Foxp3+ CD25– CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion

Expression of the IL-2 receptor α chain (CD25) by peripheral CD4 T cells follows cellular activation. However, CD25 expression by CD4 cells is widely used as a marker to identify regulatory T cells (T R ), although cells with regulatory properties are also found in the CD4 + CD25 – subset. By using...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 102; no. 11; pp. 4091 - 4096
Main Authors Zelenay, Santiago, Lopes-Carvalho, Thiago, Caramalho, Iris, Moraes-Fontes, Maria Francisca, Rebelo, Manuel, Demengeot, Jocelyne
Format Journal Article
LanguageEnglish
Published United States National Acad Sciences 15.03.2005
National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Expression of the IL-2 receptor α chain (CD25) by peripheral CD4 T cells follows cellular activation. However, CD25 expression by CD4 cells is widely used as a marker to identify regulatory T cells (T R ), although cells with regulatory properties are also found in the CD4 + CD25 – subset. By using in vivo functional assays and Foxp3 expression as a faithful marker of T R differentiation, we have evaluated the requirements for CD25 expression by peripheral T R . We first show that in vivo depletion of CD25 + cells prevents the development of spontaneous encephalomyelitis in recombination-activating gene (RAG)-deficient anti-myelin basic protein T cell antigen receptor (TCR) transgenic mice, and allows disease induction in otherwise healthy RAG-competent transgenic mice. Similar treatment in normal thymectomized animals is followed by the fast recovery of a normal number of CD25 + T R . Consistently, Foxp3-expressing T R encompassed in the CD25 – cell population convert to CD25 + after homeostatic expansion and are selectable by IL-2 in vitro . Surface expression of CD25 on T R is controlled by the activity of conventional CD4 cells and is fully labile because it can be lost and regained without affecting the functional potential of the cells. These findings reveal that Foxp3-expressing CD25 – cells constitute a peripheral reservoir of differentiated T R , recruited to the CD25 + pool upon homeostatic expansion and/or activation. This analysis, together with the notion that physiological commitment of T R takes place exclusively in the thymus should help for the interpretation of experiments assessing peripheral T R differentiation from naive CD4 T cells, defined as CD25 – . homeostasis mice T lymphocyte
AbstractList Expression of the IL-2 receptor alpha chain (CD25) by peripheral CD4 T cells follows cellular activation. However, CD25 expression by CD4 cells is widely used as a marker to identify regulatory T cells (T(R)), although cells with regulatory properties are also found in the CD4+CD25- subset. By using in vivo functional assays and Foxp3 expression as a faithful marker of T(R) differentiation, we have evaluated the requirements for CD25 expression by peripheral T(R). We first show that in vivo depletion of CD25+ cells prevents the development of spontaneous encephalomyelitis in recombination-activating gene (RAG)-deficient anti-myelin basic protein T cell antigen receptor (TCR) transgenic mice, and allows disease induction in otherwise healthy RAG-competent transgenic mice. Similar treatment in normal thymectomized animals is followed by the fast recovery of a normal number of CD25+ T(R). Consistently, Foxp3-expressing T(R) encompassed in the CD25- cell population convert to CD25+ after homeostatic expansion and are selectable by IL-2 in vitro. Surface expression of CD25 on T(R) is controlled by the activity of conventional CD4 cells and is fully labile because it can be lost and regained without affecting the functional potential of the cells. These findings reveal that Foxp3-expressing CD25- cells constitute a peripheral reservoir of differentiated T(R), recruited to the CD25+ pool upon homeostatic expansion and/or activation. This analysis, together with the notion that physiological commitment of T(R) takes place exclusively in the thymus should help for the interpretation of experiments assessing peripheral T(R) differentiation from naive CD4 T cells, defined as CD25-.
Expression of the IL-2 receptor α chain (CD25) by peripheral CD4 T cells follows cellular activation. However, CD25 expression by CD4 cells is widely used as a marker to identify regulatory T cells (T R ), although cells with regulatory properties are also found in the CD4 + CD25 – subset. By using in vivo functional assays and Foxp3 expression as a faithful marker of T R differentiation, we have evaluated the requirements for CD25 expression by peripheral T R . We first show that in vivo depletion of CD25 + cells prevents the development of spontaneous encephalomyelitis in recombination-activating gene (RAG)-deficient anti-myelin basic protein T cell antigen receptor (TCR) transgenic mice, and allows disease induction in otherwise healthy RAG-competent transgenic mice. Similar treatment in normal thymectomized animals is followed by the fast recovery of a normal number of CD25 + T R . Consistently, Foxp3-expressing T R encompassed in the CD25 – cell population convert to CD25 + after homeostatic expansion and are selectable by IL-2 in vitro . Surface expression of CD25 on T R is controlled by the activity of conventional CD4 cells and is fully labile because it can be lost and regained without affecting the functional potential of the cells. These findings reveal that Foxp3-expressing CD25 – cells constitute a peripheral reservoir of differentiated T R , recruited to the CD25 + pool upon homeostatic expansion and/or activation. This analysis, together with the notion that physiological commitment of T R takes place exclusively in the thymus should help for the interpretation of experiments assessing peripheral T R differentiation from naive CD4 T cells, defined as CD25 – .
Expression of the IL-2 receptor α chain (CD25) by peripheral CD4 T cells follows cellular activation. However, CD25 expression by CD4 cells is widely used as a marker to identify regulatory T cells (T R ), although cells with regulatory properties are also found in the CD4 + CD25 – subset. By using in vivo functional assays and Foxp3 expression as a faithful marker of T R differentiation, we have evaluated the requirements for CD25 expression by peripheral T R . We first show that in vivo depletion of CD25 + cells prevents the development of spontaneous encephalomyelitis in recombination-activating gene (RAG)-deficient anti-myelin basic protein T cell antigen receptor (TCR) transgenic mice, and allows disease induction in otherwise healthy RAG-competent transgenic mice. Similar treatment in normal thymectomized animals is followed by the fast recovery of a normal number of CD25 + T R . Consistently, Foxp3-expressing T R encompassed in the CD25 – cell population convert to CD25 + after homeostatic expansion and are selectable by IL-2 in vitro . Surface expression of CD25 on T R is controlled by the activity of conventional CD4 cells and is fully labile because it can be lost and regained without affecting the functional potential of the cells. These findings reveal that Foxp3-expressing CD25 – cells constitute a peripheral reservoir of differentiated T R , recruited to the CD25 + pool upon homeostatic expansion and/or activation. This analysis, together with the notion that physiological commitment of T R takes place exclusively in the thymus should help for the interpretation of experiments assessing peripheral T R differentiation from naive CD4 T cells, defined as CD25 – . homeostasis mice T lymphocyte
Expression of the IL-2 receptor {alpha} chain (CD25) by peripheral CD4 T cells follows cellular activation. However, CD25 expression by CD4 cells is widely used as a marker to identify regulatory T cells (TR), although cells with regulatory properties are also found in the CD4+CD25- subset. By using in vivo functional assays and Foxp3 expression as a faithful marker of TR differentiation, we have evaluated the requirements for CD25 expression by peripheral TR. We first show that in vivo depletion of CD25+ cells prevents the development of spontaneous encephalomyelitis in recombination-activating gene (RAG)-deficient anti-myelin basic protein T cell antigen receptor (TCR) transgenic mice, and allows disease induction in otherwise healthy RAG-competent transgenic mice. Similar treatment in normal thymectomized animals is followed by the fast recovery of a normal number of CD25+ TR. Consistently, Foxp3-expressing TR encompassed in the CD25- cell population convert to CD25+ after homeostatic expansion and are selectable by IL-2 in vitro. Surface expression of CD25 on TR is controlled by the activity of conventional CD4 cells and is fully labile because it can be lost and regained without affecting the functional potential of the cells. These findings reveal that Foxp3-expressing CD25- cells constitute a peripheral reservoir of differentiated TR, recruited to the CD25+ pool upon homeostatic expansion and/or activation. This analysis, together with the notion that physiological commitment of TR takes place exclusively in the thymus should help for the interpretation of experiments assessing peripheral TR differentiation from naive CD4 T cells, defined as CD25-. [PUBLICATION ABSTRACT]
Author Manuel Rebelo
Maria Francisca Moraes-Fontes
Iris Caramalho
Santiago Zelenay
Thiago Lopes-Carvalho
Jocelyne Demengeot
AuthorAffiliation Instituto Gulbenkian de Ciência, Apartado 14, PT-2781-901 Oeiras, Portugal
AuthorAffiliation_xml – name: Instituto Gulbenkian de Ciência, Apartado 14, PT-2781-901 Oeiras, Portugal
Author_xml – sequence: 1
  givenname: Santiago
  surname: Zelenay
  fullname: Zelenay, Santiago
  organization: Instituto Gulbenkian de Ciência, Apartado 14, PT-2781-901 Oeiras, Portugal
– sequence: 2
  givenname: Thiago
  surname: Lopes-Carvalho
  fullname: Lopes-Carvalho, Thiago
– sequence: 3
  givenname: Iris
  surname: Caramalho
  fullname: Caramalho, Iris
– sequence: 4
  givenname: Maria Francisca
  surname: Moraes-Fontes
  fullname: Moraes-Fontes, Maria Francisca
– sequence: 5
  givenname: Manuel
  surname: Rebelo
  fullname: Rebelo, Manuel
– sequence: 6
  givenname: Jocelyne
  surname: Demengeot
  fullname: Demengeot, Jocelyne
BackLink https://www.ncbi.nlm.nih.gov/pubmed/15753306$$D View this record in MEDLINE/PubMed
BookMark eNp9ks1u1DAUhS1URKeFNTuIWFRIKK3_YjuLLtBAAakSm7K2nMxNx1ViB9uppjtWvEDfkCfBoREDLNjY0j3fubrXx0fowHkHCD0n-JRgyc5GZ-Ip5lgJWRNMH6EVwTUpBa_xAVphTGWpOOWH6CjGG4xxXSn8BB2SSlaMYbFC3y_8bmRvivU7Wv34dp9vXlwVLfR9LFrvYrJpSlCYIkCEcOttKHyXlWGwKcEml6-n3iQf7hZT2po0V411v5oWsBuzN1rvimnMx9YP4GMyybazZtwsPUWPO9NHeLbcx-jLxfur9cfy8vOHT-u3l2XLJU8lpU2naiGqpmFAlZSUcsNMp_CmBdYICtBBo3BdG6FA5IoxdCOMVMBAbSg7RucPfcepGSCbXAqm12Owgwl32hur_1ac3eprf6urisu6yv6TxR_81wli0oON8-LGgZ-iFrKiGEuSwVf_gDd-Ci7vpikm-em5mrudPUBt8DEG6H4PQrCe89Vzvnqfb3a8-HP-Pb8EmoHXCzA79-2oJkTz_Dd0N_V9gl3K6Mv_o-wni-G-Qw
CitedBy_id crossref_primary_10_1111_j_1574_695X_2011_00927_x
crossref_primary_10_1007_s10620_014_3438_2
crossref_primary_10_1111_j_1365_2249_2008_03793_x
crossref_primary_10_1517_13543776_15_11_1595
crossref_primary_10_1007_s10875_007_9139_2
crossref_primary_10_4049_jimmunol_1003797
crossref_primary_10_1111_j_1600_065X_2007_00487_x
crossref_primary_10_1016_j_exphem_2013_04_016
crossref_primary_10_1016_j_neuropharm_2012_04_012
crossref_primary_10_1016_j_imlet_2022_11_004
crossref_primary_10_1002_eji_200526303
crossref_primary_10_1371_journal_pone_0068121
crossref_primary_10_1084_jem_20061886
crossref_primary_10_4049_jimmunol_1201029
crossref_primary_10_1155_2011_734036
crossref_primary_10_3109_08820139_2016_1172639
crossref_primary_10_1016_j_msard_2015_11_004
crossref_primary_10_1038_modpathol_2011_164
crossref_primary_10_1002_eji_200839196
crossref_primary_10_1016_j_exphem_2023_07_004
crossref_primary_10_1016_j_smim_2006_01_005
crossref_primary_10_1161_HYPERTENSIONAHA_114_04736
crossref_primary_10_4049_jimmunol_176_7_4125
crossref_primary_10_1016_j_intimp_2016_03_009
crossref_primary_10_1371_journal_pone_0039092
crossref_primary_10_1016_S1081_1206_10_60421_8
crossref_primary_10_1182_blood_2010_12_326108
crossref_primary_10_1007_s12026_015_8626_4
crossref_primary_10_1538_expanim_60_471
crossref_primary_10_18632_oncotarget_25553
crossref_primary_10_1002_ijc_22607
crossref_primary_10_1038_nprot_2007_258
crossref_primary_10_1126_sciimmunol_aan0368
crossref_primary_10_4049_jimmunol_2001073
crossref_primary_10_1016_j_vaccine_2006_03_041
crossref_primary_10_1158_1078_0432_CCR_06_0369
crossref_primary_10_1084_jem_20090199
crossref_primary_10_1097_MPA_0b013e3182575e4a
crossref_primary_10_1111_imr_12175
crossref_primary_10_4049_jimmunol_176_3_1750
crossref_primary_10_1182_blood_2017_06_792267
crossref_primary_10_4049_jimmunol_177_11_7634
crossref_primary_10_1038_srep28573
crossref_primary_10_1111_j_0105_2896_2006_00419_x
crossref_primary_10_1111_imm_12277
crossref_primary_10_1016_j_jri_2007_06_052
crossref_primary_10_1210_en_2007_1137
crossref_primary_10_1016_j_toxicon_2017_05_024
crossref_primary_10_1182_blood_2008_05_155150
crossref_primary_10_4049_jimmunol_180_10_6997
crossref_primary_10_1111_ajt_12851
crossref_primary_10_1111_j_1365_2249_2008_03609_x
crossref_primary_10_18632_oncotarget_5063
crossref_primary_10_1111_vde_12279
crossref_primary_10_1128_CVI_00137_06
crossref_primary_10_1186_s12967_019_1967_3
crossref_primary_10_3390_biomedicines9081056
crossref_primary_10_1146_annurev_anthro_101819_110236
crossref_primary_10_1016_j_imbio_2008_07_001
crossref_primary_10_1097_01_tp_0000244064_66136_04
crossref_primary_10_1038_srep16940
crossref_primary_10_1111_j_1365_2249_2009_03901_x
crossref_primary_10_1111_j_1365_2567_2011_03489_x
crossref_primary_10_3390_ijms22105254
crossref_primary_10_4049_jimmunol_180_2_858
crossref_primary_10_1016_j_jaut_2011_03_003
crossref_primary_10_1016_j_trsl_2018_08_003
crossref_primary_10_1177_1533033819893667
crossref_primary_10_1128_JVI_00102_08
crossref_primary_10_1016_j_pt_2009_10_004
crossref_primary_10_1038_gene_2015_17
crossref_primary_10_3390_nu10091291
crossref_primary_10_1172_jci_insight_149656
crossref_primary_10_4161_hv_21117
crossref_primary_10_1073_pnas_0509249103
crossref_primary_10_3109_08916934_2014_992518
crossref_primary_10_1089_mab_2019_0010
crossref_primary_10_1016_j_immuni_2008_02_019
crossref_primary_10_1111_j_1365_2567_2007_02651_x
crossref_primary_10_1161_ATVBAHA_112_253179
crossref_primary_10_1189_jlb_0613310
crossref_primary_10_1007_s13277_016_5345_y
crossref_primary_10_1016_j_autrev_2010_03_006
crossref_primary_10_3390_ijms21207719
crossref_primary_10_1517_13543770902785183
crossref_primary_10_1016_j_heliyon_2018_e00513
crossref_primary_10_1038_srep33097
crossref_primary_10_1111_j_1365_2249_2012_04569_x
crossref_primary_10_4155_bio_2023_0005
crossref_primary_10_1158_0008_5472_CAN_06_2903
crossref_primary_10_2337_db13_1559
crossref_primary_10_2215_CJN_03180509
crossref_primary_10_1016_j_molimm_2019_10_007
crossref_primary_10_1111_j_1365_2249_2006_03271_x
crossref_primary_10_1111_j_1600_0897_2011_01046_x
crossref_primary_10_21320_2500_2139_2023_16_3_242_262
crossref_primary_10_1016_j_ijbiomac_2023_127252
crossref_primary_10_1002_JLB_1A0720_439R
crossref_primary_10_1371_journal_pone_0073952
crossref_primary_10_1378_chest_12_0383
crossref_primary_10_3390_ijms222111977
crossref_primary_10_1016_j_coi_2007_02_004
crossref_primary_10_1155_2012_805875
crossref_primary_10_1016_j_ejps_2018_01_006
crossref_primary_10_1016_j_jim_2007_01_025
crossref_primary_10_1158_0008_5472_CAN_05_4217
crossref_primary_10_1177_039463201102400407
crossref_primary_10_1371_journal_pone_0029355
crossref_primary_10_1016_j_exger_2006_01_008
crossref_primary_10_1182_blood_2006_04_017947
crossref_primary_10_1073_pnas_0702257104
crossref_primary_10_1016_j_placenta_2014_03_004
crossref_primary_10_1016_j_humimm_2015_09_018
crossref_primary_10_1016_j_vaccine_2008_06_059
crossref_primary_10_1371_journal_pone_0027849
crossref_primary_10_1080_14397595_2017_1416739
crossref_primary_10_1016_j_exphem_2005_09_002
crossref_primary_10_1016_j_jaut_2009_03_008
crossref_primary_10_5009_gnl13408
crossref_primary_10_1016_j_clim_2017_05_013
crossref_primary_10_1146_annurev_immunol_24_021605_090737
crossref_primary_10_1007_s00281_006_0021_8
crossref_primary_10_1016_j_meegid_2018_05_001
crossref_primary_10_1097_CJI_0b013e318189f13c
crossref_primary_10_1371_journal_pone_0111163
crossref_primary_10_1002_eji_200939715
crossref_primary_10_1371_journal_pone_0031962
crossref_primary_10_1016_j_biomaterials_2023_122265
crossref_primary_10_1111_vco_12203
crossref_primary_10_1111_j_1365_2567_2007_02737_x
crossref_primary_10_1093_intimm_dxt016
crossref_primary_10_1016_j_beha_2011_05_005
crossref_primary_10_3109_08916934_2013_866103
crossref_primary_10_4049_jimmunol_1401936
crossref_primary_10_1189_jlb_1006644
crossref_primary_10_1111_j_1365_2567_2005_02317_x
crossref_primary_10_1200_JCO_2006_06_4642
crossref_primary_10_1002_ibd_21229
crossref_primary_10_1002_eji_200535225
crossref_primary_10_1007_s00262_010_0949_3
crossref_primary_10_1292_jvms_70_751
crossref_primary_10_1007_s00296_010_1427_0
crossref_primary_10_1111_imm_12581
crossref_primary_10_1016_j_humimm_2008_07_017
crossref_primary_10_1128_IAI_00160_20
crossref_primary_10_1111_j_1365_2893_2009_01131_x
crossref_primary_10_4049_jimmunol_178_7_4136
crossref_primary_10_1038_s41375_018_0318_3
crossref_primary_10_4049_jimmunol_179_6_3638
crossref_primary_10_1111_cei_12804
crossref_primary_10_3109_08923973_2010_513391
crossref_primary_10_1007_s12250_021_00386_8
crossref_primary_10_1128_CVI_00005_07
crossref_primary_10_1111_acel_12405
crossref_primary_10_1007_s11357_023_00962_8
crossref_primary_10_1155_2011_430394
crossref_primary_10_1189_jlb_0308201
crossref_primary_10_1080_08830185_2020_1797005
crossref_primary_10_1016_j_jneuroim_2007_04_020
crossref_primary_10_1007_s00262_011_0972_z
crossref_primary_10_1097_TP_0b013e31823ffd39
crossref_primary_10_1111_cei_12475
crossref_primary_10_4049_jimmunol_1700142
crossref_primary_10_1016_j_celrep_2020_03_007
crossref_primary_10_1002_ijc_27712
crossref_primary_10_1016_j_vetimm_2018_06_011
crossref_primary_10_1016_j_jri_2023_103826
crossref_primary_10_1016_j_oraloncology_2015_11_003
crossref_primary_10_1161_HYPERTENSIONAHA_119_14546
crossref_primary_10_1186_s40425_019_0785_8
crossref_primary_10_1016_j_ymthe_2006_03_021
crossref_primary_10_1007_s00432_015_2024_0
crossref_primary_10_1016_j_ijpara_2007_01_004
crossref_primary_10_3389_fimmu_2023_1167972
crossref_primary_10_4049_jimmunol_177_3_1552
Cites_doi 10.1084/jem.20020190
10.4049/jimmunol.166.5.3008
10.1146/annurev.immunol.21.120601.141122
10.1126/science.1079490
10.1016/0952-7915(95)80053-0
10.4049/jimmunol.167.3.1245
10.1073/pnas.2636971100
10.1038/ni909
10.1084/jem.194.4.427
10.1093/intimm/dxh122
10.1093/intimm/10.12.1969
10.1002/eji.1830251111
10.1073/pnas.192162899
10.1016/j.immuni.2004.07.009
10.1126/science.8202711
10.1038/ni743
10.4049/jimmunol.169.9.4850
10.1016/0092-8674(94)90419-7
10.1073/pnas.0402653101
10.1006/smim.1993.1036
10.1002/1521-4141(200212)32:12<3729::AID-IMMU3729>3.0.CO;2-2
10.4049/jimmunol.144.9.3288
10.1093/intimm/5.11.1461
10.1038/ni759
10.4049/jimmunol.164.7.3573
10.1046/j.1440-1711.2002.01127.x
10.1073/pnas.122224799
10.1038/ni904
10.4049/jimmunol.168.12.5979
10.1111/j.1600-065X.1996.tb00903.x
10.1084/jem.192.2.295
10.1084/jem.188.10.1883
10.1034/j.1600-065X.2001.1820101.x
10.1111/j.1600-065X.1996.tb00898.x
10.4049/jimmunol.173.12.7259
10.1073/pnas.0403303101
10.4049/jimmunol.163.10.5211
10.1038/86302
10.1084/jem.194.9.1349
10.1084/jem.20021633
10.4049/jimmunol.144.1.16
10.1002/eji.200324578
ContentType Journal Article
Copyright Copyright National Academy of Sciences Mar 15, 2005
Copyright © 2005, The National Academy of Sciences 2005
Copyright_xml – notice: Copyright National Academy of Sciences Mar 15, 2005
– notice: Copyright © 2005, The National Academy of Sciences 2005
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.0408679102
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef

Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 4096
ExternalDocumentID 819098951
10_1073_pnas_0408679102
15753306
102_11_4091
Genre Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID -
02
0R
123
1AW
29P
2WC
3O-
4.4
53G
55
5RE
5VS
85S
AAPBV
AAYJJ
ABBHK
ABFLS
ABOCM
ABPPZ
ABPTK
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACO
ADULT
ADZLD
AENEX
AFFNX
AFRAH
AJYGW
ALMA_UNASSIGNED_HOLDINGS
AS
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
DZ
E3Z
EBS
EJD
F20
F5P
FRP
GJ
GX1
HH5
HQ3
HTVGU
HYE
JLS
JPM
JSG
JSODD
JST
KM
KQ8
L7B
LU7
MVM
N9A
NEJ
N~3
O9-
OHM
OK1
P-O
PNE
PQEST
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VOH
VQA
WH7
WOQ
WOW
X
X7M
XFK
XHC
Y6R
ZA5
ZCG
---
-DZ
-~X
.55
.GJ
0R~
2AX
2FS
79B
AACGO
AAFWJ
AANCE
ABPLY
ABTLG
ABXSQ
ADACV
ADQXQ
AEUPB
AEXZC
AFOSN
AQVQM
AS~
CGR
CUY
CVF
ECM
EIF
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLXEF
NPM
W8F
WHG
XSW
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
H13
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c474t-22bf89665bb3e2877224a3af80dce3b62eefeb8099a68e63b6aa2d6a78e3e8d23
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:26:00 EDT 2024
Sat Aug 17 05:30:24 EDT 2024
Fri Sep 13 08:23:55 EDT 2024
Fri Aug 23 00:57:25 EDT 2024
Thu May 23 23:26:15 EDT 2024
Wed Nov 11 00:29:32 EST 2020
Thu May 30 08:53:55 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-22bf89665bb3e2877224a3af80dce3b62eefeb8099a68e63b6aa2d6a78e3e8d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
To whom correspondence should be addressed. E-mail: jocelyne@igc.gulbenkian.pt.
Communicated by N. M. Le Douarin, Académie des Sciences de l'Institut de France, Paris, France, February 3, 2005
Present address: Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294.
Author contributions: S.Z., T.L.-C., I.C., and J.D. designed research; S.Z., T.L.-C., I.C., M.F.M.-F., M.R., and J.D. performed research; S.Z., T.L.-C., I.C., M.F.M.-F., and J.D. analyzed data; and S.Z., T.L.-C., and J.D. wrote the paper.
Abbreviations: TR, regulatory T cells; RAG, recombination-activating gene; TCR, T cell antigen receptor; T/R– and T/R+, anti-myelin basic protein TCR transgenic mice homo- and heterozygous for a null mutation of the RAG-1 gene; Tx, thymectomized; EAE, experimental autoimmune encephalomyelitis; LN, lymph node; PE, phycoerythrin.
OpenAccessLink https://doi.org/10.1073/pnas.0408679102
PMID 15753306
PQID 201306485
PQPubID 42026
PageCount 6
ParticipantIDs proquest_miscellaneous_67520071
pubmed_primary_15753306
pubmedcentral_primary_oai_pubmedcentral_nih_gov_554795
pnas_primary_102_11_4091_fulltext
proquest_journals_201306485
crossref_primary_10_1073_pnas_0408679102
pnas_primary_102_11_4091
ProviderPackageCode RNA
PNE
PublicationCentury 2000
PublicationDate 2005-03-15
PublicationDateYYYYMMDD 2005-03-15
PublicationDate_xml – month: 03
  year: 2005
  text: 2005-03-15
  day: 15
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2005
Publisher National Acad Sciences
National Academy of Sciences
Publisher_xml – name: National Acad Sciences
– name: National Academy of Sciences
References e_1_3_2_26_2
e_1_3_2_27_2
e_1_3_2_28_2
e_1_3_2_29_2
e_1_3_2_41_2
e_1_3_2_40_2
e_1_3_2_20_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_22_2
e_1_3_2_23_2
e_1_3_2_24_2
e_1_3_2_25_2
(e_1_3_2_35_2) 1999; 163
(e_1_3_2_2_2) 1990; 144
e_1_3_2_9_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_16_2
e_1_3_2_37_2
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_19_2
e_1_3_2_1_2
e_1_3_2_30_2
e_1_3_2_32_2
e_1_3_2_10_2
e_1_3_2_5_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_14_2
(e_1_3_2_31_2) 1990; 144
References_xml – ident: e_1_3_2_19_2
  doi: 10.1084/jem.20020190
– ident: e_1_3_2_6_2
  doi: 10.4049/jimmunol.166.5.3008
– ident: e_1_3_2_18_2
  doi: 10.1146/annurev.immunol.21.120601.141122
– ident: e_1_3_2_13_2
  doi: 10.1126/science.1079490
– ident: e_1_3_2_1_2
  doi: 10.1016/0952-7915(95)80053-0
– ident: e_1_3_2_25_2
  doi: 10.4049/jimmunol.167.3.1245
– ident: e_1_3_2_9_2
  doi: 10.1073/pnas.2636971100
– ident: e_1_3_2_15_2
  doi: 10.1038/ni909
– ident: e_1_3_2_40_2
  doi: 10.1084/jem.194.4.427
– ident: e_1_3_2_33_2
  doi: 10.1093/intimm/dxh122
– ident: e_1_3_2_30_2
  doi: 10.1093/intimm/10.12.1969
– ident: e_1_3_2_42_2
  doi: 10.1002/eji.1830251111
– ident: e_1_3_2_8_2
  doi: 10.1073/pnas.192162899
– ident: e_1_3_2_16_2
  doi: 10.1016/j.immuni.2004.07.009
– ident: e_1_3_2_32_2
  doi: 10.1126/science.8202711
– ident: e_1_3_2_20_2
  doi: 10.1038/ni743
– ident: e_1_3_2_21_2
  doi: 10.4049/jimmunol.169.9.4850
– ident: e_1_3_2_23_2
  doi: 10.1016/0092-8674(94)90419-7
– ident: e_1_3_2_34_2
  doi: 10.1073/pnas.0402653101
– ident: e_1_3_2_17_2
  doi: 10.1006/smim.1993.1036
– ident: e_1_3_2_27_2
  doi: 10.1002/1521-4141(200212)32:12<3729::AID-IMMU3729>3.0.CO;2-2
– volume: 144
  start-page: 3288
  year: 1990
  ident: e_1_3_2_2_2
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.144.9.3288
– ident: e_1_3_2_3_2
  doi: 10.1093/intimm/5.11.1461
– ident: e_1_3_2_10_2
  doi: 10.1038/ni759
– ident: e_1_3_2_4_2
  doi: 10.4049/jimmunol.164.7.3573
– ident: e_1_3_2_29_2
  doi: 10.1046/j.1440-1711.2002.01127.x
– ident: e_1_3_2_22_2
  doi: 10.1073/pnas.122224799
– ident: e_1_3_2_14_2
  doi: 10.1038/ni904
– ident: e_1_3_2_36_2
  doi: 10.4049/jimmunol.168.12.5979
– ident: e_1_3_2_39_2
  doi: 10.1111/j.1600-065X.1996.tb00903.x
– ident: e_1_3_2_11_2
  doi: 10.1084/jem.192.2.295
– ident: e_1_3_2_24_2
  doi: 10.1084/jem.188.10.1883
– ident: e_1_3_2_26_2
  doi: 10.1034/j.1600-065X.2001.1820101.x
– ident: e_1_3_2_38_2
  doi: 10.1111/j.1600-065X.1996.tb00898.x
– ident: e_1_3_2_37_2
  doi: 10.4049/jimmunol.173.12.7259
– ident: e_1_3_2_28_2
  doi: 10.1073/pnas.0403303101
– volume: 163
  start-page: 5211
  year: 1999
  ident: e_1_3_2_35_2
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.163.10.5211
– ident: e_1_3_2_41_2
  doi: 10.1038/86302
– ident: e_1_3_2_7_2
  doi: 10.1084/jem.194.9.1349
– ident: e_1_3_2_12_2
  doi: 10.1084/jem.20021633
– volume: 144
  start-page: 16
  year: 1990
  ident: e_1_3_2_31_2
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.144.1.16
– ident: e_1_3_2_5_2
  doi: 10.1002/eji.200324578
SSID ssj0009580
Score 2.3119812
Snippet Expression of the IL-2 receptor α chain (CD25) by peripheral CD4 T cells follows cellular activation. However, CD25 expression by CD4 cells is widely used as a...
Expression of the IL-2 receptor alpha chain (CD25) by peripheral CD4 T cells follows cellular activation. However, CD25 expression by CD4 cells is widely used...
Expression of the IL-2 receptor {alpha} chain (CD25) by peripheral CD4 T cells follows cellular activation. However, CD25 expression by CD4 cells is widely...
SourceID pubmedcentral
proquest
crossref
pubmed
pnas
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4091
SubjectTerms Animals
Antibodies, Monoclonal - immunology
Biological Sciences
CD4-Positive T-Lymphocytes - cytology
CD4-Positive T-Lymphocytes - immunology
CD4-Positive T-Lymphocytes - metabolism
Cell Division - immunology
DNA-Binding Proteins - genetics
DNA-Binding Proteins - immunology
DNA-Binding Proteins - metabolism
Forkhead Transcription Factors
Gene expression
Homeostasis - immunology
Immunology
Mice
Mice, Inbred BALB C
Mice, Inbred C57BL
Receptors, Interleukin-2 - immunology
T cell receptors
Transgenic animals
Title Foxp3+ CD25– CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion
URI http://www.pnas.org/content/102/11/4091.abstract
https://www.ncbi.nlm.nih.gov/pubmed/15753306
https://www.proquest.com/docview/201306485/abstract/
https://search.proquest.com/docview/67520071
https://pubmed.ncbi.nlm.nih.gov/PMC554795
Volume 102
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbonrggyqtpeRiJQxHKPvyIvUe0UFVIIA6t1JtlO442EnGiTRbBjRN_gH_IL2GcOLssgguXRPLYcWKPMzP2588IveBOiHwuRCoMZSkohU2XBV-mZsmMNpwEhu-AtviQXV6zdzf8Jm4KayOs0ltTTv2naurLdY-tbCo7G3Fis4_vV2ACxZLPjtCRoHSM0HdEu3LYdkLg78sIG-l8BJ01XrdTUNrAMQd2tT-RRwR0ZXZglCYh398czj9xk78Zoou76E70IPHr4U2P0S3n76HjOEZbfB6JpF_eR9_BtDT0FV69Ifzntx9wZ_gKh6n6Ftt6RAlgjcMWpM3nutzgugBJVZUdOKKQ3J9TX2--xkLdWnchVZe-fyh2XyKO1uNtA5d1Xbk67FEqbZCBGQTRA3R98fZqdZnGcxdSywTrUkJMISEM4sZQBxGVADOvqS7kHL6cmow4VzgjwbfUmXQZpGhN8kwL6aiTOaEP0cTX3p0gvNA25wtqaWE501abLHegBnOWS3iipgk6HxteNQO9huqXxQVVoRvUvrsSdNKn7LMRCF8UxKeLBD3_l0gVEUOToLOxQ1Ucpq0iYd02Y5In6NlOCuMrNKr2rt62CgKqMJ0LdTwaOn9fS1SeBGUHarHLEJi7DyWg0D2D96DAp_9b8Azd7hlkA6yQP0aTbrN1T8A36szTfjD8AtbZEDo
link.rule.ids 230,315,733,786,790,891,27957,27958,53827,53829
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LjtMwFLWgLGADDK8JA4yRWAxCSVs_4nSJCqMCMyMWrTS7yHacaQR5qEkRsGLFD_CHfAnXidPSESxgk0i-dqIkx773xsfHCD3jRohkJIQvFGU-gEL7k5RPfDVhSipOrMK3ZVuchbMFe3vOz92isNrRKgutsqD4mAdFtmy5lVWuhz1PbPj-dAouUEz48Cq6Bt2ViD5H30jtRt3CEwLjLyOsF_QRdFgVsg4AtlZlDjxruyePsPzKcMctDWy9P4Wcl5mTv7mi41to0T9Ex0D5EKwbFeivl_Qd__Upb6ObLjbFLzvrHrpiijtoz_X-Gh85iernd9F3cFoVfYGnrwj_-e0HnBmeYzsJUGNd9vwDLLFd3LT6VGYrXKZgyfOsgRAXii_stmHl6otr1CxlY0tlVrQXxeazY-gWeF3BYVnmprSrnzJtbeBgwXQPLY5fz6cz3-3o4GsmWOMTotIIEiyuFDWQqwkIICSVaTSCN0pVSIxJjYogapVhZEIokZIkoRSRoSZKCL2PBkVZmH2Ex1InfEw1TTVnUksVJgYANmJJBFeU1ENH_QeNq064I24n3AWN7eeNtzDw0H5bsq1GIDGKIfMde-jp30xx6tg5HjrogRK7AaCOiZ0RDlnEPXS4sULPtS9VFqZc1zGkavZHMdzjQQeq7V0cKD0U7sBtU8Fqgu9aAEStNngHmof_2_AQXZ_NT0_ikzdn7w7QjVan1pIX-SM0aFZr8xgisEY9aTvcL_dYMgQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qg4TYUMqjTQvUSCyKUDIzfsSZJZoyKq-qi1Yqq8h2HCaCSaKZDAJWrPgB_pAv4TqPGaaCTTeJ5OvESnLse298fAzwTFgpk4GUvtSM-wgK449SMfL1iGulBXUK345tcRqeXPA3l-JyC6JuLUxN2jc6C_LPsyDPpjW3spyZfscT65-9H6MLlCPRL5O0fwNuYpeloy5PX8ntRs3iE4pjMKe8E_WRrF_mahEgdJ3SHHrXel8e6TiW4YZr6rl6_wo7r7In_3JHk2340D1Iw0L5FCwrHZjvVzQer_Okd-FOG6OSl02NHdiy-T3YaUeBBTlqpaqf34ef6LxK9oKMj6n4_eMXnjk5J24yYEFM0fEQiCJukdP8S5HNSZGiZTbLKgx1sfij2z6smH9rL6qmqnKlKsvrmxL7tWXq5mRZ4mFazGzhVkFlxtnQ0aLpAVxMXp2PT_x2ZwffcMkrn1KdRphoCa2ZxZxNYiChmEqjAb5VpkNqbWp1hNGrCiMbYolSNAmVjCyzUULZQ-jlRW73gAyVScSQGZYawZVROkwsAm3AkwjvqJgHR91HjctGwCOuJ94li90njtdQ8GCvLllXo5ggxZgBDz14-j9TnLYsHQ8OOrDE7UCwiKmbGQ55JDw4XFmxB7uXqnJbLBcxpmzuhzG2sdsAa91KC0wPwg3IrSo4bfBNCwKp1ghvgLN_3QsP4dbZ8SR-9_r07QHcruVqHYdRPIJeNV_axxiIVfpJ3ef-AGxzNIQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Foxp3%2B+CD25%E2%80%93+CD4+T+cells+constitute+a+reservoir+of+committed+regulatory+cells+that+regain+CD25+expression+upon+homeostatic+expansion&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Santiago+Zelenay&rft.au=Thiago+Lopes-Carvalho&rft.au=Iris+Caramalho&rft.au=Maria+Francisca+Moraes-Fontes&rft.date=2005-03-15&rft.pub=National+Acad+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=102&rft.issue=11&rft.spage=4091&rft_id=info:doi/10.1073%2Fpnas.0408679102&rft_id=info%3Apmid%2F15753306&rft.externalDBID=n%2Fa&rft.externalDocID=102_11_4091
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F11.cover.gif
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.pnas.org%2Fcontent%2F102%2F11.cover.gif