end-page: 1950 ident: CR71 article-title: Functional connectivity networks for preoperative brain mapping in neurosurgery publication-title: J. neurosurgery doi: 10.3171/2016.6.JNS1662 – volume: 59 start-page: 3889 year: 2012 end-page: 3900 ident: CR7 article-title: The discovery of population differences in network community structure: new methods and applications to brain functional networks in schizophrenia publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.035 – ident: CR11 – volume: 139 start-page: 3296 year: 2016 end-page: 3309 ident: CR58 article-title: Medial reward and lateral non-reward orbitofrontal cortex circuits change in opposite directions in depression publication-title: Brain doi: 10.1093/brain/aww255 – volume: 17 start-page: 683 year: 2013 end-page: 696 ident: CR4 article-title: Network hubs in the human brain publication-title: Trends Cogn. sciences doi: 10.1016/j.tics.2013.09.012 – volume: 77 start-page: 586 year: 2013 end-page: 595 ident: CR16 article-title: Individual variability in functional connectivity architecture of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2012.12.028 – volume: 40 start-page: 1216 year: 2014 end-page: 1226 ident: CR43 article-title: Disrupted modular architecture of cerebellum in schizophrenia: a graph theoretic analysis publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbu059 – ident: CR36 – volume: 32 start-page: 8988 year: 2012 end-page: 8999 ident: CR19 article-title: Global connectivity of prefrontal cortex predicts cognitive control and intelligence publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0536-12.2012 – volume: 18 start-page: 1853 year: 2015 ident: CR75 article-title: Parcellating cortical functional networks in individuals publication-title: Nat. neuroscience doi: 10.1038/nn.4164 – volume: 36 start-page: 9659 year: 2016 end-page: 9668 ident: CR50 article-title: Youthful brains in older adults: Preserved neuroanatomy in the default mode and salience networks contributes to youthful memory in superaging publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1492-16.2016 – ident: CR64 – volume: 6 start-page: 169 year: 2016 end-page: 185 ident: CR70 article-title: A comprehensive analysis of connectivity and aging over the adult life span publication-title: Brain connectivity doi: 10.1089/brain.2015.0345 – volume: 108 start-page: 13281 year: 2011 end-page: 13286 ident: CR68 article-title: Extraordinary neoteny of synaptic spines in the human prefrontal cortex publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1105108108 – volume: 72 start-page: 665 year: 2011 end-page: 678 ident: CR2 article-title: Functional network organization of the human brain publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – volume: 11 start-page: 2837 year: 2010 end-page: 2854 ident: CR32 article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance publication-title: J. Mach. Learn. Res. – ident: CR18 – volume: 105 start-page: 1118 year: 2008 end-page: 1123 ident: CR23 article-title: Maps of random walks on complex networks reveal community structure publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0706851105 – volume: 24 start-page: 263 year: 2001 end-page: 278 ident: CR41 article-title: Developmental structure in brain evolution publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X01003958 – ident: CR66 – volume: 34 start-page: 2023 year: 2013 end-page: 2036 ident: CR6 article-title: Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.02.020 – volume: 176 start-page: 489 year: 2018 end-page: 498 ident: CR8 article-title: Default mode network abnormalities in posttraumatic stress disorder: A novel network-restricted topology approach publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.05.005 – volume: 71 start-page: 316 year: 1989 end-page: 326 ident: CR39 article-title: Cortical language localization in left, dominant hemisphere: an electrical stimulation mapping investigation in 117 patients publication-title: J. Neurosurg. doi: 10.3171/jns.1989.71.3.0316 – ident: CR33 – volume: 35 start-page: 4566 year: 2014 end-page: 4582 ident: CR20 article-title: Efficiency of weak brain connections support general cognitive functioning publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22495 – volume: 109 start-page: 2825 year: 2012 end-page: 2830 ident: CR61 article-title: A small world of weak ties provides optimal global integration of self-similar modules in functional brain networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1106612109 – volume: 83 start-page: 046114 year: 2011 ident: CR37 article-title: Community detection in graphs using singular value decomposition publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.046114 – volume: 84 start-page: 320 year: 2014 end-page: 341 ident: CR57 article-title: Methods to detect, characterize, and remove motion artifact in resting state fmri publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 84 start-page: 066122 year: 2011 ident: CR76 article-title: Limits of modularity maximization in community detection publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.066122 – volume: 87 start-page: 012812 year: 2013 ident: CR26 article-title: Graph clustering with local search optimization: The resolution bias of the objective function matters most publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.012812 – volume: 157 start-page: 250 year: 2017 end-page: 262 ident: CR31 article-title: Resting-state fmri correlations: from link-wise unreliability to whole brain stability publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.06.006 – volume: 79 start-page: 798 year: 2013 end-page: 813 ident: CR5 article-title: Evidence for hubs in human functional brain networks publication-title: Neuron doi: 10.1016/j.neuron.2013.07.035 – volume: 4 start-page: 13 year: 2010 ident: CR56 article-title: Dparsf: a matlab toolbox for" pipeline" data analysis of resting-state fmri publication-title: Front. systems neuroscience – ident: CR44 – ident: CR65 – volume: 25 start-page: 102186 year: 2020 ident: CR55 article-title: Ambivert degree identifies crucial brain functional hubs and improves detection of alzheimer’s disease and autism spectrum disorder publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2020.102186 – ident: CR38 – ident: CR52 – volume: 67 start-page: 613 year: 2016 end-page: 640 ident: CR1 article-title: Modular brain networks publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev-psych-122414-033634 – volume: 95 start-page: 791 year: 2017 end-page: 807 ident: CR13 article-title: Precision functional mapping of individual human brains publication-title: Neuron doi: 10.1016/j.neuron.2017.07.011 – volume: 103 start-page: 8577 year: 2006 end-page: 8582 ident: CR24 article-title: Modularity and community structure in networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0601602103 – volume: 10 start-page: e0144963 year: 2015 ident: CR29 article-title: Individual variability and test-retest reliability revealed by ten repeated resting-state brain scans over one month publication-title: PLoS One doi: 10.1371/journal.pone.0144963 – volume: 185 start-page: 35 year: 2019 end-page: 57 ident: CR12 article-title: Mapping the human brain’s cortical-subcortical functional network organization publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.10.006 – volume: 28 start-page: 3586 year: 2008 end-page: 3594 ident: CR67 article-title: Neurodevelopmental trajectories of the human cerebral cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5309-07.2008 – ident: CR59 – volume: 80 start-page: 105 year: 2013 end-page: 124 ident: CR47 article-title: The minimal preprocessing pipelines for the human connectome project publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 91 start-page: 012809 year: 2015 ident: CR77 article-title: Estimating the resolution limit of the map equation in community detection publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.91.012809 – volume: 4 start-page: 116 year: 2010 ident: 63552_CR9 publication-title: Front. Neuroinformatics doi: 10.3389/fninf.2010.00116 – volume: 84 start-page: 066122 year: 2011 ident: 63552_CR76 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.84.066122 – volume: 40 start-page: 1216 year: 2014 ident: 63552_CR43 publication-title: Schizophr. Bull. doi: 10.1093/schbul/sbu059 – ident: 63552_CR74 doi: 10.1101/213041 – volume: 2008 start-page: P10008 year: 2008 ident: 63552_CR22 publication-title: J. Stat. Mech. Theory Exp. doi: 10.1088/1742-5468/2008/10/P10008 – volume: 67 start-page: 613 year: 2016 ident: 63552_CR1 publication-title: Annu. Rev. Psychol. doi: 10.1146/annurev-psych-122414-033634 – volume: 146 start-page: 28 year: 2017 ident: 63552_CR10 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.11.026 – volume: 3 start-page: 295 year: 2012 ident: 63552_CR49 publication-title: Front. Psychol. doi: 10.3389/fpsyg.2012.00295 – ident: 63552_CR65 doi: 10.1371/journal.pone.0002001 – volume: 4 start-page: 13 year: 2010 ident: 63552_CR56 publication-title: Front. systems neuroscience – volume: 91 start-page: 012809 year: 2015 ident: 63552_CR77 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.91.012809 – volume: 87 start-page: 012812 year: 2013 ident: 63552_CR26 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.87.012812 – volume: 17 start-page: 4635 year: 2016 ident: 63552_CR34 publication-title: The J. Mach. Learn. Res. – volume: 84 start-page: 320 year: 2014 ident: 63552_CR57 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.08.048 – volume: 139 start-page: 3296 year: 2016 ident: 63552_CR58 publication-title: Brain doi: 10.1093/brain/aww255 – volume: 95 start-page: 791 year: 2017 ident: 63552_CR13 publication-title: Neuron doi: 10.1016/j.neuron.2017.07.011 – ident: 63552_CR18 – ident: 63552_CR64 doi: 10.1145/1298126.1298166 – volume: 8 start-page: e68910 year: 2013 ident: 63552_CR54 publication-title: PloS one doi: 10.1371/journal.pone.0068910 – volume: 20 start-page: 425 year: 2016 ident: 63552_CR14 publication-title: Trends Cogn. sciences doi: 10.1016/j.tics.2016.03.014 – volume: 80 start-page: 105 year: 2013 ident: 63552_CR47 publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.04.127 – volume: 82 start-page: 616 year: 2013 ident: 63552_CR28 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.108 – volume: 24 start-page: 248 year: 2005 ident: 63552_CR30 publication-title: Hum. brain mapping doi: 10.1002/hbm.20080 – volume: 108 start-page: 13281 year: 2011 ident: 63552_CR68 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1105108108 – volume: 157 start-page: 250 year: 2017 ident: 63552_CR31 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.06.006 – ident: 63552_CR36 doi: 10.1109/ICDM.2010.35 – volume: 79 start-page: 798 year: 2013 ident: 63552_CR5 publication-title: Neuron doi: 10.1016/j.neuron.2013.07.035 – volume: 19 start-page: 1175 year: 2016 ident: 63552_CR46 publication-title: Nat. neuroscience doi: 10.1038/nn.4361 – ident: 63552_CR44 doi: 10.1073/pnas.1018985108 – volume: 59 start-page: 2196 year: 2012 ident: 63552_CR21 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.10.002 – ident: 63552_CR35 doi: 10.1109/ISBI.2018.8363799 – volume: 78 start-page: 046110 year: 2008 ident: 63552_CR62 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.78.046110 – volume: 2 start-page: 336 year: 2012 ident: 63552_CR17 publication-title: Sci. Reports – volume: 146 start-page: 918 year: 2017 ident: 63552_CR27 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2016.08.032 – volume: 106 start-page: 13040 year: 2009 ident: 63552_CR53 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0905267106 – volume: 83 start-page: 046114 year: 2011 ident: 63552_CR37 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.046114 – volume: 80 start-page: 016118 year: 2009 ident: 63552_CR63 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.016118 – ident: 63552_CR11 doi: 10.1038/srep19250 – ident: 63552_CR66 doi: 10.1109/ISBI.2017.7950573 – volume: 83 start-page: 238 year: 2014 ident: 63552_CR3 publication-title: Neuron doi: 10.1016/j.neuron.2014.05.014 – volume: 25 start-page: 102186 year: 2020 ident: 63552_CR55 publication-title: NeuroImage: Clin. doi: 10.1016/j.nicl.2020.102186 – volume: 6 start-page: 169 year: 2016 ident: 63552_CR70 publication-title: Brain connectivity doi: 10.1089/brain.2015.0345 – volume: 152 start-page: 94 year: 2017 ident: 63552_CR73 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.02.066 – volume: 71 start-page: 316 year: 1989 ident: 63552_CR39 publication-title: J. Neurosurg. doi: 10.3171/jns.1989.71.3.0316 – volume: 80 start-page: 246 year: 2013 ident: 63552_CR72 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.04.081 – volume: 11 start-page: 2837 year: 2010 ident: 63552_CR32 publication-title: J. Mach. Learn. Res. – volume: 28 start-page: 3586 year: 2008 ident: 63552_CR67 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5309-07.2008 – volume: 59 start-page: 3889 year: 2012 ident: 63552_CR7 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.035 – volume: 176 start-page: 489 year: 2018 ident: 63552_CR8 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.05.005 – volume: 59 start-page: 1369 year: 2012 ident: 63552_CR40 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.08.035 – ident: 63552_CR59 doi: 10.1101/333930 – ident: 63552_CR25 – volume: 24 start-page: 263 year: 2001 ident: 63552_CR41 publication-title: Behav. Brain Sci. doi: 10.1017/S0140525X01003958 – volume: 59 start-page: 3085 year: 2012 ident: 63552_CR42 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.11.055 – volume: 36 start-page: 9659 year: 2016 ident: 63552_CR50 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1492-16.2016 – volume: 32 start-page: 8988 year: 2012 ident: 63552_CR19 publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0536-12.2012 – volume: 80 start-page: 62 year: 2013 ident: 63552_CR45 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.05.041 – volume: 109 start-page: 2825 year: 2012 ident: 63552_CR61 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1106612109 – volume: 105 start-page: 1118 year: 2008 ident: 63552_CR23 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0706851105 – volume: 77 start-page: 586 year: 2013 ident: 63552_CR16 publication-title: Neuron doi: 10.1016/j.neuron.2012.12.028 – volume: 18 start-page: 1853 year: 2015 ident: 63552_CR75 publication-title: Nat. neuroscience doi: 10.1038/nn.4164 – volume: 72 start-page: 665 year: 2011 ident: 63552_CR2 publication-title: Neuron doi: 10.1016/j.neuron.2011.09.006 – ident: 63552_CR52 doi: 10.1093/cercor/1.1.1 – volume: 18 start-page: 1664 year: 2015 ident: 63552_CR15 publication-title: Nat. Neurosci. doi: 10.1038/nn.4135 – ident: 63552_CR33 doi: 10.1145/2808797.2809344 – volume: 106 start-page: 1125 year: 2011 ident: 63552_CR48 publication-title: J. Neurophysiol. doi: 10.1152/jn.00338.2011 – volume: 103 start-page: 8577 year: 2006 ident: 63552_CR24 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0601602103 – volume: 65 start-page: 550 year: 2010 ident: 63552_CR51 publication-title: Neuron doi: 10.1016/j.neuron.2010.02.005 – volume: 185 start-page: 35 year: 2019 ident: 63552_CR12 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2018.10.006 – ident: 63552_CR38 doi: 10.1109/ICDCSW.2011.20 – volume: 6 start-page: e1000808 year: 2010 ident: 63552_CR60 publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1000808 – volume: 35 start-page: 4566 year: 2014 ident: 63552_CR20 publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.22495 – volume: 126 start-page: 1941 year: 2016 ident: 63552_CR71 publication-title: J. neurosurgery doi: 10.3171/2016.6.JNS1662 – volume: 10 start-page: e0144963 year: 2015 ident: 63552_CR29 publication-title: PLoS One doi: 10.1371/journal.pone.0144963 – volume: 17 start-page: 683 year: 2013 ident: 63552_CR4 publication-title: Trends Cogn. sciences doi: 10.1016/j.tics.2013.09.012 – volume: 34 start-page: 2023 year: 2013 ident: 63552_CR6 publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2013.02.020 – volume: 40 start-page: 717 year: 2019 ident: 63552_CR69 publication-title: Hum. brain mapping doi: 10.1002/hbm.24385 |
SSID | ssj0000529419 |
Score | 2.3321424 |
Snippet | Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although,
in vivo
studies of brain... Specialized processing in the brain is performed by multiple groups of brain regions organized as functional modules. Although, in vivo studies of brain... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7590 |
SubjectTerms | 59/36 631/378/116/1925 631/378/3920 Algorithms Brain Brain architecture Brain mapping Functional magnetic resonance imaging Humanities and Social Sciences Information processing multidisciplinary Nervous system Neural networks Neuroimaging Science Science (multidisciplinary) Sensorimotor integration |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VIiQuCCjQQEFG4lasxo_U3hOqKqqCVE5U2lvkp6i0OG2zOfDv8TjZVEtFz3acODP2vL8B-GRq7lTWU6mPhlPpraZGO04XtomaOx2Exdrhix_H55fy-7JZTg63fkqr3NyJ5aL2nUMf-RHi1DWai4Z9ub6h2DUKo6tTC41H8Bihy5Cr1VLNPhaMYkm2mGplaqGP-iyvsKYMbaYsaTmtt-XRPSXzfq7kPwHTIofOnsOzSYEkJyPFX8BOSC_hydhS8s8epG8FJjnfYcRhonTqh56Ucsq8LHGrAYER8sLkqngTQk98WJd0rES6SPrBomOGmORJKfggK8wqIhY7SRAUgqPvkPzu_LAK_Su4PPv68_ScTj0VqJNKrikXQijDYn1cKxNjUFEvmJHZjEFjZIHWhfMmm6gI1BVC9MY1Tjqps57GLK_Fa9hNXQr7QFhULDamUT4Yme0SLWUtorWZukJZpSpgmz_buglwHPterNoS-Ba6HanRZmq0hRptXcHh_Mz1CLfx4OyDDcHa6ej17R2jVPBxHs6HBiMhJoVuKHOy3amy1K7gzUjf-XWCC8WyjK5AbVF-noCA3Nsj6epXAeZWvADoV_B5wyN3n_X_Xbx9eBfv4ClHfsUky-YAdte3Q3ifFaG1_VC4_S-USgej priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9Ki-BF6vfaWiJ408XNxzZ5x4dY6oP2ooXeliSbYOGZV9y3B_97Z7If8qwKPWeSzWaSzEdmfgPw1lbCa9RTyzZaUarWmdIaL8qFq6MR3gTpKHf44vL0_EqtruvrPRBTLkwO2s-QlvmanqLDPnQoaCgZjIwdFJGiRDP9gKDacW8fLJerL6vZs0JvV4ovxgyZSpq_dN6VQndUy7sRkn88k2bpc3YIj0a1kS2HiT6GvZCewIOhkOTPp5A-Z3BkvLmYp_Do1PUdy0mUOCzz657gEHBgdpN9CKFjbdjmIKzENpF1vSN3DLOpZTnNg60plog5qh_BSPQNHkP2fdP2uE7P4Ors09eP5-VYSaH0SqttKaSU2vJYnVbaxhh0NAtuFRovZIIsyKbwrUXDlOC5Qoit9bVXXhnUzrgTlXwO-2mTwktgPGoea1vrNliF1ohRqpLROeSp1E7rAvi0so0fYcap2sW6yc_d0jQDNxrkRpO50VQFvJv73A4gG_-lPp4Y1owHrmsIxrA2Qta8gDdzMx4Vev-wKWz6TIPWpkZZXcCLgb_z56SQmqNkLkDvcH4mIBju3ZZ08y3DcWuRYfMLeD_tkd_T-vdfvLof-RE8FLR_KdSyPob97Y8-vEZ1aOtOxv3_C2-XBro priority: 102 providerName: Springer Nature |
Title | Iterative consensus spectral clustering improves detection of subject and group level brain functional modules |
URI | https://link.springer.com/article/10.1038/s41598-020-63552-0 https://www.ncbi.nlm.nih.gov/pubmed/32371990 https://www.proquest.com/docview/2398582351 https://www.proquest.com/docview/2399247123 https://pubmed.ncbi.nlm.nih.gov/PMC7200822 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OOwRfxG-r5xLBN622SbpJH0TW5Y5z4Q5RF_atpGmCB7Wr1y14_70zabuy3in4VGg-2maSzvySmd8AvDAJtwrt1LjyhseyKnVstOVxXmZec6udKCl2-PRserKUi1W22oMx3dEwgO210I7ySS0v6tc_f1y-wwX_tg8Z129aVEIUKEZACNUnjxHCH6BmUpTR4HQw93uub57LNB9iZ65vuqufrhidV30n_zhADXrp-A7cHgxKNutnwF3Yc809uNmnmLy8D82HQJuM_zRmyXG6abuWhfBK7JbZuiOiBOyYnYfdBdeyym2Ce1bD1p61XUkbNcw0FQsBIKwmLyNWUmYJRkqx30tk39ZVV7v2ASyPj77MT-Ihx0JspZKbmAshlEl9Mk2U8d4pr_PUSIQ1BE5yQhu2MghZibjLOV8Zm1lppUa7LS15Ih7CfrNu3GNgqVepz0ymKmck4hQtZSJ8WaK0hSqViiAdR7awAwE55cGoi3AQLnTRS6NAaRRBGkUSwcttm-89_cY_ax-OAivGmVQQwWGmucjSCJ5vi3ER0cmIady6C3UQhyrU4hE86uW7fZzgQqWosyNQO5LfViCC7t2S5vxrIOpWPBDqR_BqnCO_X-vvX_Hk_6o_hVuc5i85YWaHsL-56NwzNJQ25QRuqJWawMFstvi8wOv7o7OPn_DufDqfhM2HSVgfvwD9hxTc |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThA1sZ3ae0AIAdUufZxaaW_BdmxRaUkK2Qj1T_EbmXE2qZaK3nq24ySeseebN8Brk3GnEKemVTA8lZXVqdGOpxNbBM2d9sJS7vDh0e70RH6dF_MN-DPkwlBY5XAnxou6ahzZyHeoTl2huSjyD2c_U-oaRd7VoYVGzxb7_vw3qmzt-9lnpO8bzve-HH-apquuAqmTSi5TLoRQJg_ZbqZMCF4FPcmNRCBPcHxC-NpVBpU0KlXlfaiMK5x0UiNSyS3PBK57A26i4M1I2VNzNdp0yGsm88kqNycTeqdF-Ug5bKSjoWTnabYu_y6B2suxmf84aKPc27sHd1eAlX3sOew-bPj6AdzqW1ieP4R6Fssy453JHAVm123Xspi-icsyt-ioEAMuzE6j9cK3rPLLGP5VsyawtrNkCGKmrlhMMGELimJiljpXMBK6va2S_WiqbuHbR3ByLbv9GDbrpvZPgOVB5aEwhaq8kagHaSkzEaxFbhLKKpVAPuxs6VYFzqnPxqKMjnahy54aJVKjjNQoswTejs-c9eU9rpy9PRCsXB31trxgzARejcN4SMnzYmrfdHEO6rkKUUICWz19x9cJLlSOmCABtUb5cQIVAF8fqU-_x0LgiseC_Qm8G3jk4rP-_xdPr_6Ll3B7enx4UB7MjvafwR1OvEsBnsU2bC5_df45grClfRE5n8G36z5qfwFIm0Ko |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ4g2sZ06e0AIaFddCqsKUam31HZsUWlJCtkI9a_x65hxkq2Wit56tuMknrHnmzfAS51wqxCnxqXXPJalyWOdWx5PTOZzbnMnDOUOf5lv7x3KT0fZ0Qb8GXJhKKxyuBPDRV3WlmzkY6pTl-VcZOnY92ERBzvTd6c_Y-ogRZ7WoZ1GxyL77uw3qm_N29kO0voV59Pdbx_34r7DQGylksuYCyGUTn2ynSjtvVM-n6RaIqgnaD4hrG1LjQobla1yzpfaZlZamSNqSQ1PBK57DTYVaUUj2PywOz_4urLwkA9NppM-UycR-bhBaUkZbaSxoZzncbIuDS9A3IuRmv-4a4MUnN6GWz18Ze87frsDG666C9e7hpZn96CahSLNeIMyS2HaVdM2LCRz4rLMLloqy4ALs5Ngy3ANK90yBINVrPasaQ2ZhZiuShbSTdiCYpqYoT4WjERwZ7lkP-qyXbjmPhxeyX4_gFFVV-4RsNSr1Gc6U6XTErWiXMpEeGOQt4QySkWQDjtb2L7cOXXdWBTB7S7yoqNGgdQoAjWKJILXq2dOu2Ifl87eGghW9Ae_Kc7ZNIIXq2E8suSH0ZWr2zAHtV6FmCGChx19V68TXKgUEUIEao3yqwlUDnx9pDr5HsqCKx7K90fwZuCR88_6_188vvwvnsMNPGbF59l8_wnc5MS6FO2ZbcFo-at1TxGRLc2znvUZHF_1afsL53BIQw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+consensus+spectral+clustering+improves+detection+of+subject+and+group+level+brain+functional+modules&rft.jtitle=Scientific+reports&rft.au=Gupta%2C+Sukrit&rft.au=Rajapakse%2C+Jagath+C.&rft.date=2020-05-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-63552-0&rft.externalDocID=10_1038_s41598_020_63552_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |