Unscented Kalman Filter-Based Battery SOC Estimation and Peak Power Prediction Method for Power Distribution of Hybrid Electric Vehicles
State of Charge (SOC) is a key parameter for battery management and vehicle energy management. Recently used SOC estimation methods for lithium-ion battery for vehicles have problems of too simple a base model for the battery and large sampling noise in both the voltage and current signals. To impro...
Saved in:
Published in | IEEE access Vol. 6; pp. 35957 - 35965 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | State of Charge (SOC) is a key parameter for battery management and vehicle energy management. Recently used SOC estimation methods for lithium-ion battery for vehicles have problems of too simple a base model for the battery and large sampling noise in both the voltage and current signals. To improve the accuracy of SOC estimation and consider that the extended Kalman filter algorithm needs linear approximation of the system equation, the unscented Kalman filter (UKF) algorithm was used to reduce the influence of sampling noise, and an improved algorithm with better filtering effect and SOC estimation accuracy was proposed. Based on the SOC estimation and battery model, the peak power prediction method for the battery is proposed and used in the power distribution strategy for Series HEV. Considering the frequent changes in load current and sampling noise, an experiment was designed to verify the effectiveness and robustness of the algorithm. The experimental results show that the UKF algorithm and the improved UKF algorithm can achieve 6% and 1.5% estimation error. The power distribution strategy based on battery SOC estimation and peak power prediction is tested and validated. |
---|---|
AbstractList | State of Charge (SOC) is a key parameter for battery management and vehicle energy management. Recently used SOC estimation methods for lithium-ion battery for vehicles have problems of too simple a base model for the battery and large sampling noise in both the voltage and current signals. To improve the accuracy of SOC estimation and consider that the extended Kalman filter algorithm needs linear approximation of the system equation, the unscented Kalman filter (UKF) algorithm was used to reduce the influence of sampling noise, and an improved algorithm with better filtering effect and SOC estimation accuracy was proposed. Based on the SOC estimation and battery model, the peak power prediction method for the battery is proposed and used in the power distribution strategy for Series HEV. Considering the frequent changes in load current and sampling noise, an experiment was designed to verify the effectiveness and robustness of the algorithm. The experimental results show that the UKF algorithm and the improved UKF algorithm can achieve 6% and 1.5% estimation error. The power distribution strategy based on battery SOC estimation and peak power prediction is tested and validated. |
Author | Wang, Xiantao Xiang, Changle Zhao, Yulong Wei, Chao Wang, Weida |
Author_xml | – sequence: 1 givenname: Weida surname: Wang fullname: Wang, Weida email: wangwd0430@163.com organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Xiantao orcidid: 0000-0001-5932-0509 surname: Wang fullname: Wang, Xiantao organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 3 givenname: Changle surname: Xiang fullname: Xiang, Changle organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 4 givenname: Chao surname: Wei fullname: Wei, Chao organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China – sequence: 5 givenname: Yulong surname: Zhao fullname: Zhao, Yulong organization: School of Mechanical Engineering, Beijing Institute of Technology, Beijing, China |
BookMark | eNp9UU1vGyEUXFWJ1DTNL8gFqed1gGU_fEy2ThM1VSy56RU94NHgbpYUsCr_g_zsYq9bVT2ECzDzZni8eVccjX7EojhndMYYnV9c9v1itZpxyroZ72raiupNccJZMy-rumqO_jm_Lc5iXNO8ugzV7Unx8jBGjWNCQz7D8AQjuXZDwlBeQczYFaR82ZLVfU8WMbknSM6PBEZDlgg_yNL_wkCWAY3Te-YLpkdviPXhwH10MQWnNnvWW3KzVcEZshhQZ1yTb_jo9IDxfXFsYYh4dthPi4frxdf-pry7_3TbX96VWrQilZxa0VFulLZa8wY0R1AcBdNUcVpR1mqu6Y4GDshrBY0QVoFpWtHVtahOi9vJ13hYy-eQvxS20oOTe8CH7xJC2rUkG-yoopVodZsfB9tZoa2qmWlNJ5Cp7PVh8noO_ucGY5Jrvwljbl9yUdfzPGXW5qr5VKWDjzGgldql_RxTADdIRuUuRznlKHc5ykOOWVv9p_3T8euq80nlEPGvohOUClZVvwG7xKz_ |
CODEN | IAECCG |
CitedBy_id | crossref_primary_10_1016_j_seta_2022_102281 crossref_primary_10_3390_en13133434 crossref_primary_10_1016_j_est_2022_104174 crossref_primary_10_3390_designs7010025 crossref_primary_10_1016_j_prime_2023_100328 crossref_primary_10_3390_electronics10020122 crossref_primary_10_3390_en17235992 crossref_primary_10_1109_TIE_2021_3073359 crossref_primary_10_3389_fenrg_2022_938467 crossref_primary_10_3390_electronics10131588 crossref_primary_10_1109_JESTIE_2020_3041711 crossref_primary_10_1088_1757_899X_937_1_012046 crossref_primary_10_3390_en17174505 crossref_primary_10_1002_er_5654 crossref_primary_10_3390_en15041529 crossref_primary_10_20964_2021_11_07 crossref_primary_10_1109_ACCESS_2020_3021745 crossref_primary_10_3390_wevj14110307 crossref_primary_10_1177_01423312221128526 crossref_primary_10_3390_s22031101 crossref_primary_10_1016_j_est_2023_109890 crossref_primary_10_20964_2022_07_63 crossref_primary_10_3390_su14127412 crossref_primary_10_1252_jcej_20we039 crossref_primary_10_1016_j_est_2023_108047 crossref_primary_10_1016_j_rser_2019_06_040 crossref_primary_10_1016_j_energy_2021_120116 crossref_primary_10_1155_2019_7452079 crossref_primary_10_1016_j_procs_2023_10_216 crossref_primary_10_1016_j_jclepro_2023_139554 crossref_primary_10_1109_ACCESS_2024_3486989 crossref_primary_10_3390_en14092634 crossref_primary_10_1016_j_est_2021_102572 crossref_primary_10_1007_s42835_023_01533_9 crossref_primary_10_3390_s24186120 crossref_primary_10_1002_er_5758 crossref_primary_10_1109_ACCESS_2020_3038477 crossref_primary_10_2478_amns_2023_1_00005 crossref_primary_10_1007_s11581_023_05205_6 crossref_primary_10_1109_ACCESS_2018_2879785 crossref_primary_10_20965_jaciii_2022_p0824 crossref_primary_10_1109_TIA_2020_3011385 crossref_primary_10_1080_03772063_2021_1886604 crossref_primary_10_1016_j_est_2023_108039 crossref_primary_10_3390_en14082268 crossref_primary_10_1109_ACCESS_2020_3030260 crossref_primary_10_3390_en13071679 crossref_primary_10_1021_acs_iecr_2c02476 crossref_primary_10_59287_ijanser_889 crossref_primary_10_1016_j_est_2024_112907 crossref_primary_10_1109_ACCESS_2019_2915135 crossref_primary_10_3390_s23010467 crossref_primary_10_1016_j_est_2025_115346 crossref_primary_10_3390_en15041423 crossref_primary_10_3390_electronics11132010 crossref_primary_10_1109_ACCESS_2020_2980451 crossref_primary_10_1109_TPEL_2018_2882851 crossref_primary_10_1109_TEC_2022_3178600 crossref_primary_10_1002_cta_3734 crossref_primary_10_1109_ACCESS_2020_3047971 crossref_primary_10_1177_0020294019827338 crossref_primary_10_1016_j_segan_2023_101020 crossref_primary_10_1007_s11581_021_04165_z crossref_primary_10_1149_1945_7111_aca721 crossref_primary_10_1016_j_jpowsour_2021_230725 crossref_primary_10_1080_1448837X_2024_2335801 crossref_primary_10_1109_ACCESS_2019_2942213 |
Cites_doi | 10.1109/TCST.2004.839571 10.1016/S0378-7753(02)00194-5 10.1016/j.jpowsour.2012.10.001 10.1016/j.jfranklin.2017.08.020 10.1016/j.ijnonlinmec.2015.02.003 10.1016/j.apenergy.2017.05.183 10.1016/j.jpowsour.2013.03.131 10.1109/TMECH.2017.2675920 10.3390/en6105088 10.1109/TVT.2012.2235474 10.1109/TVT.2012.2203160 10.1109/TVT.2011.2132812 10.1109/TVT.2015.2492001 10.1016/j.apenergy.2014.02.072 10.1016/j.apenergy.2011.08.002 10.1016/j.jpowsour.2015.01.005 10.1016/j.jpowsour.2015.02.099 10.1016/j.apenergy.2012.08.031 10.1109/TIE.2010.2043035 10.1016/j.egypro.2017.03.819 10.1016/j.jpowsour.2013.10.079 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E ESBDL RIA RIE AAYXX CITATION 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D DOA |
DOI | 10.1109/ACCESS.2018.2850743 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-3536 |
EndPage | 35965 |
ExternalDocumentID | oai_doaj_org_article_6e80b0347c7c47af8f4cfb51d7d84e1b 10_1109_ACCESS_2018_2850743 8400413 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51575043; U1564210 funderid: 10.13039/501100001809 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR ABAZT ABVLG ACGFS ADBBV AGSQL ALMA_UNASSIGNED_HOLDINGS BCNDV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ IPLJI JAVBF KQ8 M43 M~E O9- OCL OK1 RIA RIE RNS AAYXX CITATION RIG 7SC 7SP 7SR 8BQ 8FD JG9 JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c474t-20f4802dbcfcc26ac2eab2e41c0b203017c2c0dbcfa2ae25ba644fbad67485543 |
IEDL.DBID | DOA |
ISSN | 2169-3536 |
IngestDate | Wed Aug 27 00:19:41 EDT 2025 Sun Jun 29 16:19:02 EDT 2025 Tue Jul 01 02:17:40 EDT 2025 Thu Apr 24 23:09:27 EDT 2025 Wed Aug 27 02:48:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/OAPA.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-20f4802dbcfcc26ac2eab2e41c0b203017c2c0dbcfa2ae25ba644fbad67485543 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5932-0509 |
OpenAccessLink | https://doaj.org/article/6e80b0347c7c47af8f4cfb51d7d84e1b |
PQID | 2455908117 |
PQPubID | 4845423 |
PageCount | 9 |
ParticipantIDs | ieee_primary_8400413 proquest_journals_2455908117 crossref_primary_10_1109_ACCESS_2018_2850743 doaj_primary_oai_doaj_org_article_6e80b0347c7c47af8f4cfb51d7d84e1b crossref_citationtrail_10_1109_ACCESS_2018_2850743 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-01-01 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE access |
PublicationTitleAbbrev | Access |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref24 ref14 ref20 ref11 he (ref15) 2012; 92 ref22 ref10 he (ref12) 2011; 60 ref21 deng (ref7) 2014 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref9 ref4 ref3 ref6 ref5 wang (ref23) 2016; 9 |
References_xml | – ident: ref8 doi: 10.1109/TCST.2004.839571 – ident: ref20 doi: 10.1016/S0378-7753(02)00194-5 – ident: ref6 doi: 10.1016/j.jpowsour.2012.10.001 – ident: ref18 doi: 10.1016/j.jfranklin.2017.08.020 – ident: ref22 doi: 10.1016/j.ijnonlinmec.2015.02.003 – ident: ref17 doi: 10.1016/j.apenergy.2017.05.183 – volume: 9 start-page: 1 year: 2016 ident: ref23 article-title: A fuzzy-logic power management strategy based on Markov random prediction for hybrid energy storage systems publication-title: Energies – ident: ref2 doi: 10.1016/j.jpowsour.2013.03.131 – ident: ref19 doi: 10.1109/TMECH.2017.2675920 – ident: ref11 doi: 10.3390/en6105088 – ident: ref14 doi: 10.1109/TVT.2012.2235474 – ident: ref3 doi: 10.1109/TVT.2012.2203160 – volume: 60 start-page: 1461 year: 2011 ident: ref12 article-title: State-of-charge estimation of the lithium-ion battery using an adaptive extended Kalman filter based on an improved Thevenin model publication-title: IEEE Trans Veh Technol doi: 10.1109/TVT.2011.2132812 – ident: ref5 doi: 10.1109/TVT.2015.2492001 – ident: ref24 doi: 10.1016/j.apenergy.2014.02.072 – ident: ref13 doi: 10.1016/j.apenergy.2011.08.002 – volume: 92 start-page: 694 year: 2012 ident: ref15 article-title: Predictive air-conditioner control for electric buses with passenger amount variation forecast publication-title: Appl Energy – ident: ref1 doi: 10.1016/j.jpowsour.2015.01.005 – ident: ref9 doi: 10.1016/j.jpowsour.2015.02.099 – ident: ref4 doi: 10.1016/j.apenergy.2012.08.031 – ident: ref10 doi: 10.1109/TIE.2010.2043035 – start-page: 258 year: 2014 ident: ref7 article-title: An improved algorithm of SOC testing based on open-circuit voltage-ampere hour method publication-title: Proc Int Conf Life Syst Modeling Simulation Int Conf Intell Comput Sustain Energy Environ – ident: ref16 doi: 10.1016/j.egypro.2017.03.819 – ident: ref21 doi: 10.1016/j.jpowsour.2013.10.079 |
SSID | ssj0000816957 |
Score | 2.390929 |
Snippet | State of Charge (SOC) is a key parameter for battery management and vehicle energy management. Recently used SOC estimation methods for lithium-ion battery for... |
SourceID | doaj proquest crossref ieee |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 35957 |
SubjectTerms | Algorithms Batteries Computational modeling Electric power distribution Electric vehicles Energy management Estimation Extended Kalman filter Hybrid electric vehicles Integrated circuit modeling Lithium Lithium-ion batteries Lithium-ion battery Mathematical model Noise noise suppression peak power prediction Power management Prediction algorithms Rechargeable batteries Sampling SOC estimation State of charge unscented Kalman filter Vehicles |
SummonAdditionalLinks | – databaseName: IEEE Xplore dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKT3DgVRALBfnAsdnGjhPbx3bZ1Qq0tBIs6s2ynbFYtWRR2T2UX8DPxuN4o_IQ4hbFduRkJuMZe-b7CHmthG917ZuCQXCFkDFgtQGqQmtf-ehxQEh1a4v3zXwp3l7UF3vkaKiFAYCUfAZjvExn-e3ab3Gr7FihwiFF7Z0YuPW1WsN-ChJI6FpmYCFW6uOTySS-A2ZvqTFXNa6Vvyw-CaM_k6r8YYnT8jJ7QBa7ifVZJZfj7caN_fffMBv_d-YPyf3sZ9KTXjEekT3oHpN7t9AHD8iPZZegnKCl7-zVF9vR2QrPzovTuLK1tEfevKEfziZ0Gg1BX-NIbdfSaEcv6Tnyq9HzazzpSS2LREZNoxec294gKG_m06LrQOc3WB5Gp4l5Z-XpJ_ickvKekOVs-nEyLzIxQ-GFFJv4ZwWhSt46H7znjfUcrOMgmC8dxxhLeu5LbLbcAq-djV5XcLZFZpPov1RPyX637uAZoSF206VyOsYtIkjhQMWAkTHQlW6UrEaE7yRmfEYtR_KMK5Oil1KbXswGxWyymEfkaBj0tQft-Hf3U1SFoSsibqcbUYQm_8CmAVW6shLSy_gRbFBB-OBq1spWCWBuRA5Q7MNDssRH5HCnWCZbh2-Gixqp5hmTz_8-6gW5ixPst3oOyf7megsvo_Ozca-S1v8E1XUCWQ priority: 102 providerName: IEEE |
Title | Unscented Kalman Filter-Based Battery SOC Estimation and Peak Power Prediction Method for Power Distribution of Hybrid Electric Vehicles |
URI | https://ieeexplore.ieee.org/document/8400413 https://www.proquest.com/docview/2455908117 https://doaj.org/article/6e80b0347c7c47af8f4cfb51d7d84e1b |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqTu2hokDVpYB84EggdpzYPsKyqxWIh0S34mbZjq0illDR5cA_4Gcz45jVVpXKhWvsPOwZzyP2fB8hu0r4Vte-KViIrhASElYbQ1Vo7SsPEUeIqW7t7LyZTMXJdX29RPWFZ8J6eOB-4g6aoEpXVkJ66YW0UUXho6tZK1slAnNofcHnLSVTyQYr1uhaZpghVuqDw-EQRoRnudQ-VzV6zr9cUULszxQr_9jl5GzGq-RzjhLpYf91X8iH0K2RT0vYgevkedolIKbQ0lM7u7MdHd_gzndxBH6ppT1u5hO9uhjSESzjvkKR2q6lYAVv6SWyo9HLB9ynSS1niUqaQgyb244RUjezYdH7SCdPWNxFR4k358bTn-FXOlK3Qabj0Y_hpMi0CgVMoJjDuohClbx1PnrPG-t5sI4HwXzpOGZI0nNfYrPlNvDaWYiZorMt8pJA9FF9JSvdfRe-ERqhmy6V05B1iCiFCwrSPcaCrnSjZDUg_HWGjc-Y40h9MTMp9yi16cViUCwmi2VA9hY3_e4hN_7f_QhFt-iKeNnpAmiRyVpk3tKiAVlHwS8eotC0MXj21qsimLy2_xguaiSKZ0xuvserv5OPOJz-t84WWZk_PIZtCHTmbifp9E6qSXwBKgn61A |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaqcgAO5VEQCwV84NhsE8eJ7WO77Gqh3VKJLurNsh1bVG2zqOwe2l_Qn82M4414CXGLYjuyM2PPjO35PkLeSe4aVbk6K3ywGRcQsJrgy0wpVzrwOHyIeWuz43o65x_PqrMNstvnwnjv4-UzP8THeJbfLNwKt8r2JCocUtTeA7tfsS5bq99RQQoJVYkELVTkam9_NIJR4P0tOWSyQmv5i_mJKP2JVuWPtTgamMkjMlt3rbtXcjFcLe3Q3f6G2vi_fX9MtpKnSfc71XhCNnz7lDz8CX9wm9zN2wjm5Bt6aC6vTEsn53h6nh2AbWtoh715Qz9_GtExLAVdliM1bUNhJb2gJ8iwRk-u8awnlswiHTUFPziVvUdY3sSoRReBTm8wQYyOI_fOuaNf_Nd4Le8ZmU_Gp6NplqgZMscFX8LcClzmrLEuOMdq45g3lnleuNwyjLKEYy7HYsOMZ5U14HcFaxrkNgEPpnxONttF618QGqCayqVVELnwILj1EkLGovCqVLUU5YCwtcS0S7jlSJ9xqWP8kivdiVmjmHUS84Ds9o2-dbAd_65-gKrQV0XM7fgCRKjTFNa1l7nNSy6cgJ9gggzcBVsVjWgk94UdkG0Ue_-RJPEB2Vkrlk7rw3fNQH9h0EUhXv691Vtyf3o6O9JHH44PX5EH2Nlu42eHbC6vV_41uEJL-ybOgB9vzAWj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unscented+Kalman+Filter-Based+Battery+SOC+Estimation+and+Peak+Power+Prediction+Method+for+Power+Distribution+of+Hybrid+Electric+Vehicles&rft.jtitle=IEEE+access&rft.au=Wang%2C+Weida&rft.au=Wang%2C+Xiantao&rft.au=Changle+Xiang&rft.au=Chao%2C+Wei&rft.date=2018-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=6&rft.spage=35957&rft_id=info:doi/10.1109%2FACCESS.2018.2850743&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon |