Unscented Kalman Filter-Based Battery SOC Estimation and Peak Power Prediction Method for Power Distribution of Hybrid Electric Vehicles

State of Charge (SOC) is a key parameter for battery management and vehicle energy management. Recently used SOC estimation methods for lithium-ion battery for vehicles have problems of too simple a base model for the battery and large sampling noise in both the voltage and current signals. To impro...

Full description

Saved in:
Bibliographic Details
Published inIEEE access Vol. 6; pp. 35957 - 35965
Main Authors Wang, Weida, Wang, Xiantao, Xiang, Changle, Wei, Chao, Zhao, Yulong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract State of Charge (SOC) is a key parameter for battery management and vehicle energy management. Recently used SOC estimation methods for lithium-ion battery for vehicles have problems of too simple a base model for the battery and large sampling noise in both the voltage and current signals. To improve the accuracy of SOC estimation and consider that the extended Kalman filter algorithm needs linear approximation of the system equation, the unscented Kalman filter (UKF) algorithm was used to reduce the influence of sampling noise, and an improved algorithm with better filtering effect and SOC estimation accuracy was proposed. Based on the SOC estimation and battery model, the peak power prediction method for the battery is proposed and used in the power distribution strategy for Series HEV. Considering the frequent changes in load current and sampling noise, an experiment was designed to verify the effectiveness and robustness of the algorithm. The experimental results show that the UKF algorithm and the improved UKF algorithm can achieve 6% and 1.5% estimation error. The power distribution strategy based on battery SOC estimation and peak power prediction is tested and validated.
AbstractList State of Charge (SOC) is a key parameter for battery management and vehicle energy management. Recently used SOC estimation methods for lithium-ion battery for vehicles have problems of too simple a base model for the battery and large sampling noise in both the voltage and current signals. To improve the accuracy of SOC estimation and consider that the extended Kalman filter algorithm needs linear approximation of the system equation, the unscented Kalman filter (UKF) algorithm was used to reduce the influence of sampling noise, and an improved algorithm with better filtering effect and SOC estimation accuracy was proposed. Based on the SOC estimation and battery model, the peak power prediction method for the battery is proposed and used in the power distribution strategy for Series HEV. Considering the frequent changes in load current and sampling noise, an experiment was designed to verify the effectiveness and robustness of the algorithm. The experimental results show that the UKF algorithm and the improved UKF algorithm can achieve 6% and 1.5% estimation error. The power distribution strategy based on battery SOC estimation and peak power prediction is tested and validated.
Author Wang, Xiantao
Xiang, Changle
Zhao, Yulong
Wei, Chao
Wang, Weida
Author_xml – sequence: 1
  givenname: Weida
  surname: Wang
  fullname: Wang, Weida
  email: wangwd0430@163.com
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Xiantao
  orcidid: 0000-0001-5932-0509
  surname: Wang
  fullname: Wang, Xiantao
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Changle
  surname: Xiang
  fullname: Xiang, Changle
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 4
  givenname: Chao
  surname: Wei
  fullname: Wei, Chao
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
– sequence: 5
  givenname: Yulong
  surname: Zhao
  fullname: Zhao, Yulong
  organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China
BookMark eNp9UU1vGyEUXFWJ1DTNL8gFqed1gGU_fEy2ThM1VSy56RU94NHgbpYUsCr_g_zsYq9bVT2ECzDzZni8eVccjX7EojhndMYYnV9c9v1itZpxyroZ72raiupNccJZMy-rumqO_jm_Lc5iXNO8ugzV7Unx8jBGjWNCQz7D8AQjuXZDwlBeQczYFaR82ZLVfU8WMbknSM6PBEZDlgg_yNL_wkCWAY3Te-YLpkdviPXhwH10MQWnNnvWW3KzVcEZshhQZ1yTb_jo9IDxfXFsYYh4dthPi4frxdf-pry7_3TbX96VWrQilZxa0VFulLZa8wY0R1AcBdNUcVpR1mqu6Y4GDshrBY0QVoFpWtHVtahOi9vJ13hYy-eQvxS20oOTe8CH7xJC2rUkG-yoopVodZsfB9tZoa2qmWlNJ5Cp7PVh8noO_ucGY5Jrvwljbl9yUdfzPGXW5qr5VKWDjzGgldql_RxTADdIRuUuRznlKHc5ykOOWVv9p_3T8euq80nlEPGvohOUClZVvwG7xKz_
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_seta_2022_102281
crossref_primary_10_3390_en13133434
crossref_primary_10_1016_j_est_2022_104174
crossref_primary_10_3390_designs7010025
crossref_primary_10_1016_j_prime_2023_100328
crossref_primary_10_3390_electronics10020122
crossref_primary_10_3390_en17235992
crossref_primary_10_1109_TIE_2021_3073359
crossref_primary_10_3389_fenrg_2022_938467
crossref_primary_10_3390_electronics10131588
crossref_primary_10_1109_JESTIE_2020_3041711
crossref_primary_10_1088_1757_899X_937_1_012046
crossref_primary_10_3390_en17174505
crossref_primary_10_1002_er_5654
crossref_primary_10_3390_en15041529
crossref_primary_10_20964_2021_11_07
crossref_primary_10_1109_ACCESS_2020_3021745
crossref_primary_10_3390_wevj14110307
crossref_primary_10_1177_01423312221128526
crossref_primary_10_3390_s22031101
crossref_primary_10_1016_j_est_2023_109890
crossref_primary_10_20964_2022_07_63
crossref_primary_10_3390_su14127412
crossref_primary_10_1252_jcej_20we039
crossref_primary_10_1016_j_est_2023_108047
crossref_primary_10_1016_j_rser_2019_06_040
crossref_primary_10_1016_j_energy_2021_120116
crossref_primary_10_1155_2019_7452079
crossref_primary_10_1016_j_procs_2023_10_216
crossref_primary_10_1016_j_jclepro_2023_139554
crossref_primary_10_1109_ACCESS_2024_3486989
crossref_primary_10_3390_en14092634
crossref_primary_10_1016_j_est_2021_102572
crossref_primary_10_1007_s42835_023_01533_9
crossref_primary_10_3390_s24186120
crossref_primary_10_1002_er_5758
crossref_primary_10_1109_ACCESS_2020_3038477
crossref_primary_10_2478_amns_2023_1_00005
crossref_primary_10_1007_s11581_023_05205_6
crossref_primary_10_1109_ACCESS_2018_2879785
crossref_primary_10_20965_jaciii_2022_p0824
crossref_primary_10_1109_TIA_2020_3011385
crossref_primary_10_1080_03772063_2021_1886604
crossref_primary_10_1016_j_est_2023_108039
crossref_primary_10_3390_en14082268
crossref_primary_10_1109_ACCESS_2020_3030260
crossref_primary_10_3390_en13071679
crossref_primary_10_1021_acs_iecr_2c02476
crossref_primary_10_59287_ijanser_889
crossref_primary_10_1016_j_est_2024_112907
crossref_primary_10_1109_ACCESS_2019_2915135
crossref_primary_10_3390_s23010467
crossref_primary_10_1016_j_est_2025_115346
crossref_primary_10_3390_en15041423
crossref_primary_10_3390_electronics11132010
crossref_primary_10_1109_ACCESS_2020_2980451
crossref_primary_10_1109_TPEL_2018_2882851
crossref_primary_10_1109_TEC_2022_3178600
crossref_primary_10_1002_cta_3734
crossref_primary_10_1109_ACCESS_2020_3047971
crossref_primary_10_1177_0020294019827338
crossref_primary_10_1016_j_segan_2023_101020
crossref_primary_10_1007_s11581_021_04165_z
crossref_primary_10_1149_1945_7111_aca721
crossref_primary_10_1016_j_jpowsour_2021_230725
crossref_primary_10_1080_1448837X_2024_2335801
crossref_primary_10_1109_ACCESS_2019_2942213
Cites_doi 10.1109/TCST.2004.839571
10.1016/S0378-7753(02)00194-5
10.1016/j.jpowsour.2012.10.001
10.1016/j.jfranklin.2017.08.020
10.1016/j.ijnonlinmec.2015.02.003
10.1016/j.apenergy.2017.05.183
10.1016/j.jpowsour.2013.03.131
10.1109/TMECH.2017.2675920
10.3390/en6105088
10.1109/TVT.2012.2235474
10.1109/TVT.2012.2203160
10.1109/TVT.2011.2132812
10.1109/TVT.2015.2492001
10.1016/j.apenergy.2014.02.072
10.1016/j.apenergy.2011.08.002
10.1016/j.jpowsour.2015.01.005
10.1016/j.jpowsour.2015.02.099
10.1016/j.apenergy.2012.08.031
10.1109/TIE.2010.2043035
10.1016/j.egypro.2017.03.819
10.1016/j.jpowsour.2013.10.079
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2018.2850743
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 35965
ExternalDocumentID oai_doaj_org_article_6e80b0347c7c47af8f4cfb51d7d84e1b
10_1109_ACCESS_2018_2850743
8400413
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51575043; U1564210
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
RIG
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c474t-20f4802dbcfcc26ac2eab2e41c0b203017c2c0dbcfa2ae25ba644fbad67485543
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Wed Aug 27 00:19:41 EDT 2025
Sun Jun 29 16:19:02 EDT 2025
Tue Jul 01 02:17:40 EDT 2025
Thu Apr 24 23:09:27 EDT 2025
Wed Aug 27 02:48:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-20f4802dbcfcc26ac2eab2e41c0b203017c2c0dbcfa2ae25ba644fbad67485543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5932-0509
OpenAccessLink https://doaj.org/article/6e80b0347c7c47af8f4cfb51d7d84e1b
PQID 2455908117
PQPubID 4845423
PageCount 9
ParticipantIDs ieee_primary_8400413
proquest_journals_2455908117
crossref_primary_10_1109_ACCESS_2018_2850743
doaj_primary_oai_doaj_org_article_6e80b0347c7c47af8f4cfb51d7d84e1b
crossref_citationtrail_10_1109_ACCESS_2018_2850743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref14
ref20
ref11
he (ref15) 2012; 92
ref22
ref10
he (ref12) 2011; 60
ref21
deng (ref7) 2014
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref9
ref4
ref3
ref6
ref5
wang (ref23) 2016; 9
References_xml – ident: ref8
  doi: 10.1109/TCST.2004.839571
– ident: ref20
  doi: 10.1016/S0378-7753(02)00194-5
– ident: ref6
  doi: 10.1016/j.jpowsour.2012.10.001
– ident: ref18
  doi: 10.1016/j.jfranklin.2017.08.020
– ident: ref22
  doi: 10.1016/j.ijnonlinmec.2015.02.003
– ident: ref17
  doi: 10.1016/j.apenergy.2017.05.183
– volume: 9
  start-page: 1
  year: 2016
  ident: ref23
  article-title: A fuzzy-logic power management strategy based on Markov random prediction for hybrid energy storage systems
  publication-title: Energies
– ident: ref2
  doi: 10.1016/j.jpowsour.2013.03.131
– ident: ref19
  doi: 10.1109/TMECH.2017.2675920
– ident: ref11
  doi: 10.3390/en6105088
– ident: ref14
  doi: 10.1109/TVT.2012.2235474
– ident: ref3
  doi: 10.1109/TVT.2012.2203160
– volume: 60
  start-page: 1461
  year: 2011
  ident: ref12
  article-title: State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved Thevenin model
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2011.2132812
– ident: ref5
  doi: 10.1109/TVT.2015.2492001
– ident: ref24
  doi: 10.1016/j.apenergy.2014.02.072
– ident: ref13
  doi: 10.1016/j.apenergy.2011.08.002
– volume: 92
  start-page: 694
  year: 2012
  ident: ref15
  article-title: Predictive air-conditioner control for electric buses with passenger amount variation forecast
  publication-title: Appl Energy
– ident: ref1
  doi: 10.1016/j.jpowsour.2015.01.005
– ident: ref9
  doi: 10.1016/j.jpowsour.2015.02.099
– ident: ref4
  doi: 10.1016/j.apenergy.2012.08.031
– ident: ref10
  doi: 10.1109/TIE.2010.2043035
– start-page: 258
  year: 2014
  ident: ref7
  article-title: An improved algorithm of SOC testing based on open-circuit voltage-ampere hour method
  publication-title: Proc Int Conf Life Syst Modeling Simulation Int Conf Intell Comput Sustain Energy Environ
– ident: ref16
  doi: 10.1016/j.egypro.2017.03.819
– ident: ref21
  doi: 10.1016/j.jpowsour.2013.10.079
SSID ssj0000816957
Score 2.390929
Snippet State of Charge (SOC) is a key parameter for battery management and vehicle energy management. Recently used SOC estimation methods for lithium-ion battery for...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 35957
SubjectTerms Algorithms
Batteries
Computational modeling
Electric power distribution
Electric vehicles
Energy management
Estimation
Extended Kalman filter
Hybrid electric vehicles
Integrated circuit modeling
Lithium
Lithium-ion batteries
Lithium-ion battery
Mathematical model
Noise
noise suppression
peak power prediction
Power management
Prediction algorithms
Rechargeable batteries
Sampling
SOC estimation
State of charge
unscented Kalman filter
Vehicles
SummonAdditionalLinks – databaseName: IEEE Xplore
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT3DgVRALBfnAsdnGjhPbx3bZ1Qq0tBIs6s2ynbFYtWRR2T2UX8DPxuN4o_IQ4hbFduRkJuMZe-b7CHmthG917ZuCQXCFkDFgtQGqQmtf-ehxQEh1a4v3zXwp3l7UF3vkaKiFAYCUfAZjvExn-e3ab3Gr7FihwiFF7Z0YuPW1WsN-ChJI6FpmYCFW6uOTySS-A2ZvqTFXNa6Vvyw-CaM_k6r8YYnT8jJ7QBa7ifVZJZfj7caN_fffMBv_d-YPyf3sZ9KTXjEekT3oHpN7t9AHD8iPZZegnKCl7-zVF9vR2QrPzovTuLK1tEfevKEfziZ0Gg1BX-NIbdfSaEcv6Tnyq9HzazzpSS2LREZNoxec294gKG_m06LrQOc3WB5Gp4l5Z-XpJ_ickvKekOVs-nEyLzIxQ-GFFJv4ZwWhSt46H7znjfUcrOMgmC8dxxhLeu5LbLbcAq-djV5XcLZFZpPov1RPyX637uAZoSF206VyOsYtIkjhQMWAkTHQlW6UrEaE7yRmfEYtR_KMK5Oil1KbXswGxWyymEfkaBj0tQft-Hf3U1SFoSsibqcbUYQm_8CmAVW6shLSy_gRbFBB-OBq1spWCWBuRA5Q7MNDssRH5HCnWCZbh2-Gixqp5hmTz_8-6gW5ixPst3oOyf7megsvo_Ozca-S1v8E1XUCWQ
  priority: 102
  providerName: IEEE
Title Unscented Kalman Filter-Based Battery SOC Estimation and Peak Power Prediction Method for Power Distribution of Hybrid Electric Vehicles
URI https://ieeexplore.ieee.org/document/8400413
https://www.proquest.com/docview/2455908117
https://doaj.org/article/6e80b0347c7c47af8f4cfb51d7d84e1b
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTu2hokDVpYB84EggdpzYPsKyqxWIh0S34mbZjq0illDR5cA_4Gcz45jVVpXKhWvsPOwZzyP2fB8hu0r4Vte-KViIrhASElYbQ1Vo7SsPEUeIqW7t7LyZTMXJdX29RPWFZ8J6eOB-4g6aoEpXVkJ66YW0UUXho6tZK1slAnNofcHnLSVTyQYr1uhaZpghVuqDw-EQRoRnudQ-VzV6zr9cUULszxQr_9jl5GzGq-RzjhLpYf91X8iH0K2RT0vYgevkedolIKbQ0lM7u7MdHd_gzndxBH6ppT1u5hO9uhjSESzjvkKR2q6lYAVv6SWyo9HLB9ynSS1niUqaQgyb244RUjezYdH7SCdPWNxFR4k358bTn-FXOlK3Qabj0Y_hpMi0CgVMoJjDuohClbx1PnrPG-t5sI4HwXzpOGZI0nNfYrPlNvDaWYiZorMt8pJA9FF9JSvdfRe-ERqhmy6V05B1iCiFCwrSPcaCrnSjZDUg_HWGjc-Y40h9MTMp9yi16cViUCwmi2VA9hY3_e4hN_7f_QhFt-iKeNnpAmiRyVpk3tKiAVlHwS8eotC0MXj21qsimLy2_xguaiSKZ0xuvserv5OPOJz-t84WWZk_PIZtCHTmbifp9E6qSXwBKgn61A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcgAO5VEQCwV84NhsE8eJ7WO77Gqh3VKJLurNsh1bVG2zqOwe2l_Qn82M4414CXGLYjuyM2PPjO35PkLeSe4aVbk6K3ywGRcQsJrgy0wpVzrwOHyIeWuz43o65x_PqrMNstvnwnjv4-UzP8THeJbfLNwKt8r2JCocUtTeA7tfsS5bq99RQQoJVYkELVTkam9_NIJR4P0tOWSyQmv5i_mJKP2JVuWPtTgamMkjMlt3rbtXcjFcLe3Q3f6G2vi_fX9MtpKnSfc71XhCNnz7lDz8CX9wm9zN2wjm5Bt6aC6vTEsn53h6nh2AbWtoh715Qz9_GtExLAVdliM1bUNhJb2gJ8iwRk-u8awnlswiHTUFPziVvUdY3sSoRReBTm8wQYyOI_fOuaNf_Nd4Le8ZmU_Gp6NplqgZMscFX8LcClzmrLEuOMdq45g3lnleuNwyjLKEYy7HYsOMZ5U14HcFaxrkNgEPpnxONttF618QGqCayqVVELnwILj1EkLGovCqVLUU5YCwtcS0S7jlSJ9xqWP8kivdiVmjmHUS84Ds9o2-dbAd_65-gKrQV0XM7fgCRKjTFNa1l7nNSy6cgJ9gggzcBVsVjWgk94UdkG0Ue_-RJPEB2Vkrlk7rw3fNQH9h0EUhXv691Vtyf3o6O9JHH44PX5EH2Nlu42eHbC6vV_41uEJL-ybOgB9vzAWj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unscented+Kalman+Filter-Based+Battery+SOC+Estimation+and+Peak+Power+Prediction+Method+for+Power+Distribution+of+Hybrid+Electric+Vehicles&rft.jtitle=IEEE+access&rft.au=Wang%2C+Weida&rft.au=Wang%2C+Xiantao&rft.au=Changle+Xiang&rft.au=Chao%2C+Wei&rft.date=2018-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=6&rft.spage=35957&rft_id=info:doi/10.1109%2FACCESS.2018.2850743&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon