Synthesis and structure of iron- and strontium-substituted octacalcium phosphate: effects of ionic charge and radius

Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe 3+ ) and...

Full description

Saved in:
Bibliographic Details
Published inJournal of materials chemistry. B, Materials for biology and medicine Vol. 4; no. 9; pp. 1712 - 1719
Main Authors Shi, Haishan, He, Fupo, Ye, Jiandong
Format Journal Article
LanguageEnglish
Published England 01.01.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe 3+ ) and strontium ions (Sr 2+ ) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe 3+ and Sr 2+ led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe 3+ -substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations. Comparative study of Fe 3+ -/Sr 2+ -substitution in the apatite and hydrated layers of octacalcium phosphate crystal structure with different coordination environments.
AbstractList Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe ) and strontium ions (Sr ) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe and Sr led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe -substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations.
Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe super(3+)) and strontium ions (Sr super(2+)) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe super(3+) and Sr super(2+) led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe super(3+)-substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations.
Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe 3+ ) and strontium ions (Sr 2+ ) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe 3+ and Sr 2+ led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe 3+ -substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations.
Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe³⁺) and strontium ions (Sr²⁺) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe³⁺ and Sr²⁺ led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe³⁺-substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations.
Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe3+) and strontium ions (Sr2+) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe3+ and Sr2+ led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe3+-substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations.Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe3+) and strontium ions (Sr2+) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe3+ and Sr2+ led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe3+-substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations.
Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and biodegradable characteristics. In this work, OCP was synthesized using chemical precipitation methods. Biologically relevant iron ions (Fe 3+ ) and strontium ions (Sr 2+ ) which have different ionic charges and radii were successfully introduced into OCP crystal structure, and their effects on the formation, phase components and structure of OCPs were investigated. The incorporation of Fe 3+ and Sr 2+ led to lattice expansion of OCP. Both ionic substitutions had slight effects on the morphology and microstructure of typical plate-like OCP crystals. In particular, nanosized particles containing rich Fe were deposited on the surface of plate-like Fe 3+ -substituted OCP crystals, which confirmed the influence of iron substitution on the corresponding crystal surface nature. This work highlights the different replacements of complex Ca sites by Fe and Sr in the apatite layers and hydrated layers of OCP crystal structure, which gives more possible accounts for foreign trivalent and divalent cations. Comparative study of Fe 3+ -/Sr 2+ -substitution in the apatite and hydrated layers of octacalcium phosphate crystal structure with different coordination environments.
Author He, Fupo
Ye, Jiandong
Shi, Haishan
AuthorAffiliation Key Laboratory of Biomedical Engineering of Guangdong Province
South China University of Technology
School of Electromechanical Engineering
Guangdong University of Technology
School of Materials Science and Engineering
National Engineering Research Center for Tissue Restoration and Reconstruction
AuthorAffiliation_xml – sequence: 0
  name: Guangdong University of Technology
– sequence: 0
  name: School of Materials Science and Engineering
– sequence: 0
  name: Key Laboratory of Biomedical Engineering of Guangdong Province
– sequence: 0
  name: School of Electromechanical Engineering
– sequence: 0
  name: South China University of Technology
– sequence: 0
  name: National Engineering Research Center for Tissue Restoration and Reconstruction
Author_xml – sequence: 1
  givenname: Haishan
  surname: Shi
  fullname: Shi, Haishan
– sequence: 2
  givenname: Fupo
  surname: He
  fullname: He, Fupo
– sequence: 3
  givenname: Jiandong
  surname: Ye
  fullname: Ye, Jiandong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32263022$$D View this record in MEDLINE/PubMed
BookMark eNqNks1rFTEUxYNUbK3duFdmKcJoPibJjLv68KNQ6MIK7obMzR1fZN7kmZss-t87fa-vgghtNgmH3zlwb85zdjTHGRl7Kfg7wVX3HnQeuJSNdU_YieSa11aL9uj-zX8cszOiX3w5rTCtap6xYyWlUYvrhOVvN3NeIwWq3OwryqlALgmrOFYhxbk-yHHOoWxqKgPlkEtGX0XIDtwEi15t15G2a5fxQ4XjiJBplxDnABWsXfqJu6DkfCj0gj0d3UR4dnefsu-fP12vvtaXV18uVueXNTS2yfUygegGsCN4b7yRrZLoFHSDUhYNyEFK5SQ4aZXlrUEthfaD0wYQR-O5OmVv9rnbFH8XpNxvAgFOk5sxFuqlaq3RwjTiYVRa0Rquu_ZBVHRCGNkI_QjUdkoaIZpmQV_foWXYoO-3KWxcuukPX7UAfA9AikQJxx5CdnlZcU4uTL3g_W0h-pW-_rgrxPliefuP5ZD6X_jVHk4E99zfdqk_3YW_Jw
CitedBy_id crossref_primary_10_3390_ma14123436
crossref_primary_10_1016_j_ceramint_2022_11_295
crossref_primary_10_1016_j_mtla_2024_102077
crossref_primary_10_1016_j_bioactmat_2020_10_025
crossref_primary_10_1021_acs_cgd_0c01369
crossref_primary_10_1016_j_matchemphys_2022_126786
crossref_primary_10_3390_molecules27185916
crossref_primary_10_1007_s13369_024_09572_8
crossref_primary_10_1667_RADE_20_00194_1
crossref_primary_10_1021_acsbiomaterials_4c02011
crossref_primary_10_1016_j_jallcom_2018_08_118
crossref_primary_10_1016_j_ceramint_2024_03_181
crossref_primary_10_1016_j_jmst_2021_09_069
crossref_primary_10_1016_j_vibspec_2018_08_002
crossref_primary_10_1016_j_nocx_2023_100181
crossref_primary_10_1002_adma_202301422
crossref_primary_10_1016_j_ceramint_2021_12_126
crossref_primary_10_1016_j_msec_2017_07_034
crossref_primary_10_1016_j_ijbiomac_2024_132632
crossref_primary_10_1039_C8GC03440K
crossref_primary_10_1039_D1RA07939E
crossref_primary_10_1016_j_ceramint_2017_02_020
crossref_primary_10_1016_j_actbio_2021_08_021
crossref_primary_10_1021_acsami_4c11887
crossref_primary_10_2109_jcersj2_22063
crossref_primary_10_1016_j_msec_2016_04_102
crossref_primary_10_1246_cl_220238
crossref_primary_10_1039_D3CC04685K
crossref_primary_10_1111_jace_15220
crossref_primary_10_1116_1_5004453
crossref_primary_10_1016_j_ceramint_2023_03_155
crossref_primary_10_3390_ceramics4020018
crossref_primary_10_1088_1755_1315_155_1_012018
crossref_primary_10_1620_tjem_2023_J040
crossref_primary_10_1016_j_scitotenv_2021_146266
crossref_primary_10_3390_ceramics7020052
crossref_primary_10_1002_jbm_b_34515
crossref_primary_10_1021_acs_cgd_7b00129
crossref_primary_10_1080_14686996_2022_2035193
crossref_primary_10_1016_j_matchemphys_2018_07_035
crossref_primary_10_1016_j_electacta_2017_09_086
crossref_primary_10_1039_C9NR07108C
crossref_primary_10_1016_j_colsurfa_2024_134001
crossref_primary_10_1039_D3CP01992F
crossref_primary_10_1016_j_matlet_2022_133137
crossref_primary_10_1016_j_ceramint_2022_11_145
crossref_primary_10_1016_j_jallcom_2024_175126
crossref_primary_10_1016_j_apt_2017_10_006
crossref_primary_10_1016_j_surfin_2023_103654
crossref_primary_10_1007_s10856_022_06672_5
crossref_primary_10_1016_j_apmt_2019_01_002
crossref_primary_10_1017_S1431927618015659
crossref_primary_10_1016_j_mtchem_2017_07_003
crossref_primary_10_1088_1361_6528_ab4848
crossref_primary_10_1016_j_ceramint_2017_06_135
crossref_primary_10_1002_smtd_202300370
crossref_primary_10_1039_C9CE00677J
crossref_primary_10_2109_jcersj2_23133
crossref_primary_10_1007_s10904_021_02103_0
crossref_primary_10_2109_jcersj2_22005
crossref_primary_10_1016_j_ceramint_2023_09_146
crossref_primary_10_1016_j_electacta_2016_08_138
crossref_primary_10_3390_ma14195772
crossref_primary_10_1016_j_msec_2017_05_061
Cites_doi 10.1063/1.2940337
10.1016/j.biomaterials.2009.11.050
10.1016/j.bone.2012.11.044
10.1186/1477-3155-10-32
10.1016/j.actbio.2011.12.012
10.1039/B403503H
10.1016/j.jcrysgro.2008.01.047
10.1016/j.msec.2005.01.008
10.1007/s10853-011-5851-7
10.1007/s00198-004-1767-2
10.1021/cm4007298
10.1021/jp808713m
10.1007/s002239900561
10.1021/cg100494f
10.1016/j.jcrysgro.2006.10.168
10.1016/j.bone.2006.02.059
10.1359/jbmr.071012
10.1201/b18952
10.1134/S2075113310030019
10.1016/j.biomaterials.2005.12.031
10.1016/S0927-7757(99)00384-2
10.1021/ja060336u
10.1016/S0891-5849(02)01006-7
10.1016/j.ces.2012.02.049
10.1016/j.biomaterials.2006.11.019
10.1016/j.materresbull.2007.09.004
10.1016/0162-0134(92)80007-I
10.2174/092986708783497283
10.1038/1961050a0
10.1007/BF00254749
10.2165/10481900-000000000-00000
10.1002/ar.1092240217
10.1007/BF01194315
10.1021/jp911783r
10.1016/j.metabol.2008.02.004
10.1016/j.matchemphys.2013.06.014
10.1016/j.optmat.2003.12.003
10.1016/j.biomaterials.2009.11.046
10.1002/jbm.b.30407
10.1021/cm00034a009
10.1021/cg1009835
10.1073/pnas.1404481112
ContentType Journal Article
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7U7
C1K
7S9
L.6
7X8
DOI 10.1039/c5tb02247a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
Toxicology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
Toxicology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList PubMed
Toxicology Abstracts
CrossRef
AGRICOLA
Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2050-7518
EndPage 1719
ExternalDocumentID 32263022
10_1039_C5TB02247A
c5tb02247a
Genre Journal Article
GroupedDBID -JG
0-7
0R~
4.4
53G
705
AAEMU
AAIWI
AAJAE
AANOJ
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ACPRK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
ALMA_UNASSIGNED_HOLDINGS
ANBJS
ANUXI
APEMP
ASKNT
AUDPV
AUNWK
BLAPV
BSQNT
C6K
D0L
EBS
ECGLT
EE0
EF-
EJD
GGIMP
GNO
H13
HZ~
H~N
J3I
O-G
O9-
R7C
RAOCF
RCNCU
RNS
ROL
RPMJG
RRC
RSCEA
SKA
SKF
SLH
UCJ
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
J3G
J3H
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7U7
C1K
7S9
L.6
7X8
ID FETCH-LOGICAL-c474t-20519bc7fcdd6d62832ea3c9b337e6c2b223a2ca2737086e5215dba56ceef6d03
ISSN 2050-750X
2050-7518
IngestDate Fri Jul 11 07:48:48 EDT 2025
Fri Jul 11 07:35:41 EDT 2025
Thu Jul 10 18:49:12 EDT 2025
Fri Jul 11 05:47:09 EDT 2025
Wed Feb 19 02:30:54 EST 2025
Tue Jul 01 04:27:17 EDT 2025
Thu Apr 24 23:03:31 EDT 2025
Tue Dec 17 20:59:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c474t-20519bc7fcdd6d62832ea3c9b337e6c2b223a2ca2737086e5215dba56ceef6d03
Notes Electronic supplementary information (ESI) available: Additional experimental data of the synthesized OCP samples including used chemical reactants, XPS survey spectra, refined results and quantitative surface composition analysis, as well as the initial product of OCP. See DOI
10.1039/c5tb02247a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 32263022
PQID 1793261144
PQPubID 23500
PageCount 8
ParticipantIDs crossref_citationtrail_10_1039_C5TB02247A
proquest_miscellaneous_1793261144
proquest_miscellaneous_1911624158
crossref_primary_10_1039_C5TB02247A
rsc_primary_c5tb02247a
proquest_miscellaneous_2271860598
pubmed_primary_32263022
proquest_miscellaneous_2387651641
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of materials chemistry. B, Materials for biology and medicine
PublicationTitleAlternate J Mater Chem B
PublicationYear 2016
References Lundager Madsen (C5TB02247A-(cit19)/*[position()=1]) 2008; 310
Brown (C5TB02247A-(cit12)/*[position()=1]) 1962; 196
Blake (C5TB02247A-(cit22)/*[position()=1]) 1986; 12
Tao (C5TB02247A-(cit8)/*[position()=1]) 2015; 112
Elliott (C5TB02247A-(cit17)/*[position()=1]) 1994
Penel (C5TB02247A-(cit39)/*[position()=1]) 1998; 63
Kandori (C5TB02247A-(cit41)/*[position()=1]) 2010; 114
Bonner (C5TB02247A-(cit38)/*[position()=1]) 2004; 26
Jiang (C5TB02247A-(cit45)/*[position()=1]) 2002; 66
Dorozhkin (C5TB02247A-(cit14)/*[position()=1]) 2010; 31
Delmas (C5TB02247A-(cit25)/*[position()=1]) 2005; 16
Matsunaga (C5TB02247A-(cit43)/*[position()=1]) 2009; 113
Lu (C5TB02247A-(cit35)/*[position()=1]) 2006; 297
Rodriguez (C5TB02247A-(cit23)/*[position()=1]) 2012; 25
Wakamura (C5TB02247A-(cit40)/*[position()=1]) 2000; 164
Panseri (C5TB02247A-(cit32)/*[position()=1]) 2012; 10
Pon-On (C5TB02247A-(cit34)/*[position()=1]) 2013; 141
Gobel (C5TB02247A-(cit9)/*[position()=1]) 2004; 14
Barinov (C5TB02247A-(cit4)/*[position()=1]) 2010; 1
Yang (C5TB02247A-(cit15)/*[position()=1]) 2012; 8
Deeks (C5TB02247A-(cit27)/*[position()=1]) 2010; 70
Suzuki (C5TB02247A-(cit2)/*[position()=1]) 2006; 77
Richerson (C5TB02247A-(cit28)/*[position()=1]) 2005
Kakhlon (C5TB02247A-(cit21)/*[position()=1]) 2002; 33
Li (C5TB02247A-(cit31)/*[position()=1]) 2012; 47
Iafisco (C5TB02247A-(cit33)/*[position()=1]) 2013; 25
Guggenbuhl (C5TB02247A-(cit20)/*[position()=1]) 2008; 57
Arlot (C5TB02247A-(cit26)/*[position()=1]) 2008; 23
Rey (C5TB02247A-(cit36)/*[position()=1]) 2014
Bakker (C5TB02247A-(cit24)/*[position()=1]) 2013; 53
Tseng (C5TB02247A-(cit7)/*[position()=1]) 2006; 128
Shelton (C5TB02247A-(cit1)/*[position()=1]) 2006; 27
Nelson (C5TB02247A-(cit5)/*[position()=1]) 1989; 224
Boanini (C5TB02247A-(cit16)/*[position()=1]) 2010; 10
Mathew (C5TB02247A-(cit13)/*[position()=1]) 1988; 18
Honda (C5TB02247A-(cit18)/*[position()=1]) 2011; 11
Crane (C5TB02247A-(cit10)/*[position()=1]) 2006; 39
Matsunaga (C5TB02247A-(cit44)/*[position()=1]) 2008; 128
Suzuki (C5TB02247A-(cit11)/*[position()=1]) 2008; 15
Chang (C5TB02247A-(cit30)/*[position()=1]) 2010; 31
Mayer (C5TB02247A-(cit46)/*[position()=1]) 1992; 45
Wopenka (C5TB02247A-(cit6)/*[position()=1]) 2005; 25
Pon-On (C5TB02247A-(cit29)/*[position()=1]) 2008; 43
Fowler (C5TB02247A-(cit37)/*[position()=1]) 1993; 5
Rokidi (C5TB02247A-(cit42)/*[position()=1]) 2012; 77
Liu (C5TB02247A-(cit3)/*[position()=1]) 2007; 28
References_xml – issn: 1994
  publication-title: Structure and chemistry of the apatite and other calcium orthophosphates
  doi: Elliott
– issn: 2005
  publication-title: Modern ceramic engineering: properties, processing, and use in design
  doi: Richerson
– issn: 2014
  publication-title: Characterization of Calcium Phosphates Using Vibrational Spectroscopies
  doi: Rey Marsan Combes Drouet Grossin Sarda
– volume: 128
  start-page: 245101
  year: 2008
  ident: C5TB02247A-(cit44)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2940337
– volume: 31
  start-page: 1465
  year: 2010
  ident: C5TB02247A-(cit14)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.050
– volume: 53
  start-page: 112
  year: 2013
  ident: C5TB02247A-(cit24)/*[position()=1]
  publication-title: Bone
  doi: 10.1016/j.bone.2012.11.044
– volume: 10
  start-page: 5819
  year: 2012
  ident: C5TB02247A-(cit32)/*[position()=1]
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/1477-3155-10-32
– volume: 8
  start-page: 1586
  year: 2012
  ident: C5TB02247A-(cit15)/*[position()=1]
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2011.12.012
– volume: 14
  start-page: 2225
  year: 2004
  ident: C5TB02247A-(cit9)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/B403503H
– volume: 310
  start-page: 2602
  year: 2008
  ident: C5TB02247A-(cit19)/*[position()=1]
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2008.01.047
– volume: 25
  start-page: 131
  year: 2005
  ident: C5TB02247A-(cit6)/*[position()=1]
  publication-title: Mater. Sci. Eng., C
  doi: 10.1016/j.msec.2005.01.008
– volume: 47
  start-page: 754
  year: 2012
  ident: C5TB02247A-(cit31)/*[position()=1]
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-011-5851-7
– volume: 16
  start-page: S16
  issue: suppl 1
  year: 2005
  ident: C5TB02247A-(cit25)/*[position()=1]
  publication-title: Osteoporosis Int.
  doi: 10.1007/s00198-004-1767-2
– volume: 25
  start-page: 2610
  year: 2013
  ident: C5TB02247A-(cit33)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm4007298
– volume: 113
  start-page: 3584
  year: 2009
  ident: C5TB02247A-(cit43)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp808713m
– volume: 63
  start-page: 475
  year: 1998
  ident: C5TB02247A-(cit39)/*[position()=1]
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s002239900561
– volume: 10
  start-page: 3612
  year: 2010
  ident: C5TB02247A-(cit16)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg100494f
– volume: 297
  start-page: 396
  year: 2006
  ident: C5TB02247A-(cit35)/*[position()=1]
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2006.10.168
– volume: 39
  start-page: 434
  year: 2006
  ident: C5TB02247A-(cit10)/*[position()=1]
  publication-title: Bone
  doi: 10.1016/j.bone.2006.02.059
– volume: 23
  start-page: 215
  year: 2008
  ident: C5TB02247A-(cit26)/*[position()=1]
  publication-title: J. Bone Miner. Res.
  doi: 10.1359/jbmr.071012
– volume-title: Modern ceramic engineering: properties, processing, and use in design
  year: 2005
  ident: C5TB02247A-(cit28)/*[position()=1]
  doi: 10.1201/b18952
– volume: 1
  start-page: 175
  year: 2010
  ident: C5TB02247A-(cit4)/*[position()=1]
  publication-title: Inorg. Mater.: Appl. Res.
  doi: 10.1134/S2075113310030019
– volume: 27
  start-page: 2874
  year: 2006
  ident: C5TB02247A-(cit1)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.12.031
– volume: 164
  start-page: 297
  year: 2000
  ident: C5TB02247A-(cit40)/*[position()=1]
  publication-title: Colloids Surf., A
  doi: 10.1016/S0927-7757(99)00384-2
– volume: 66
  start-page: 15
  year: 2002
  ident: C5TB02247A-(cit45)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
– volume: 128
  start-page: 6909
  year: 2006
  ident: C5TB02247A-(cit7)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja060336u
– volume: 33
  start-page: 1037
  year: 2002
  ident: C5TB02247A-(cit21)/*[position()=1]
  publication-title: Free Radicals Biol. Med.
  doi: 10.1016/S0891-5849(02)01006-7
– volume: 77
  start-page: 157
  year: 2012
  ident: C5TB02247A-(cit42)/*[position()=1]
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.02.049
– volume: 28
  start-page: 1393
  year: 2007
  ident: C5TB02247A-(cit3)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.11.019
– volume: 43
  start-page: 2137
  year: 2008
  ident: C5TB02247A-(cit29)/*[position()=1]
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2007.09.004
– volume: 45
  start-page: 129
  year: 1992
  ident: C5TB02247A-(cit46)/*[position()=1]
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/0162-0134(92)80007-I
– volume: 15
  start-page: 305
  year: 2008
  ident: C5TB02247A-(cit11)/*[position()=1]
  publication-title: Curr. Med. Chem.
  doi: 10.2174/092986708783497283
– volume: 196
  start-page: 1050
  year: 1962
  ident: C5TB02247A-(cit12)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/1961050a0
– volume: 12
  start-page: 447
  year: 1986
  ident: C5TB02247A-(cit22)/*[position()=1]
  publication-title: Eur. J. Nucl. Med.
  doi: 10.1007/BF00254749
– volume: 70
  start-page: 733
  year: 2010
  ident: C5TB02247A-(cit27)/*[position()=1]
  publication-title: Drugs
  doi: 10.2165/10481900-000000000-00000
– volume: 224
  start-page: 265
  year: 1989
  ident: C5TB02247A-(cit5)/*[position()=1]
  publication-title: Anat. Rec.
  doi: 10.1002/ar.1092240217
– volume: 18
  start-page: 235
  year: 1988
  ident: C5TB02247A-(cit13)/*[position()=1]
  publication-title: J. Crystallogr. Spectrosc. Res.
  doi: 10.1007/BF01194315
– volume: 114
  start-page: 2399
  year: 2010
  ident: C5TB02247A-(cit41)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp911783r
– volume: 57
  start-page: 903
  year: 2008
  ident: C5TB02247A-(cit20)/*[position()=1]
  publication-title: Metabolism
  doi: 10.1016/j.metabol.2008.02.004
– volume: 141
  start-page: 850
  year: 2013
  ident: C5TB02247A-(cit34)/*[position()=1]
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2013.06.014
– volume: 26
  start-page: 17
  year: 2004
  ident: C5TB02247A-(cit38)/*[position()=1]
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2003.12.003
– volume: 31
  start-page: 1493
  year: 2010
  ident: C5TB02247A-(cit30)/*[position()=1]
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2009.11.046
– volume-title: Characterization of Calcium Phosphates Using Vibrational Spectroscopies
  year: 2014
  ident: C5TB02247A-(cit36)/*[position()=1]
– volume: 77
  start-page: 201
  year: 2006
  ident: C5TB02247A-(cit2)/*[position()=1]
  publication-title: J. Biomed. Mater. Res., Part B
  doi: 10.1002/jbm.b.30407
– volume: 25
  start-page: 208
  year: 2012
  ident: C5TB02247A-(cit23)/*[position()=1]
  publication-title: Acta Odontol. Latinoam.
– volume: 5
  start-page: 1417
  year: 1993
  ident: C5TB02247A-(cit37)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/cm00034a009
– volume-title: Structure and chemistry of the apatite and other calcium orthophosphates
  year: 1994
  ident: C5TB02247A-(cit17)/*[position()=1]
– volume: 11
  start-page: 1462
  year: 2011
  ident: C5TB02247A-(cit18)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg1009835
– volume: 112
  start-page: 326
  year: 2015
  ident: C5TB02247A-(cit8)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1404481112
SSID ssj0000816834
Score 2.3590264
Snippet Octacalcium phosphate (OCP) has received intensive research focus as a main component of bone substitute materials due to its highly osteoconductive and...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1712
SubjectTerms apatite
biodegradability
Biological effects
Biomedical materials
bone substitutes
calcium
cations
chemical precipitation
Crystal structure
Crystals
Iron
microstructure
Nanostructure
Phosphates
Strontium
Title Synthesis and structure of iron- and strontium-substituted octacalcium phosphate: effects of ionic charge and radius
URI https://www.ncbi.nlm.nih.gov/pubmed/32263022
https://www.proquest.com/docview/1793261144
https://www.proquest.com/docview/1911624158
https://www.proquest.com/docview/2271860598
https://www.proquest.com/docview/2387651641
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbK7gUOiNey5SUjuKAqSxI7TsOtu-qqoLIcNpV6i2LHUStBUrXpAf4Cf5rxI26gZbVwiZqJazmez-PP9mQGobeSU05Ln3qSMwoLlIB7PClDLywkjWNOYqFzRn6-YpMZ_TSP5r3ez47X0rbhZ-LHwe9K_kerIAO9qq9k_0GzrlIQwG_QL1xBw3C9lY6vv1fA31RIEb39rUPBqgMBFQZiXVdeK66rZrn95m3ASBjPgGJQiyYH9QiQD1aLerNaqBAWKk3PzsFjqbPj6FhK5pBhnRdLu1Gwz2eB-pp3hn_YJHJng3PzPVD7RPuGdsI-_Xmyf70wSbR1TmgH24lxQd6u6t0Or0YfQLuo7dRrdy6C7s6FNnChH_keMJa5mYu6MmuTrYWmHSAmHWsbxNYFW7a3ycFZwScqqKqIGq4YS9yZ-9rz_qsv2eVsOs3S8Ty9g45DWHOA0TwejdOPU7dlp3OUaD8F1_I24C1J3u-q_53i7K1bgMWs2-wymsWkD9B9qy48Mlh6iHqyeoTudYJSPkaNQxWG7sUOVbgusUZVK95HFe6gCjtUfcAWU7oGhSlsMKUrMph6gmaX4_Ri4tncHJ6gMW1gGAL15yIuhUpJxlTCK5kTkXBCYslEyIF25qHIgR3HsGqWwBKjgucRA1JWssInJ-ioqit5inBRclEq4ksIpcMi4BLMCof7oEiGwg_66F3bnZmwgetV_pSvmXagIEl2EaXnuutHffTGlV2ZcC0HS71utZLBeFBHZHkl6-0mU9NVyIKA0hvKAD9givgO_14mDIHzMVi63FSGABOJAkbhDZ8aaLg2wzTLCDS2j04AK068w9izW7zCc3R3N-xeoCPAi3wJFLrhryy0fwGwBM0q
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+and+structure+of+iron-+and+strontium-substituted+octacalcium+phosphate%3A+effects+of+ionic+charge+and+radius&rft.jtitle=Journal+of+materials+chemistry.+B%2C+Materials+for+biology+and+medicine&rft.au=Shi%2C+Haishan&rft.au=He%2C+Fupo&rft.au=Ye%2C+Jiandong&rft.date=2016-01-01&rft.issn=2050-750X&rft.eissn=2050-7518&rft.volume=4&rft.issue=9&rft.spage=1712&rft.epage=1719&rft_id=info:doi/10.1039%2Fc5tb02247a&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-750X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-750X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-750X&client=summon