In vivo anti-tumor effect of PARP inhibition in IDH1/2 mutant MDS/AML resistant to targeted inhibitors of mutant IDH1/2

Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme...

Full description

Saved in:
Bibliographic Details
Published inLeukemia Vol. 36; no. 5; pp. 1313 - 1323
Main Authors Gbyli, Rana, Song, Yuanbin, Liu, Wei, Gao, Yimeng, Biancon, Giulia, Chandhok, Namrata S., Wang, Xiaman, Fu, Xiaoying, Patel, Amisha, Sundaram, Ranjini, Tebaldi, Toma, Mamillapalli, Padmavathi, Zeidan, Amer M., Flavell, Richard A., Prebet, Thomas, Bindra, Ranjit S., Halene, Stephanie
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDH m i). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDH m i alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDH m i-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDH m i. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition.
AbstractList Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDHmi). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDHmi alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDHmi-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDHmi. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition.Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDHmi). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDHmi alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDHmi-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDHmi. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition.
Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDH m i). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDH m i alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDH m i-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDH m i. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition.
Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDH i). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDH i alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDH i-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDH i. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition.
Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and -2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDHmi). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDHmi alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect, which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDHmi-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDHmi. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition.
Treatment options for patients with relapsed/ refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such as mutations in isocitrate dehydrogenase-1 and −2 (IDH1/2) are found in subsets of AML and MDS, are therapeutically targeted by mutant enzyme-specific small molecule inhibitors (IDH m i). IDH mutations induce diverse metabolic and epigenetic changes that drive malignant transformation. IDH m i alone are not curative and resistance commonly develops, underscoring the importance of alternate therapeutic options. We were first to report that IDH1/2 mutations induce a homologous recombination (HR) defect which confers sensitivity to poly (ADP)-ribose polymerase inhibitors (PARPi). Here, we show that the PARPi olaparib is effective against primary patient-derived IDH1/2-mutant AML/ MDS xeno-grafts (PDXs). Olaparib efficiently reduced overall engraftment and leukemia-initiating cell frequency as evident in serial transplantation assays in IDH1/2-mutant but not -wildtype AML/MDS PDXs. Importantly, we show that olaparib is effective in both IDH m i-naïve and -resistant AML PDXs, critical given the high relapse and refractoriness rates to IDH m i. Our pre-clinical studies provide a strong rationale for the translation of PARP inhibition to patients with IDH1/2-mutant AML/ MDS, providing an additional line of therapy for patients who do not respond to or relapse after targeted mutant IDH inhibition.
Author Chandhok, Namrata S.
Prebet, Thomas
Song, Yuanbin
Liu, Wei
Biancon, Giulia
Flavell, Richard A.
Gao, Yimeng
Sundaram, Ranjini
Tebaldi, Toma
Wang, Xiaman
Halene, Stephanie
Fu, Xiaoying
Mamillapalli, Padmavathi
Bindra, Ranjit S.
Gbyli, Rana
Patel, Amisha
Zeidan, Amer M.
AuthorAffiliation 3 Section of Hematology, Department of Internal Medicine, University of Miami, Coral Gables, FL, USA
2 Current affiliation: Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510062, China
6 Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
5 Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, P. R. of China
4 Department of Hematology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P. R. of China
7 Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
10 Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT, 06520, USA
9 Department of Pathology, Yale University, New Haven, CT, 06520, USA
1 Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New
AuthorAffiliation_xml – name: 6 Department of Therapeutic Radiology, Yale University, New Haven, CT, 06520, USA
– name: 8 Howard Hughes Medical Institute, Yale University, New Haven, Connecticut, USA
– name: 10 Yale Stem Cell Center and Yale RNA Center, Yale University School of Medicine, New Haven, CT, 06520, USA
– name: 2 Current affiliation: Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510062, China
– name: 3 Section of Hematology, Department of Internal Medicine, University of Miami, Coral Gables, FL, USA
– name: 7 Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
– name: 4 Department of Hematology, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, P. R. of China
– name: 5 Department of Laboratory Medicine, Shenzhen Children’s Hospital, Shenzhen, P. R. of China
– name: 9 Department of Pathology, Yale University, New Haven, CT, 06520, USA
– name: 1 Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, 06520, USA
Author_xml – sequence: 1
  givenname: Rana
  orcidid: 0000-0001-5524-0739
  surname: Gbyli
  fullname: Gbyli, Rana
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine
– sequence: 2
  givenname: Yuanbin
  orcidid: 0000-0001-5580-5998
  surname: Song
  fullname: Song, Yuanbin
  email: Songyb@sysucc.org.cn
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, Department of Hematologic Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine
– sequence: 3
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine
– sequence: 4
  givenname: Yimeng
  orcidid: 0000-0003-2954-2789
  surname: Gao
  fullname: Gao, Yimeng
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine
– sequence: 5
  givenname: Giulia
  surname: Biancon
  fullname: Biancon, Giulia
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine
– sequence: 6
  givenname: Namrata S.
  surname: Chandhok
  fullname: Chandhok, Namrata S.
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, Section of Hematology, Department of Internal Medicine, University of Miami, Sylvester Comprehensive Cancer Center
– sequence: 7
  givenname: Xiaman
  surname: Wang
  fullname: Wang, Xiaman
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, Department of Hematology, the Second Affiliated Hospital of Xi’an Jiaotong University
– sequence: 8
  givenname: Xiaoying
  surname: Fu
  fullname: Fu, Xiaoying
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, Department of Laboratory Medicine, Shenzhen Children’s Hospital
– sequence: 9
  givenname: Amisha
  surname: Patel
  fullname: Patel, Amisha
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine
– sequence: 10
  givenname: Ranjini
  surname: Sundaram
  fullname: Sundaram, Ranjini
  organization: Department of Therapeutic Radiology, Yale University
– sequence: 11
  givenname: Toma
  orcidid: 0000-0002-0625-1631
  surname: Tebaldi
  fullname: Tebaldi, Toma
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento
– sequence: 12
  givenname: Padmavathi
  surname: Mamillapalli
  fullname: Mamillapalli, Padmavathi
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine
– sequence: 13
  givenname: Amer M.
  surname: Zeidan
  fullname: Zeidan, Amer M.
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine
– sequence: 14
  givenname: Richard A.
  orcidid: 0000-0003-4461-0778
  surname: Flavell
  fullname: Flavell, Richard A.
  organization: Department of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute, Yale University
– sequence: 15
  givenname: Thomas
  orcidid: 0000-0002-6872-625X
  surname: Prebet
  fullname: Prebet, Thomas
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine
– sequence: 16
  givenname: Ranjit S.
  surname: Bindra
  fullname: Bindra, Ranjit S.
  organization: Department of Therapeutic Radiology, Yale University, Department of Pathology, Yale University
– sequence: 17
  givenname: Stephanie
  orcidid: 0000-0002-2737-9810
  surname: Halene
  fullname: Halene, Stephanie
  email: stephanie.halene@yale.edu
  organization: Section of Hematology, Department of Internal Medicine and Yale Comprehensive Cancer Center, Yale University School of Medicine, Department of Pathology, Yale University, Yale Stem Cell Center and Yale Center for RNA Science and Medicine, Yale University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35273342$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv3CAUhVGVqpmk_QNdVEjdZOMOYDBmU2mUtM1IEzXqY40wxhMiG1LA0_TfF8czfWSRFY97vqN77zkBR847A8BrjN5hVNbLSHHJWYEIKRBmZVXcPwMLTHlVMMbwEViguuZFJQg9Bicx3iI0FasX4LhkhJclJQvwc-3gzu48VC7ZIo2DD9B0ndEJ-g5er75cQ-tubGOT9S5f4friEi8JHMaUCXh18XW5utrAYKKNDz_Jw6TC1iTTHkgf4mS2R2aDl-B5p_poXu3PU_D944dv55fF5vOn9flqU2jKaSoIEkwR3NJKsVYojjlVvG2E4R0nZHo0WiBcd1ojrE3TUc46rpAQmNe1EOUpeD_73o3NYFptXAqql3fBDir8kl5Z-X_F2Ru59Tsp8oopxtngbG8Q_I_RxCQHG7Xpe-WMH6MkVVlzwhGps_TtI-mtH4PL42UVq2mehU2Gb_7t6E8rh0yyoJ4FOvgYg-mktklN-88N2l5iJKf45Ry_zPHLh_jlfUbJI_Tg_iRUzlDMYrc14W_bT1C_ASIHwVo
CitedBy_id crossref_primary_10_1038_s41419_023_06045_y
crossref_primary_10_1016_j_molcel_2023_05_026
crossref_primary_10_1158_1078_0432_CCR_22_3929
crossref_primary_10_3389_fphar_2024_1421816
crossref_primary_10_3390_cancers14246228
crossref_primary_10_1097_PPO_0000000000000759
crossref_primary_10_1097_PPO_0000000000000665
crossref_primary_10_1200_PO_23_00544
crossref_primary_10_1242_dev_204226
crossref_primary_10_3390_cancers15020458
crossref_primary_10_3390_ijms25147916
crossref_primary_10_1038_s41375_024_02369_6
crossref_primary_10_1007_s12032_024_02575_3
crossref_primary_10_1016_j_exphem_2023_05_005
crossref_primary_10_1042_BST20230017
crossref_primary_10_3389_fphar_2024_1509172
crossref_primary_10_1158_0008_5472_CAN_23_3239
crossref_primary_10_1093_neuonc_noac207
Cites_doi 10.1126/scitranslmed.aal2463
10.1038/leu.2015.211
10.1186/s13046-016-0362-7
10.1038/s41586-020-2363-0
10.1182/blood-2008-08-077941
10.1093/bioinformatics/btp698
10.1038/s41591-018-0115-6
10.1002/humu.22225
10.1158/1078-0432.CCR-18-3749
10.1101/861054
10.1038/nbt.1607
10.1126/sciadv.aaz3221
10.3389/fonc.2013.00169
10.1016/j.pharmthera.2017.03.003
10.1093/nar/gky1015
10.1038/s41588-018-0170-4
10.1093/nar/gkq603
10.1182/blood-2018-08-869008
10.1182/blood-2015-10-676452
10.12688/f1000research.15931.1
10.1093/bioinformatics/btq033
10.1158/0008-5472.CAN-17-0337
10.1038/nbt.2858
10.1186/s40364-019-0173-z
10.1182/blood-2015-12-689356
10.1101/gad.217406.113
10.1158/2159-8290.CD-18-0877
10.3390/cancers10020049
10.1016/j.ccr.2010.12.014
10.1158/1078-0432.CCR-17-2796
10.1038/367645a0
10.1158/1078-0432.CCR-13-1333
10.1038/s41586-018-0251-7
10.1038/s41467-018-08166-x
10.1158/0008-5472.CAN-16-2263
10.1182/blood-2017-04-779447
10.1146/annurev-immunol-032712-095921
10.1016/j.celrep.2018.03.133
10.1177/2040620719860645
10.1158/2159-8290.CD-16-1049
10.1158/0008-5472.CAN-16-2773
10.7554/eLife.26030
10.1007/s40265-017-0813-2
10.1038/nm0797-730
10.1182/bloodadvances.2020001503
10.1093/bioinformatics/btp352
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2022
2022. The Author(s), under exclusive licence to Springer Nature Limited.
The Author(s), under exclusive licence to Springer Nature Limited 2022.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2022
– notice: 2022. The Author(s), under exclusive licence to Springer Nature Limited.
– notice: The Author(s), under exclusive licence to Springer Nature Limited 2022.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7RV
7T5
7T7
7TM
7TO
7U9
7X7
7XB
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7N
M7P
NAPCQ
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.1038/s41375-022-01536-x
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Nursing & Allied Health Database
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Public Health
ProQuest Nursing & Allied Health Source
ProQuest SciTech Collection
ProQuest Medical Library
Immunology Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
ProQuest Central Student

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1476-5551
EndPage 1323
ExternalDocumentID PMC9103411
35273342
10_1038_s41375_022_01536_x
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Science Foundation of China | Young Scientists Fund
  grantid: 81801588
  funderid: https://doi.org/10.13039/501100010909
– fundername: Howard Hughes Medical Institute (HHMI)
  funderid: https://doi.org/10.13039/100000011
– fundername: American Society of Hematology (ASH)
  funderid: https://doi.org/10.13039/100001422
– fundername: Leukemia and Lymphoma Society (Leukemia & Lymphoma Society)
– fundername: Leukemia and Lymphoma Society (Leukemia & Lymphoma Society)
  funderid: https://doi.org/10.13039/100005189
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 82170137
  funderid: https://doi.org/10.13039/501100001809
– fundername: The Frederick A. Deluca Foundation The Vera and Joseph Dresner Foundation Leukemia and Lymphoma Society and the NIH/NCI R01CA266604 NIH/NIDDK R01DK102792
– fundername: NIDDK NIH HHS
  grantid: U54 DK106857
– fundername: NIDDK NIH HHS
  grantid: R01 DK102792
– fundername: NCI NIH HHS
  grantid: R01 CA266604
– fundername: Howard Hughes Medical Institute
GroupedDBID ---
-Q-
.55
.XZ
0R~
29L
2WC
36B
39C
3V.
4.4
406
53G
5GY
5RE
70F
7RV
7X7
88E
8AO
8C1
8FI
8FJ
8R4
8R5
AACDK
AANZL
AAQQT
AASDW
AASML
AATNV
AAWTL
AAYZH
AAZLF
ABAKF
ABAWZ
ABDBF
ABJNI
ABLJU
ABOCM
ABUWG
ABZZP
ACAOD
ACGFO
ACGFS
ACKTT
ACMJI
ACPRK
ACRQY
ACUHS
ACZOJ
ADBBV
ADHDB
AEFQL
AEJRE
AEMSY
AENEX
AEVLU
AEXYK
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGHAI
AGQEE
AHMBA
AHSBF
AIGIU
AILAN
AJRNO
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMYLF
ASPBG
AVWKF
AXYYD
AZFZN
B0M
BAWUL
BBNVY
BENPR
BHPHI
BKEYQ
BKKNO
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
DIK
DNIVK
DPUIP
DU5
E3Z
EAD
EAP
EBC
EBD
EBLON
EBS
EBX
EE.
EIOEI
EJD
EMB
EMK
EMOBN
EPL
ESX
EX3
F5P
FDQFY
FEDTE
FERAY
FIGPU
FIZPM
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
IHW
INH
INR
ITC
IWAJR
JSO
JZLTJ
KQ8
LGEZI
LOTEE
M1P
M7P
N9A
NADUK
NAO
NAPCQ
NQJWS
NXXTH
O9-
OK1
OVD
P2P
P6G
PQQKQ
PROAC
PSQYO
Q2X
RNS
RNT
RNTTT
ROL
SNX
SNYQT
SOHCF
SOJ
SRMVM
SV3
SWTZT
TAOOD
TBHMF
TDRGL
TEORI
TR2
TSG
TUS
UDS
UKHRP
WOW
X7M
Y6R
ZGI
ZXP
~8M
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7T5
7T7
7TM
7TO
7U9
7XB
8FD
8FE
8FH
8FK
ABRTQ
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
LK8
M7N
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
PUEGO
7X8
5PM
ID FETCH-LOGICAL-c474t-2095a21d46a5d9a7174a7db9e7f72274a7bc9018fcc01cebf475f7a0991788993
IEDL.DBID 7X7
ISSN 0887-6924
1476-5551
IngestDate Thu Aug 21 14:06:25 EDT 2025
Fri Jul 11 10:12:36 EDT 2025
Sat Aug 23 14:58:56 EDT 2025
Thu Apr 03 07:00:08 EDT 2025
Tue Jul 01 01:08:11 EDT 2025
Thu Apr 24 23:08:44 EDT 2025
Fri Feb 21 02:37:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 2022. The Author(s), under exclusive licence to Springer Nature Limited.
Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c474t-2095a21d46a5d9a7174a7db9e7f72274a7bc9018fcc01cebf475f7a0991788993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Conceptualization, S.H., R.S.B. and Y.S.; Methodology, S.H., R.G., and Y.S.; Investigation, Y.S., R.G., W.L., Y.G., G.B., X.W., X.F., N.C., R.S., A.P., T.T., and P.M.; Data analysis, Y.S., R.G. and S.H.; Validation, Y.S., R.G., and S.H.; Writing – Original Draft, S.H., R.G., Y.S.; Writing – Review & Editing, S.H., R.S.B., R.G., Y.S.; Funding Acquisition, S.H. and R.S.B.; Resources, R.G., A.P., A.M.Z., R.A.F. and T.P.; Project Administration, S.H. and R.S.B.; Supervision, S.H. and R.S.B.
Co-first authors
Author contributions
ORCID 0000-0003-4461-0778
0000-0002-0625-1631
0000-0001-5580-5998
0000-0003-2954-2789
0000-0001-5524-0739
0000-0002-2737-9810
0000-0002-6872-625X
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9103411
PMID 35273342
PQID 2658409551
PQPubID 30521
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9103411
proquest_miscellaneous_2638727028
proquest_journals_2658409551
pubmed_primary_35273342
crossref_citationtrail_10_1038_s41375_022_01536_x
crossref_primary_10_1038_s41375_022_01536_x
springer_journals_10_1038_s41375_022_01536_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Leukemia
PublicationTitleAbbrev Leukemia
PublicationTitleAlternate Leukemia
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References KimESEnasidenib: first global approvalDrugs2017771705111:CAS:528:DC%2BC2sXhsVyrt7zJ2887954010.1007/s40265-017-0813-2
SteinEMDiNardoCDFathiATPollyeaDAStoneRMAltmanJKMolecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenibBlood2019133676871:CAS:528:DC%2BC1MXos1Wktrw%3D30510081638418910.1182/blood-2018-08-869008
NorsworthyKJLuoLHsuVGudiRDorffSEPrzepiorkaDFDA approval summary: ivosidenib for relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-1 mutationClin Cancer Res201925320591:CAS:528:DC%2BB3cXhsFSktLvL3069209910.1158/1078-0432.CCR-18-3749
EllegastJMRauchPJKovtonyukLVMullerRWagnerUSaitoYinv(16) and NPM1mut AMLs engraft human cytokine knock-in miceBlood2016128213041:CAS:528:DC%2BC2sXhtlKlurY%3D27581357508460610.1182/blood-2015-12-689356
LiHHandsakerBWysokerAFennellTRuanJHomerNThe sequence alignment/map format and SAMtoolsBioinformatics2009252078919505943272300210.1093/bioinformatics/btp352
AmatangeloMDQuekLShihASteinEMRoshalMDavidMDEnasidenib induces acute myeloid leukemia cell differentiation to promote clinical responseBlood2017130732411:CAS:528:DC%2BC2sXitVSku77F28588019555357810.1182/blood-2017-04-779447
Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. 2017;9:eaal2463.
SulkowskiPLSundaramRKOeckSCorsoCDLiuYNoorbakhshSKrebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repairNat Genet2018501086921:CAS:528:DC%2BC1cXhtlCmt7zJ30013182607257910.1038/s41588-018-0170-4
MolenaarRJRadivoyevitchTNagataYKhurshedMPrzychodzenBMakishimaHIDH1/2 Mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitorsClin Cancer Res2018241705151:CAS:528:DC%2BC1cXmvVejtL0%3D29339439588473210.1158/1078-0432.CCR-17-2796
RongvauxATakizawaHStrowigTWillingerTEynonEEFlavellRAHuman hemato-lymphoid system mice: current use and future potential for medicineAnnu Rev Immunol201331635741:CAS:528:DC%2BC3sXnsFClsbY%3D23330956412019110.1146/annurev-immunol-032712-095921
WangYWildATTurcanSWuWHSigelCKlimstraDSTargeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomasSci Adv20206eaaz32211:CAS:528:DC%2BB3cXitFGnsrfI32494639717640910.1126/sciadv.aaz3221
LiHDurbinRFast and accurate long-read alignment with Burrows-Wheeler transformBioinformatics2010265899520080505282810810.1093/bioinformatics/btp698
ShihabHAGoughJCooperDNStensonPDBarkerGLEdwardsKJPredicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov modelsHum Mutat20133457651:CAS:528:DC%2BC3sXit1aq2303331610.1002/humu.22225
QuekLDavidMDKennedyAMetznerMAmatangeloMShihAClonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenibNat Med2018241167771:CAS:528:DC%2BC1cXhtlCmt7%2FK30013198692597410.1038/s41591-018-0115-6
DickJEStem cell concepts renew cancer researchBlood200811247938071:CAS:528:DC%2BD1cXhsFWmtr3M1906473910.1182/blood-2008-08-077941
TateishiKHiguchiFMillerJJKoernerMVALelicNShankarGMThe alkylating chemotherapeutic temozolomide induces metabolic stress in IDH1-mutant cancers and potentiates NAD(+) depletion-mediated cytotoxicityCancer Res2017774102151:CAS:528:DC%2BC2sXht1GhurrK28625978578355910.1158/0008-5472.CAN-16-2263
LosmanJAKaelinWGJrWhat a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancerGenes Dev201327836521:CAS:528:DC%2BC3sXnsl2gtro%3D23630074365022210.1101/gad.217406.113
Madala HR, Punganuru SR, Arutla V, Misra S, Thomas TJ, Srivenugopal KS. Beyond brooding on oncometabolic havoc in IDH-mutant gliomas and AML: current and future therapeutic strategies. Cancers. 2018;10:49.
Showalter MR, Hatakeyama J, Cajka T, VanderVorst K, Carraway KL, Fiehn O, et al. Replication study: the common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Elife. 2017;6:e26030.
XuWYangHLiuYYangYWangPKimSHOncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenasesCancer Cell20111917301:CAS:528:DC%2BC3MXpvValsQ%3D%3D21251613322930410.1016/j.ccr.2010.12.014
DiNardoCDJabbourERavandiFTakahashiKDaverNRoutbortMIDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progressionLeukemia20163098041:CAS:528:DC%2BC2MXhsVWgsL3O2622881410.1038/leu.2015.211
SaitoYEllegastJMRafieiASongYKullDHeikenwalderMPeripheral blood CD34(+) cells efficiently engraft human cytokine knock-in miceBlood20161281829331:CAS:528:DC%2BC2sXhtlSiu7Y%3D27543436505469610.1182/blood-2015-10-676452
MolenaarRJRadivoyevitchTMaciejewskiJPvan NoordenCJBleekerFEThe driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongationBiochim Biophys Acta20141846326411:CAS:528:DC%2BC2cXhsVKnt77K24880135
ShihAHMeydanCShankKGarrett-BakelmanFEWardPSIntlekoferAMCombination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2- and TET2-mutant acute myeloid leukemiaCancer Disco201774945051:CAS:528:DC%2BC2sXmvFemu7s%3D10.1158/2159-8290.CD-16-1049
SongYRongvauxATaylorAJiangTTebaldiTBalasubramanianKA highly efficient and faithful MDS patient-derived xenotransplantation model for pre-clinical studiesNat Commun2019101:CAS:528:DC%2BC1MXntFeksbc%3D30664659634112210.1038/s41467-018-08166-x
RobinsonJTThorvaldsdottirHWengerAMZehirAMesirovJPVariant review with the integrative genomics viewerCancer Res201777e3141:CAS:528:DC%2BC2sXhslOltbjE29092934567898910.1158/0008-5472.CAN-17-0337
SulkowskiPLOeckSDowJEconomosNGMirfakhraieLLiuYOncometabolites suppress DNA repair by disrupting local chromatin signallingNature2020582586911:CAS:528:DC%2BB3cXhtVyhsrrN32494005731989610.1038/s41586-020-2363-0
BonnetDDickJEHuman acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cellNat Med1997373071:CAS:528:DyaK2sXkt1GrtLY%3D921209810.1038/nm0797-730
SaitoYUchidaNTanakaSSuzukiNTomizawa-MurasawaMSoneAInduction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AMLNat Biotechnol201028275801:CAS:528:DC%2BC3cXitVWnsLk%3D2016071710.1038/nbt.1607
ChoeSWangHDiNardoCDSteinEMde BottonSRobozGJMolecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AMLBlood Adv2020418949051:CAS:528:DC%2BB3cXis12ksbvI32380538721842010.1182/bloodadvances.2020001503
RakhejaDMedeirosLJBevanSChenWThe emerging role of d-2-hydroxyglutarate as an oncometabolite in hematolymphoid and central nervous system neoplasmsFront Oncol2013316923847760369846110.3389/fonc.2013.00169
RongvauxAWillingerTMartinekJStrowigTGeartySVTeichmannLLDevelopment and function of human innate immune cells in a humanized mouse modelNat Biotechnol201432364721:CAS:528:DC%2BC2cXktlGmur4%3D24633240401758910.1038/nbt.2858
WangKLiMHakonarsonHANNOVAR: functional annotation of genetic variants from high-throughput sequencing dataNucleic Acids Res201038e16420601685293820110.1093/nar/gkq603
HardingJJLoweryMAShihAHSchvartzmanJMHouSFamulareCIsoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibitionCancer Disco20188154071:CAS:528:DC%2BB3cXhtFOms7rM10.1158/2159-8290.CD-18-0877
UpadhyayVABrunnerAMFathiATIsocitrate dehydrogenase (IDH) inhibition as treatment of myeloid malignancies: Progress and future directionsPharm Ther201717712381:CAS:528:DC%2BC2sXmvFCntL4%3D10.1016/j.pharmthera.2017.03.003
WangHYTangKLiangTYZhangWZLiJYWangWThe comparison of clinical and biological characteristics between IDH1 and IDH2 mutations in gliomasJ Exp Clin Cancer Res201635861:CAS:528:DC%2BB3cXisVamurjE27245697488866810.1186/s13046-016-0362-7
WingettSWAndrewsSFastQ screen: a tool for multi-genome mapping and quality controlF1000Res20187133830254741612437710.12688/f1000research.15931.1
QuinlanARHallIMBEDTools: a flexible suite of utilities for comparing genomic featuresBioinformatics20102684121:CAS:528:DC%2BC3cXivFGkurc%3D20110278283282410.1093/bioinformatics/btq033
LapidotTSirardCVormoorJMurdochBHoangTCaceres-CortesJA cell initiating human acute myeloid leukaemia after transplantation into SCID miceNature199436764581:STN:280:DyaK2c7ltVKrsg%3D%3D750904410.1038/367645a0
IntlekoferAMShihAHWangBNazirARustenburgASAlbaneseSKAcquired resistance to IDH inhibition through trans or cis dimer-interface mutationsNature201855912591:CAS:528:DC%2BC1cXht1eisrzF29950729612171810.1038/s41586-018-0251-7
ClarkOYenKMellinghoffIKMolecular pathways: isocitrate dehydrogenase mutations in cancerClin Cancer Res2016221837421:CAS:528:DC%2BC28XmsFeqsrg%3D26819452483426610.1158/1078-0432.CCR-13-1333
TateJGBamfordSJubbHCSondkaZBeareDMBindalNCOSMIC: the catalogue of somatic mutations in cancerNucleic Acids Res201947D94171:CAS:528:DC%2BC1MXhs1Cgt7bM3037187810.1093/nar/gky1015
WinerESStoneRMNovel therapy in Acute myeloid leukemia (AML): moving toward targeted approachesTher Adv Hematol20191020406207198606451:CAS:528:DC%2BB3cXitVanuw%3D%3D31321011662491010.1177/2040620719860645
PhilipBYuDXSilvisMRShinCHRobinsonJPRobinsonGLMutant IDH1 promotes glioma formation in vivoCell Rep2018231553641:CAS:528:DC%2BC1cXosl2nu7s%3D29719265603297410.1016/j.celrep.2018.03.133
LiuXGongYIsocitrate dehydrogenase inhibitors in acute myeloid leukemiaBiomark Res201971:CAS:528:DC%2BC1cXisFSgur7J31660152680651010.1186/s40364-019-0173-z
Benjamin D, Sato T, Cibulskis K, Getz G, Stewart C, Lichtenstein L. Calling somatic SNVs and indels with Mutect2. bioRxiv 2019. https://doi.org/10.1101/861054.
LuYKwintkiewiczJLiuYTechKFradyLNSuYTChemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repairCancer Res2017771709181:CAS:528:DC%2BC2sXltlyjtr8%3D28202508538048110.1158/0008-5472.CAN-16-2773
SW Wingett (1536_CR27) 2018; 7
ES Winer (1536_CR2) 2019; 10
RJ Molenaar (1536_CR8) 2014; 1846
W Xu (1536_CR7) 2011; 19
PL Sulkowski (1536_CR21) 2018; 50
JG Tate (1536_CR34) 2019; 47
D Bonnet (1536_CR41) 1997; 3
T Lapidot (1536_CR40) 1994; 367
JE Dick (1536_CR46) 2008; 112
AH Shih (1536_CR25) 2017; 7
1536_CR31
O Clark (1536_CR3) 2016; 22
HA Shihab (1536_CR33) 2013; 34
X Liu (1536_CR12) 2019; 7
JJ Harding (1536_CR17) 2018; 8
PL Sulkowski (1536_CR20) 2020; 582
B Philip (1536_CR23) 2018; 23
CD DiNardo (1536_CR4) 2016; 30
A Rongvaux (1536_CR26) 2014; 32
1536_CR1
ES Kim (1536_CR11) 2017; 77
1536_CR19
HY Wang (1536_CR42) 2016; 35
H Li (1536_CR28) 2010; 26
A Rongvaux (1536_CR45) 2013; 31
Y Saito (1536_CR36) 2016; 128
Y Wang (1536_CR9) 2020; 6
Y Saito (1536_CR47) 2010; 28
H Li (1536_CR29) 2009; 25
Y Song (1536_CR24) 2019; 10
MD Amatangelo (1536_CR14) 2017; 130
Y Lu (1536_CR38) 2017; 77
JT Robinson (1536_CR35) 2017; 77
L Quek (1536_CR16) 2018; 24
1536_CR44
JA Losman (1536_CR5) 2013; 27
D Rakheja (1536_CR6) 2013; 3
K Wang (1536_CR32) 2010; 38
S Choe (1536_CR15) 2020; 4
AR Quinlan (1536_CR30) 2010; 26
JM Ellegast (1536_CR37) 2016; 128
KJ Norsworthy (1536_CR10) 2019; 25
AM Intlekofer (1536_CR18) 2018; 559
K Tateishi (1536_CR39) 2017; 77
RJ Molenaar (1536_CR22) 2018; 24
EM Stein (1536_CR43) 2019; 133
VA Upadhyay (1536_CR13) 2017; 177
References_xml – reference: XuWYangHLiuYYangYWangPKimSHOncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenasesCancer Cell20111917301:CAS:528:DC%2BC3MXpvValsQ%3D%3D21251613322930410.1016/j.ccr.2010.12.014
– reference: ClarkOYenKMellinghoffIKMolecular pathways: isocitrate dehydrogenase mutations in cancerClin Cancer Res2016221837421:CAS:528:DC%2BC28XmsFeqsrg%3D26819452483426610.1158/1078-0432.CCR-13-1333
– reference: LapidotTSirardCVormoorJMurdochBHoangTCaceres-CortesJA cell initiating human acute myeloid leukaemia after transplantation into SCID miceNature199436764581:STN:280:DyaK2c7ltVKrsg%3D%3D750904410.1038/367645a0
– reference: WinerESStoneRMNovel therapy in Acute myeloid leukemia (AML): moving toward targeted approachesTher Adv Hematol20191020406207198606451:CAS:528:DC%2BB3cXitVanuw%3D%3D31321011662491010.1177/2040620719860645
– reference: RongvauxAWillingerTMartinekJStrowigTGeartySVTeichmannLLDevelopment and function of human innate immune cells in a humanized mouse modelNat Biotechnol201432364721:CAS:528:DC%2BC2cXktlGmur4%3D24633240401758910.1038/nbt.2858
– reference: MolenaarRJRadivoyevitchTNagataYKhurshedMPrzychodzenBMakishimaHIDH1/2 Mutations sensitize acute myeloid leukemia to PARP inhibition and this is reversed by IDH1/2-mutant inhibitorsClin Cancer Res2018241705151:CAS:528:DC%2BC1cXmvVejtL0%3D29339439588473210.1158/1078-0432.CCR-17-2796
– reference: MolenaarRJRadivoyevitchTMaciejewskiJPvan NoordenCJBleekerFEThe driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongationBiochim Biophys Acta20141846326411:CAS:528:DC%2BC2cXhsVKnt77K24880135
– reference: HardingJJLoweryMAShihAHSchvartzmanJMHouSFamulareCIsoform switching as a mechanism of acquired resistance to mutant isocitrate dehydrogenase inhibitionCancer Disco20188154071:CAS:528:DC%2BB3cXhtFOms7rM10.1158/2159-8290.CD-18-0877
– reference: AmatangeloMDQuekLShihASteinEMRoshalMDavidMDEnasidenib induces acute myeloid leukemia cell differentiation to promote clinical responseBlood2017130732411:CAS:528:DC%2BC2sXitVSku77F28588019555357810.1182/blood-2017-04-779447
– reference: LiuXGongYIsocitrate dehydrogenase inhibitors in acute myeloid leukemiaBiomark Res201971:CAS:528:DC%2BC1cXisFSgur7J31660152680651010.1186/s40364-019-0173-z
– reference: RongvauxATakizawaHStrowigTWillingerTEynonEEFlavellRAHuman hemato-lymphoid system mice: current use and future potential for medicineAnnu Rev Immunol201331635741:CAS:528:DC%2BC3sXnsFClsbY%3D23330956412019110.1146/annurev-immunol-032712-095921
– reference: EllegastJMRauchPJKovtonyukLVMullerRWagnerUSaitoYinv(16) and NPM1mut AMLs engraft human cytokine knock-in miceBlood2016128213041:CAS:528:DC%2BC2sXhtlKlurY%3D27581357508460610.1182/blood-2015-12-689356
– reference: ShihabHAGoughJCooperDNStensonPDBarkerGLEdwardsKJPredicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov modelsHum Mutat20133457651:CAS:528:DC%2BC3sXit1aq2303331610.1002/humu.22225
– reference: SaitoYEllegastJMRafieiASongYKullDHeikenwalderMPeripheral blood CD34(+) cells efficiently engraft human cytokine knock-in miceBlood20161281829331:CAS:528:DC%2BC2sXhtlSiu7Y%3D27543436505469610.1182/blood-2015-10-676452
– reference: Benjamin D, Sato T, Cibulskis K, Getz G, Stewart C, Lichtenstein L. Calling somatic SNVs and indels with Mutect2. bioRxiv 2019. https://doi.org/10.1101/861054.
– reference: RobinsonJTThorvaldsdottirHWengerAMZehirAMesirovJPVariant review with the integrative genomics viewerCancer Res201777e3141:CAS:528:DC%2BC2sXhslOltbjE29092934567898910.1158/0008-5472.CAN-17-0337
– reference: Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. 2017;9:eaal2463.
– reference: ShihAHMeydanCShankKGarrett-BakelmanFEWardPSIntlekoferAMCombination targeted therapy to disrupt aberrant oncogenic signaling and reverse epigenetic dysfunction in IDH2- and TET2-mutant acute myeloid leukemiaCancer Disco201774945051:CAS:528:DC%2BC2sXmvFemu7s%3D10.1158/2159-8290.CD-16-1049
– reference: TateishiKHiguchiFMillerJJKoernerMVALelicNShankarGMThe alkylating chemotherapeutic temozolomide induces metabolic stress in IDH1-mutant cancers and potentiates NAD(+) depletion-mediated cytotoxicityCancer Res2017774102151:CAS:528:DC%2BC2sXht1GhurrK28625978578355910.1158/0008-5472.CAN-16-2263
– reference: SaitoYUchidaNTanakaSSuzukiNTomizawa-MurasawaMSoneAInduction of cell cycle entry eliminates human leukemia stem cells in a mouse model of AMLNat Biotechnol201028275801:CAS:528:DC%2BC3cXitVWnsLk%3D2016071710.1038/nbt.1607
– reference: NorsworthyKJLuoLHsuVGudiRDorffSEPrzepiorkaDFDA approval summary: ivosidenib for relapsed or refractory acute myeloid leukemia with an isocitrate dehydrogenase-1 mutationClin Cancer Res201925320591:CAS:528:DC%2BB3cXhsFSktLvL3069209910.1158/1078-0432.CCR-18-3749
– reference: PhilipBYuDXSilvisMRShinCHRobinsonJPRobinsonGLMutant IDH1 promotes glioma formation in vivoCell Rep2018231553641:CAS:528:DC%2BC1cXosl2nu7s%3D29719265603297410.1016/j.celrep.2018.03.133
– reference: LosmanJAKaelinWGJrWhat a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancerGenes Dev201327836521:CAS:528:DC%2BC3sXnsl2gtro%3D23630074365022210.1101/gad.217406.113
– reference: QuinlanARHallIMBEDTools: a flexible suite of utilities for comparing genomic featuresBioinformatics20102684121:CAS:528:DC%2BC3cXivFGkurc%3D20110278283282410.1093/bioinformatics/btq033
– reference: TateJGBamfordSJubbHCSondkaZBeareDMBindalNCOSMIC: the catalogue of somatic mutations in cancerNucleic Acids Res201947D94171:CAS:528:DC%2BC1MXhs1Cgt7bM3037187810.1093/nar/gky1015
– reference: LuYKwintkiewiczJLiuYTechKFradyLNSuYTChemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repairCancer Res2017771709181:CAS:528:DC%2BC2sXltlyjtr8%3D28202508538048110.1158/0008-5472.CAN-16-2773
– reference: BonnetDDickJEHuman acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cellNat Med1997373071:CAS:528:DyaK2sXkt1GrtLY%3D921209810.1038/nm0797-730
– reference: SulkowskiPLSundaramRKOeckSCorsoCDLiuYNoorbakhshSKrebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repairNat Genet2018501086921:CAS:528:DC%2BC1cXhtlCmt7zJ30013182607257910.1038/s41588-018-0170-4
– reference: SongYRongvauxATaylorAJiangTTebaldiTBalasubramanianKA highly efficient and faithful MDS patient-derived xenotransplantation model for pre-clinical studiesNat Commun2019101:CAS:528:DC%2BC1MXntFeksbc%3D30664659634112210.1038/s41467-018-08166-x
– reference: WingettSWAndrewsSFastQ screen: a tool for multi-genome mapping and quality controlF1000Res20187133830254741612437710.12688/f1000research.15931.1
– reference: Showalter MR, Hatakeyama J, Cajka T, VanderVorst K, Carraway KL, Fiehn O, et al. Replication study: the common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Elife. 2017;6:e26030.
– reference: LiHHandsakerBWysokerAFennellTRuanJHomerNThe sequence alignment/map format and SAMtoolsBioinformatics2009252078919505943272300210.1093/bioinformatics/btp352
– reference: DickJEStem cell concepts renew cancer researchBlood200811247938071:CAS:528:DC%2BD1cXhsFWmtr3M1906473910.1182/blood-2008-08-077941
– reference: ChoeSWangHDiNardoCDSteinEMde BottonSRobozGJMolecular mechanisms mediating relapse following ivosidenib monotherapy in IDH1-mutant relapsed or refractory AMLBlood Adv2020418949051:CAS:528:DC%2BB3cXis12ksbvI32380538721842010.1182/bloodadvances.2020001503
– reference: DiNardoCDJabbourERavandiFTakahashiKDaverNRoutbortMIDH1 and IDH2 mutations in myelodysplastic syndromes and role in disease progressionLeukemia20163098041:CAS:528:DC%2BC2MXhsVWgsL3O2622881410.1038/leu.2015.211
– reference: UpadhyayVABrunnerAMFathiATIsocitrate dehydrogenase (IDH) inhibition as treatment of myeloid malignancies: Progress and future directionsPharm Ther201717712381:CAS:528:DC%2BC2sXmvFCntL4%3D10.1016/j.pharmthera.2017.03.003
– reference: WangYWildATTurcanSWuWHSigelCKlimstraDSTargeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomasSci Adv20206eaaz32211:CAS:528:DC%2BB3cXitFGnsrfI32494639717640910.1126/sciadv.aaz3221
– reference: QuekLDavidMDKennedyAMetznerMAmatangeloMShihAClonal heterogeneity of acute myeloid leukemia treated with the IDH2 inhibitor enasidenibNat Med2018241167771:CAS:528:DC%2BC1cXhtlCmt7%2FK30013198692597410.1038/s41591-018-0115-6
– reference: SteinEMDiNardoCDFathiATPollyeaDAStoneRMAltmanJKMolecular remission and response patterns in patients with mutant-IDH2 acute myeloid leukemia treated with enasidenibBlood2019133676871:CAS:528:DC%2BC1MXos1Wktrw%3D30510081638418910.1182/blood-2018-08-869008
– reference: IntlekoferAMShihAHWangBNazirARustenburgASAlbaneseSKAcquired resistance to IDH inhibition through trans or cis dimer-interface mutationsNature201855912591:CAS:528:DC%2BC1cXht1eisrzF29950729612171810.1038/s41586-018-0251-7
– reference: KimESEnasidenib: first global approvalDrugs2017771705111:CAS:528:DC%2BC2sXhsVyrt7zJ2887954010.1007/s40265-017-0813-2
– reference: WangHYTangKLiangTYZhangWZLiJYWangWThe comparison of clinical and biological characteristics between IDH1 and IDH2 mutations in gliomasJ Exp Clin Cancer Res201635861:CAS:528:DC%2BB3cXisVamurjE27245697488866810.1186/s13046-016-0362-7
– reference: RakhejaDMedeirosLJBevanSChenWThe emerging role of d-2-hydroxyglutarate as an oncometabolite in hematolymphoid and central nervous system neoplasmsFront Oncol2013316923847760369846110.3389/fonc.2013.00169
– reference: SulkowskiPLOeckSDowJEconomosNGMirfakhraieLLiuYOncometabolites suppress DNA repair by disrupting local chromatin signallingNature2020582586911:CAS:528:DC%2BB3cXhtVyhsrrN32494005731989610.1038/s41586-020-2363-0
– reference: LiHDurbinRFast and accurate long-read alignment with Burrows-Wheeler transformBioinformatics2010265899520080505282810810.1093/bioinformatics/btp698
– reference: Madala HR, Punganuru SR, Arutla V, Misra S, Thomas TJ, Srivenugopal KS. Beyond brooding on oncometabolic havoc in IDH-mutant gliomas and AML: current and future therapeutic strategies. Cancers. 2018;10:49.
– reference: WangKLiMHakonarsonHANNOVAR: functional annotation of genetic variants from high-throughput sequencing dataNucleic Acids Res201038e16420601685293820110.1093/nar/gkq603
– ident: 1536_CR19
  doi: 10.1126/scitranslmed.aal2463
– volume: 30
  start-page: 980
  year: 2016
  ident: 1536_CR4
  publication-title: Leukemia
  doi: 10.1038/leu.2015.211
– volume: 35
  start-page: 86
  year: 2016
  ident: 1536_CR42
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-016-0362-7
– volume: 582
  start-page: 586
  year: 2020
  ident: 1536_CR20
  publication-title: Nature
  doi: 10.1038/s41586-020-2363-0
– volume: 112
  start-page: 4793
  year: 2008
  ident: 1536_CR46
  publication-title: Blood
  doi: 10.1182/blood-2008-08-077941
– volume: 26
  start-page: 589
  year: 2010
  ident: 1536_CR28
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp698
– volume: 24
  start-page: 1167
  year: 2018
  ident: 1536_CR16
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0115-6
– volume: 34
  start-page: 57
  year: 2013
  ident: 1536_CR33
  publication-title: Hum Mutat
  doi: 10.1002/humu.22225
– volume: 25
  start-page: 3205
  year: 2019
  ident: 1536_CR10
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-18-3749
– ident: 1536_CR31
  doi: 10.1101/861054
– volume: 28
  start-page: 275
  year: 2010
  ident: 1536_CR47
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.1607
– volume: 6
  start-page: eaaz3221
  year: 2020
  ident: 1536_CR9
  publication-title: Sci Adv
  doi: 10.1126/sciadv.aaz3221
– volume: 3
  start-page: 169
  year: 2013
  ident: 1536_CR6
  publication-title: Front Oncol
  doi: 10.3389/fonc.2013.00169
– volume: 177
  start-page: 123
  year: 2017
  ident: 1536_CR13
  publication-title: Pharm Ther
  doi: 10.1016/j.pharmthera.2017.03.003
– volume: 47
  start-page: D941
  year: 2019
  ident: 1536_CR34
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gky1015
– volume: 50
  start-page: 1086
  year: 2018
  ident: 1536_CR21
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0170-4
– volume: 38
  start-page: e164
  year: 2010
  ident: 1536_CR32
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkq603
– volume: 133
  start-page: 676
  year: 2019
  ident: 1536_CR43
  publication-title: Blood
  doi: 10.1182/blood-2018-08-869008
– volume: 128
  start-page: 1829
  year: 2016
  ident: 1536_CR36
  publication-title: Blood
  doi: 10.1182/blood-2015-10-676452
– volume: 7
  start-page: 1338
  year: 2018
  ident: 1536_CR27
  publication-title: F1000Res
  doi: 10.12688/f1000research.15931.1
– volume: 26
  start-page: 841
  year: 2010
  ident: 1536_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 77
  start-page: e31
  year: 2017
  ident: 1536_CR35
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-17-0337
– volume: 32
  start-page: 364
  year: 2014
  ident: 1536_CR26
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.2858
– volume: 7
  year: 2019
  ident: 1536_CR12
  publication-title: Biomark Res
  doi: 10.1186/s40364-019-0173-z
– volume: 128
  start-page: 2130
  year: 2016
  ident: 1536_CR37
  publication-title: Blood
  doi: 10.1182/blood-2015-12-689356
– volume: 27
  start-page: 836
  year: 2013
  ident: 1536_CR5
  publication-title: Genes Dev
  doi: 10.1101/gad.217406.113
– volume: 8
  start-page: 1540
  year: 2018
  ident: 1536_CR17
  publication-title: Cancer Disco
  doi: 10.1158/2159-8290.CD-18-0877
– ident: 1536_CR44
  doi: 10.3390/cancers10020049
– volume: 19
  start-page: 17
  year: 2011
  ident: 1536_CR7
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2010.12.014
– volume: 24
  start-page: 1705
  year: 2018
  ident: 1536_CR22
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-2796
– volume: 367
  start-page: 645
  year: 1994
  ident: 1536_CR40
  publication-title: Nature
  doi: 10.1038/367645a0
– volume: 22
  start-page: 1837
  year: 2016
  ident: 1536_CR3
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-13-1333
– volume: 559
  start-page: 125
  year: 2018
  ident: 1536_CR18
  publication-title: Nature
  doi: 10.1038/s41586-018-0251-7
– volume: 10
  year: 2019
  ident: 1536_CR24
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-08166-x
– volume: 77
  start-page: 4102
  year: 2017
  ident: 1536_CR39
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-16-2263
– volume: 1846
  start-page: 326
  year: 2014
  ident: 1536_CR8
  publication-title: Biochim Biophys Acta
– volume: 130
  start-page: 732
  year: 2017
  ident: 1536_CR14
  publication-title: Blood
  doi: 10.1182/blood-2017-04-779447
– volume: 31
  start-page: 635
  year: 2013
  ident: 1536_CR45
  publication-title: Annu Rev Immunol
  doi: 10.1146/annurev-immunol-032712-095921
– volume: 23
  start-page: 1553
  year: 2018
  ident: 1536_CR23
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2018.03.133
– volume: 10
  start-page: 204062071986064
  year: 2019
  ident: 1536_CR2
  publication-title: Ther Adv Hematol
  doi: 10.1177/2040620719860645
– volume: 7
  start-page: 494
  year: 2017
  ident: 1536_CR25
  publication-title: Cancer Disco
  doi: 10.1158/2159-8290.CD-16-1049
– volume: 77
  start-page: 1709
  year: 2017
  ident: 1536_CR38
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-16-2773
– ident: 1536_CR1
  doi: 10.7554/eLife.26030
– volume: 77
  start-page: 1705
  year: 2017
  ident: 1536_CR11
  publication-title: Drugs
  doi: 10.1007/s40265-017-0813-2
– volume: 3
  start-page: 730
  year: 1997
  ident: 1536_CR41
  publication-title: Nat Med
  doi: 10.1038/nm0797-730
– volume: 4
  start-page: 1894
  year: 2020
  ident: 1536_CR15
  publication-title: Blood Adv
  doi: 10.1182/bloodadvances.2020001503
– volume: 25
  start-page: 2078
  year: 2009
  ident: 1536_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
SSID ssj0014766
Score 2.4850535
Snippet Treatment options for patients with relapsed/refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such...
Treatment options for patients with relapsed/ refractory acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS) are scarce. Recurring mutations, such...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1313
SubjectTerms 13/100
13/106
13/109
13/21
13/31
13/51
45
45/23
64
64/60
692/699/1541/1990/1673
692/699/1541/1990/283/1897
Acute myeloid leukemia
Anticancer properties
Cancer Research
Critical Care Medicine
Enzyme Inhibitors - pharmacology
Epigenetics
Hematology
Homologous recombination
Homology
Humans
Inhibitors
Intensive
Internal Medicine
Isocitrate dehydrogenase
Isocitrate Dehydrogenase - genetics
Isocitrate Dehydrogenase - metabolism
Leukemia
Leukemia, Myeloid, Acute - drug therapy
Leukemia, Myeloid, Acute - genetics
Medicine
Medicine & Public Health
Mutants
Mutation
Myelodysplastic syndrome
Myelodysplastic syndromes
Myelodysplastic Syndromes - drug therapy
Myelodysplastic Syndromes - genetics
Oncology
Patients
Poly(ADP-ribose) polymerase
Poly(ADP-ribose) Polymerase Inhibitors - pharmacology
Poly(ADP-ribose) Polymerase Inhibitors - therapeutic use
Recurrence
Ribose
Thermal resistance
Transplantation
Tumors
Xenografts
Title In vivo anti-tumor effect of PARP inhibition in IDH1/2 mutant MDS/AML resistant to targeted inhibitors of mutant IDH1/2
URI https://link.springer.com/article/10.1038/s41375-022-01536-x
https://www.ncbi.nlm.nih.gov/pubmed/35273342
https://www.proquest.com/docview/2658409551
https://www.proquest.com/docview/2638727028
https://pubmed.ncbi.nlm.nih.gov/PMC9103411
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb5wwELbaRKp6idI3SRq5Um8t2mAbDKdqm4c2VTdapY20N4RfClIDyS6b5Od3BgzRNmouCPADzMzY3zDjGUI-y0JpFqdZGCsuQ2FNEqaCydABdrBZYjJZtN4WZ8nkQvyYx3P_w23p3Sr7ObGdqE2t8R_5iOFSifHSom_XNyFmjULrqk-h8ZxsYugy5Go5HxSuSMjOVomClICi4TfNHPB0tITJW-LeZHRMiHkS3q8vTI_Q5mOnyX8sp-2CdLJNtjySpOOO9K_IM1u9Ji-m3lb-htydVvS2vK0pfLsybFZX9YJ23hu0dnQ2Pp_RsrosVeuzBaf09GgSjRi9WmFiYTo9-jUaT39SUMcRYsKdpqad37g1fct6scTOfJOug7fk4uT49-Ek9GkWQi2kaEBOsrhgkRFJEZusAP1OFNKozEonGcMLpQE1pE7rg0hb5YSMHZAQkCXoz4Bv3pGNqq7sB0KBurC-cae00EIZl7kiNYlyPOHCCGYCEvXfONc-BjmmwviTt7ZwnuYdXXKgS97SJb8PyJehzXUXgePJ2ns96XIvjcv8gXcC8mkoBjlC40hR2XqFdXgqcXNeGpD3HaWHx3GMUscFC4hc44GhAsboXi-pyss2VjegMcAJ8NyvPbc8vNb_R7Hz9Ch2yUvWci76Xe6RjWaxsh8BGzVqvxUAOKaH0T7Z_H58Njv_C1WzC58
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADB5VRQIuiHdTCgwSnCDaZmaSSQ4IrbpUu3S3qqCVeguZlxqJJu1uti1_it-InVe1VPTWWx4zedke2_Fnm5D3MlOahXHih4pLX1gT-bFg0ndgO9gkMonMarTFfjQ-Et-Ow-M18qfLhUFYZbcm1gu1KTX-Ix8wVJVYLy34cnbuY9cojK52LTQattizvy_BZVt8noyAvh8Y2_16uDP2264CvhZSVMAWSZixwIgoC02SgTsjMmlUYqWTjOGO0qAkY6f1dqCtckKGDp4YDClwFxMsvgRL_j3BQTQxM32nh5QEQjaxURTcCBybNklnm8eDBSgLibnQCIQIeeRfrSrCG9btTZDmP5HaWgHuPiaPWsuVDhtWe0LWbPGU3J-1sfln5HJS0Iv8oqRAq9yvlqflnDZoEVo6ejD8fkDz4iRXNUYMNulkNA4GjJ4usZExnY1-DIazKQX3H01aOFKVtMGpW9PNLOcLvFg7pbnAc3J0JwR4QdaLsrAbhAI3gT7lTmmhhTIucVlsIuV4xIURzHgk6L5xqtua59h641dax955nDZ0SYEuaU2X9MojH_s5Z03Fj1tHb3WkS1vpX6TXvOqRd_1pkFsMxmSFLZc4hscSkwFjj7xsKN3fjmNVPC6YR-QKD_QDsCb46pkiP6lrg4P1B3YJ3PdTxy3Xj_X_t9i8_S3ekgfjw9k0nU72916Rh6zmYsR8bpH1ar60r8Euq9SbWhgo-XnX0vcX5LFFIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIlVcEOUZKGAkOEGUxnbi5IDQqstql3arFVCpt5D4oUaiSbvJtuWv8euYyataKnrrLYnt2M7MeMaZzzOEvJNpplgQxW6QcekKo0M3Eky6FmwHE4c6lmmDtjgMp0fi63FwvEH-9GdhEFbZr4nNQq1Lhf_IPYaqEuOl-Z7tYBGL8eTz2bmLGaTQ09qn02hZZN_8voTtW_VpNgZav2ds8uXH3tTtMgy4SkhRA4vEQcp8LcI00HEKWxuRSp3FRlrJGN5kChRmZJXa9ZXJrJCBhdGDUQVbxxgDMcHyf09yGaGMRXsDvMQXsvWTohCHsMnpDuzs8sirQHFIPBeNoIiAh-7VulK8YeneBGz-47VtlOHkIXnQWbF01LLdNtkwxSOyNe_89I_J5aygF_lFSYFuuVuvTsslbZEjtLR0Mfq2oHlxkmcNXgwu6Ww89T1GT1eY1JjOx9-90fyALk2F5i08qUvaYtaN7luWywpf1jVpX_CEHN0JAZ6SzaIszHNCgbNAt3KbKaFEpm1s00iHmeUhF1ow7RC__8aJ6uKfYxqOX0njh-dR0tIlAbokDV2SK4d8GNqctdE_bq2905Mu6VaCKrnmW4e8HYpBhtExkxamXGEdHkk8GBg55FlL6aE7jhHyuGAOkWs8MFTA-ODrJUV-0sQJB0sQbBTo92PPLdfD-v8sXtw-izdkC-QuOZgd7r8k91nDxAj_3CGb9XJlXoGJVmevG1mg5OddC99fQWVJWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+vivo+anti-tumor+effect+of+PARP+inhibition+in+IDH1%2F2+mutant+MDS%2FAML+resistant+to+targeted+inhibitors+of+mutant+IDH1%2F2&rft.jtitle=Leukemia&rft.au=Gbyli%2C+Rana&rft.au=Song%2C+Yuanbin&rft.au=Liu%2C+Wei&rft.au=Gao%2C+Yimeng&rft.date=2022-05-01&rft.issn=1476-5551&rft.eissn=1476-5551&rft.volume=36&rft.issue=5&rft.spage=1313&rft_id=info:doi/10.1038%2Fs41375-022-01536-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-6924&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-6924&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-6924&client=summon