In vivo anti-tumor effect of PARP inhibition in IDH1/2 mutant MDS/AML resistant to targeted inhibitors of mutant IDH1/2
Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme...
Saved in:
Published in | Leukemia Vol. 36; no. 5; pp. 1313 - 1323 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2022
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDH
m
i). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDH
m
i alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDH
m
i-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDH
m
i. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition. |
---|---|
AbstractList | Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDHmi). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDHmi alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDHmi-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDHmi. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition.Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDHmi). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDHmi alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDHmi-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDHmi. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition. Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDH m i). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDH m i alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDH m i-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDH m i. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition. Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDH i). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDH i alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDH i-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDH i. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition. Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDHmi). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDHmi alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDHmi-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDHmi. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition. Treatment options for patients with relapsed/ refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and −2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDH m i). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDH m i alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDH m i-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDH m i. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition. |
Author | Chandhok, Namrata S. Prebet, Thomas Song, Yuanbin Liu, Wei Biancon, Giulia Flavell, Richard A. Gao, Yimeng Sundaram, Ranjini Tebaldi, Toma Wang, Xiaman Halene, Stephanie Fu, Xiaoying Mamillapalli, Padmavathi Bindra, Ranjit S. Gbyli, Rana Patel, Amisha Zeidan, Amer M. |
AuthorAffiliation | 3 Section of Hematology, Department of Internal Medicine, University of Miami, Coral Gables, FL, USA 2 Current affiliation: Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510062, China 6 Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA 5 Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, P. R. of China 4 Department of Hematology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P. R. of China 7 Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA 10 Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT, 06520, USA 9 Department of Pathology, Yale University, New Haven, CT, 06520, USA 1 Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New |
AuthorAffiliation_xml | – name: 6 Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA – name: 8 Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA – name: 10 Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT, 06520, USA – name: 2 Current affiliation: Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510062, China – name: 3 Section of Hematology, Department of Internal Medicine, University of Miami, Coral Gables, FL, USA – name: 7 Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA – name: 4 Department of Hematology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P. R. of China – name: 5 Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, P. R. of China – name: 9 Department of Pathology, Yale University, New Haven, CT, 06520, USA – name: 1 Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA |
Author_xml | – sequence: 1 givenname: Rana orcidid: 0000-0001-5524-0739 surname: Gbyli fullname: Gbyli, Rana organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine – sequence: 2 givenname: Yuanbin orcidid: 0000-0001-5580-5998 surname: Song fullname: Song, Yuanbin email: Songyb@sysucc.org.cn organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine – sequence: 3 givenname: Wei surname: Liu fullname: Liu, Wei organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine – sequence: 4 givenname: Yimeng orcidid: 0000-0003-2954-2789 surname: Gao fullname: Gao, Yimeng organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine – sequence: 5 givenname: Giulia surname: Biancon fullname: Biancon, Giulia organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine – sequence: 6 givenname: Namrata S. surname: Chandhok fullname: Chandhok, Namrata S. organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, Section of Hematology, Department of Internal Medicine, University of Miami, Sylvester Comprehensive Cancer Center – sequence: 7 givenname: Xiaman surname: Wang fullname: Wang, Xiaman organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, Department of Hematology, the Second Affiliated Hospital of Xi’an Jiaotong University – sequence: 8 givenname: Xiaoying surname: Fu fullname: Fu, Xiaoying organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, Department of Laboratory Medicine, Shenzhen Children’s Hospital – sequence: 9 givenname: Amisha surname: Patel fullname: Patel, Amisha organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine – sequence: 10 givenname: Ranjini surname: Sundaram fullname: Sundaram, Ranjini organization: Department of Therapeutic Radiology, Yale University – sequence: 11 givenname: Toma orcidid: 0000-0002-0625-1631 surname: Tebaldi fullname: Tebaldi, Toma organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento – sequence: 12 givenname: Padmavathi surname: Mamillapalli fullname: Mamillapalli, Padmavathi organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine – sequence: 13 givenname: Amer M. surname: Zeidan fullname: Zeidan, Amer M. organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine – sequence: 14 givenname: Richard A. orcidid: 0000-0003-4461-0778 surname: Flavell fullname: Flavell, Richard A. organization: Department of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute, Yale University – sequence: 15 givenname: Thomas orcidid: 0000-0002-6872-625X surname: Prebet fullname: Prebet, Thomas organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine – sequence: 16 givenname: Ranjit S. surname: Bindra fullname: Bindra, Ranjit S. organization: Department of Therapeutic Radiology, Yale University, Department of Pathology, Yale University – sequence: 17 givenname: Stephanie orcidid: 0000-0002-2737-9810 surname: Halene fullname: Halene, Stephanie email: stephanie.halene@yale.edu organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, Department of Pathology, Yale University, Yale Stem Cell Center and Yale Center for RNA Science and Medicine, Yale University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35273342$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv3CAUhVGVqpmk_QNdVEjdZOMOYDBmU2mUtM1IEzXqY40wxhMiG1LA0_TfF8czfWSRFY97vqN77zkBR847A8BrjN5hVNbLSHHJWYEIKRBmZVXcPwMLTHlVMMbwEViguuZFJQg9Bicx3iI0FasX4LhkhJclJQvwc-3gzu48VC7ZIo2DD9B0ndEJ-g5er75cQ-tubGOT9S5f4friEi8JHMaUCXh18XW5utrAYKKNDz_Jw6TC1iTTHkgf4mS2R2aDl-B5p_poXu3PU_D944dv55fF5vOn9flqU2jKaSoIEkwR3NJKsVYojjlVvG2E4R0nZHo0WiBcd1ojrE3TUc46rpAQmNe1EOUpeD_73o3NYFptXAqql3fBDir8kl5Z-X_F2Ru59Tsp8oopxtngbG8Q_I_RxCQHG7Xpe-WMH6MkVVlzwhGps_TtI-mtH4PL42UVq2mehU2Gb_7t6E8rh0yyoJ4FOvgYg-mktklN-88N2l5iJKf45Ry_zPHLh_jlfUbJI_Tg_iRUzlDMYrc14W_bT1C_ASIHwVo |
CitedBy_id | crossref_primary_10_1038_s41419_023_06045_y crossref_primary_10_1016_j_molcel_2023_05_026 crossref_primary_10_1158_1078_0432_CCR_22_3929 crossref_primary_10_3389_fphar_2024_1421816 crossref_primary_10_3390_cancers14246228 crossref_primary_10_1097_PPO_0000000000000759 crossref_primary_10_1097_PPO_0000000000000665 crossref_primary_10_1200_PO_23_00544 crossref_primary_10_1242_dev_204226 crossref_primary_10_3390_cancers15020458 crossref_primary_10_3390_ijms25147916 crossref_primary_10_1038_s41375_024_02369_6 crossref_primary_10_1007_s12032_024_02575_3 crossref_primary_10_1016_j_exphem_2023_05_005 crossref_primary_10_1042_BST20230017 crossref_primary_10_3389_fphar_2024_1509172 crossref_primary_10_1158_0008_5472_CAN_23_3239 crossref_primary_10_1093_neuonc_noac207 |
Cites_doi | 10.1126/scitranslmed.aal2463 10.1038/leu.2015.211 10.1186/s13046-016-0362-7 10.1038/s41586-020-2363-0 10.1182/blood-2008-08-077941 10.1093/bioinformatics/btp698 10.1038/s41591-018-0115-6 10.1002/humu.22225 10.1158/1078-0432.CCR-18-3749 10.1101/861054 10.1038/nbt.1607 10.1126/sciadv.aaz3221 10.3389/fonc.2013.00169 10.1016/j.pharmthera.2017.03.003 10.1093/nar/gky1015 10.1038/s41588-018-0170-4 10.1093/nar/gkq603 10.1182/blood-2018-08-869008 10.1182/blood-2015-10-676452 10.12688/f1000research.15931.1 10.1093/bioinformatics/btq033 10.1158/0008-5472.CAN-17-0337 10.1038/nbt.2858 10.1186/s40364-019-0173-z 10.1182/blood-2015-12-689356 10.1101/gad.217406.113 10.1158/2159-8290.CD-18-0877 10.3390/cancers10020049 10.1016/j.ccr.2010.12.014 10.1158/1078-0432.CCR-17-2796 10.1038/367645a0 10.1158/1078-0432.CCR-13-1333 10.1038/s41586-018-0251-7 10.1038/s41467-018-08166-x 10.1158/0008-5472.CAN-16-2263 10.1182/blood-2017-04-779447 10.1146/annurev-immunol-032712-095921 10.1016/j.celrep.2018.03.133 10.1177/2040620719860645 10.1158/2159-8290.CD-16-1049 10.1158/0008-5472.CAN-16-2773 10.7554/eLife.26030 10.1007/s40265-017-0813-2 10.1038/nm0797-730 10.1182/bloodadvances.2020001503 10.1093/bioinformatics/btp352 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2022 2022. The Author(s), under exclusive licence to Springer Nature Limited. The Author(s), under exclusive licence to Springer Nature Limited 2022. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022 – notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited. – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7RV 7T5 7T7 7TM 7TO 7U9 7X7 7XB 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. KB0 LK8 M0S M1P M7N M7P NAPCQ P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.1038/s41375-022-01536-x |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Nursing & Allied Health Database Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences ProQuest Health & Medical Collection Medical Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Public Health ProQuest Nursing & Allied Health Source ProQuest SciTech Collection ProQuest Medical Library Immunology Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest Central Student |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1476-5551 |
EndPage | 1323 |
ExternalDocumentID | PMC9103411 35273342 10_1038_s41375_022_01536_x |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Science Foundation of China | Young Scientists Fund grantid: 81801588 funderid: https://doi.org/10.13039/501100010909 – fundername: Howard Hughes Medical Institute (HHMI) funderid: https://doi.org/10.13039/100000011 – fundername: American Society of Hematology (ASH) funderid: https://doi.org/10.13039/100001422 – fundername: Leukemia and Lymphoma Society (Leukemia & Lymphoma Society) – fundername: Leukemia and Lymphoma Society (Leukemia & Lymphoma Society) funderid: https://doi.org/10.13039/100005189 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 82170137 funderid: https://doi.org/10.13039/501100001809 – fundername: The Frederick A. Deluca Foundation The Vera and Joseph Dresner Foundation Leukemia and Lymphoma Society and the NIH/NCI R01CA266604 NIH/NIDDK R01DK102792 – fundername: NIDDK NIH HHS grantid: U54 DK106857 – fundername: NIDDK NIH HHS grantid: R01 DK102792 – fundername: NCI NIH HHS grantid: R01 CA266604 – fundername: Howard Hughes Medical Institute |
GroupedDBID | --- -Q- .55 .XZ 0R~ 29L 2WC 36B 39C 3V. 4.4 406 53G 5GY 5RE 70F 7RV 7X7 88E 8AO 8C1 8FI 8FJ 8R4 8R5 AACDK AANZL AAQQT AASDW AASML AATNV AAWTL AAYZH AAZLF ABAKF ABAWZ ABDBF ABJNI ABLJU ABOCM ABUWG ABZZP ACAOD ACGFO ACGFS ACKTT ACMJI ACPRK ACRQY ACUHS ACZOJ ADBBV ADHDB AEFQL AEJRE AEMSY AENEX AEVLU AEXYK AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGHAI AGQEE AHMBA AHSBF AIGIU AILAN AJRNO ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMYLF ASPBG AVWKF AXYYD AZFZN B0M BAWUL BBNVY BENPR BHPHI BKEYQ BKKNO BPHCQ BVXVI CAG CCPQU COF CS3 DIK DNIVK DPUIP DU5 E3Z EAD EAP EBC EBD EBLON EBS EBX EE. EIOEI EJD EMB EMK EMOBN EPL ESX EX3 F5P FDQFY FEDTE FERAY FIGPU FIZPM FSGXE FYUFA HCIFZ HMCUK HVGLF HZ~ IAO IH2 IHR IHW INH INR ITC IWAJR JSO JZLTJ KQ8 LGEZI LOTEE M1P M7P N9A NADUK NAO NAPCQ NQJWS NXXTH O9- OK1 OVD P2P P6G PQQKQ PROAC PSQYO Q2X RNS RNT RNTTT ROL SNX SNYQT SOHCF SOJ SRMVM SV3 SWTZT TAOOD TBHMF TDRGL TEORI TR2 TSG TUS UDS UKHRP WOW X7M Y6R ZGI ZXP ~8M AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7T5 7T7 7TM 7TO 7U9 7XB 8FD 8FE 8FH 8FK ABRTQ AZQEC C1K DWQXO FR3 GNUQQ H94 K9. LK8 M7N P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS PUEGO 7X8 5PM |
ID | FETCH-LOGICAL-c474t-2095a21d46a5d9a7174a7db9e7f72274a7bc9018fcc01cebf475f7a0991788993 |
IEDL.DBID | 7X7 |
ISSN | 0887-6924 1476-5551 |
IngestDate | Thu Aug 21 14:06:25 EDT 2025 Fri Jul 11 10:12:36 EDT 2025 Sat Aug 23 14:58:56 EDT 2025 Thu Apr 03 07:00:08 EDT 2025 Tue Jul 01 01:08:11 EDT 2025 Thu Apr 24 23:08:44 EDT 2025 Fri Feb 21 02:37:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 2022. The Author(s), under exclusive licence to Springer Nature Limited. Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c474t-2095a21d46a5d9a7174a7db9e7f72274a7bc9018fcc01cebf475f7a0991788993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceptualization, S.H., R.S.B. and Y.S.; Methodology, S.H., R.G., and Y.S.; Investigation, Y.S., R.G., W.L., Y.G., G.B., X.W., X.F., N.C., R.S., A.P., T.T., and P.M.; Data analysis, Y.S., R.G. and S.H.; Validation, Y.S., R.G., and S.H.; Writing – Original Draft, S.H., R.G., Y.S.; Writing – Review & Editing, S.H., R.S.B., R.G., Y.S.; Funding Acquisition, S.H. and R.S.B.; Resources, R.G., A.P., A.M.Z., R.A.F. and T.P.; Project Administration, S.H. and R.S.B.; Supervision, S.H. and R.S.B. Co-first authors Author contributions |
ORCID | 0000-0003-4461-0778 0000-0002-0625-1631 0000-0001-5580-5998 0000-0003-2954-2789 0000-0001-5524-0739 0000-0002-2737-9810 0000-0002-6872-625X |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9103411 |
PMID | 35273342 |
PQID | 2658409551 |
PQPubID | 30521 |
PageCount | 11 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9103411 proquest_miscellaneous_2638727028 proquest_journals_2658409551 pubmed_primary_35273342 crossref_citationtrail_10_1038_s41375_022_01536_x crossref_primary_10_1038_s41375_022_01536_x springer_journals_10_1038_s41375_022_01536_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Leukemia |
PublicationTitleAbbrev | Leukemia |
PublicationTitleAlternate | Leukemia |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | KimESEnasidenib: first global approvalDrugs2017771705111:CAS:528:DC%2BC2sXhsVyrt7zJ2887954010.1007/s40265-017-0813-2 SteinEMDiNardoCDFathiATPollyeaDAStoneRMAltmanJKMolecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenibBlood2019133676871:CAS:528:DC%2BC1MXos1Wktrw%3D30510081638418910.1182/blood-2018-08-869008 NorsworthyKJLuoLHsuVGudiRDorffSEPrzepiorkaDFDA approval summary: ivosidenib for relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-1 mutationClin Cancer Res201925320591:CAS:528:DC%2BB3cXhsFSktLvL3069209910.1158/1078-0432.CCR-18-3749 EllegastJMRauchPJKovtonyukLVMullerRWagnerUSaitoYinv(16) and NPM1mut AMLs engraft human cytokine knock-in miceBlood2016128213041:CAS:528:DC%2BC2sXhtlKlurY%3D27581357508460610.1182/blood-2015-12-689356 LiHHandsakerBWysokerAFennellTRuanJHomerNThe sequence alignment/map format and SAMtoolsBioinformatics2009252078919505943272300210.1093/bioinformatics/btp352 AmatangeloMDQuekLShihASteinEMRoshalMDavidMDEnasidenib induces acute myeloid leukemia cell differentiation to promote clinical responseBlood2017130732411:CAS:528:DC%2BC2sXitVSku77F28588019555357810.1182/blood-2017-04-779447 Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. 2017;9:eaal2463. SulkowskiPLSundaramRKOeckSCorsoCDLiuYNoorbakhshSKrebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repairNat Genet2018501086921:CAS:528:DC%2BC1cXhtlCmt7zJ30013182607257910.1038/s41588-018-0170-4 MolenaarRJRadivoyevitchTNagataYKhurshedMPrzychodzenBMakishimaHIDH1/2 Mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitorsClin Cancer Res2018241705151:CAS:528:DC%2BC1cXmvVejtL0%3D29339439588473210.1158/1078-0432.CCR-17-2796 RongvauxATakizawaHStrowigTWillingerTEynonEEFlavellRAHuman hemato-lymphoid system mice: current use and future potential for medicineAnnu Rev Immunol201331635741:CAS:528:DC%2BC3sXnsFClsbY%3D23330956412019110.1146/annurev-immunol-032712-095921 WangYWildATTurcanSWuWHSigelCKlimstraDSTargeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomasSci Adv20206eaaz32211:CAS:528:DC%2BB3cXitFGnsrfI32494639717640910.1126/sciadv.aaz3221 LiHDurbinRFast and accurate long-read alignment with Burrows-Wheeler transformBioinformatics2010265899520080505282810810.1093/bioinformatics/btp698 ShihabHAGoughJCooperDNStensonPDBarkerGLEdwardsKJPredicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov modelsHum Mutat20133457651:CAS:528:DC%2BC3sXit1aq2303331610.1002/humu.22225 QuekLDavidMDKennedyAMetznerMAmatangeloMShihAClonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenibNat Med2018241167771:CAS:528:DC%2BC1cXhtlCmt7%2FK30013198692597410.1038/s41591-018-0115-6 DickJEStem cell concepts renew cancer researchBlood200811247938071:CAS:528:DC%2BD1cXhsFWmtr3M1906473910.1182/blood-2008-08-077941 TateishiKHiguchiFMillerJJKoernerMVALelicNShankarGMThe alkylating chemotherapeutic temozolomide induces metabolic stress in IDH1-mutant cancers and potentiates NAD(+) depletion-mediated cytotoxicityCancer Res2017774102151:CAS:528:DC%2BC2sXht1GhurrK28625978578355910.1158/0008-5472.CAN-16-2263 LosmanJAKaelinWGJrWhat a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancerGenes Dev201327836521:CAS:528:DC%2BC3sXnsl2gtro%3D23630074365022210.1101/gad.217406.113 Madala HR, Punganuru SR, Arutla V, Misra S, Thomas TJ, Srivenugopal KS. Beyond brooding on oncometabolic havoc in IDH-mutant gliomas and AML: current and future therapeutic strategies. Cancers. 2018;10:49. Showalter MR, Hatakeyama J, Cajka T, VanderVorst K, Carraway KL, Fiehn O, et al. Replication study: the common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Elife. 2017;6:e26030. XuWYangHLiuYYangYWangPKimSHOncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenasesCancer Cell20111917301:CAS:528:DC%2BC3MXpvValsQ%3D%3D21251613322930410.1016/j.ccr.2010.12.014 DiNardoCDJabbourERavandiFTakahashiKDaverNRoutbortMIDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progressionLeukemia20163098041:CAS:528:DC%2BC2MXhsVWgsL3O2622881410.1038/leu.2015.211 SaitoYEllegastJMRafieiASongYKullDHeikenwalderMPeripheral blood CD34(+) cells efficiently engraft human cytokine knock-in miceBlood20161281829331:CAS:528:DC%2BC2sXhtlSiu7Y%3D27543436505469610.1182/blood-2015-10-676452 MolenaarRJRadivoyevitchTMaciejewskiJPvan NoordenCJBleekerFEThe driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongationBiochim Biophys Acta20141846326411:CAS:528:DC%2BC2cXhsVKnt77K24880135 ShihAHMeydanCShankKGarrett-BakelmanFEWardPSIntlekoferAMCombination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2- and TET2-mutant acute myeloid leukemiaCancer Disco201774945051:CAS:528:DC%2BC2sXmvFemu7s%3D10.1158/2159-8290.CD-16-1049 SongYRongvauxATaylorAJiangTTebaldiTBalasubramanianKA highly efficient and faithful MDS patient-derived xenotransplantation model for pre-clinical studiesNat Commun2019101:CAS:528:DC%2BC1MXntFeksbc%3D30664659634112210.1038/s41467-018-08166-x RobinsonJTThorvaldsdottirHWengerAMZehirAMesirovJPVariant review with the integrative genomics viewerCancer Res201777e3141:CAS:528:DC%2BC2sXhslOltbjE29092934567898910.1158/0008-5472.CAN-17-0337 SulkowskiPLOeckSDowJEconomosNGMirfakhraieLLiuYOncometabolites suppress DNA repair by disrupting local chromatin signallingNature2020582586911:CAS:528:DC%2BB3cXhtVyhsrrN32494005731989610.1038/s41586-020-2363-0 BonnetDDickJEHuman acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cellNat Med1997373071:CAS:528:DyaK2sXkt1GrtLY%3D921209810.1038/nm0797-730 SaitoYUchidaNTanakaSSuzukiNTomizawa-MurasawaMSoneAInduction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AMLNat Biotechnol201028275801:CAS:528:DC%2BC3cXitVWnsLk%3D2016071710.1038/nbt.1607 ChoeSWangHDiNardoCDSteinEMde BottonSRobozGJMolecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AMLBlood Adv2020418949051:CAS:528:DC%2BB3cXis12ksbvI32380538721842010.1182/bloodadvances.2020001503 RakhejaDMedeirosLJBevanSChenWThe emerging role of d-2-hydroxyglutarate as an oncometabolite in hematolymphoid and central nervous system neoplasmsFront Oncol2013316923847760369846110.3389/fonc.2013.00169 RongvauxAWillingerTMartinekJStrowigTGeartySVTeichmannLLDevelopment and function of human innate immune cells in a humanized mouse modelNat Biotechnol201432364721:CAS:528:DC%2BC2cXktlGmur4%3D24633240401758910.1038/nbt.2858 WangKLiMHakonarsonHANNOVAR: functional annotation of genetic variants from high-throughput sequencing dataNucleic Acids Res201038e16420601685293820110.1093/nar/gkq603 HardingJJLoweryMAShihAHSchvartzmanJMHouSFamulareCIsoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibitionCancer Disco20188154071:CAS:528:DC%2BB3cXhtFOms7rM10.1158/2159-8290.CD-18-0877 UpadhyayVABrunnerAMFathiATIsocitrate dehydrogenase (IDH) inhibition as treatment of myeloid malignancies: Progress and future directionsPharm Ther201717712381:CAS:528:DC%2BC2sXmvFCntL4%3D10.1016/j.pharmthera.2017.03.003 WangHYTangKLiangTYZhangWZLiJYWangWThe comparison of clinical and biological characteristics between IDH1 and IDH2 mutations in gliomasJ Exp Clin Cancer Res201635861:CAS:528:DC%2BB3cXisVamurjE27245697488866810.1186/s13046-016-0362-7 WingettSWAndrewsSFastQ screen: a tool for multi-genome mapping and quality controlF1000Res20187133830254741612437710.12688/f1000research.15931.1 QuinlanARHallIMBEDTools: a flexible suite of utilities for comparing genomic featuresBioinformatics20102684121:CAS:528:DC%2BC3cXivFGkurc%3D20110278283282410.1093/bioinformatics/btq033 LapidotTSirardCVormoorJMurdochBHoangTCaceres-CortesJA cell initiating human acute myeloid leukaemia after transplantation into SCID miceNature199436764581:STN:280:DyaK2c7ltVKrsg%3D%3D750904410.1038/367645a0 IntlekoferAMShihAHWangBNazirARustenburgASAlbaneseSKAcquired resistance to IDH inhibition through trans or cis dimer-interface mutationsNature201855912591:CAS:528:DC%2BC1cXht1eisrzF29950729612171810.1038/s41586-018-0251-7 ClarkOYenKMellinghoffIKMolecular pathways: isocitrate dehydrogenase mutations in cancerClin Cancer Res2016221837421:CAS:528:DC%2BC28XmsFeqsrg%3D26819452483426610.1158/1078-0432.CCR-13-1333 TateJGBamfordSJubbHCSondkaZBeareDMBindalNCOSMIC: the catalogue of somatic mutations in cancerNucleic Acids Res201947D94171:CAS:528:DC%2BC1MXhs1Cgt7bM3037187810.1093/nar/gky1015 WinerESStoneRMNovel therapy in Acute myeloid leukemia (AML): moving toward targeted approachesTher Adv Hematol20191020406207198606451:CAS:528:DC%2BB3cXitVanuw%3D%3D31321011662491010.1177/2040620719860645 PhilipBYuDXSilvisMRShinCHRobinsonJPRobinsonGLMutant IDH1 promotes glioma formation in vivoCell Rep2018231553641:CAS:528:DC%2BC1cXosl2nu7s%3D29719265603297410.1016/j.celrep.2018.03.133 LiuXGongYIsocitrate dehydrogenase inhibitors in acute myeloid leukemiaBiomark Res201971:CAS:528:DC%2BC1cXisFSgur7J31660152680651010.1186/s40364-019-0173-z Benjamin D, Sato T, Cibulskis K, Getz G, Stewart C, Lichtenstein L. Calling somatic SNVs and indels with Mutect2. bioRxiv 2019. https://doi.org/10.1101/861054. LuYKwintkiewiczJLiuYTechKFradyLNSuYTChemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repairCancer Res2017771709181:CAS:528:DC%2BC2sXltlyjtr8%3D28202508538048110.1158/0008-5472.CAN-16-2773 SW Wingett (1536_CR27) 2018; 7 ES Winer (1536_CR2) 2019; 10 RJ Molenaar (1536_CR8) 2014; 1846 W Xu (1536_CR7) 2011; 19 PL Sulkowski (1536_CR21) 2018; 50 JG Tate (1536_CR34) 2019; 47 D Bonnet (1536_CR41) 1997; 3 T Lapidot (1536_CR40) 1994; 367 JE Dick (1536_CR46) 2008; 112 AH Shih (1536_CR25) 2017; 7 1536_CR31 O Clark (1536_CR3) 2016; 22 HA Shihab (1536_CR33) 2013; 34 X Liu (1536_CR12) 2019; 7 JJ Harding (1536_CR17) 2018; 8 PL Sulkowski (1536_CR20) 2020; 582 B Philip (1536_CR23) 2018; 23 CD DiNardo (1536_CR4) 2016; 30 A Rongvaux (1536_CR26) 2014; 32 1536_CR1 ES Kim (1536_CR11) 2017; 77 1536_CR19 HY Wang (1536_CR42) 2016; 35 H Li (1536_CR28) 2010; 26 A Rongvaux (1536_CR45) 2013; 31 Y Saito (1536_CR36) 2016; 128 Y Wang (1536_CR9) 2020; 6 Y Saito (1536_CR47) 2010; 28 H Li (1536_CR29) 2009; 25 Y Song (1536_CR24) 2019; 10 MD Amatangelo (1536_CR14) 2017; 130 Y Lu (1536_CR38) 2017; 77 JT Robinson (1536_CR35) 2017; 77 L Quek (1536_CR16) 2018; 24 1536_CR44 JA Losman (1536_CR5) 2013; 27 D Rakheja (1536_CR6) 2013; 3 K Wang (1536_CR32) 2010; 38 S Choe (1536_CR15) 2020; 4 AR Quinlan (1536_CR30) 2010; 26 JM Ellegast (1536_CR37) 2016; 128 KJ Norsworthy (1536_CR10) 2019; 25 AM Intlekofer (1536_CR18) 2018; 559 K Tateishi (1536_CR39) 2017; 77 RJ Molenaar (1536_CR22) 2018; 24 EM Stein (1536_CR43) 2019; 133 VA Upadhyay (1536_CR13) 2017; 177 |
References_xml | – reference: XuWYangHLiuYYangYWangPKimSHOncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenasesCancer Cell20111917301:CAS:528:DC%2BC3MXpvValsQ%3D%3D21251613322930410.1016/j.ccr.2010.12.014 – reference: ClarkOYenKMellinghoffIKMolecular pathways: isocitrate dehydrogenase mutations in cancerClin Cancer Res2016221837421:CAS:528:DC%2BC28XmsFeqsrg%3D26819452483426610.1158/1078-0432.CCR-13-1333 – reference: LapidotTSirardCVormoorJMurdochBHoangTCaceres-CortesJA cell initiating human acute myeloid leukaemia after transplantation into SCID miceNature199436764581:STN:280:DyaK2c7ltVKrsg%3D%3D750904410.1038/367645a0 – reference: WinerESStoneRMNovel therapy in Acute myeloid leukemia (AML): moving toward targeted approachesTher Adv Hematol20191020406207198606451:CAS:528:DC%2BB3cXitVanuw%3D%3D31321011662491010.1177/2040620719860645 – reference: RongvauxAWillingerTMartinekJStrowigTGeartySVTeichmannLLDevelopment and function of human innate immune cells in a humanized mouse modelNat Biotechnol201432364721:CAS:528:DC%2BC2cXktlGmur4%3D24633240401758910.1038/nbt.2858 – reference: MolenaarRJRadivoyevitchTNagataYKhurshedMPrzychodzenBMakishimaHIDH1/2 Mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitorsClin Cancer Res2018241705151:CAS:528:DC%2BC1cXmvVejtL0%3D29339439588473210.1158/1078-0432.CCR-17-2796 – reference: MolenaarRJRadivoyevitchTMaciejewskiJPvan NoordenCJBleekerFEThe driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongationBiochim Biophys Acta20141846326411:CAS:528:DC%2BC2cXhsVKnt77K24880135 – reference: HardingJJLoweryMAShihAHSchvartzmanJMHouSFamulareCIsoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibitionCancer Disco20188154071:CAS:528:DC%2BB3cXhtFOms7rM10.1158/2159-8290.CD-18-0877 – reference: AmatangeloMDQuekLShihASteinEMRoshalMDavidMDEnasidenib induces acute myeloid leukemia cell differentiation to promote clinical responseBlood2017130732411:CAS:528:DC%2BC2sXitVSku77F28588019555357810.1182/blood-2017-04-779447 – reference: LiuXGongYIsocitrate dehydrogenase inhibitors in acute myeloid leukemiaBiomark Res201971:CAS:528:DC%2BC1cXisFSgur7J31660152680651010.1186/s40364-019-0173-z – reference: RongvauxATakizawaHStrowigTWillingerTEynonEEFlavellRAHuman hemato-lymphoid system mice: current use and future potential for medicineAnnu Rev Immunol201331635741:CAS:528:DC%2BC3sXnsFClsbY%3D23330956412019110.1146/annurev-immunol-032712-095921 – reference: EllegastJMRauchPJKovtonyukLVMullerRWagnerUSaitoYinv(16) and NPM1mut AMLs engraft human cytokine knock-in miceBlood2016128213041:CAS:528:DC%2BC2sXhtlKlurY%3D27581357508460610.1182/blood-2015-12-689356 – reference: ShihabHAGoughJCooperDNStensonPDBarkerGLEdwardsKJPredicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov modelsHum Mutat20133457651:CAS:528:DC%2BC3sXit1aq2303331610.1002/humu.22225 – reference: SaitoYEllegastJMRafieiASongYKullDHeikenwalderMPeripheral blood CD34(+) cells efficiently engraft human cytokine knock-in miceBlood20161281829331:CAS:528:DC%2BC2sXhtlSiu7Y%3D27543436505469610.1182/blood-2015-10-676452 – reference: Benjamin D, Sato T, Cibulskis K, Getz G, Stewart C, Lichtenstein L. Calling somatic SNVs and indels with Mutect2. bioRxiv 2019. https://doi.org/10.1101/861054. – reference: RobinsonJTThorvaldsdottirHWengerAMZehirAMesirovJPVariant review with the integrative genomics viewerCancer Res201777e3141:CAS:528:DC%2BC2sXhslOltbjE29092934567898910.1158/0008-5472.CAN-17-0337 – reference: Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. 2017;9:eaal2463. – reference: ShihAHMeydanCShankKGarrett-BakelmanFEWardPSIntlekoferAMCombination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2- and TET2-mutant acute myeloid leukemiaCancer Disco201774945051:CAS:528:DC%2BC2sXmvFemu7s%3D10.1158/2159-8290.CD-16-1049 – reference: TateishiKHiguchiFMillerJJKoernerMVALelicNShankarGMThe alkylating chemotherapeutic temozolomide induces metabolic stress in IDH1-mutant cancers and potentiates NAD(+) depletion-mediated cytotoxicityCancer Res2017774102151:CAS:528:DC%2BC2sXht1GhurrK28625978578355910.1158/0008-5472.CAN-16-2263 – reference: SaitoYUchidaNTanakaSSuzukiNTomizawa-MurasawaMSoneAInduction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AMLNat Biotechnol201028275801:CAS:528:DC%2BC3cXitVWnsLk%3D2016071710.1038/nbt.1607 – reference: NorsworthyKJLuoLHsuVGudiRDorffSEPrzepiorkaDFDA approval summary: ivosidenib for relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-1 mutationClin Cancer Res201925320591:CAS:528:DC%2BB3cXhsFSktLvL3069209910.1158/1078-0432.CCR-18-3749 – reference: PhilipBYuDXSilvisMRShinCHRobinsonJPRobinsonGLMutant IDH1 promotes glioma formation in vivoCell Rep2018231553641:CAS:528:DC%2BC1cXosl2nu7s%3D29719265603297410.1016/j.celrep.2018.03.133 – reference: LosmanJAKaelinWGJrWhat a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancerGenes Dev201327836521:CAS:528:DC%2BC3sXnsl2gtro%3D23630074365022210.1101/gad.217406.113 – reference: QuinlanARHallIMBEDTools: a flexible suite of utilities for comparing genomic featuresBioinformatics20102684121:CAS:528:DC%2BC3cXivFGkurc%3D20110278283282410.1093/bioinformatics/btq033 – reference: TateJGBamfordSJubbHCSondkaZBeareDMBindalNCOSMIC: the catalogue of somatic mutations in cancerNucleic Acids Res201947D94171:CAS:528:DC%2BC1MXhs1Cgt7bM3037187810.1093/nar/gky1015 – reference: LuYKwintkiewiczJLiuYTechKFradyLNSuYTChemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repairCancer Res2017771709181:CAS:528:DC%2BC2sXltlyjtr8%3D28202508538048110.1158/0008-5472.CAN-16-2773 – reference: BonnetDDickJEHuman acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cellNat Med1997373071:CAS:528:DyaK2sXkt1GrtLY%3D921209810.1038/nm0797-730 – reference: SulkowskiPLSundaramRKOeckSCorsoCDLiuYNoorbakhshSKrebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repairNat Genet2018501086921:CAS:528:DC%2BC1cXhtlCmt7zJ30013182607257910.1038/s41588-018-0170-4 – reference: SongYRongvauxATaylorAJiangTTebaldiTBalasubramanianKA highly efficient and faithful MDS patient-derived xenotransplantation model for pre-clinical studiesNat Commun2019101:CAS:528:DC%2BC1MXntFeksbc%3D30664659634112210.1038/s41467-018-08166-x – reference: WingettSWAndrewsSFastQ screen: a tool for multi-genome mapping and quality controlF1000Res20187133830254741612437710.12688/f1000research.15931.1 – reference: Showalter MR, Hatakeyama J, Cajka T, VanderVorst K, Carraway KL, Fiehn O, et al. Replication study: the common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Elife. 2017;6:e26030. – reference: LiHHandsakerBWysokerAFennellTRuanJHomerNThe sequence alignment/map format and SAMtoolsBioinformatics2009252078919505943272300210.1093/bioinformatics/btp352 – reference: DickJEStem cell concepts renew cancer researchBlood200811247938071:CAS:528:DC%2BD1cXhsFWmtr3M1906473910.1182/blood-2008-08-077941 – reference: ChoeSWangHDiNardoCDSteinEMde BottonSRobozGJMolecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AMLBlood Adv2020418949051:CAS:528:DC%2BB3cXis12ksbvI32380538721842010.1182/bloodadvances.2020001503 – reference: DiNardoCDJabbourERavandiFTakahashiKDaverNRoutbortMIDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progressionLeukemia20163098041:CAS:528:DC%2BC2MXhsVWgsL3O2622881410.1038/leu.2015.211 – reference: UpadhyayVABrunnerAMFathiATIsocitrate dehydrogenase (IDH) inhibition as treatment of myeloid malignancies: Progress and future directionsPharm Ther201717712381:CAS:528:DC%2BC2sXmvFCntL4%3D10.1016/j.pharmthera.2017.03.003 – reference: WangYWildATTurcanSWuWHSigelCKlimstraDSTargeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomasSci Adv20206eaaz32211:CAS:528:DC%2BB3cXitFGnsrfI32494639717640910.1126/sciadv.aaz3221 – reference: QuekLDavidMDKennedyAMetznerMAmatangeloMShihAClonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenibNat Med2018241167771:CAS:528:DC%2BC1cXhtlCmt7%2FK30013198692597410.1038/s41591-018-0115-6 – reference: SteinEMDiNardoCDFathiATPollyeaDAStoneRMAltmanJKMolecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenibBlood2019133676871:CAS:528:DC%2BC1MXos1Wktrw%3D30510081638418910.1182/blood-2018-08-869008 – reference: IntlekoferAMShihAHWangBNazirARustenburgASAlbaneseSKAcquired resistance to IDH inhibition through trans or cis dimer-interface mutationsNature201855912591:CAS:528:DC%2BC1cXht1eisrzF29950729612171810.1038/s41586-018-0251-7 – reference: KimESEnasidenib: first global approvalDrugs2017771705111:CAS:528:DC%2BC2sXhsVyrt7zJ2887954010.1007/s40265-017-0813-2 – reference: WangHYTangKLiangTYZhangWZLiJYWangWThe comparison of clinical and biological characteristics between IDH1 and IDH2 mutations in gliomasJ Exp Clin Cancer Res201635861:CAS:528:DC%2BB3cXisVamurjE27245697488866810.1186/s13046-016-0362-7 – reference: RakhejaDMedeirosLJBevanSChenWThe emerging role of d-2-hydroxyglutarate as an oncometabolite in hematolymphoid and central nervous system neoplasmsFront Oncol2013316923847760369846110.3389/fonc.2013.00169 – reference: SulkowskiPLOeckSDowJEconomosNGMirfakhraieLLiuYOncometabolites suppress DNA repair by disrupting local chromatin signallingNature2020582586911:CAS:528:DC%2BB3cXhtVyhsrrN32494005731989610.1038/s41586-020-2363-0 – reference: LiHDurbinRFast and accurate long-read alignment with Burrows-Wheeler transformBioinformatics2010265899520080505282810810.1093/bioinformatics/btp698 – reference: Madala HR, Punganuru SR, Arutla V, Misra S, Thomas TJ, Srivenugopal KS. Beyond brooding on oncometabolic havoc in IDH-mutant gliomas and AML: current and future therapeutic strategies. Cancers. 2018;10:49. – reference: WangKLiMHakonarsonHANNOVAR: functional annotation of genetic variants from high-throughput sequencing dataNucleic Acids Res201038e16420601685293820110.1093/nar/gkq603 – ident: 1536_CR19 doi: 10.1126/scitranslmed.aal2463 – volume: 30 start-page: 980 year: 2016 ident: 1536_CR4 publication-title: Leukemia doi: 10.1038/leu.2015.211 – volume: 35 start-page: 86 year: 2016 ident: 1536_CR42 publication-title: J Exp Clin Cancer Res doi: 10.1186/s13046-016-0362-7 – volume: 582 start-page: 586 year: 2020 ident: 1536_CR20 publication-title: Nature doi: 10.1038/s41586-020-2363-0 – volume: 112 start-page: 4793 year: 2008 ident: 1536_CR46 publication-title: Blood doi: 10.1182/blood-2008-08-077941 – volume: 26 start-page: 589 year: 2010 ident: 1536_CR28 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp698 – volume: 24 start-page: 1167 year: 2018 ident: 1536_CR16 publication-title: Nat Med doi: 10.1038/s41591-018-0115-6 – volume: 34 start-page: 57 year: 2013 ident: 1536_CR33 publication-title: Hum Mutat doi: 10.1002/humu.22225 – volume: 25 start-page: 3205 year: 2019 ident: 1536_CR10 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-18-3749 – ident: 1536_CR31 doi: 10.1101/861054 – volume: 28 start-page: 275 year: 2010 ident: 1536_CR47 publication-title: Nat Biotechnol doi: 10.1038/nbt.1607 – volume: 6 start-page: eaaz3221 year: 2020 ident: 1536_CR9 publication-title: Sci Adv doi: 10.1126/sciadv.aaz3221 – volume: 3 start-page: 169 year: 2013 ident: 1536_CR6 publication-title: Front Oncol doi: 10.3389/fonc.2013.00169 – volume: 177 start-page: 123 year: 2017 ident: 1536_CR13 publication-title: Pharm Ther doi: 10.1016/j.pharmthera.2017.03.003 – volume: 47 start-page: D941 year: 2019 ident: 1536_CR34 publication-title: Nucleic Acids Res doi: 10.1093/nar/gky1015 – volume: 50 start-page: 1086 year: 2018 ident: 1536_CR21 publication-title: Nat Genet doi: 10.1038/s41588-018-0170-4 – volume: 38 start-page: e164 year: 2010 ident: 1536_CR32 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkq603 – volume: 133 start-page: 676 year: 2019 ident: 1536_CR43 publication-title: Blood doi: 10.1182/blood-2018-08-869008 – volume: 128 start-page: 1829 year: 2016 ident: 1536_CR36 publication-title: Blood doi: 10.1182/blood-2015-10-676452 – volume: 7 start-page: 1338 year: 2018 ident: 1536_CR27 publication-title: F1000Res doi: 10.12688/f1000research.15931.1 – volume: 26 start-page: 841 year: 2010 ident: 1536_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – volume: 77 start-page: e31 year: 2017 ident: 1536_CR35 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0337 – volume: 32 start-page: 364 year: 2014 ident: 1536_CR26 publication-title: Nat Biotechnol doi: 10.1038/nbt.2858 – volume: 7 year: 2019 ident: 1536_CR12 publication-title: Biomark Res doi: 10.1186/s40364-019-0173-z – volume: 128 start-page: 2130 year: 2016 ident: 1536_CR37 publication-title: Blood doi: 10.1182/blood-2015-12-689356 – volume: 27 start-page: 836 year: 2013 ident: 1536_CR5 publication-title: Genes Dev doi: 10.1101/gad.217406.113 – volume: 8 start-page: 1540 year: 2018 ident: 1536_CR17 publication-title: Cancer Disco doi: 10.1158/2159-8290.CD-18-0877 – ident: 1536_CR44 doi: 10.3390/cancers10020049 – volume: 19 start-page: 17 year: 2011 ident: 1536_CR7 publication-title: Cancer Cell doi: 10.1016/j.ccr.2010.12.014 – volume: 24 start-page: 1705 year: 2018 ident: 1536_CR22 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-2796 – volume: 367 start-page: 645 year: 1994 ident: 1536_CR40 publication-title: Nature doi: 10.1038/367645a0 – volume: 22 start-page: 1837 year: 2016 ident: 1536_CR3 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-13-1333 – volume: 559 start-page: 125 year: 2018 ident: 1536_CR18 publication-title: Nature doi: 10.1038/s41586-018-0251-7 – volume: 10 year: 2019 ident: 1536_CR24 publication-title: Nat Commun doi: 10.1038/s41467-018-08166-x – volume: 77 start-page: 4102 year: 2017 ident: 1536_CR39 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-16-2263 – volume: 1846 start-page: 326 year: 2014 ident: 1536_CR8 publication-title: Biochim Biophys Acta – volume: 130 start-page: 732 year: 2017 ident: 1536_CR14 publication-title: Blood doi: 10.1182/blood-2017-04-779447 – volume: 31 start-page: 635 year: 2013 ident: 1536_CR45 publication-title: Annu Rev Immunol doi: 10.1146/annurev-immunol-032712-095921 – volume: 23 start-page: 1553 year: 2018 ident: 1536_CR23 publication-title: Cell Rep doi: 10.1016/j.celrep.2018.03.133 – volume: 10 start-page: 204062071986064 year: 2019 ident: 1536_CR2 publication-title: Ther Adv Hematol doi: 10.1177/2040620719860645 – volume: 7 start-page: 494 year: 2017 ident: 1536_CR25 publication-title: Cancer Disco doi: 10.1158/2159-8290.CD-16-1049 – volume: 77 start-page: 1709 year: 2017 ident: 1536_CR38 publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-16-2773 – ident: 1536_CR1 doi: 10.7554/eLife.26030 – volume: 77 start-page: 1705 year: 2017 ident: 1536_CR11 publication-title: Drugs doi: 10.1007/s40265-017-0813-2 – volume: 3 start-page: 730 year: 1997 ident: 1536_CR41 publication-title: Nat Med doi: 10.1038/nm0797-730 – volume: 4 start-page: 1894 year: 2020 ident: 1536_CR15 publication-title: Blood Adv doi: 10.1182/bloodadvances.2020001503 – volume: 25 start-page: 2078 year: 2009 ident: 1536_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp352 |
SSID | ssj0014766 |
Score | 2.4850535 |
Snippet | Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such... Treatment options for patients with relapsed/ refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1313 |
SubjectTerms | 13/100 13/106 13/109 13/21 13/31 13/51 45 45/23 64 64/60 692/699/1541/1990/1673 692/699/1541/1990/283/1897 Acute myeloid leukemia Anticancer properties Cancer Research Critical Care Medicine Enzyme Inhibitors - pharmacology Epigenetics Hematology Homologous recombination Homology Humans Inhibitors Intensive Internal Medicine Isocitrate dehydrogenase Isocitrate Dehydrogenase - genetics Isocitrate Dehydrogenase - metabolism Leukemia Leukemia, Myeloid, Acute - drug therapy Leukemia, Myeloid, Acute - genetics Medicine Medicine & Public Health Mutants Mutation Myelodysplastic syndrome Myelodysplastic syndromes Myelodysplastic Syndromes - drug therapy Myelodysplastic Syndromes - genetics Oncology Patients Poly(ADP-ribose) polymerase Poly(ADP-ribose) Polymerase Inhibitors - pharmacology Poly(ADP-ribose) Polymerase Inhibitors - therapeutic use Recurrence Ribose Thermal resistance Transplantation Tumors Xenografts |
Title | In vivo anti-tumor effect of PARP inhibition in IDH1/2 mutant MDS/AML resistant to targeted inhibitors of mutant IDH1/2 |
URI | https://link.springer.com/article/10.1038/s41375-022-01536-x https://www.ncbi.nlm.nih.gov/pubmed/35273342 https://www.proquest.com/docview/2658409551 https://www.proquest.com/docview/2638727028 https://pubmed.ncbi.nlm.nih.gov/PMC9103411 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb5wwELbaRKp6idI3SRq5Um8t2mAbDKdqm4c2VTdapY20N4RfClIDyS6b5Od3BgzRNmouCPADzMzY3zDjGUI-y0JpFqdZGCsuQ2FNEqaCydABdrBZYjJZtN4WZ8nkQvyYx3P_w23p3Sr7ObGdqE2t8R_5iOFSifHSom_XNyFmjULrqk-h8ZxsYugy5Go5HxSuSMjOVomClICi4TfNHPB0tITJW-LeZHRMiHkS3q8vTI_Q5mOnyX8sp-2CdLJNtjySpOOO9K_IM1u9Ji-m3lb-htydVvS2vK0pfLsybFZX9YJ23hu0dnQ2Pp_RsrosVeuzBaf09GgSjRi9WmFiYTo9-jUaT39SUMcRYsKdpqad37g1fct6scTOfJOug7fk4uT49-Ek9GkWQi2kaEBOsrhgkRFJEZusAP1OFNKozEonGcMLpQE1pE7rg0hb5YSMHZAQkCXoz4Bv3pGNqq7sB0KBurC-cae00EIZl7kiNYlyPOHCCGYCEvXfONc-BjmmwviTt7ZwnuYdXXKgS97SJb8PyJehzXUXgePJ2ns96XIvjcv8gXcC8mkoBjlC40hR2XqFdXgqcXNeGpD3HaWHx3GMUscFC4hc44GhAsboXi-pyss2VjegMcAJ8NyvPbc8vNb_R7Hz9Ch2yUvWci76Xe6RjWaxsh8BGzVqvxUAOKaH0T7Z_H58Njv_C1WzC58 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADB5VRQIuiHdTCgwSnCDaZmaSSQ4IrbpUu3S3qqCVeguZlxqJJu1uti1_it-InVe1VPTWWx4zedke2_Fnm5D3MlOahXHih4pLX1gT-bFg0ndgO9gkMonMarTFfjQ-Et-Ow-M18qfLhUFYZbcm1gu1KTX-Ix8wVJVYLy34cnbuY9cojK52LTQattizvy_BZVt8noyAvh8Y2_16uDP2264CvhZSVMAWSZixwIgoC02SgTsjMmlUYqWTjOGO0qAkY6f1dqCtckKGDp4YDClwFxMsvgRL_j3BQTQxM32nh5QEQjaxURTcCBybNklnm8eDBSgLibnQCIQIeeRfrSrCG9btTZDmP5HaWgHuPiaPWsuVDhtWe0LWbPGU3J-1sfln5HJS0Iv8oqRAq9yvlqflnDZoEVo6ejD8fkDz4iRXNUYMNulkNA4GjJ4usZExnY1-DIazKQX3H01aOFKVtMGpW9PNLOcLvFg7pbnAc3J0JwR4QdaLsrAbhAI3gT7lTmmhhTIucVlsIuV4xIURzHgk6L5xqtua59h641dax955nDZ0SYEuaU2X9MojH_s5Z03Fj1tHb3WkS1vpX6TXvOqRd_1pkFsMxmSFLZc4hscSkwFjj7xsKN3fjmNVPC6YR-QKD_QDsCb46pkiP6lrg4P1B3YJ3PdTxy3Xj_X_t9i8_S3ekgfjw9k0nU72916Rh6zmYsR8bpH1ar60r8Euq9SbWhgo-XnX0vcX5LFFIw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlVcEOUZKGAkOEGUxnbi5IDQqstql3arFVCpt5D4oUaiSbvJtuWv8euYyataKnrrLYnt2M7MeMaZzzOEvJNpplgQxW6QcekKo0M3Eky6FmwHE4c6lmmDtjgMp0fi63FwvEH-9GdhEFbZr4nNQq1Lhf_IPYaqEuOl-Z7tYBGL8eTz2bmLGaTQ09qn02hZZN_8voTtW_VpNgZav2ds8uXH3tTtMgy4SkhRA4vEQcp8LcI00HEKWxuRSp3FRlrJGN5kChRmZJXa9ZXJrJCBhdGDUQVbxxgDMcHyf09yGaGMRXsDvMQXsvWTohCHsMnpDuzs8sirQHFIPBeNoIiAh-7VulK8YeneBGz-47VtlOHkIXnQWbF01LLdNtkwxSOyNe_89I_J5aygF_lFSYFuuVuvTsslbZEjtLR0Mfq2oHlxkmcNXgwu6Ww89T1GT1eY1JjOx9-90fyALk2F5i08qUvaYtaN7luWywpf1jVpX_CEHN0JAZ6SzaIszHNCgbNAt3KbKaFEpm1s00iHmeUhF1ow7RC__8aJ6uKfYxqOX0njh-dR0tIlAbokDV2SK4d8GNqctdE_bq2905Mu6VaCKrnmW4e8HYpBhtExkxamXGEdHkk8GBg55FlL6aE7jhHyuGAOkWs8MFTA-ODrJUV-0sQJB0sQbBTo92PPLdfD-v8sXtw-izdkC-QuOZgd7r8k91nDxAj_3CGb9XJlXoGJVmevG1mg5OddC99fQWVJWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+anti-tumor+effect+of+PARP+inhibition+in+IDH1%2F2+mutant+MDS%2FAML+resistant+to+targeted+inhibitors+of+mutant+IDH1%2F2&rft.jtitle=Leukemia&rft.au=Gbyli%2C+Rana&rft.au=Song%2C+Yuanbin&rft.au=Liu%2C+Wei&rft.au=Gao%2C+Yimeng&rft.date=2022-05-01&rft.issn=1476-5551&rft.eissn=1476-5551&rft.volume=36&rft.issue=5&rft.spage=1313&rft_id=info:doi/10.1038%2Fs41375-022-01536-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6924&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6924&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6924&client=summon |