Synthesis and structure of iron- and strontium-substituted octacalcium phosphate: effects of ionic charge and radius
Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe 3+ ) and...
Saved in:
Published in | Journal of materials chemistry. B, Materials for biology and medicine Vol. 4; no. 9; pp. 1712 - 1719 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
01.01.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe
3+
) and strontium ions (Sr
2+
) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe
3+
and Sr
2+
led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe
3+
-substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations.
Comparative study of Fe
3+
-/Sr
2+
-substitution in the apatite and hydrated layers of octacalcium phosphate crystal structure with different coordination environments. |
---|---|
AbstractList | Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe
) and strontium ions (Sr
) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe
and Sr
led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe
-substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations. Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe super(3+)) and strontium ions (Sr super(2+)) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe super(3+) and Sr super(2+) led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe super(3+)-substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations. Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe 3+ ) and strontium ions (Sr 2+ ) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe 3+ and Sr 2+ led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe 3+ -substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations. Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe³⁺) and strontium ions (Sr²⁺) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe³⁺ and Sr²⁺ led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe³⁺-substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations. Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe3+) and strontium ions (Sr2+) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe3+ and Sr2+ led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe3+-substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations.Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe3+) and strontium ions (Sr2+) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe3+ and Sr2+ led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe3+-substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations. Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe 3+ ) and strontium ions (Sr 2+ ) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe 3+ and Sr 2+ led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe 3+ -substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations. Comparative study of Fe 3+ -/Sr 2+ -substitution in the apatite and hydrated layers of octacalcium phosphate crystal structure with different coordination environments. |
Author | He, Fupo Ye, Jiandong Shi, Haishan |
AuthorAffiliation | Key Laboratory of Biomedical Engineering of Guangdong Province South China University of Technology School of Electromechanical Engineering Guangdong University of Technology School of Materials Science and Engineering National Engineering Research Center for Tissue Restoration and Reconstruction |
AuthorAffiliation_xml | – sequence: 0 name: Guangdong University of Technology – sequence: 0 name: School of Materials Science and Engineering – sequence: 0 name: Key Laboratory of Biomedical Engineering of Guangdong Province – sequence: 0 name: School of Electromechanical Engineering – sequence: 0 name: South China University of Technology – sequence: 0 name: National Engineering Research Center for Tissue Restoration and Reconstruction |
Author_xml | – sequence: 1 givenname: Haishan surname: Shi fullname: Shi, Haishan – sequence: 2 givenname: Fupo surname: He fullname: He, Fupo – sequence: 3 givenname: Jiandong surname: Ye fullname: Ye, Jiandong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32263022$$D View this record in MEDLINE/PubMed |
BookMark | eNqNks1rFTEUxYNUbK3duFdmKcJoPibJjLv68KNQ6MIK7obMzR1fZN7kmZss-t87fa-vgghtNgmH3zlwb85zdjTHGRl7Kfg7wVX3HnQeuJSNdU_YieSa11aL9uj-zX8cszOiX3w5rTCtap6xYyWlUYvrhOVvN3NeIwWq3OwryqlALgmrOFYhxbk-yHHOoWxqKgPlkEtGX0XIDtwEi15t15G2a5fxQ4XjiJBplxDnABWsXfqJu6DkfCj0gj0d3UR4dnefsu-fP12vvtaXV18uVueXNTS2yfUygegGsCN4b7yRrZLoFHSDUhYNyEFK5SQ4aZXlrUEthfaD0wYQR-O5OmVv9rnbFH8XpNxvAgFOk5sxFuqlaq3RwjTiYVRa0Rquu_ZBVHRCGNkI_QjUdkoaIZpmQV_foWXYoO-3KWxcuukPX7UAfA9AikQJxx5CdnlZcU4uTL3g_W0h-pW-_rgrxPliefuP5ZD6X_jVHk4E99zfdqk_3YW_Jw |
CitedBy_id | crossref_primary_10_3390_ma14123436 crossref_primary_10_1016_j_ceramint_2022_11_295 crossref_primary_10_1016_j_mtla_2024_102077 crossref_primary_10_1016_j_bioactmat_2020_10_025 crossref_primary_10_1021_acs_cgd_0c01369 crossref_primary_10_1016_j_matchemphys_2022_126786 crossref_primary_10_3390_molecules27185916 crossref_primary_10_1007_s13369_024_09572_8 crossref_primary_10_1667_RADE_20_00194_1 crossref_primary_10_1021_acsbiomaterials_4c02011 crossref_primary_10_1016_j_jallcom_2018_08_118 crossref_primary_10_1016_j_ceramint_2024_03_181 crossref_primary_10_1016_j_jmst_2021_09_069 crossref_primary_10_1016_j_vibspec_2018_08_002 crossref_primary_10_1016_j_nocx_2023_100181 crossref_primary_10_1002_adma_202301422 crossref_primary_10_1016_j_ceramint_2021_12_126 crossref_primary_10_1016_j_msec_2017_07_034 crossref_primary_10_1016_j_ijbiomac_2024_132632 crossref_primary_10_1039_C8GC03440K crossref_primary_10_1039_D1RA07939E crossref_primary_10_1016_j_ceramint_2017_02_020 crossref_primary_10_1016_j_actbio_2021_08_021 crossref_primary_10_1021_acsami_4c11887 crossref_primary_10_2109_jcersj2_22063 crossref_primary_10_1016_j_msec_2016_04_102 crossref_primary_10_1246_cl_220238 crossref_primary_10_1039_D3CC04685K crossref_primary_10_1111_jace_15220 crossref_primary_10_1116_1_5004453 crossref_primary_10_1016_j_ceramint_2023_03_155 crossref_primary_10_3390_ceramics4020018 crossref_primary_10_1088_1755_1315_155_1_012018 crossref_primary_10_1620_tjem_2023_J040 crossref_primary_10_1016_j_scitotenv_2021_146266 crossref_primary_10_3390_ceramics7020052 crossref_primary_10_1002_jbm_b_34515 crossref_primary_10_1021_acs_cgd_7b00129 crossref_primary_10_1080_14686996_2022_2035193 crossref_primary_10_1016_j_matchemphys_2018_07_035 crossref_primary_10_1016_j_electacta_2017_09_086 crossref_primary_10_1039_C9NR07108C crossref_primary_10_1016_j_colsurfa_2024_134001 crossref_primary_10_1039_D3CP01992F crossref_primary_10_1016_j_matlet_2022_133137 crossref_primary_10_1016_j_ceramint_2022_11_145 crossref_primary_10_1016_j_jallcom_2024_175126 crossref_primary_10_1016_j_apt_2017_10_006 crossref_primary_10_1016_j_surfin_2023_103654 crossref_primary_10_1007_s10856_022_06672_5 crossref_primary_10_1016_j_apmt_2019_01_002 crossref_primary_10_1017_S1431927618015659 crossref_primary_10_1016_j_mtchem_2017_07_003 crossref_primary_10_1088_1361_6528_ab4848 crossref_primary_10_1016_j_ceramint_2017_06_135 crossref_primary_10_1002_smtd_202300370 crossref_primary_10_1039_C9CE00677J crossref_primary_10_2109_jcersj2_23133 crossref_primary_10_1007_s10904_021_02103_0 crossref_primary_10_2109_jcersj2_22005 crossref_primary_10_1016_j_ceramint_2023_09_146 crossref_primary_10_1016_j_electacta_2016_08_138 crossref_primary_10_3390_ma14195772 crossref_primary_10_1016_j_msec_2017_05_061 |
Cites_doi | 10.1063/1.2940337 10.1016/j.biomaterials.2009.11.050 10.1016/j.bone.2012.11.044 10.1186/1477-3155-10-32 10.1016/j.actbio.2011.12.012 10.1039/B403503H 10.1016/j.jcrysgro.2008.01.047 10.1016/j.msec.2005.01.008 10.1007/s10853-011-5851-7 10.1007/s00198-004-1767-2 10.1021/cm4007298 10.1021/jp808713m 10.1007/s002239900561 10.1021/cg100494f 10.1016/j.jcrysgro.2006.10.168 10.1016/j.bone.2006.02.059 10.1359/jbmr.071012 10.1201/b18952 10.1134/S2075113310030019 10.1016/j.biomaterials.2005.12.031 10.1016/S0927-7757(99)00384-2 10.1021/ja060336u 10.1016/S0891-5849(02)01006-7 10.1016/j.ces.2012.02.049 10.1016/j.biomaterials.2006.11.019 10.1016/j.materresbull.2007.09.004 10.1016/0162-0134(92)80007-I 10.2174/092986708783497283 10.1038/1961050a0 10.1007/BF00254749 10.2165/10481900-000000000-00000 10.1002/ar.1092240217 10.1007/BF01194315 10.1021/jp911783r 10.1016/j.metabol.2008.02.004 10.1016/j.matchemphys.2013.06.014 10.1016/j.optmat.2003.12.003 10.1016/j.biomaterials.2009.11.046 10.1002/jbm.b.30407 10.1021/cm00034a009 10.1021/cg1009835 10.1073/pnas.1404481112 |
ContentType | Journal Article |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7U7 C1K 7S9 L.6 7X8 |
DOI | 10.1039/c5tb02247a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace Toxicology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX Toxicology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | PubMed Toxicology Abstracts CrossRef AGRICOLA Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2050-7518 |
EndPage | 1719 |
ExternalDocumentID | 32263022 10_1039_C5TB02247A c5tb02247a |
Genre | Journal Article |
GroupedDBID | -JG 0-7 0R~ 4.4 53G 705 AAEMU AAIWI AAJAE AANOJ AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACPRK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AUNWK BLAPV BSQNT C6K D0L EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I O-G O9- R7C RAOCF RCNCU RNS ROL RPMJG RRC RSCEA SKA SKF SLH UCJ AAYXX AFRZK AKMSF ALUYA CITATION J3G J3H NPM 7SR 7U5 8BQ 8FD JG9 L7M 7U7 C1K 7S9 L.6 7X8 |
ID | FETCH-LOGICAL-c474t-20519bc7fcdd6d62832ea3c9b337e6c2b223a2ca2737086e5215dba56ceef6d03 |
ISSN | 2050-750X 2050-7518 |
IngestDate | Fri Jul 11 07:48:48 EDT 2025 Fri Jul 11 07:35:41 EDT 2025 Thu Jul 10 18:49:12 EDT 2025 Fri Jul 11 05:47:09 EDT 2025 Wed Feb 19 02:30:54 EST 2025 Tue Jul 01 04:27:17 EDT 2025 Thu Apr 24 23:03:31 EDT 2025 Tue Dec 17 20:59:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c474t-20519bc7fcdd6d62832ea3c9b337e6c2b223a2ca2737086e5215dba56ceef6d03 |
Notes | Electronic supplementary information (ESI) available: Additional experimental data of the synthesized OCP samples including used chemical reactants, XPS survey spectra, refined results and quantitative surface composition analysis, as well as the initial product of OCP. See DOI 10.1039/c5tb02247a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 32263022 |
PQID | 1793261144 |
PQPubID | 23500 |
PageCount | 8 |
ParticipantIDs | crossref_citationtrail_10_1039_C5TB02247A proquest_miscellaneous_1793261144 proquest_miscellaneous_1911624158 crossref_primary_10_1039_C5TB02247A rsc_primary_c5tb02247a proquest_miscellaneous_2271860598 pubmed_primary_32263022 proquest_miscellaneous_2387651641 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-01-01 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of materials chemistry. B, Materials for biology and medicine |
PublicationTitleAlternate | J Mater Chem B |
PublicationYear | 2016 |
References | Lundager Madsen (C5TB02247A-(cit19)/*[position()=1]) 2008; 310 Brown (C5TB02247A-(cit12)/*[position()=1]) 1962; 196 Blake (C5TB02247A-(cit22)/*[position()=1]) 1986; 12 Tao (C5TB02247A-(cit8)/*[position()=1]) 2015; 112 Elliott (C5TB02247A-(cit17)/*[position()=1]) 1994 Penel (C5TB02247A-(cit39)/*[position()=1]) 1998; 63 Kandori (C5TB02247A-(cit41)/*[position()=1]) 2010; 114 Bonner (C5TB02247A-(cit38)/*[position()=1]) 2004; 26 Jiang (C5TB02247A-(cit45)/*[position()=1]) 2002; 66 Dorozhkin (C5TB02247A-(cit14)/*[position()=1]) 2010; 31 Delmas (C5TB02247A-(cit25)/*[position()=1]) 2005; 16 Matsunaga (C5TB02247A-(cit43)/*[position()=1]) 2009; 113 Lu (C5TB02247A-(cit35)/*[position()=1]) 2006; 297 Rodriguez (C5TB02247A-(cit23)/*[position()=1]) 2012; 25 Wakamura (C5TB02247A-(cit40)/*[position()=1]) 2000; 164 Panseri (C5TB02247A-(cit32)/*[position()=1]) 2012; 10 Pon-On (C5TB02247A-(cit34)/*[position()=1]) 2013; 141 Gobel (C5TB02247A-(cit9)/*[position()=1]) 2004; 14 Barinov (C5TB02247A-(cit4)/*[position()=1]) 2010; 1 Yang (C5TB02247A-(cit15)/*[position()=1]) 2012; 8 Deeks (C5TB02247A-(cit27)/*[position()=1]) 2010; 70 Suzuki (C5TB02247A-(cit2)/*[position()=1]) 2006; 77 Richerson (C5TB02247A-(cit28)/*[position()=1]) 2005 Kakhlon (C5TB02247A-(cit21)/*[position()=1]) 2002; 33 Li (C5TB02247A-(cit31)/*[position()=1]) 2012; 47 Iafisco (C5TB02247A-(cit33)/*[position()=1]) 2013; 25 Guggenbuhl (C5TB02247A-(cit20)/*[position()=1]) 2008; 57 Arlot (C5TB02247A-(cit26)/*[position()=1]) 2008; 23 Rey (C5TB02247A-(cit36)/*[position()=1]) 2014 Bakker (C5TB02247A-(cit24)/*[position()=1]) 2013; 53 Tseng (C5TB02247A-(cit7)/*[position()=1]) 2006; 128 Shelton (C5TB02247A-(cit1)/*[position()=1]) 2006; 27 Nelson (C5TB02247A-(cit5)/*[position()=1]) 1989; 224 Boanini (C5TB02247A-(cit16)/*[position()=1]) 2010; 10 Mathew (C5TB02247A-(cit13)/*[position()=1]) 1988; 18 Honda (C5TB02247A-(cit18)/*[position()=1]) 2011; 11 Crane (C5TB02247A-(cit10)/*[position()=1]) 2006; 39 Matsunaga (C5TB02247A-(cit44)/*[position()=1]) 2008; 128 Suzuki (C5TB02247A-(cit11)/*[position()=1]) 2008; 15 Chang (C5TB02247A-(cit30)/*[position()=1]) 2010; 31 Mayer (C5TB02247A-(cit46)/*[position()=1]) 1992; 45 Wopenka (C5TB02247A-(cit6)/*[position()=1]) 2005; 25 Pon-On (C5TB02247A-(cit29)/*[position()=1]) 2008; 43 Fowler (C5TB02247A-(cit37)/*[position()=1]) 1993; 5 Rokidi (C5TB02247A-(cit42)/*[position()=1]) 2012; 77 Liu (C5TB02247A-(cit3)/*[position()=1]) 2007; 28 |
References_xml | – issn: 1994 publication-title: Structure and chemistry of the apatite and other calcium orthophosphates doi: Elliott – issn: 2005 publication-title: Modern ceramic engineering: properties, processing, and use in design doi: Richerson – issn: 2014 publication-title: Characterization of Calcium Phosphates Using Vibrational Spectroscopies doi: Rey Marsan Combes Drouet Grossin Sarda – volume: 128 start-page: 245101 year: 2008 ident: C5TB02247A-(cit44)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.2940337 – volume: 31 start-page: 1465 year: 2010 ident: C5TB02247A-(cit14)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.050 – volume: 53 start-page: 112 year: 2013 ident: C5TB02247A-(cit24)/*[position()=1] publication-title: Bone doi: 10.1016/j.bone.2012.11.044 – volume: 10 start-page: 5819 year: 2012 ident: C5TB02247A-(cit32)/*[position()=1] publication-title: J. Nanobiotechnol. doi: 10.1186/1477-3155-10-32 – volume: 8 start-page: 1586 year: 2012 ident: C5TB02247A-(cit15)/*[position()=1] publication-title: Acta Biomater. doi: 10.1016/j.actbio.2011.12.012 – volume: 14 start-page: 2225 year: 2004 ident: C5TB02247A-(cit9)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/B403503H – volume: 310 start-page: 2602 year: 2008 ident: C5TB02247A-(cit19)/*[position()=1] publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2008.01.047 – volume: 25 start-page: 131 year: 2005 ident: C5TB02247A-(cit6)/*[position()=1] publication-title: Mater. Sci. Eng., C doi: 10.1016/j.msec.2005.01.008 – volume: 47 start-page: 754 year: 2012 ident: C5TB02247A-(cit31)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-011-5851-7 – volume: 16 start-page: S16 issue: suppl 1 year: 2005 ident: C5TB02247A-(cit25)/*[position()=1] publication-title: Osteoporosis Int. doi: 10.1007/s00198-004-1767-2 – volume: 25 start-page: 2610 year: 2013 ident: C5TB02247A-(cit33)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm4007298 – volume: 113 start-page: 3584 year: 2009 ident: C5TB02247A-(cit43)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp808713m – volume: 63 start-page: 475 year: 1998 ident: C5TB02247A-(cit39)/*[position()=1] publication-title: Calcif. Tissue Int. doi: 10.1007/s002239900561 – volume: 10 start-page: 3612 year: 2010 ident: C5TB02247A-(cit16)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg100494f – volume: 297 start-page: 396 year: 2006 ident: C5TB02247A-(cit35)/*[position()=1] publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2006.10.168 – volume: 39 start-page: 434 year: 2006 ident: C5TB02247A-(cit10)/*[position()=1] publication-title: Bone doi: 10.1016/j.bone.2006.02.059 – volume: 23 start-page: 215 year: 2008 ident: C5TB02247A-(cit26)/*[position()=1] publication-title: J. Bone Miner. Res. doi: 10.1359/jbmr.071012 – volume-title: Modern ceramic engineering: properties, processing, and use in design year: 2005 ident: C5TB02247A-(cit28)/*[position()=1] doi: 10.1201/b18952 – volume: 1 start-page: 175 year: 2010 ident: C5TB02247A-(cit4)/*[position()=1] publication-title: Inorg. Mater.: Appl. Res. doi: 10.1134/S2075113310030019 – volume: 27 start-page: 2874 year: 2006 ident: C5TB02247A-(cit1)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.12.031 – volume: 164 start-page: 297 year: 2000 ident: C5TB02247A-(cit40)/*[position()=1] publication-title: Colloids Surf., A doi: 10.1016/S0927-7757(99)00384-2 – volume: 66 start-page: 15 year: 2002 ident: C5TB02247A-(cit45)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. – volume: 128 start-page: 6909 year: 2006 ident: C5TB02247A-(cit7)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja060336u – volume: 33 start-page: 1037 year: 2002 ident: C5TB02247A-(cit21)/*[position()=1] publication-title: Free Radicals Biol. Med. doi: 10.1016/S0891-5849(02)01006-7 – volume: 77 start-page: 157 year: 2012 ident: C5TB02247A-(cit42)/*[position()=1] publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.02.049 – volume: 28 start-page: 1393 year: 2007 ident: C5TB02247A-(cit3)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.11.019 – volume: 43 start-page: 2137 year: 2008 ident: C5TB02247A-(cit29)/*[position()=1] publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2007.09.004 – volume: 45 start-page: 129 year: 1992 ident: C5TB02247A-(cit46)/*[position()=1] publication-title: J. Inorg. Biochem. doi: 10.1016/0162-0134(92)80007-I – volume: 15 start-page: 305 year: 2008 ident: C5TB02247A-(cit11)/*[position()=1] publication-title: Curr. Med. Chem. doi: 10.2174/092986708783497283 – volume: 196 start-page: 1050 year: 1962 ident: C5TB02247A-(cit12)/*[position()=1] publication-title: Nature doi: 10.1038/1961050a0 – volume: 12 start-page: 447 year: 1986 ident: C5TB02247A-(cit22)/*[position()=1] publication-title: Eur. J. Nucl. Med. doi: 10.1007/BF00254749 – volume: 70 start-page: 733 year: 2010 ident: C5TB02247A-(cit27)/*[position()=1] publication-title: Drugs doi: 10.2165/10481900-000000000-00000 – volume: 224 start-page: 265 year: 1989 ident: C5TB02247A-(cit5)/*[position()=1] publication-title: Anat. Rec. doi: 10.1002/ar.1092240217 – volume: 18 start-page: 235 year: 1988 ident: C5TB02247A-(cit13)/*[position()=1] publication-title: J. Crystallogr. Spectrosc. Res. doi: 10.1007/BF01194315 – volume: 114 start-page: 2399 year: 2010 ident: C5TB02247A-(cit41)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp911783r – volume: 57 start-page: 903 year: 2008 ident: C5TB02247A-(cit20)/*[position()=1] publication-title: Metabolism doi: 10.1016/j.metabol.2008.02.004 – volume: 141 start-page: 850 year: 2013 ident: C5TB02247A-(cit34)/*[position()=1] publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2013.06.014 – volume: 26 start-page: 17 year: 2004 ident: C5TB02247A-(cit38)/*[position()=1] publication-title: Opt. Mater. doi: 10.1016/j.optmat.2003.12.003 – volume: 31 start-page: 1493 year: 2010 ident: C5TB02247A-(cit30)/*[position()=1] publication-title: Biomaterials doi: 10.1016/j.biomaterials.2009.11.046 – volume-title: Characterization of Calcium Phosphates Using Vibrational Spectroscopies year: 2014 ident: C5TB02247A-(cit36)/*[position()=1] – volume: 77 start-page: 201 year: 2006 ident: C5TB02247A-(cit2)/*[position()=1] publication-title: J. Biomed. Mater. Res., Part B doi: 10.1002/jbm.b.30407 – volume: 25 start-page: 208 year: 2012 ident: C5TB02247A-(cit23)/*[position()=1] publication-title: Acta Odontol. Latinoam. – volume: 5 start-page: 1417 year: 1993 ident: C5TB02247A-(cit37)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/cm00034a009 – volume-title: Structure and chemistry of the apatite and other calcium orthophosphates year: 1994 ident: C5TB02247A-(cit17)/*[position()=1] – volume: 11 start-page: 1462 year: 2011 ident: C5TB02247A-(cit18)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg1009835 – volume: 112 start-page: 326 year: 2015 ident: C5TB02247A-(cit8)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1404481112 |
SSID | ssj0000816834 |
Score | 2.3590264 |
Snippet | Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1712 |
SubjectTerms | apatite biodegradability Biological effects Biomedical materials bone substitutes calcium cations chemical precipitation Crystal structure Crystals Iron microstructure Nanostructure Phosphates Strontium |
Title | Synthesis and structure of iron- and strontium-substituted octacalcium phosphate: effects of ionic charge and radius |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32263022 https://www.proquest.com/docview/1793261144 https://www.proquest.com/docview/1911624158 https://www.proquest.com/docview/2271860598 https://www.proquest.com/docview/2387651641 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiNey5SUjuKAqSxI7TsOtu-qqoLIcNpV6i2LHUStBUrXpAf4Cf5rxI26gZbVwiZqJazmez-PP9mQGobeSU05Ln3qSMwoLlIB7PClDLywkjWNOYqFzRn6-YpMZ_TSP5r3ez47X0rbhZ-LHwe9K_kerIAO9qq9k_0GzrlIQwG_QL1xBw3C9lY6vv1fA31RIEb39rUPBqgMBFQZiXVdeK66rZrn95m3ASBjPgGJQiyYH9QiQD1aLerNaqBAWKk3PzsFjqbPj6FhK5pBhnRdLu1Gwz2eB-pp3hn_YJHJng3PzPVD7RPuGdsI-_Xmyf70wSbR1TmgH24lxQd6u6t0Or0YfQLuo7dRrdy6C7s6FNnChH_keMJa5mYu6MmuTrYWmHSAmHWsbxNYFW7a3ycFZwScqqKqIGq4YS9yZ-9rz_qsv2eVsOs3S8Ty9g45DWHOA0TwejdOPU7dlp3OUaD8F1_I24C1J3u-q_53i7K1bgMWs2-wymsWkD9B9qy48Mlh6iHqyeoTudYJSPkaNQxWG7sUOVbgusUZVK95HFe6gCjtUfcAWU7oGhSlsMKUrMph6gmaX4_Ri4tncHJ6gMW1gGAL15yIuhUpJxlTCK5kTkXBCYslEyIF25qHIgR3HsGqWwBKjgucRA1JWssInJ-ioqit5inBRclEq4ksIpcMi4BLMCof7oEiGwg_66F3bnZmwgetV_pSvmXagIEl2EaXnuutHffTGlV2ZcC0HS71utZLBeFBHZHkl6-0mU9NVyIKA0hvKAD9givgO_14mDIHzMVi63FSGABOJAkbhDZ8aaLg2wzTLCDS2j04AK068w9izW7zCc3R3N-xeoCPAi3wJFLrhryy0fwGwBM0q |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+structure+of+iron-+and+strontium-substituted+octacalcium+phosphate%3A+effects+of+ionic+charge+and+radius&rft.jtitle=Journal+of+materials+chemistry.+B%2C+Materials+for+biology+and+medicine&rft.au=Shi%2C+Haishan&rft.au=He%2C+Fupo&rft.au=Ye%2C+Jiandong&rft.date=2016-01-01&rft.issn=2050-750X&rft.eissn=2050-7518&rft.volume=4&rft.issue=9&rft.spage=1712&rft.epage=1719&rft_id=info:doi/10.1039%2Fc5tb02247a&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-750X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-750X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-750X&client=summon |